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In this letter we show that it is possible to unravel both the physical origin of the

Landau’s consistence criterion and the specific and subtle meaning of interpenetra-

tion of the “two fluids” if one takes into account that in the hydrodynamic regime

one needs a coarse-graining in time to bring the system into local equilibrium. That

is, the fuzziness in time is relevant for the phenomenological Landau’s consistency

criterion and the meaning of interpenetration. Note also that we are not questioning

the validity of the “Two-Fluid” Model.

I. INTRODUCTION

A quantum fluid is a substance that remains fluid (i.e. gas or liquid) at such low

temperatures that the effects of quantum mechanics play a dominant role and the laws

of classical statistical mechanics do not serve. The two isotopes of Helium, 4He and 3He,

are the only quantum fluids on the Earth. The 4He atom is a zero-spin boson, which

is determinant for its quantum properties. In fact, at temperatures and pressures below

Tλ ≈ 2.17 K and 2.5 MPa respectively, 4He is at the so called He II superfluid phase where

it displays among other properties [1, 2] that of flowing through narrow channels with no

measurable viscosity.

In order to explain the behaviour of He II, L. Tisza and L.D. Landau [3–5] developed

the Two-Fluid Model. They described the He II phase by two components, one viscous

and another non-viscous, related to each other in a very sophisticated way, as we shall

explain in Section II. The main differences between the Tisza and Landau proposals are

discussed in detail in [6]. Here we will deal with the theory of Landau and Feynman

ar
X

iv
:1

80
6.

11
03

4v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

 O
ct

 2
01

8



2

[4, 5, 7–9], the commonly accepted Two-Fluid Model.

A very complete summary of the Two-Fluid theory can be seen in [10]. In [11] the

authors grasp some interesting subtleties of the Two-Fluid model. We only highlight

here that one of the most important Feynman’s contributions was to note [7, 8] the

relevance of Bose-Einstein statistics to correctly account for the thermally excited states

of compression, with a resultant change in the density: the phonon-roton density modes

of the normal component (see also [12]).

II. THE LANDAU’S CONSISTENCY CRITERION AND THE MEANING OF

INTERPENETRATION

In the Two-Fluid Model of the He II, the thermodynamical equilibrium states are

described, at any temperature T < Tλ, [13], by two independent velocities, ~vs(~r), ~vn(~r),

and associated densities, ρs(~r) and ρn(~r), such that the densities of mass current ~J(~r) and

of kinetic energy flow Q(~r) are given by,

ρ(~r) = ρs(~r) + ρn(~r), (1)

J(~r) = ρs(~r)~vs(~r) + ρn(~r)~vn(~r), (2)

Q(~r) =
1

2

[
ρs(~r)~vs(~r)

2 + ρn(~r)v2n(~r)
]
, (3)

where ρ(~r) is the total mass density and the superfluid component ρs(~r) is not viscous.

The entropy of the liquid is entirely attributed to the normal fluid part ρn,

ρ(~r)S = ρn(~r)Sn,

where S is the total entropy per mass of the liquid and Sn the normal fluid entropy.

At T = 0, the entire liquid is supposed to be superfluid, i.e. ρ = ρs while at T = Tλ

the superfluid component vanishes, i.e. ρ = ρn.

The model is completed by taking into account the following Landau’s consistency

criterion [4, 5]: “...there is no division of the real particles of the liquid into “superfluid

and “normal” ones. In a certain sense one can speak of “superfluid” and “normal” masses

of liquid as of masses connected with two simultaneously possible movements, but this by

no means signifies the possibility of a real division of the liquid into two parts”.
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Here we shall discuss on the Landau’s consistency criterion and on the meaning of

interpenetration.

Firstly, ~r must be understood, as always in fluid mechanics [14], “as the position of

the volume element corresponding to a “fluid particle”, in the sense of a volume element

containing many particles though regarded as a point”. Then, when we speak of the

displacement of a fluid particle we mean not the displacement of an individual atom of

He, but that of a volume element containing many atoms, though still regarded as a point.

Since both densities (1) are referred to the same ~r , they “lend nicely to an intuitive picture

of He II as a mixture of two independent, interpenetrating “fluids” or “components”, the

“superfluid” and the “normal” components” [13]. Of course, the interpenetration is not

just that both components refer to the volume element of the fluid positioned in ~r , this

is common to fluid dynamics for a standard mixture of fluids, as e.g. water and wine,

(see Chapter VI of [14]). In order to unravel the physical meaning of the interpenetration

one can take into account a coarse-graining in time in correspondence with the mentioned

volume element, or coarse-graining in space, positioned in ~r.

Indeed, following the fundamental basis of the hydrodynamic regime [15–19], one

should introduce a coarse-graining in time. In fact, Landau and Lifshitz thought that

the fuzziness in time was somewhat irrelevant. Then, assuming this irrelevance, they

extended the Navier-Stokes equation to a relativistic covariant form (see Chapter XV

of [14]). However, this equation is known to be unstable, and we now know its origin:

any volume element requires a finite relaxation time, or coarse-graining in time, to reach

a thermodynamical equilibrium and the Landau and Lifshitz naive covariant extension

of the Navier-Stokes equation, obtained neglecting this necessary finite relaxation time,

contains acausal modes which are the origin of the instability. Let us recall Section 26

of [14]: “Not every solution of the equations of motion, even if it is exact, can actually

occur in Nature. The flows that occur in Nature must not only obey the equations of

fluid dynamics, but also be stable”. That is, the consistency of the theory advises us

to consider a coarse-graining in time. Indeed, in the hydrodynamic regime one needs a

coarse-graining in time larger than the relaxation time that brings the system into local

equilibrium.

It is true that for the most of non-relativistic cases we do not need explicitly a coarse-

graining in time, as in [14]. Nevertheless, now we will see that taking into account this
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coarse-graining we can unravel the physical origin of the Landau’s consistency criterion

and the meaning of interpenetration.

In fact, when fluid mechanics describes the evolution of a fluid with time what is

being described is what it would be observed in successive snapshots corresponding to

successive coarse-graining times. In our case what it will be observed is that the He atoms

participating in the phonon-roton density modes [7, 8, 12] of the “normal component”

will be different at each given coarse-graining time (as illustration one can think in the

thermodynamic description of vapor-liquid equilibrium: molecules that participate in the

vapor and in the liquid change with time). Then, “...there is no division of the real

particles of the liquid into “superfluid” and “normal” ones...” or “...there is no chance

of a real division of the liquid into two parts”, as Landau emphasizes. This is a crucial

difference with the water/wine mixture case mentioned above, in which there are water

molecules different from wine molecules. To sum up, in the two fluid model the He atoms

can not be labeled according to their contribution to the superfluid, ρs(~r), or to the normal

component, ρn(~r): they are interpenetrating fluids, as Leggett says.

III. THE LOCAL EQUILIBRIUM HYDRODYNAMIC REGIME (LEHR)

The most extraordinary fact of the superfluid phase of He II is the stability of its flow.

Since the discovery of this dramatic feature, it was described (almost always) within the

framework of the LEHR, at the beginning implementing in this frame the Tisza’s two

fluid model and later the Landau’s model. In section II we have taken advantage of this

fact, in particular of the physical finite relaxation time, fundamental ingredient of the

LEHR. Superflow stability has also been studied by starting from the hypothesis that

steady supercurrents are metastable states. Therefore, in this case, it must be discussed

in the language of statistical mechanics of irreversible processes [2, 20].

Now, on the one hand, we have the physical stability of the superflow and the physically

meaningful relaxation time already discussed in section II. On the other hand we can

ask about the absence of numerical instabilities when one is working with a system of

nonlinear time-dependent equations, where also a mathematical ∆t, without physical

meaning, appears. The comment on this is the reason for this section.

Let us recall that in the two-fluid models of helium II, while at low enough flow veloc-
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ities the normal and superfluid components of helium II move independently, at higher

velocities ( see section ”Two-Fluid Models” of the second article of [10]), ”quantized vor-

tex lines appear in the superfluid component and the two fluids become coupled by a

force called mutual friction”. Phonon-rotons density modes continue being the normal

component. To be specific, let’s consider the Landau’s Two Fluid Model (LTFM) in this

framework.

Two points to keep in mind are:

First, the LEHR is also the physical frame suitable for raising generalizations of the

LTFM (see the first three sections of [21]).

Second, the concrete physical properties which characterize a system in the LEHR

must be searched using physical arguments as, for example, in the case considered, what

is the physical time scale for the vortex lines to equilibrate? A vortex line is a hole

with quantised circulation, so the answer must have to do with the speed of sound (240

m/s in helium), the size of the hole (diameter about 10−10 m) or the distance between

vortices. Although much is known about quantized vortices in Helium II [22], as far as

we know, that knowledge is not sufficient to answer this question. This lack of knowledge

or certainty does not prevent us the construction of models living thanks to the physical

support given by the LEHR: these models are supported on their success [4, 5, 7–9, 14].

We conclude this section by summarizing the situation from the mathematical side.

To prove mathematically the absence of numerical instabilities when one is working with

a system of nonlinear time-dependent partial differential equations in two or three spatial

dimensions, as the LTFM equations, is a very difficult problem. In fact, as can be seen in

[23–25], in order to achieve numerical stability, one monitors the power spectrum of the

solution to make sure that it decays at large spatial frequency.The power-law decay means

that spectral convergence has been achieved. Here the only point we want to clarify is that,

in these studies, the time step ∆t, which sets the boundary between stable and unstable

numerical solutions (see section 5 of [23]), means nothing physically, because it depends

on the precise numerical method: this ∆t is not a physically meaningful relaxation time

(see Section II).
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IV. CONCLUSION

The discussion in Section II is supported on the physical finite relaxation time required

by the fundamental basis of the LEHR, in which the LTFM and its generalization live.

As we have seen, neglecting it can lead to serious inconsistencies and sometimes to forget

the possible physical origin of important ingredients of a phenomenological theory such

as, in our case, the Landau’s consistency criterion and the meaning of interpenetration in

the Two-fluid model.

Finally, note that one can conclude that the name of the model is in fact a bit

misleading and it should contain a small footprint of the Landau’s consistency criterion

by typing in quotes “two fluid”, as we have done in the title.
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