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The probabilistic logic FP(Ł, Ł) was axiomatized with the aim of presenting a formal setting 
for reasoning about the probability of infinite-valued Łukasiewicz events. Besides several 
attempts, proving that axiomatic system to be complete with respect to a class of standard
models, remained an open problem since the first paper on FP(Ł, Ł) was published in 2007. 
In this article we give a solution to it. In particular we introduce two semantics for that 
probabilistic system: a first one based on Łukasiewicz states and a second one based on 
regular Borel measures and we prove that FP(Ł, Ł) is complete with respect to both these 
classes of models. Further, we will show that the finite model property holds for FP(Ł, Ł).

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probability theory is a well-established branch of mathematics which has found, along the years, several applications in 
all those areas of pure and applied science that require a quantification of the uncertainty of “unknown statements about 
the world”, i.e., events.

Beyond mathematics, the need of reasoning about uncertainty paved the way to several attempts aiming at capturing, 
in a formal way, the axioms and rules for correct deductions in that setting. It is interesting to recall that the perspective 
which look at probability theory as a branch of both mathematics and logic, surely was one of the groundbreaking ideas 
that George Boole reported in the introduction of his seminal work [4]:

[...] the subject of Probabilities belongs equally to the science of Number and to that of Logic. In recognizing the co-ordinate existence 
of both these elements, the present treatise differs from all previous ones.

The best known formal systems for probabilistic reasoning are the logic AXM E A S , introduced by Fagin, Halpern and 
Megiddo in [10] and the logic FP(Ł) defined in [21] by Hájek, Godo and Esteva. In the same papers [10] and [21] these 
logics have been proved to be sound and complete with respect to measurable probability structures. It is worth pointing 
out that AXM E A S and a variant of FP(Ł) have been shown to be syntactically interdefinable, and hence equivalent, in the 
recent article [2].

Nowadays models for uncertain quantification and reasoning do not relegate to probability theory only and they encom-
pass several other possibilities. However, if we take probability theory as point of departure, one can imagine essentially 
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two ways to proceed towards further generalizations: the first one is to consider alternative or more general uncertainty 
measures such as possibility and necessity measures [9], belief and plausibility functions [36], upper and lower probabilities 
[37]; the second consists in generalizing probability theory from classical to non-classical events [32,38]. Obviously, these 
two lines of research have no void intersection as one could consider general uncertainty measures on events that do not 
necessarily pertain to the classical logic world, see [16] for an overview.

Moving from classical to many-valued events presents non-trivial technical complications and poses intriguing philo-
sophical questions [27]. However, there is a quite established conviction within the community of many-valued logicians 
that the realm of t-norm based fuzzy logics offers a suitable logical and algebraic setting for a reasonable generalization of 
probability theory on many-valued events. In particular, although generalizations of probability functions (called states by 
that community) have been introduced for Gödel logic [1], product logic [17] and more, the realm of Łukasiewicz logic is 
surely playing a pivotal role in that area, see [32,34] and [19, Ch. 8] for an overview. The interest in Łukasiewicz events is 
twofold: on the one hand these events capture properties of the world which are better described as gradual rather than 
yes-or-no; on the other hand, they also mimic bounded random variables. Indeed, any Łukasiewicz event ψ can be regarded 
as a [0, 1]-valued continuous function mψ on a compact Hausdorff space (see [6, Theorem 9.1.5] and Example 2.5 below) 
and any state on ψ coincides with the expected value of mψ , [25,35], and [18, Remark 2.8].

A generalization of Hájek, Godo and Esteva logic FP(Ł) was introduced in [14] as a formal framework for reasoning 
about the probabilities (i.e. the states) of Łukasiewicz infinite-valued events. For that logic, denoted by FP(Ł, Ł), the authors 
proposed an axiomatization which reflects the main properties of Łukasiewicz states, but they did not succeed in proving a 
completeness theorem with respect to its natural semantics. In [11] we presented only a partial solution and we showed that 
the logic FP(Ł, Ł) is sound and complete w.r.t. a class of models which make use of hyperreal-valued states (see Subsection 
3.2 for more details). However, proving standard completeness for FP(Ł, Ł), that is completeness with respect to real-valued 
states,1 was left open in [14]. Let us emphasize that solving that problem, besides its theoretical interest, actually answers 
to a question which can be formulated as follows: is FP(Ł, Ł) the logic of real-valued states on Łukasiewicz events? And, if 
not, is this latter logic axiomatizable?

In order to give an answer to the first of the above question a new technique to prove standard completeness was 
proposed in the recent [12]. Unfortunately, as we realized afterwords, that construction was grounded on the unsound 
claim [12, Lemma 1]. The present paper overcomes the problem of [12] and introduces an algebraic construction that 
allows to prove that FP(Ł, Ł) enjoys a standard completeness theorem. In particular, in this paper, we introduce two kinds 
of standard semantics: a first one based on real-valued Łukasiewicz states and a second one based on real-valued regular 
Borel measures on compact Hausdorff spaces. Our main results show completeness of FP(Ł, Ł) with respect to both classes 
of models. As a direct consequence of the main construction we will adopt to show the first completeness theorem, we also 
prove that FP(Ł, Ł) has the finite model property. Indeed, as our last result shows, models based on hyperreal-valued states, 
real-valued states, regular Borel measures and finite models, they all share the same tautologies.

The present paper is organized as follows: in Section 2 we introduce the algebraic semantics of Łukasiewicz logic, MV-
algebras, we recall and prove some basic necessary results. In Section 3 we remind states and hyperstates of MV-algebras 
and we also prove a key lemma that collects some needed properties for hyperstates. In Section 4 we present standard 
semantics for FP(Ł, Ł) and prove standard completeness results, while in Section 5 we show that FP(Ł, Ł) has the finite 
model property. We conclude with Section 6 in which we discuss on our future work.

2. Logical, algebraic and geometric preliminaries

Among the wide family of t-norm based fuzzy logics, surely Łukasiewicz infinite-valued calculus is that one which 
received more attention along the last years. This logic, that following tradition we denote by Ł, is algebraizable in the sense 
of Blok and Pigozzi [3] and it finds in the variety of MV-algebras its equivalent algebraic semantics.

In the following subsections we first recall MV-algebras, MV-chains (i.e., totally ordered MV-algebras) and we give a 
glimpse on the methods usually adopted to prove standard and strong non-standard completeness for propositional Łuka-
siewicz logic; secondly, we focus on free MV-algebras and present their geometric representation in terms of McNaughton 
functions. Furthermore, we prove a first result that will have a later use.

2.1. MV-algebras, MV-chains and standard completeness of Łukasiewicz calculus

The language L of Łukasiewicz logic is made of a countable (finite or infinite) set V ar of propositional variables, a 
binary connective ⊕, a unary connective ¬ and a constant ⊥. Formulas, that will be indicated by lowercase Greek letters, 
are defined by induction as usual. Further connectives and constants are defined as follows:

� := ¬⊥; ϕ � ψ := ¬(¬ϕ ⊕ ¬ψ); ϕ → ψ := ¬ϕ ⊕ ψ ; ϕ ∨ ψ := (ϕ → ψ) → ψ ; ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ); ϕ ↔ ψ := (ϕ →
ψ) ∧ (ψ → ϕ).

1 We will clarify what “standard completeness” means in this context in Section 4.
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Due to the algebraizability of Ł, we will focus on its equivalent algebraic semantics, the class of MV-algebras, rather than 
its axiomatization which, however, can be found in [6,22]. Nevertheless, it is convenient to recall that the unique deduction 
rule of Łukasiewicz logic is modus ponens and to introduce the following notation: if T ∪ {ϕ} is a set of formulas in the 
language of Ł, we will write T � ϕ to denote that ϕ is a provable in Ł from the theory T, that is to say, there exists a proof
of ϕ from the axioms of Ł and the formulas in T, see [6,22] for further details.

Before formally defining MV-algebras, let us recall that every boolean algebra is an MV-algebra in which ⊕ = ∨ and 
� = ∧. Indeed, MV-algebras generalize boolean algebra in a way that can be easily understood recalling that the role, in 
classical propositional logic, of the two element boolean chain 2 = ({0, 1}, ∨, ¬, 0) is played in Łukasiewicz logic by the so 
called standard MV-algebra [0, 1]M V = ([0, 1], ⊕, ¬, 0) where, for all x, y ∈ [0, 1], x ⊕ y = min{1, x + y} and ¬x = 1 − x.

Definition 2.1. An MV-algebra is a system A = (A, ⊕, ¬, ⊥) where A is a nonempty set, the triple (A, ⊕, ⊥) is a commutative 
monoid with neutral element ⊥ and the following equations hold for every x, y ∈ A:

(1) ¬¬x = x;
(2) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

For every MV-algebra A = (A, ⊕, ¬, ⊥), an A-valuation is a map v from V ar to A which extends to all formulas by truth-
functionality, that is, v(⊥) = ⊥, v(ϕ ⊕ ψ) = v(ϕ) ⊕ v(ψ), v(¬ϕ) = ¬v(ϕ).2

Following a standard universal algebraic notation, if t[x1, . . . , xk] is any MV-term on variables x1, . . . , xk , A an MV-algebra, 
and v an A-valuation we write tA[v(x1), . . . , v(xk)] to denote the element of A computed from v(x1), . . . , v(xk), by the 
operations of A. Thus, for instance, if t[x1, x2] = (¬x1 ⊕ x2), A = [0, 1]M V and v(xi) = ai ∈ [0, 1], t[0,1]MV [v(x1), v(x2)] =
min{1, 1 − a1 + a2}.

Further operations and constants �; �; →; ∨; ∧; ↔ can be defined in every MV-algebras by the same syntactical 
definitions given above. These operations have the following semantics in the standard MV-algebra [0, 1]M V : for every 
x, y ∈ [0, 1],

� = 1; x � y = max{0, x + y − 1}; x → y = min{1, 1 − x + y}; x ∨ y = max{x, y}, x ∧ y = min{x, y}; x ↔ y = 1 − |x − y|.

For every MV-algebra A, every n ∈N and every a ∈ A, we will abbreviate a ⊕ . . . ⊕ a (n-times) by na.
A partial order ≤ can be defined in every MV-algebra A: for all x, y ∈ A

x ≤ y iff x → y = �.

The partial order ≤ coincides with the lattice order of the reduct (A, ∧, ∨) of A. Whenever ≤ is linear, we will say that A
is an MV-chain.

Chang’s completeness theorem [5] shows that [0, 1]M V is generic for the variety MV of MV-algebras, meaning that 
an equation ϕ = � holds in [0, 1]M V iff it holds in all MV-algebras. As a consequence, Łukasiewicz infinite valued logic 
is sound and finitely strong standard complete. This means that for every finite set of formulas T ∪ {ϕ}, T � ϕ iff v(ϕ) = 1
for every [0, 1]M V -valuation v which maps to 1 all the formulas of T. In purely algebraic terms, the finite strong standard 
completeness of Łukasiewicz calculus can be obtained almost immediately from Lemma 2.2 below that will be also used 
in the proof of our main result in Section 4. Let us prepare. An MV-homomorphism between two MV-algebras A and B is a 
function h : A → B such that, adopting without danger of confusion the same symbols for the operations of both algebras: 
(1) h(⊥) = ⊥; (2) h(x ⊕ y) = h(x) ⊕h(y); (3) h(¬x) = ¬h(x). If X is a subset of A, a map h : X → B is a partial homomorphism
provided that the above conditions (1-3) hold for the partial operations defined between the elements of X . Injective partial 
homomorphisms are called partial embeddings. A partial embedding of X ⊆ A to B will be denoted by X ↪→p B. Therefore, 
an MV-algebra A partially embeds into an MV-algebra B if for every finite subset X of A, there exists a partial embedding 
X ↪→p B.

The proof of the following key lemma immediately follows from Gurevich-Kokorin theorem (see for instance [22, Theo-
rem 1.6.17]).

Lemma 2.2. Every MV-chain A partially embeds into the standard MV-algebra [0, 1]M V .

Let us briefly see why the lemma above implies the finite strong standard completeness for Ł. First of all recall that Łu-
kasiewicz logic is (obviously) sound and complete w.r.t MV . Now, since every MV-algebra satisfies the prelinearity equation, 
(x → y) ∨ (y → x) = �, the subdirectly irreducible elements of MV are MV-chains (see [22]). This implies that, for every 
formula ϕ of Łukasiewicz language, v(ϕ) = � in every MV-algebra A and for every A-valuation v iff v ′(ϕ) = � in every 
MV-chain C and for every C-valuation v ′ . Thus, Ł is sound and complete w.r.t. to the class of MV-chains. Therefore, for every 

2 We used here the same symbols to denote the connectives of Łukasiewicz calculus and the operations of A.
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finite set of formulas T ∪ {ϕ} such that T � ϕ , there exist an MV-chain C and a C-valuation v such that v(τ ) = � for all 
τ ∈ T , but v(ϕ) < �. Let

X = {v(ψ) | ψ is a subformula of some formula in T ∪ {ϕ}}.
The set X is a finite subset of C which contains v(ϕ) < �. By Lemma 2.2, there exists a partial embedding λ : X ↪→p

[0, 1]M V . Take v ′ mapping each variable q appearing in the formulas of T ∪ {ϕ} to λ(v(q)). Notice that v ′ is well defined 
because v(q) ∈ X for each variable q. Since λ is a partial embedding it preserves the � of C, whence v ′ determines a 
[0, 1]M V -valuation which, once extended to all formulas, maps each τ to 1, while v ′(ϕ) < 1 as desired.

However, the strong standard completeness theorem, that is completeness w.r.t. [0, 1]M V when deductions involve infinite
theories, does not hold for Łukasiewicz logic [22]. Its failure can be seen as a consequence of the existence of countable 
MV-chains that cannot be (fully) embedded into the standard one [0, 1]M V [7]. This problem can be overcome by moving 
from real-valued to hyperreal-valued models and hence by considering valuations in MV-chains which are ultrapowers of 
the standard algebra. Indeed, by a direct consequence of Di Nola’s representation theorem [6], every MV-chain embeds into 
an ultrapower [0, 1]∗ of the standard algebra. Hence, an easy adaptation of the argument explained above shows that Łu-
kasiewicz logic enjoys strong completeness w.r.t. the class of non-standard MV-algebras, strong non-standard completeness in 
the notation of [11] (see also [13] for a more general treatment of ultrapowers and embedding properties). For a later use, 
let us summarize these facts in the following result whose proof can be found in [7,11,22].

Theorem 2.3. Let T ∪{ϕ} be a countable set of formulas in Łukasiewicz language and assume that T � ϕ . Then the following conditions 
hold:

(1) If T is finite, then there is a [0, 1]M V -valuation v such that v(τ ) = 1 (for τ ∈ T) and v(ϕ) < 1;
(2) If T is infinite, then there exists an ultrapower [0, 1]∗ of [0, 1]M V and a [0, 1]∗M V -valuation v such that v(τ ) = 1 (for τ ∈ T) and 

v(ϕ) < 1.

It is hence clear that, in general terms, the problem of establishing completeness can be regarded as the (partial) em-
beddability problem for algebras belonging to a class of structures into algebras of particular kind (see for instance [7, Ch. 
4] for further details). In the proof of our main result, Theorem 4.2, we will adopt a similar method to prove standard 
completeness for FP(Ł, Ł).

2.2. Free MV-algebras, McNaughton functions and Schauder hats

We now focus on a class of MV-algebras that will play a central role in this paper: finitely generated free MV-algebras. 
For n being the number of free generators, we will denote them by F(n). These structures allow to represent the formulas 
of Łukasiewicz logic by a special kind of fuzzy sets and hence they provide us with a suitable algebraic setting for many-
valued, fuzzy, events. Indeed, algebras like F(n) are, up to isomorphism, the Lindenbaum-Tarski algebras of Łukasiewicz logic 
over a language having n propositional variables. A usual universal algebraic argument shows that F(n) is generic for the 
variety MV once we restrict to formulas containing at most n propositional variables.

Proposition 2.4. Let ϕ be a formula of Ł containing n propositional variables. Then the equation ϕ = � holds in F(n) iff it holds in 
every MV-algebra. In other words, ϕ = � holds in F(n) iff v(ϕ) = � for every MV-algebra A and every A-valuation v.

The following example proposes a representation of finitely generated free MV-algebras.

Example 2.5. Finitely generated free MV-algebras F(n) are, up to isomorphism, algebras of functions m : [0, 1]n → [0, 1]
which are continuous, piecewise linear and such that each piece has an integer coefficient [28,31]. Operations on F(n)

are the pointwise applications of those from [0, 1]M V , that is to say, for every m1, m2 ∈ F(n), m1 ⊕ m2 : x ∈ [0, 1]n �→
min{1, m1(x) + m2(x)} ∈ [0, 1] and ¬m1 : x ∈ [0, 1]n �→ 1 − m1(x) ∈ [0, 1].

The functions in the universe of F(n) are known in the literature as McNaughton functions. As we already recalled above, 
the free MV-algebra on n free generators is, up to isomorphism, the Lindenbaum-Tarski algebra of Łukasiewicz logic over a 
language with n propositional variables, and hence every equivalence class (modulo equi-provability) [ψ] of a formula ψ in 
this language corresponds to a unique McNaughton function that we will denote by mψ , see [31] for details.

The following observation introduces a notation and a recap on known results about McNaughton functions that will be 
often used along this paper.3

3 A more exhaustive treatment on the ensuing topic can be found in [6, §3] (see also [33, §3]).
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Remark 2.6. Let us fix a finite set of Łukasiewicz formulas, say ψ1, . . . , ψk , on n propositional variables and let us denote 
by mψ1 , . . . , mψk the McNaughton functions on [0, 1]n to [0, 1] corresponding to (the equivalence classes of) each ψi . The 
piecewise linearity of each mψi ensures the existence of a unimodular triangulation � of the n-cube [0, 1]n such that each 
mψi is linear on each simplex of �. In this case, we will also say that � linearizes mψ1 , . . . , mψk .

Let us denote by x1, . . . , xt the vertices of � (i.e., the set of vertices of each simplex in �). The unimodular triangulation 
� can be chosen in such a way that each vertex x j is a rational point, i.e., it has rational coordinates: x j = (q j1 , . . . , q jn ). For 
each j = 1, . . . , t let us denote by den x j the least common multiple of the set of denominators of the q ji ’s:

den x j = lcm{den q ji | i = 1, . . . ,n}.
For each x j , let us consider the continuous function h j : [0, 1]n → [0, 1] such that h j(x j) = 1/den x j , h j(xl) = 0 for each l �= j

and h j is linear on each simplex of �. Further, let us denote by ĥ j the function den x j · h j which hence takes value 1 on x j

and 0 on any other vertex of �. The maps h j and ĥ j are called respectively the Schauder hat and the normalized Schauder 
hat at x j . Each (normalized) Schauder hat is hence continuous, piecewise linear and the unimodularity of � also ensures 
that each piece of each h j (and ĥ j ) has an integer coefficient, that is to say, (normalized) Schauder hats are McNaughton 
function. Therefore, there exist Łukasiewicz propositional formulas γ1, . . . , γt and γ̂1, . . . , γ̂t such that, for each j = 1, . . . , t

h j = mγ j and ĥ j = mγ̂ j
.

In the rest of this paper we will often use the notation adopted in this observation and in particular the one concerning 
formulas ψ1, . . . , ψk , γ1, . . . , γt , γ̂1, . . . , γ̂t and their corresponding McNaughton functions.

It is well-known that MV-algebras with MV-homomorphisms form a category which is equivalent to that of lattice-
ordered abelian groups with strong unit (unital 	-groups for short) whose morphisms are group homomorphisms that 
respect the lattice structure [30]. Details on that equivalence fall out of the scope of the present paper, however, it is 
convenient to recall that for every MV-algebra A there exists a unique unital 	-group (GA, �) (or simply by GA when it 
is not needed to specify the strong unit) such that A = {g ∈ G | 0 ≤ g ≤ u} and for all x, y ∈ A, x ⊕ y = min{u, x + y} and 
¬x = u − x.

In the statement and proof of the following result we will adopt the notation from Remark 2.6.

Lemma 2.7. Let ψ1, . . . , ψk be Łukasiewicz formulas and let � be a unimodular triangulation linearizing mψ1 , . . . , mψk and with 
vertices x1, . . . , xt . Then, for every i = 1, . . . , k there are uniquely determined natural numbers ni

1, . . . , n
i
t such that each ni

j ≤ den x j

and for every MV-algebra A, every A-valuation v, and every i = 1, . . . , k the following properties hold (sums are taken in GA):

(1) v(
⊕t

j=1 γ̂ j) = ⊕t
j=1 v(γ̂ j) = ∑t

j=1 v(γ̂ j) = �;
(2) For all 1 ≤ j ≤ t and for all natural number n < den x j , v(nγ j � γ j) = ⊥;
(3) v(ψi) = v(

⊕t
j=1 ni

jγ j) = ⊕t
j=1 ni

j v(γ j) = ∑t
j=1 ni

j v(γ j);

(4) For distinct j1, . . . , jr , and for all natural numbers ni
je

≤ den x je ,

v

((
r−1⊕
e=1

ni
je
γ je

)
� ni

jr
γ jr

)
= ⊥;

Therefore, in particular, v((
⊕r−1

e=1 γ̂ je ) � γ̂ jr ) = ⊥.

Proof. Let n be the number of propositional variables occurring in ψ1, . . . , ψk . Since free finitely generated MV-algebras are 
generic for the variety of MV-algebras (Proposition 2.4), in order to prove the claim, it is sufficient to show that the above 
equalities holds in F(n) under the F(n)-valuation which maps every propositional formula ϕ to mϕ .

(1) The claim follows from [33, Lemma 3.4] (ii).

(2) Let us prove that, for all n < den x j , nmγ j � mγ j = 0 holds in F(n). To this end recall that every McNaughton 
function of the form mγ j takes value 0 on each vertex xl (with j �= l), while mγ j (x j) = 1/den x j . Therefore, if n <
den x j , nmγ j (x j) = n/den x j and nmγ j (x j) � mγ j (x j) = max{0, nmγ j (x j) + mγ j (x j) − 1} = max{0, n/den x j + 1/den x j −
den x j/den x j} = max{0, (n + 1 − den x j)/den x j} = 0 since n + 1 − den x j ≤ den x j − den x j = 0.

(3) is [33, Lemma 3.4] (iv).

The first claim of (4) follows from [33, Lemma 3.4] (v) and (vi). The last claim of (4) follows from the first one plus the fact 
that, for all j = 1, . . . , t , mγ̂ = den x j · mγ j , recall Remark 2.6. �
j
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3. States and hyperstates and their logic

Now that we have presented our algebraic setting, in the following subsections we recall states, hyperstates and an 
axiomatization for the logic FP(Ł, Ł). Furthermore, we present hyperreal-state models and review the main steps which 
allow to prove completeness of FP(Ł, Ł) with respect to that non-standard semantics.

3.1. States and hyperstates

Let us first focus on the uncertainty measures that play, in MV-setting, the role of probability functions in the boolean 
realm. Those are called states of MV-algebras and they are defined as follows.

Definition 3.1 ([32]). Let A be an MV-algebra. A state of A is a map s : A → [0, 1] which satisfies the following conditions:

• s(�) = 1 (normalization);
• for all a, b ∈ A such that a � b = ⊥, s(a ⊕ b) = s(a) + s(b) (finite additivity).

Every finitely additive probability measure P on a boolean algebra B, regarded as an MV-algebra (recall Section 2), is 
a state of B. Moreover, for every MV-algebra A, its boolean skeleton B(A) (i.e., the MV-subalgebra of A whose universe is 
{a ∈ A | a = a ⊕ a}) determines the largest boolean subalgebra of A and hence the restriction of every state s of A to B(A) is 
a finitely additive probability measure.

Every homomorphism of an MV-algebra A to the standard algebra [0, 1]M V is a state and every state of A belongs to the 
topological closure of the convex hull of the set of all the homomorphisms of A to [0, 1]M V (see [32] for further details).

By Belluce-Chang theorem [6], an MV-algebra A is semisimple iff it is an MV-subalgebra of the MV-algebra C (XA) of 
continuous [0, 1]-valued functions on a compact Hausdoff space XA = (XA, τ ). For every element a of a semisimple MV-
algebra A we will denote by ca its representation as element of C (XA). The theorem below can be proved in general for 
every state of any MV-algebra, see [25,35].

Theorem 3.2. For every state s of a semisimple MV-algebra A there exists a unique regular Borel measure μ on XA such that, for every 
a ∈ A,

s(a) =
∫
XA

ca dμ.

If semisimple MV-algebras are representable as algebras of [0, 1]-valued continuous functions, non-semisimple algebras 
can be characterized by the presence of positive infinitesimal (and co-infinitesimal) elements. Those, as in non-standard 
analysis, are the elements a of a non-semisimple algebra A such that a > ⊥ and for every n ∈ N , na < �. It has been 
observed in [29] that every state s of a non-semisimple algebra maps its infinitesimals to 0 and its co-infinitesimals to 1. 
This fact points out a limitation in the use of states in the general realm of MV-algebras. Also to overcome this behavior 
of states, hyperstates of semisimple and non-semisimple algebras have been introduced and quite largely employed (see for 
instance [11,15,29]).

Definition 3.3. Let A be an MV-algebra. A hyperstate of A is a map s∗ : A → [0, 1]∗ where [0, 1]∗ is an ultrapower of the real 
unit interval and s∗ is normalized and finitely additive in the sense of Definition 3.1.

In the definition above the ultrapower [0, 1]∗ is fixed with no restriction and it might be the case that [0, 1]∗ = [0, 1].4
Therefore, every state is a hyperstate in the sense of Definition 3.3. Less trivial examples of hyperstates are the following: 
(1) every homomorphism of an MV-algebra A to an ultrapower [0, 1]∗M V of the standard algebra is a hyperstate; (2) every 
convex combination of finitely many homomorphisms of A to [0, 1]∗M V is a hyperstate as well.

The same proofs of [32, Proposition 2.2] and [19, Proposition 3.1.1] can be easily adapted to prove the following result 
which collects basic facts about hyperstates.

Proposition 3.4. Every hyperstate s∗ of an MV-algebra A satisfies the following properties:

(1) s∗(a ⊕ b) = s∗(a) + s∗(b) − s∗(a � b);
(2) if a ≤ b, then s∗(a) ≤ s∗(b);
(3) s∗(¬a) = 1 − s∗(a);
(4) s∗(⊥) = 0.

4 This is the case when the ultrafilter used to define the ultrapower is principal, see for instance the discussion in [7, Ch. 4].
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The following key lemma, that can be regarded as a continuation of Lemma 2.7 in the setting of hyperstates, presents 
some basic facts that will find application in the proof of the main result of Section 4. In its statement and proof we will 
adopt the notation from Remark 2.6.

Lemma 3.5. For every MV-algebra A, every A-valuation v and every hyperstate s∗ : A → [0, 1]∗ , the following properties hold (sums 
are taken in G[0,1]∗ ):

(1) s∗(v(nγ j)) = ns∗(v(γ j)) for all 1 ≤ j ≤ t and for all n ≤ den x j ;

(2) s∗
(⊕t

j=1 v(γ̂ j)
)

= ∑t
j=1 s∗(v(γ̂ j)) = 1;

(3) s∗(v(ψi)) = ∑t
j=1 ni

j s
∗(v(γ j)).

Proof. (1) Let us prove the claim by induction on n. If n = 2, by Proposition 3.4 (1), plus v(γ j � γ j) = ⊥ (Lemma 2.7 (3)) 
and s∗(⊥) = 0 (Proposition 3.4 (4)), one has

s∗(2v(γ j)) = s∗(v(γ j) ⊕ v(γ j))

= s∗(v(γ j)) + s∗(v(γ j)) − s∗(v(γ j) � v(γ j))

= 2s∗(v(γ j)) − s∗(v(γ j � γ j))

= 2s∗(v(γ j)).

Now assume that s∗((n − 1)v(γ j)) = (n − 1)s∗(v(γ j)). The associativity of ⊕ and Proposition 3.4 (1) give

s∗(nv(γ j)) = s∗((n − 1)v(γ j) ⊕ v(γ j))

= (n − 1)s∗(v(γ j)) + s∗(v(γ j)) − s∗((n − 1)v(γ j) � v(γ j)).

By Lemma 2.7 (3), since n ≤ den x j by hypothesis, one has n − 1 < den x j and hence (n − 1)v(γ j) � v(γ j) = v((n − 1)γ j �
γ j) = ⊥ which settles the claim.

(2) By Lemma 2.7 (1) and normalization property of s∗ , s∗(
⊕t

j=1 v(γ̂ j)) = 1. Let hence prove that

s∗
⎛
⎝ t⊕

j=1

v(γ̂ j)

⎞
⎠ =

t∑
j=1

s∗(v(γ̂ j))

by induction on t . The case t = 2 is easy because of the additivity property of s∗ together with the fact that for distinct γ̂1
and γ̂2, v(γ̂1) � v(γ̂2) = v(γ̂1 � γ̂2) = ⊥ (Lemma 2.7 (4)).

Assume the claim true for t − 1: s∗(
⊕t−1

j=1 v(γ̂ j)) = ∑t−1
j=1 s∗(v(γ̂ j)). Then, by the associativity of ⊕, the additivity of s∗ , 

Lemma 2.7 (4) (used in the third equality below) and Proposition 3.4 (4),

s∗
⎛
⎝ t⊕

j=1

v(γ̂ j)

⎞
⎠ = s∗

⎛
⎝ t−1⊕

j=1

v(γ̂ j) ⊕ v(γ̂t)

⎞
⎠

= s∗
⎛
⎝ t−1⊕

j=1

v(γ̂ j)

⎞
⎠ + s∗(v(γ̂t)) − s∗

⎛
⎝ t−1⊕

j=1

v(γ̂ j) � v(γ̂t)

⎞
⎠

=
t−1∑
j=1

s∗(v(γ̂ j)) + s∗(v(γ̂t)) − s∗(⊥)

=
t∑

j=1

s∗(v(γ̂ j)).

(3) By Lemma 2.7 (2), s∗(v(ψi)) = s∗(
∑t

j=1 ni
j v(γ j)). By the additivity of s∗ , the latter equals 

∑t
j=1 s∗(ni

j v(γ j)). For every 
j = 1, . . . , t , since ni

j ≤ den x j , s∗(ni
j v(γ j)) = ni

j s
∗(v(γ j)) because of (1) above. Thus, s∗(v(ψi)) = ∑t

j=1 ni
j s

∗(v(γ j)). �
3.2. The logic FP(Ł, Ł) and its hyperstate-based models

The logic FP(Ł, Ł) was introduced in [14] as the generalization to fuzzy events of the fuzzy probabilistic logic FP(Ł)
studied in [21,22]. Its language is obtained by expanding that of Łukasiewicz logic (recall Section 2) by a unary modality P . 
The set of formulas, denoted by PFm is made of the following two classes:

(EF): the set of event formulas which contains all formulas of Łukasiewicz language; these formulas will be denoted, as 
above, by lowercase Greek letter ϕ, ψ, . . . with possible subscripts;
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(MF): the set of modal formulas which contains expressions of the form P (ϕ) for every event formula ϕ , the constants �
and ⊥ and which is closed under the connectives of Łukasiewicz language. Modal formulas will be denoted by uppercase 
Gerek letters 
, �, . . . with possible subscripts.

A remark is in order: by its definition, modal formulas in PFm are just MV-terms written using atomic modal formulas 
as variables. In other words, every (compound) modal formula 
 is of the form t[P (ψ1), . . . , P (ψk)] for P (ψ1), . . . , P (ψk)

atomic modal formulas (regarded as variables) and t is an MV-term.
Axioms and rules of FP(Ł, Ł) are as follows:

(EŁ): all axioms and rules of Łukasiewicz calculus for event formulas;

(MŁ): all axioms and rules of Łukasiewicz calculus for modal formulas;

(P): the following axioms and rules specific for the modality P :

(P1) ¬P (ϕ) ↔ P (¬ϕ);
(P2) P (ϕ → ψ) → (P (ϕ) → P (ψ));
(P3) P (ϕ ⊕ ψ) ↔ [(P (ϕ) → P (ϕ � ψ)) → P (ψ)];
(N) The necessitation rule: from ϕ derive P (ϕ).

The notion of proof is defined as usual and for every modal formula 
, we will henceforth write �F P 
 to denote that 
 is 
a theorem of FP(Ł, Ł).

The axioms and rules above, are enough to syntactically prove that the modality P satisfies the basic properties of 
(hyper)states. For instance, P (�) (normalization) can be derived with a step of the necessitation rule (N) from the Łukasie-
wicz theorem �. Instantiating (P1) with ϕ = �, one obtains ¬P (�) ↔ P (¬�). Since P (�) = � (normalization) and ¬� = ⊥, 
⊥ ↔ P (⊥) which reads “the probability of a contradiction is zero”. Finally, the finite additivity of P is proved as follows: 
assume that ϕ �ψ ↔ ⊥ holds. Then, P (ϕ �ψ) ↔ ⊥ and substituting P (ϕ �ψ) by ⊥ in (P3), one has P (ϕ ⊕ψ) ↔ [(P (ϕ) →
⊥) → P (ψ)]. Now, P (ϕ) → ⊥ is equivalent, in Łukasiewicz logic, to ¬P (ϕ), thus (P (ϕ) → ⊥) → P (ψ) is ¬P (ϕ) → P (ψ)

that equals P (ϕ) ⊕ P (ψ). Hence, from ϕ � ψ ↔ ⊥, we infer P (ϕ ⊕ ψ) ↔ P (ϕ) ⊕ P (ψ).
The first class of models we consider for the logic FP(Ł, Ł) are based on hyperstates and they are defined in the following 

way.

Definition 3.6. A hyperstate model S ∗ = (W , e, s∗) consists of

• a nonempty set W ;
• a map e : W × V ar → [0, 1]M V such that for every w ∈ W , e(w, ·) : V ar → [0, 1]M V uniquely extends to a [0, 1]M V -

valuation;
• a hyperstate s∗ : [0, 1]W → [0, 1]∗ .

If 
 is a formula in PFm, its truth-value in a hyperstate model S ∗ = (W , e, s∗), at the world w ∈ W , is computed in 
the following way where, for every propositional Łukasiewicz formula ψ , fψ : W → [0, 1] is defined as fψ(w) = e(w, ψ).

– If 
 = ψ is a propositional formula, ‖ψ‖S ∗,w = fψ(w);
– If 
 = P (ψ) is an atomic modal formula, then ‖P (ψ)‖S ∗,w = s∗( fψ);
– If 
 = t[P (ψ1), . . . , P (ψk)] is a compound modal formula, ‖
‖S ∗,w is computed by first evaluating all the atomic 

modal formulas P (ψi)’s in [0, 1]∗ by s∗ , and then by interpreting the term t in the MV-chain [0, 1]∗ as

‖t[P (ψ1), . . . , P (ψk)]‖S ∗,w = t[0,1]∗ [s∗( fψ1), . . . , s∗( fψk )].
Notice that the truth value ‖
‖S ∗,w of any modal formula 
 does not depend on the chosen world w . For this reason, in 
these cases, we will omit the subscript w without danger of confusion.

The usual strategy to prove completeness of probabilistic modal logics like FP(Ł, Ł) w.r.t. a class of models consists in the 
following steps (see [8,16] for more details):

(S1) First of all we define a syntactic translation ◦ from modal to a propositional formulas of Łukasiewicz logic by interpret-
ing every atomic modal formula P (ϕ) in a new propositional variable pϕ and extending ◦ to compound modal formulas by 
truth functionality.

(S2) The translation of all instances of the axioms (P1)-(P3), together with the set {pϕ |� ϕ} which encodes the propositional 
translation of the rule (N), give rise to a propositional Łukasiewicz theory P◦ such that, for every modal formula 
, �F P 


iff P◦ � 
◦ (see [14, Ch. 4] for instance).

(S3) Finally, assume that �F P 
 and hence P◦
� 
◦ . Modulo the completeness of Łukasiewicz logic, find an MV-algebra A

which models P◦ and A does not model 
◦ .
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As we recalled in Section 2, Łukasiewicz logic does not enjoy the strong standard completeness and therefore, if P◦ turns 
out to be infinite, we must extend the scope of countermodels of 
◦ to include also MV-chains of the form [0, 1]∗ as in 
Theorem 2.3 (2). On the other hand, if P◦ is finite, by Theorem 2.3 (1) we can safely consider a [0, 1]M V -valuation which 
models P◦ and which maps 
◦ to α < 1. More precisely there exists a standard construction which does the following:

(1) if P◦ turns out to be finite (this is the case of the logics FP(Łk, Ł) or FP(Ł), see [14,21]), it builds a model M based on a 
real-valued state (or a probability function if events are classical) which does not satisfy 
.

(2) if P◦ turns out to be infinite (as for the case of FP(Ł, Ł)), the construction determines a model M∗ based on a hyperreal-
valued state which does not satisfy 
.

A detailed discussion about the above strategy to prove completeness for this class of modal logics can be found in [16]
(see in particular Theorem 20 of that book chapter for a more general result). In particular, [16, Theorem 25] whose proof 
is obtained by the above ideas and constructions, reads as follows.

Theorem 3.7. For every formula 
 ∈ PFm the following conditions are equivalent:

(1) �F P 
;
(2) For every hyperstate model S ∗ , ‖
‖S ∗ = 1.

It is worth to point out that the theorem above does not claim that FP(Ł, Ł) fails to be complete with respect to a 
class of real-valued (i.e. standard) models. Rather it shows that the strategy sketched above, which in turn relies on the 
finite standard and strong non-standard completeness of Ł, does not bring to the desired conclusion. In the next section we 
will explain an alternative way to cope with probabilistic values on Łukasiewicz formulas allowing to prove that FP(Ł, Ł) is
standard complete.

4. Standard probabilistic models and completeness

In this section we are going to prove a standard completeness theorem for the logic FP(Ł, Ł), that is completeness with 
respect to valuations which assign to every atomic modal formula P (ϕ) a real number s(ϕ) for some state s on a suitably 
defined MV-algebra.

Afterwords, we will also introduce another class of models that, instead of states of MV-algebras, directly involves Borel 
(and hence σ -additive) regular probability measures. We will show that FP(Ł, Ł) is also complete w.r.t. to this type of 
models.

To begin with, let us introduce the class of state models.

Definition 4.1. A state model S = (W , e, s) consists of

• a nonempty set W ;
• a map e : W × V ar → [0, 1]M V such that for every w ∈ W , e(w, ·) : V ar → [0, 1]M V uniquely extends to a [0, 1]M V -

valuation;
• a state s : [0, 1]W → [0, 1].

If 
 is a formula from PFm, its truth-value in a state model S = (W , e, s), at the world w ∈ W , is computed in the 
following way where, for every propositional Łukasiewicz formula ψ , fψ : W → [0, 1] is defined as fψ(w) = e(w, ψ).

– If 
 = ψ is a propositional formula, ‖ψ‖S ,w = fψ(w);
– If 
 = P (ψ) is an atomic modal formula, then ‖P (ψ)‖S ,w = s( fψ);
– If 
 = t[P (ψ1), . . . , P (ψk)] is a compound modal formula, ‖
‖S ,w is computed by first evaluating all the atomic modal 

formulas P (ψi)’s in [0, 1] by s, and then by interpreting the term t in the standard MV-algebra [0, 1]M V :

‖t[P (ψ1), . . . , P (ψk)]‖S ,w = t[0,1][s( fψ1), . . . , s( fψk )].
As in the previous case, if 
 is a modal formula, its truth value ‖
‖S ,w does not depend on the chosen world w . For this 
reason, in these cases, we will omit the subscript w without danger of confusion.

We are now in position of proving that the logic FP(Ł, Ł) is sound and complete with respect to the class of state models. 
In order to ease the reading of the following proof, let us anticipate that completeness will be obtained by showing that if a 
formula 
 from PFm is not valid in a hyperstate model S ∗ , then one can find a state model S in which 
 does not hold 
either. In particular, the state model S will be defined from S ∗ thanks to the partial embeddability of every hyperreal 
MV-chain [0, 1]∗ into the standard chain [0, 1]M V , Lemma 2.2. Then, we will apply Lemma 2.7 and Lemma 3.5 to prove that 
the composition of the hyperstate s∗ from S ∗ with a partial embedding λ : X ⊂ [0, 1]∗ ↪→p [0, 1] defined on the ad hoc
finite set X can be extended to a state s that preserves the truth of 
.
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Theorem 4.2. For every formula 
 ∈ PFm the following conditions are equivalent:

(1) �F P 
;
(2) For every state model S , ‖
‖S = 1.

Proof. (1)⇒(2), soundness, directly follows from Theorem 3.7 (1)⇒(2) and the easy observation that state models are a 
particular case of hyperstate modes (recall what we remarked after Definition 3.3).

As for (2)⇒(1) let 
 = t[P (ψ1), . . . , P (ψk)] and assume that �F P 
. By Theorem 3.7 there exists a hyperstate model 
S ∗ = (W , e, s∗) such that

‖
‖S ∗ = t[0,1]∗ [s∗( fψ1), . . . s∗( fψk )] < 1.

We will now show that there exists a state model S such that ‖
‖S < 1.
To this end, let n be the number of propositional variables occurring in ψ1, . . . , ψk and let � be a unimodular tri-

angulation of [0, 1]n with vertices x1, . . . , xt that linearizes the McNautghton functions mψ1 , . . . , mψk . Now, consider the 
propositional Łukasiewicz formulas γ1, . . . , γt and γ̂1, . . . , γ̂t such that, for each vertex x j of �, mγ j and mγ̂ j

respectively 
are the Schauder hat and the normalized Schauder hat at x j .

Let us consider the following subsets of the MV-chain [0, 1]∗ (being the range of s∗):

Xs = {d[0,1]∗ | d is a sub-term of t};
Xn = {ns∗( fγ j ) | j = 1, . . . , t; i = 1, . . . ,k;1 ≤ n ≤ ni

j};
Xγ = {∑t

j=1 s∗(ni
j fγ j ) | i = 1, . . . ,k};

Xγ̂ = {∑ j∈ J s∗( f γ̂ j
) | J ⊆ {1, . . . , t}}.

First of all notice that, although the sums are taken in G[0,1]∗ , each expression of the form 
∑t

j=1 s∗(ni
j fγ j ) (as in Xγ ) and ∑

j∈ J s∗( f γ̂ j
) (as in Xγ̂ ) denotes an element of [0, 1]∗ because of Lemma 3.5 (3) and (2) respectively.

Therefore, each among Xs , Xn , Xγ and Xγ̂ is a finite subset of [0, 1]∗ . Hence, putting

X
 = Xs ∪ Xn ∪ Xγ ∪ Xγ̂ ,

by Lemma 2.2 there exists a partial embedding λ : X
 ↪→p [0, 1]M V . Let us notice that, since Xγ̂ ⊂ X
 , λ maps each s∗( f γ̂ j
)

into a real number. To ease the notation, let us write

π j = λ(s∗( f γ̂ j
)). (a)

Claim 1. Taking sums in the additive group or real numbers R with strong unit 1, the following properties hold:

(1)
∑t

j=1 π j = 1;

(2) For all i = 1, . . . , k, λ(s∗( fψi )) =
∑t

j=1 ni
jλ(s∗( fγ j )).

Proof of Claim 1. Let us first recall that, in the hyperstate model (W , e, s∗), the domain of the hyperstate s∗ is the MV-
algebra [0, 1]W of all functions f : W → [0, 1] and that the map which associates to each propositional formula ϕ the 
function fϕ : w ∈ W �→ e(w, ϕ) ∈ [0, 1] is a Łukasiewicz valuation in the MV-algebra [0, 1]W .

(1) By Lemma 2.7 (1), plus the facts just recalled,

1 = f⊕t
j=1 γ̂ j

=
t⊕

j=1

f γ̂ j
=

t∑
j=1

f γ̂ j
.

Therefore, since s∗ is normalized and additive, due to Lemma 3.5 (2),

1 = s∗(1) = s∗
⎛
⎝ t∑

j=1

f γ̂ j

⎞
⎠ =

t∑
j=1

s∗( f γ̂ j
).

Now, since λ is a partial embedding and Xγ̂ ⊂ X
 , it commutes with the + in all the expressions of the form 
∑

j∈ J s∗( f γ̂ j
), 

for all J ⊆ {1, . . . , t}. Thus,

1 = λ(1) = λ

⎛
⎝ t∑

j=1

s∗( f γ̂ j
)

⎞
⎠ =

t∑
j=1

λ(s∗( f γ̂ j
)) =

t∑
j=1

π j.
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(2) By Lemma 3.5 (3), for every i = 1, . . . , k,

λ(s∗( fψi )) = λ

⎛
⎝ t∑

j=1

ni
j s

∗( fγ j )

⎞
⎠ .

Since Xγ ⊂ X
 , λ(
∑t

j=1 ni
j s

∗( fγ j )) =
∑t

j=1 λ(ni
j s

∗( fγ j )), while Xn ⊂ X
 implies λ(ni
j s

∗( fγ j ) = ni
jλ(s∗( fγ j )). Therefore,

λ(s∗( fψi )) =
t∑

j=1

ni
jλ(s∗( fγ j )). �

Let us now go back to the proof of our main result and consider a map s : F(n) → [0, 1] defined by the following 
stipulation: for every McNaughton function m ∈ F(n),

s(m) =
t∑

j=1

m(x j) · π j . (b)

Claim 1 (1) and Theorem 3.2 immediately show that s is a state of F(n).
Next, we need to prove that for every propositional subformula ψi of our starting formula 
 = t[P (ψ1), . . . , P (ψk)], 

s(mψi ) coincides with the image under λ of s∗( fψi ). That is to say, s(mψi ) = λ(s∗( fψi )). To this end, let us fix a ψi . By the 
definitions of s and π j (equations (b) and (a) respectively) one has

s(mψi ) =
t∑

j=1

mψi (x j) · π j =
t∑

j=1

mψi (x j) · λ(s∗( f γ̂ j
)). (c)

Now, mγ̂ j
(xl) = 1 if l = j and mγ̂ j

(xl) = 0 for all l �= j. Therefore,

s(mγ̂ j
) = π j = λ(s∗( f γ̂ j

)).

Thus, we can substitute λ(s∗( f γ̂ j
)) by s(mγ̂ j

) in (c) obtaining

s(mψi ) =
t∑

j=1

mψi (x j) · s(mγ̂ j
).

Since s is a state and mγ̂ j
= den x j · mγ j (recall Remark 2.6), s(mγ̂ j

) = s(den x j · mγ j ) = den x j · s(mγ j ). Therefore, the above 
expression becomes

s(mψi ) =
t∑

j=1

mψi (x j) · den x j · s(mγ j ) =
t∑

j=1

mψi (x j) · den x j · λ(s∗( fγ j )).

Finally, recall that for every i = 1, . . . , k, mψi (x j) = ni
j/den x j , whence ni

j = mψi (x j) · den x j from which, thanks to Claim 1
(2), we finally have that

s(mψi ) =
t∑

j=1

ni
j · λ(s∗( fγ j )) = λ(s∗( fψi )). (d)

Let us define a state model S = (W , e, s) such that:

– W = [0, 1]n where, we recall, n is the number of propositional variables occurring in ψ1, . . . , ψk;
– for every x ∈ W and for every formula ϕ with n-variables, e(x, ϕ) = mϕ(x);
– s is the state of F(n) defined as in (b).

By definition, ‖
‖S = t[0,1][s(mψ1), . . . , s(mψk )]. From (d), let us substitute each s(mψi ) by λ(s∗( fψi )) and hence we obtain

‖
‖S = t[0,1][λ(s∗( fψi )), . . . , λ(s∗( fψi ))].
Recall that λ is a partial embedding and Xs ⊆ X
 . Thus, λ commutes with all the valuations, in S ∗ , of all subformulas of 

. This implies that

‖
‖S = λ(t[0,1]∗ [s∗( fψi ), . . . , s∗( fψi )]) = λ(‖
‖S ∗) < 1.

Our claim is hence settled. �
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The following result is a direct consequence of Theorem 3.7 and Theorem 4.2.

Corollary 4.3. Hyperstate models and state models share the same PFm tautologies.

Let us now introduce a further class of models whose definition is inspired by the integral representation of states that 
we recalled in Subsection 3.1, namely, Theorem 3.2.

Definition 4.4. A Borel model B is a triple (X, v, μ) where X = (X, τ ) is a compact Hausdorff space, v is a Łukasiewicz 
valuation in the MV-algebra C (X) of continuous [0, 1]-valued functions on X and μ is a regular Borel measure defined on 
the Borel subsets of X.

For every formula 
 from PFm, its truth-value in a Borel model B = (X, v, μ), at the point x ∈ X , is defined as follows 
where for every propositional formula ψ , cψ : X → [0, 1] denotes the continuous function v(ψ).

– If 
 = ψ is propositional, ‖ψ‖B,x = cψ(x);
– If 
 = P (ψ) is an atomic modal formula, then ‖P (ψ)‖B,x = ∫

X cψ dμ;
– If 
 = t[P (ψ1), . . . , P (ψk)] is a compound modal formula, the truth value ‖
‖B,x is computed similarly to the case of 

state models:

‖t[P (ψ1), . . . , P (ψk)]‖B,x = t[0,1]
⎡
⎣∫

X

cψ1 dμ, . . . ,

∫
X

cψk dμ

⎤
⎦ .

Again, the truth-value, in B, of a modal formula does not depend on the chosen x, and hence we will omit such a subscript 
whenever it is not needed.

Let us recall the following result which has been proved in [24, Theorem 6] and provides an MV-analogous of the 
well-known Horn-Tarski extension theorem [23].

Proposition 4.5. Let A and B be MV-algebras and let B be an MV-subalgebra of A. Every state sB : B → [0, 1] extends (not uniquely) 
to a state sA : A → [0, 1].

Next result shows that the formulas from PFm that hold in all state models coincides with those holding in all Borel 
models.

Proposition 4.6. State models and Borel models share the same PFm tautologies.

Proof. Let 
 be a formula in PFm and S = (W , e, s) a state model such that ‖
‖S < 1. The MV-algebra [0, 1]W is clearly 
semisimple. Therefore, from what we recalled in Section 3.1, there exists a compact Hausdorff space X such that [0, 1]W is 
representable as a subalgebra of C (X). Let us call ι the embedding of [0, 1]W into C (X). By Proposition 4.5 there exists a 
state s′ : C (X) → [0, 1] which extends s. Thus define B = (X, v, μ) where

– v maps every propositional variable q into the continuous function ι( fq) of C (X);
– μ is the unique regular Borel measure on X as in Theorem 3.2.

Then, for every Łukasiewicz formula ϕ ,

s( fϕ) = s′(ι( fϕ)) =
∫
X

ι( fϕ)dμ.

Thus, ‖
‖B = ‖
‖S < 1.
Conversely, let 
 ∈ PFm and let B = (X, v, μ) be a Borel model such that ‖
‖B < 1. Then, consider the triple S =

(W , e, s) where: W = X, e : W × V ar → [0, 1]M V is such that for all x ∈ W and q ∈ V ar, e(x, q) = cq(x), and s : C (W ) →
[0, 1] is the state mapping each c ∈ C (W ) to 

∫
W cdμ. Then, S is a state model. Moreover, from Theorem 3.2, for every 

Łukasiewicz formula ψ , ‖P (ψ)‖S = ‖P (ψ)‖B . Therefore, by truth functionality, ‖
‖B = ‖
‖S < 1. �
The following is hence a direct consequence of Proposition 4.6 and Theorem 4.2 above.

Corollary 4.7. For every formula 
 ∈ PFm the following conditions are equivalent:

(1) �F P 
;
(2) For every Borel model B, ‖
‖B = 1.
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5. On finite standard models and finite model property

In this final section we prove that the logic FP(Ł, Ł) has the finite model property. As the following definition points out, 
for finite model we mean a system which actually has a finite encoding.

Definition 5.1. A Borel model B = (X, v, μ) is said to be finite if:

(1) X is a finite set;
(2) v evaluates propositional Łukasiewicz formulas as (necessarily continuous) functions of X in a finite MV-chain Łr for 

some natural number r;
(3) μ is a finite density function on X which only takes value in a finite MV-chain Łq for some natural number q.

Notice that every finite Borel model is a Borel model. Indeed, X endowed with the discrete topology makes it a compact, 
Hausdorff and totally disconnected space. Observe that every finite Borel model has a finite encoding made of the cardinality 
of X , the natural numbers r and q, and the finite set of rational numbers {μ(x) | x ∈ X}.

Before proving that FP(Ł, Ł) enjoys the finite model property, let us recall a strengthening of Lemma 2.2 which deals with 
partial embeddings of any MV-chain into the rational MV-algebra [0, 1]QM V = Q ∩ [0, 1]M V , the restriction of the standard 
MV-algebra to only rational numbers.

Lemma 5.2. Every MV-chain A partially embeds into the rational MV-algebra [0, 1]QM V , that is to say, for every MV-chain A and for 
every finite subset X of A, there exists a map λQ : X ↪→p [0, 1]QM V which is injective and preserves all the partial operations of X.

Proof. An immediate consequence of [7, Theorem 3.8 and Remark 4.12]. �
Theorem 5.3. The logic FP(Ł, Ł) has the finite model property. That is to say, for every PFm-formula 
 such that �F P 
, there exists a 
finite Borel model B such that ‖
‖B < 1.

Proof. The claim can be proved following almost the same lines of the proof of Theorem 4.2. We will point out the main 
necessary modifications.

Let 
 = t[P (ψ1), . . . , P (ψk)] ∈ PFm and let �, x1, . . . , xt , γ1, . . . , γt , γ̂1, . . . , γ̂t be as in the aforementioned proof. Assume 
that �F P 
 and let S ∗ = (W , e, s∗) a hyperstate model such that ‖
‖S ∗ < 1. Thus, define X
 , the subset of the MV-chain 
[0, 1]∗ , as in the proof of Theorem 4.2 and partially embed it into [0, 1]QM V via a map λQ as ensured by Lemma 5.2. Then, 
the values πQ

j = λQ(s∗( f γ̂ j
)) are rational numbers.

Let us define B = (X, e, μ) as follows:

– X = {x1, . . . , xt};
– For every propositional formula ϕ , let mX

ϕ be the restriction of the McNaughton function mϕ to X . Then, for every 
x j ∈ X , e(x j, ϕ) = mX

ϕ (x j);

– For every x j ∈ X , μ(x j) = πQ
j .

Notice that, with respect to evaluation map e, since mϕ is piecewise linear and every x j is has rational coordinates, each 
mX

ϕ (x j) is a rational number. Thus, for every x j , e(x j, ·) is a Łukasiewicz evaluation into the finite MV-chain Łr where

r = lcd{den mz(x j) | j = 1, . . . , t, z ∈ V ar(ψ1, . . . ,ψk)}.
Every πQ

j is a rational number, thus put

q = lcd(denπQ
1 , . . . ,denπQ

t ).

Then μ : X → Łq and hence B is a finite Borel model. Further, for every ψi ,

‖P (ψi)‖B =
t∑

j=1

mX
ψi

(x j) · πQ
j = λQ(s∗( fψi ))

the latter equality being proved as in the proof of Theorem 4.2. Therefore, we conclude that

‖
‖B = λQ(‖
‖S ∗) < 1

showing that B is a finite countermodel of 
. �
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We close this section with the following corollary which collects the main results obtained so far and, in particular, those 
from Corollary 4.3, Proposition 4.6 and Theorem 5.3.

Corollary 5.4. Hyperstate models, state models, Borel models and finite Borel models share the same PFm tautologies.

6. Conclusion

Proving standard completeness for the logic FP(Ł, Ł) has been a quite long-standing problem within the community of 
many-valued/fuzzy logicians and some ways to solve it have been proposed in the last years, [14, Ch. 6], [11,26]. A quite 
promising construction which could eventually lead to the desired conclusion, was presented in [12] but unfortunately it 
was grounded on an unsound claim.

In this paper we have presented a construction which does not make use of the false assertion of [12] and we proved 
that, indeed, FP(Ł, Ł) is sound and complete with respect to two classes of models: a first one based on Łukasiewicz states; 
a second one which considers regular Borel measures on compact Hausdorff spaces.

As welcome side-effect, we also proved that FP(Ł, Ł) has the finite model property.
Our future work in this direction will be mainly dedicated to apply and extend the construction presented here to 

prove a standard completeness theorem for a generalization of the logic FP(Ł, Ł), introduced in [20], whose language allows 
nested occurrences of the modality P and mixed formulas like ϕ → P (ψ) where ϕ and ψ are Łukasiewicz events. That logic, 
denoted by SFP(Ł, Ł) in [20], in contrast to the case of FP(Ł, Ł), is algebraizable and its equivalent algebraic semantics is the 
variety SMV of MV-algebras with internal state, or SMV-algebras for short.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no 
significant financial support for this work that could have influenced its outcome.

Acknowledgements

The author is grateful to the reviewers for their careful reading and helpful suggestions. He is also much indebted to 
Lluis Godo for several conversations on the subject of this article. The author acknowledges partial support by the Spanish 
projects RASO (TIN2015-71799-C2-1-P) and ISINC (PID2019-111544GB-C21) and by the Spanish Ramón y Cajal research 
program RYC-2016-19799.

References

[1] S. Aguzzoli, B. Gerla, V. Marra, De Finetti’s no-Dutch-book criterion for Gödel logic, Stud. Log. 90 (2008) 25–41.
[2] P. Baldi, P. Cintula, C. Noguera, Translating classical probability logics into modal fuzzy logics, in: M. Štěpnička (Ed.), Proceedings of the 11th Conference 
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