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We develop a new quantifier for forward time uncertainty for trajectories that are solu- 

tions of models generated from data sets. Our uncertainty quantifier is defined on the 

phase space in which the trajectories evolve and we show that it has a rich structure that 

is directly related to phase space structures from dynamical systems theory, such as hy- 

perbolic trajectories and their stable and unstable manifolds. We apply our approach to 

an ocean data set, as well as standard benchmark models from deterministic dynamical 

systems theory. A significant application of our results, is that they allow a quantitative 

comparison of the transport performance described from different ocean data sets. This 

is particularly interesting nowadays when a wide variety of sources are available since our 

methodology provides avenues for assessing the effective use of these data sets in a variety 

of situations. 
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1. Introduction 

Uncertainty Quantification (UQ) searches for a quantitative characterization of uncertainties in computational models 

of real-world applications. Uncertainties associated to these models have been studied for many years. Depending on the 

context uncertainties can arise as a result of noisy or incomplete data, errors introduced by numerical models, or by the lack

of complete understanding of the governing physical processes. This work deals with uncertainty related to deterministic 

models, which occurs due to unknown aspects of the model, and not with that uncertainty derived from the presence of

stochastic or noisy processes. A comparison between these two types of uncertainty may be found in Frenklach et al. [1] . 

In geophysical contexts uncertainty is a topic of much interest because it is inherent to the equations describing the 

motion of fluids, such as the ocean or the atmosphere. The motivation of this paper is to acquire a deeper understand-

ing of uncertainty quantification that allows a better characterization of its presence in ocean models. Large amount of 

oceanic data are now becoming available. For example, the Copernicus Marine Environment Monitoring Service (CMEMS) 

provides regular and systematic information about the physical state and dynamics of the ocean for the global ocean and 

the European regional seas. The data cover the current and future state of variables and the provision of retrospective data

records (re-analysis). Other oceanic services include ocean currents supplied by altimeter satellites, such as AVISO; the HY- 
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Fig. 1. A graphical representation of two sequential observations and their evolution according to a mathematical model. The initial observation at time t 0 
is expressed by the red initial condition x 0 . The final observed state x ∗ at time t ∗ is referred to as the “target”. The evolution law for these observations is 

unknown, but is approximated by a model, which in our setting involves the velocities v (x , t) of the system (1) . The evolution according to a model of a 

neighbourhood of points, X 0 , close to the initial observation, x 0 , is illustrated with the pink colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

brid Coordinate Ocean Model (HYCOM), a consortium, which is a multi-institutional effort, sponsored by the National Ocean 

Partnership Program (NOPP), as part of the U. S. Global Ocean Data Assimilation Experiment (GODAE), to develop and eval- 

uate a data-assimilative hybrid coordinate ocean models, etc. Validating data outputs from these models, or recognizing 

their suitability for operational purposes, is of paramount importance for providing valid solutions to real problems in our 

society. These problems may be related, for instance, to ocean transport phenomena, such as oil spills, chemical or plastic 

transportation. Uncertainty quantification in this context supports taking appropriate decisions about the use, or not, of a 

particular data source in these applications. 

Ocean models are built on partial differential equations, which are only an approximation of reality. Indeed, typically 

ocean models approach ocean motion by the Reynolds-averaged Navier–Stokes equations using the hydrostatic and Boussi- 

nesq assumptions. In this context inaccurate or inadequate models lead to structural uncertainty . Even if these equations 

were perfectly accurate models, they contain parameters, such as viscosity or diffusivity, which are not known precisely and 

cause parameter uncertainty . Boundary conditions on input variables, lead to parametric variability . For instance input vari- 

ables, such as velocities, experience at the surface atmospheric winds, which impose forcings on the velocities, and these 

atmospheric forcings are not precisely known. Eventually these models are not solved exactly, but numerically through dis- 

cretization methods and numerical approximations which are subject to numerical errors, and results in algorithmic uncer- 

tainty . For all these reasons, the predicted ocean currents are also uncertain. Uncertainties in the system outputs determined 

from the solutions that result from uncertainties in the system inputs are referred to as forward uncertainty [2] . 

In this work, we are interested in evaluating the reliability of the outputs, i.e. the ocean currents, with respect to the

transport that they produce. This is a perspective slightly different to the classical one now described in which ocean model

adequacy is judged only against the velocity fields. Transport in the ocean surface is produced by fluid parcels that follow

trajectories x (t) that evolve according to the dynamical system: 

dx 

dt 
= v (x , t) , (1) 

where the position is described in longitude ( λ) and latitude ( φ) coordinates, that is, x = (λ, φ) , and v represents the ve-

locity field, which has two components determined by the zonal ( u ) and meridional ( v ) velocities. In longitude/latitude

coordinates, the dynamical system in Eq. (1) can be rewritten as: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dλ

dt 
= 

u (λ, φ, t) 

R cos φ

dφ

dt 
= 

v (λ, φ, t) 

R 

(2) 

where R is the Earth’s radius. The system (1) , which is a general expression encompassing the specific problem dealt with

in (2) , is a nonlinear non-autonomous dynamical system in 2D. Uncertainties in the velocities v (x , t) , or more generally in

the vector field, produce uncertainties in the solutions x (t) . In general, as illustrated in Fig. 1 , the exact model connecting

two successive observations is not known. Only the initial observation, x 0 , and the final state, x ∗, are measurable. They are

presented in the red colour in the figure. The evolution of initial conditions, X 0 , in a neighbourhood close to the initial

observation, x 0 , towards a final state, X 

∗, predicted by a model is expressed with the pink colour in the same figure. The

uncertainty of the model in representing the observations can be expressed in a number of ways. It may be defined by

an absolute error E, which measures distance, in a certain metrics, between the final observation x ∗, which is considered

a target and the computed prediction X 

∗. This work proposes measures for this error and links the proposed uncertainty 

quantifier with dynamical objects present in the model (1) . This is done without making any mathematical assumption 

about the observations. 

This paper is structured as follows. In Section 2 , we will discuss and develop an approach to uncertainty quantification

recently taken for an ocean study case in García-Sánchez et al. [3] . We will show evidence of connections between the in-

troduced definitions and the dynamical objects of system (1) . In Section 3 , we will provide formal results to show how, for

specific simple examples of the system (1) , the definition of uncertainty quantification given in Section 2 is able to high-
2 
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Fig. 2. A graphical representation of the uncertainty quantification in a neighbourhood of the accident location (red dot) with respect to a target (the 

red blob). a) A schematic representation of Eq. (3) computation for an initial pink blob with radius r and its evolution; b) results of the computation of 

Eq. (3) for different initial blobs of radius r = 3 . 5 × 10 −3 ( ◦) placed in the center of each cell in the meshgrid. The colourmap is expressed in degree values 

for the final distances to the target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

light these dynamical objects. These results support one of the main findings of this article, which is that stable invariant

manifolds of hyperbolic trajectories provide a structure to forward uncertainty quantification. We will see in detail what is 

meant by this statement. Section 4 presents a discussion with further examples that illustrate the findings of this work and

links uncertainty quantification to Lagrangian Descriptors and other Lagrangian indicators found in the literature. Finally, in 

Section 5 , we discuss our conclusions. 

2. Transport uncertainty quantification in ocean models 

In this section we propose uncertainty quantification metrics. We work in the context of transport in ocean models, 

beginning the discussion from the results presented in García-Sánchez et al. [3] , which considers the performance of very 

high resolution tools for the monitoring and assessment of environmental hazards in coastal areas. In particular, this work, 

following the scheme presented in Fig. 1 , quantifies uncertainties of several high resolution hydrodynamic models in the area 

of Gran Canaria by measuring an error between the observations and predictions for the evolution of a diesel fuel spill event,

well documented by port authorities and tracked with very high resolution remote sensing products. The pollution event 

was produced after the collision of the passenger ferry ‘Volcán de Tamasite’ with the Nelson Mandela dike in La Luz Port

on April 2017. After the crash, supply pipes along the dike were broken and diesel fuel poured into the sea. SAR Sentinel 1

images were available in the area approximately one day and a half after the accident from which it was possible to identify

the spill. For that period ocean currents in the area were available from two sources. One was the Copernicus Marine Service

model for the Iberian–Biscay–Irish region (CMEMS IBI-PHY, IBI hereafter) and other was a very high resolution model of 

Puerto de la Luz setup by Puertos del Estado currently implemented and running operationally in different Spanish Port 

Authorities within the SAMOA port forecast system [4] . In [3] , for each model, uncertainties were quantified by measuring

an error with respect to a target, a ‘ground truth’, which should be recovered by the model. In particular, following the

scheme proposed in Figs. 1 and 2 illustrates how the uncertainty quantifier metrics is proposed. The ferry impact point, the

Nelson Mandela dike, which is marked with the red dot, represents an initial observation. The currents represented in the 

background are the ones obtained from the model set by Puertos del Estado at day t 0 . The elongated red blob represents

the spill as identified from satellite images one day and a half after the accident. This is the target observation, the ‘ground

truth’. In panel (a) a set of initial conditions, X 0 , is selected in the neighbourhood of the initial observation and marked

in a rectangular pink domain. This domain is divided into sub-domains and in each one a small circular blob with radius

r = 3 . 5 × 10 −3 ( ◦) , is evolved in a time interval from the initial time t 0 . This is represented just for one of the sub-domains.

The blob distorts while it approaches the target observed spill. A way to measure the ‘proximity’ between the blob and the

target spill at the final time, t ∗, is to compute the distance between the centroid of the evolved blob, ( c m 

), and that of the

observed spill, ( c ∗g ). Mathematically this can be expressed as: 

e (t ∗) = ‖ c m 

(t ∗) − c ∗g ‖ . (3) 
3 
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Fig. 3. A quantitative measure of uncertainty for the Puertos del Estado model for la Luz Port, based on errors measured as distances to the target ’ground 

truth’ spill. Higher colour-map values correspond to larger errors or uncertainties. The accident location is marked with a red asterisk. a) Uncertainties 

computed on a 11 × 11 mesh considering initial blobs with radius r = 3 . 5 × 10 −4 ( ◦) ; b) uncertainties associated with a 20 × 20 mesh considering initial 

blobs with radius r = 3 . 5 × 10 −5 ( ◦) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, ‖ · ‖ denotes the modulus of the vector. The position of the centroid of the evolved spill, c m 

, depends on time t ,

while the centroid of the ground value slick c ∗g does not, since it is an observation at a final time, t ∗. The centroid of a finite

set of N points { x k } k ∈ N ∈ R 

n is defined as: 

c = 

1 

N 

N ∑ 

k =1 

x k , (4) 

where x k are the (lon, lat) coordinates that define the contour of the slick in an equirectangular projection. The solid black

line e in panel (a) is the distance between centroids of the modelled and observed blobs. This is the value taken by Eq. (3) .

The procedure is repeated for additional circles centered in different positions of the sub-domains or cells, in the neigh- 

bourhood of the accident. The evolution of each of these circular blobs is different due to the chaotic nature of transport

in this setting. Panel (b) in Fig. 2 provides a visualization on how this calculation changes in each sub-domain. This panel

represents a colourmap which is placed in the port neighbourhood, at the same position than the pink domain in panel (a).

It considers a 6 × 6 mesh-grid, and the colourcode within each cell represents the value of Eq. (3) obtained for blobs with

initial positions in the center of each cell and initial radius of r = 3 . 5 × 10 −3 ( ◦) . We observe a nonuniform distribution. 

Fig. 3 expands results of Fig. 2 b) by increasing the number of cells in the neighbourhood domain and decreasing the

radius of each initial blob. In particular, Fig. 3 a) considers a mesh 11 × 11 and initial blobs with radius r = 3 . 5 × 10 −4 ( ◦) .
Fig. 3 b) increases the number of cells to a 20 × 20 mesh-grid and decreases the radius of initial blobs to 3 . 5 × 10 −5 ( ◦) .
Fig. 3 b) makes visible an underlying structure which is directly related to the invariant dynamical structures, as we will

shown later. In the limit r → 0 , expression (3) is rewritten as: 

L UQ (t ∗) = ‖ x (t ∗) − c ∗g ‖ . (5) 

where x (t) is a trajectory of a fluid parcel, a solution to the system (1) , with initial position x 0 at each cell in the grid.

Fig. 4 a) illustrates the results of this calculation in a very fine grid. In a perfect model one would have expected that

minimum uncertainty values would have been placed close to the point in which the accident occurred, however Figs. 3 and

4 a) do not show that, justifying that L UQ is represented not just at the spill point, but in a domain close to it in order to gain

insights into the quality of the model near the initial observation. Next we discuss the distribution of minimum uncertainty 

values in this neighbourhood and its interpretation. 

One of the goals of this paper is to establish connections between invariant dynamical objects that control transport in 

vector fields obtained from models and the uncertainty quantifier (5) . The former are geometrical objects that organize the 

evolution of modelled particles schematically into regions corresponding to qualitatively distinct dynamical behaviours. In 

the context of fluid dynamics these objects are referred to as Lagrangian Coherent Structures (LCS). An essential ingredient 

of the LCS are hyperbolic trajectories characterized by high contraction and expansion rates. Directions of contraction and 

expansion define, respectively, stable and unstable directions, which are, respectively, related to the stable and unstable 

manifolds. In the context of the ocean model and the event described above, Garcia-Sánchez et al. have shown in García-

Sánchez et al. [3] that there exists a hyperbolic trajectory located on the coastline very close to the accident point, in

a detachment configuration, which is related to the phenomena of flow separation. Under this configuration, the stable 

manifold of the hyperbolic trajectory is aligned with the coast, and the unstable manifold is transversal to it. Fig. 5 illustrates,

respectively, in blue and red the stable and unstable manifolds of the separation trajectory for the studied case on the date

the accident occurred. In the model any blob placed in the neighbourhood of the separation trajectory, eventually evolves 

to become aligned with the unstable manifold, which is an attracting material curve. Fig. 6 shows the consistency between

the model and observations. Indeed, the observed spill (in red) has evolved to become completely aligned with the unstable 
4 
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Fig. 4. a) Evaluation of the Lagrangian uncertainty quantifier given in Eq. (5) ; b) stable manifolds as revealed by the M function (7) using τ = 1 . 5 days; c) 

stable manifolds as revealed by the M function using τ = 2 days. 

Fig. 5. The Lagrangian skeleton of the ocean model on the accident day, the 21 April 2017 at 19:30h. LCSs are highlighted by the red and blue colours over 

the gray in the background. 

5 
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Fig. 6. The Lagrangian skeleton of the ocean model on the 23rd April 2017 at 7:00 a.m, and the observed position of the spill according to satellite images 

(red blob). Unstable manifolds are highlighted by the red colour over the gray in the background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

manifold. The technical justification underlying this behaviour would be the Inclination Lemma (also called the λ-Lemma) 

[5,6] that roughly says that successive images of any disc transverse to the stable manifold of a hyperbolic fixed point

eventually accumulate on the unstable manifold. 

The invariant dynamical structures displayed in Fig. 5 have been obtained by means of the Lagrangian Descriptor [7–9] ,

which measures arc-length of trajectories: 

M = 

∫ t 0 + τ

t 0 −τ

∥∥∥∥d x (t) 

dt 

∥∥∥∥dt. (6) 

In [10] , for some generalizations of the expression (6) , and for some specific vector fields, it is proved that stable and

unstable manifolds are aligned with singular features of this function. The forward integration highlights the stable manifold, 

while the backwards integration highlights the unstable manifold. In that work the notion of singular feature is related to an

undefined directional derivative in a direction transverse to the manifold curve. In Fig. 5 , red and blue curves are placed on

the singular features of M. These curves have been computed by processing the field provided by the Lagrangian Descriptor 

to extract its singular features. The processing is achieved by using the Canny algorithm implemented in the Python library 

opencv-python. Canny is an algorithm designed for edge detection. It is a basic algorithm for any line edge or contour

detection that is accurate and easy to use. Although for the vector field under consideration there is not a formal proof

that these lines correspond to stable and unstable manifolds, we refer to them like that because there exist results in the

literature [11–13] in which, for vector fields coming from data sets like this one, it has been verified that stable and unstable

manifolds are aligned with singular features of M. In those works this has been done by computing manifolds separately, 

with a high fidelity estimation method described in Mancho et al. [14] , 15 ], 16 ], which has as its basis the local stable and

unstable manifold theorem [14] . Unstable manifolds displayed in Fig. 6 are obtained similarly to those in Fig. 5 . 

The metric given in (5) possess similarities with the forward definition of the function M: 

M = 

∫ t ∗= t 0 + τ

t 0 

∥∥∥∥d x (t) 

dt 

∥∥∥∥dt. (7) 

The analogy between structures obtained from expressions (5) and (7) , is confirmed from Fig. 4 . Panel a) displays ex-

pression (5) results, while panels b) and c) display Eq. (7) results for τ = 1 . 5 and 2 days, respectively. Fig. 4 highlights

singularities both for the forward uncertainty quantifier and for the forward M function. From this figure it is clear that

uncertainties displayed in panel a) reach minimum values along the stable manifold. In this case, since the observed evo- 

lution of the spill is aligned with the unstable manifold (see Fig. 6 ), it is expected that minimum values of the uncertainty
6 



G. García-Sánchez, A.M. Mancho and S. Wiggins Commun Nonlinear Sci Numer Simulat 104 (2022) 106016 

Fig. 7. a) and b) two successive observations at time t 0 (red circle) and time t ∗ (red asterisk). The transition between them is modelled by the vector 

field at the background and L UQ is represented in the neighbourhood of the initial observation. Uncertainties are lower for the case a) as confirmed by the 

colourbar; c) L UQ evaluated in the whole domain. This expresses the uncertainty associated to the planar flow, assuming observations that start in different 

points of the representation domain and that evolve towards the red asterisk (target position). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quantifier correspond to the stable manifold. Indeed, the stable manifold is an optimal pathway towards the unstable man- 

ifold (see the Inclination Lemma quoted above), which in turn is an attracting material curve towards which all modelled 

fluid parcels evolve after a transition time, and if the model is adequate also will behave this way for observed spills. On

the other hand, indicators of structural uncertainty that show inadequacy of the model would correspond to situations in 

which these minimum values are not reached along the stable manifolds. For instance, this would have been the case if the

observed spill in Fig. 6 would have been found far from the unstable manifold. 

3. Formal results 

This section is focused on illustrating the analogies found in Fig. 4 between the pattern in panel a), which is related

to uncertainty quantification, and those in panels b) and c), which are related to stable invariant manifolds. For the event

described in the previous section computations in panel a) are performed with the measure proposed in Eq. (5) to quantify

uncertainty in a neighbourhood of the accident location. When the calculation is performed on a very fine grid it is found

that the uncertainty L UQ has a structure that is related to that of invariant stable manifolds. In order to find answers to

the question of why there are singular structures obtained from the expression (5) that are aligned with invariant stable

manifolds of hyperbolic trajectories, we need to assume an explicit expression for the vector field in Eq. (1) . Indeed in

the example discussed in the previous section, velocities are given as data-sets and this makes difficult to proceed with 

exact calculations. In this way, in this section we perform an analysis in simplified planar vector fields with exact explicit

expressions. Fig. 7 displays such example. In panel a) an initial observation at time t 0 is marked with a red circle. At a later

time, t ∗, this observation is at the target position marked with a red asterisk. We model this evolution with the vector field

at the background, which is represented at time t 0 . In order to quantify the uncertainty in the neighbourhood of the initial

observation, we display the evaluation of L UQ around it. The colourbar placed at the bottom of the figure, measures the

uncertainty in the domain units. This colourbar indicates that uncertainties in this neighbourhood are low. At least lower 

than those displayed for the experiment in panel b). In this case the initial observation is at a different position, although

the target is kept at the same position than in a). In this case uncertainties are larger, indicating that the vector field in

the background is not a good model to express the transition between these two observations. Finally panel c) displays L UQ 

evaluated in the whole domain. This expresses the uncertainty associated to the planar flow, assuming that observations 

start in different points of the representation domain and that they evolve towards the assumed observed target position 

at the red asterisk. The panel confirms that model has a better performance for those initial observations placed at the

diagonal. Results presented next in this section are displayed following this type of representation. 

Our analysis in this section follows the spirit of the work by Mancho et al. [9] , Lopesino et al. [10 , 17] , García-Garrido

et al. [18] . We assume the definition of singular features given there, by considering that these are features of L UQ on which

the transversal derivative is not defined. We will prove, for simple selected examples, that stable manifolds are aligned with 

those singular features of L UQ . 
7 
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Finally, before beginning our discussion the definition (5) is generalized as follows: 

L UQ ( x 0 , t, p ) = 

[ 

n ∑ 

i =1 

| x i ( t ) − x ∗i | p 
] 

1 
p 

, p > 1 , x 0 ∈ R 

n 
. (8) 

Here, x 0 is the initial condition of the trajectory (x 1 (t) , x 2 (t) , . . . , x n (t)) . In the particular case described in the previous

section n = 2 , which corresponds to the ocean surface, and p = 2 . The coordinates of the target c ∗g are (x ∗
1 
, x ∗

2 
) An alternative

for this expression that we will use is the following: 

L UQ (x 0 , t, p) = 

n ∑ 

i =1 

| x i (t) − x ∗i | p , p ≤ 1 , x 0 ∈ R 

n . (9) 

3.1. The autonomous saddle point 

The first example that we analyze is the vector field that corresponds to the Hamiltonian linear saddle case for which

x ∈ R 

2 , satisfying x = (x, y ) and the equations of motions are: 

dx 

dt 
= λx, 

dy 

dt 
= −λy, (10) 

where λ > 0 . For any initial observation (x 0 , y 0 ) , we consider the unique solution of this system passing through the condi-

tion (x 0 , y 0 ) , which is: {
x (t) = x 0 e 

λt 

y (t) = y 0 e 
−λt , 

λ > 0 (11) 

For this example, the origin (0,0) is a hyperbolic fixed point with stable and unstable manifolds: 

W 

s (0 , 0) = { (x, y ) ∈ R 

2 : x = 0 , y � = 0 } , (12)

W 

u (0 , 0) = { (x, y ) ∈ R 

2 : x � = 0 , y = 0 } , (13)

For simplicity we assume, without loss of generality, that t 0 = 0 (this is possible for autonomous systems). We consider

the target in the position (x ∗, y ∗) and apply (11) to (9) to obtain: 

L UQ ( x 0 , t, p) = | x 0 e λt − x ∗| p + | y 0 e −λt − y ∗| p . 
Regrouping terms, we get 

L UQ ( x 0 , t, p) = | x 0 | p ω 

−p | 1 − aω| p + | y 0 | p | ω − b| p , where a = 

x ∗

x 0 
, b = 

y ∗

y 0 
. (14)

In this expression, ω = e −λt , which always satisfies ω > 0 . We explore separately the first and second terms. For the factor

| 1 − aω| p there exists a t L such that if t > t L , then aω << 1 and (1 − aω) > 0 . This is always the case for a < 0 and is a

plausible assumption for a > 0 , if a << ω 

−1 . We recall that a = x ∗/x 0 and that therefore such t L exists if x 0 � = 0 . In this case

positiveness is guaranteed for sufficiently large t, i.e, a Taylor series around ω = 0 , attained if t 	 1 and t > t L , is performed

for the binomial: 

(1 − aω) p = 1 − apω + 

1 

2 

a 2 (p − 1) pω 

2 − 1 

6 

ω 

3 
(
a 3 (p − 2)(p − 1) p 

)
+ O 

(
ω 

4 
)
. 

Therefore, 

1 

ω 

p 
(1 − aω ) p = ω 

−p + apω 

(1 −p) + 

1 

2 

a 2 (p − 1) pω 

(2 −p) + O 

(
ω 

(3 −p) 
)
. 

We recall that p ≤ 1 and ω = e −λt . This yields, 

| x 0 | p | e λt − a | p = | x 0 | p e λt p + O 

(| x 0 | p ae −λt(1 −p) 
)
. 

We analyse next the second term in Eq. (14) . The sign of (ω − b) depends crucially on the sign of b given that for t 	 1

the term ω can be as small as we like. Let us consider t L such that if t > t L and b < 0 , then (e −λt − b) > 0 . The following is

valid for t above this lower value: 

| ω − b| p = (ω − b) p = (−b) p + pω(−b) p−1 + 

1 

2 

(p − 1) pω 

2 (−b) p−2 

+ 

1 

(p − 2)(p − 1) pω 

3 (−b) p−3 + O 

(
ω 

4 
)

6 

8 
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Therefore, when t 	 1 , b < 0 and e −λt 
 1 , 

(ω − b) p = (−b) p + O 

(
e −λt 

)
, e −λt 
 1 (15) 

Now, we consider b > 0 and t > t L satisfying (ω − b) < 0 . Therefore: 

| ω − b| p = (−ω + b) p = b p + pωb p−1 + 

1 

2 

(p − 1) pω 

2 b p−2 

+ 

1 

6 

(p − 2)(p − 1) pω 

3 b p−3 + O 

(
ω 

4 
)
. 

Therefore, when t 	 1 , b > 0 and e −λt 
 1 , 

(−ω + b) p = b p + O ( ω ) . (16) 

Finally, we conclude that 

| ω − b| p = | b| p + O 

(
e −λt 

)
, ω 
 1 . (17) 

Therefore, since b = y ∗/y 0 

| y 0 | p | e −λt − b| p = | y ∗| p + O 

(| y 0 | p e −λt 
)
, e −λt 
 1 . 

Thus, we can approximate L UQ as 

L UQ ( x 0 , t, p) ≈ | x 0 e λt | p + | y ∗| p = | x 0 | e λt p + | y ∗| p (18)

where the dominant term is | x 0 | p e λt p . Hence, to leading order, the stable manifold at x = 0 is aligned with a singular feature

of L UQ for ‘sufficiently large’ t . This statement however must be considered in the sense that expression (18) expresses a

good approximation for L UQ as far as x 0 � = 0 , and that for any | x 0 | > 0 is valid for a sufficient large t satisfying, t > t L . 

We have shown that Eq. (9) is able to highlight the stable manifolds for the autonomous saddle point. Next, we anal-

yse what happens when we consider Eq. (8) , and in which cases it provides information about the stable manifold of the

autonomous saddle point. When we apply (11) to (8) , it yields 

L UQ ( x 0 , t, p) = 

[| x 0 e λt − x ∗| p + | y 0 e −λt − y ∗| p ]1 /p 
. 

We remark that our following calculations will be restricted to p > 1 and integer. Rewriting the expression for ω = e −λt 

L UQ ( x 0 , t, p) = 

[ ∣∣∣x 0 
ω 

∣∣∣p 

| 1 − aω| p + | y 0 | p | ω − b| p 
] 1 /p 

= 

∣∣∣x 0 
ω 

∣∣∣[ | 1 − aω| p + 

∣∣∣y 0 
x 0 

∣∣∣p 

ω 

p | ω − b| p 
] 1 /p 

(19) 

Recalling that p > 1 , ω > 0 and that (1 − aω) > 0 for sufficiently small ω, i.e. sufficiently large t, and the case b < 0 and

(ω − b) > 0 , a Taylor series around ω = 0 , for p integer number, for the second factor: 

L UQ ( x 0 , t, p) = 

∣∣∣x 0 
ω 

∣∣∣[1 − aω + 

∣∣∣y 0 
x 0 

∣∣∣p 

(−b) p 
ω 

p 

p 
+ O ( ω ) 

p+1 

]
(20) 

Alternatively, considering the case b > 0 and (ω − b) < 0 , a Taylor series around ω = 0 for the second factor is as follows: 

L UQ ( x 0 , t, p) = 

∣∣∣x 0 
ω 

∣∣∣[1 − aω + 

∣∣∣y 0 
x 0 

∣∣∣p 

(b) p 
ω 

p 

p 
+ O ( ω ) 

p+1 

]
(21) 

Therefore in general: 

L UQ ( x 0 , t, p) = 

∣∣∣x 0 
ω 

∣∣∣[1 − aω + 

∣∣∣y 0 
x 0 

∣∣∣p 

| b| p ω 

p 

p 
+ O ( ω ) 

p+1 

]

= 

∣∣∣x 0 
ω 

∣∣∣ − a | x 0 | + | y 0 | p | x 0 | 1 −p | b| p 
p 

ω 

p−1 + O ( ω ) 
p (22) 

We notice that since p > 1 , the terms ω 

p−1 , ω 

p have positive exponents and if ω 
 1 in principle are much smaller than

the first term ω 

−1 and therefore: 

L UQ ( x 0 , t, p) ∼ 1 

p 

∣∣∣x 0 
ω 

∣∣∣, ω 
 1 (23) 

Hence, the stable manifold at x = 0 is aligned with a singular feature of this approximation to L UQ for ‘sufficiently large’ t .

This statement though, must be considered with care, because in Eq. (22) the terms in ω 

p−1 , ω 

p , are multiplied by | x 0 | 1 −p 

which has a negative exponent, and therefore have a singularity at x 0 = 0 . For this reason neglecting these terms versus

the first one if we are very close to x 0 = 0 would require checking that the products, such as, | x 0 | 1 −p ω 

p−1 are really small.

This implies that Eq. (23) is correctly approximating L UQ for ω 
 1 as far as we are sufficiently away from 0 in x 0 , i.e.

| x 0 | 1 −p ω 

p−1 
 1 ⇒ ω 

p−1 
 | x 0 | p−1 . In practice this condition is satisfied for any grid (x 0 , y 0 ) used in later figures that ex-

clude x 0 = 0 . Also we can state that for sufficiently large t, L UQ is very close in almost all the domain to the function given

in Eq. (23) , which possess a “singular feature” aligned with the stable manifold. Fig. 8 a) and b), illustrates how the stable

manifold is aligned with singular features of the Lagrangian uncertainty quantifier defined either by Eq. (8) or (9) . 
9 
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Fig. 8. A representation of Eqs. (8) and (9) for t ∗ = 10 and target (x ∗, y ∗) = (0 . 5 , 0 . 5) (red asterisk) for the Hamiltonian linear saddle vector field. a) p = 2 ; 

b) p = 0 . 1 . It can be appreciated how the stable manifold is aligned with a singular feature. 

 

 

 

 

3.2. The autonomous rotated saddle point 

This second case that we explore is the vector field of the rotated linear saddle for which the equations of motion are: {
˙ x = λy 
˙ y = λx, 

λ > 0 (24) 

The general solution to this system is: {
x (t) = ae λt + be −λt 

y (t) = ae λt − be −λt , 
λ > 0 (25) 

where a and b depend on the initial conditions x 0 and y 0 as follows: 

a = 

x 0 + y 0 
2 

, b = 

x 0 − y 0 
2 

. 

Here, a = 0 corresponds to the stable manifold of the hyperbolic fixed point placed at the origin and b = 0 corresponds to

its unstable manifold. 

For any initial observation (x 0 , y 0 ) and final target observation (x ∗, y ∗) , we introduce the solution (25) into Eq. (9) ob-

taining: 

L UQ ( x , t, p) = | ae λt + be −λt − x ∗| p + | ae λt − be −λt − y ∗| p (26)

We expand next the first term in Eq. (26) . In particular, we consider the case in which a > 0 for which it is always

possible to find a t > t L in which (ae λt + be −λt − x ∗) > 0 : 

| ae λt + be −λt − x ∗| p = (ae λt + be −λt − x ∗) p = 

(
a 

ω 

+ bω − x ∗
)p 

= ω 

−p 
(
a + bω 

2 − x ∗ω 

)p 
, 

Here we have used ω = e −λt . The Taylor expansion of the binomial when ω 
 1 , i.e., when t 	 1 , is 

ω 

−p 
(
a + bω 

2 − x ∗ω 

)p = ω 

−p 
[ 

a p − pωx ∗a p−1 + ω 

2 
(

bpa p−1 + 

1 

2 

(p − 1) p(x ∗) 2 a p−2 
)

−1 

6 

ω 

3 
(
(p − 1) px ∗a p−3 

(
6 ab + p(x ∗) 2 − 2(x ∗) 2 

))
+ O 

(
ω 

4 
)] 

. 

Therefore, 

ω 

−p 
(
a + bω 

2 − x ∗ω 

)p = aω 

−p − pωx ∗a p−1 + ω 

(2 −p) 
(

bpa p−1 + 

1 

2 

(p − 1) p(x ∗) 2 a p−2 
)

−1 

ω 

(3 −p) 
(
(p − 1) px ∗a p−3 

(
6 ab + p(x ∗) 2 − 2(x ∗) 2 

))
+ O 

(
ω 

(4 −p) 
)

6 

10 
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Since p < 1 , ω 

(n −p) 
 1 for n > 1 when t 	 1 . Hence, 

ω 

−pt 
(
a + bω 

2 t − x ∗ω 

t 
)p = a p ω 

−pt + O 

(
ω 

(1 −p) t 
)
. 

By removing the change of variable, we obtain (
ae λt + be −λt − x ∗

)p = a p e λpt + O 

(
e −(1 −p) λt 

)
≈ a p e λpt , when , t 	 1 . (27) 

We consider now the case a < 0 that implies 
(
ae λt + be −λt − x ∗

)
< 0 for some sufficiently large t . The Taylor series is the

same, except for a minus sign. It yields, (
ae λt + be −λt − x ∗

)p = −a p e λpt − O 

(
e −(1 −p) λt 

)
≈ −a p e λpt , when , t 	 1 . (28) 

Finally, 

| ae λt + be −λt − x ∗| p = | a | p e λpt + O 

(
e −(1 −p) λt 

)
≈ | a | p e λpt , when , t 	 1 . (29)

We analyse next the second term in Eq. (26) . As before, we start considering the case a > 0 and (ae λt − be −λt + y ∗) > 0 .

After making the change of variable ω = e −λt we obtain: 

ω 

−p 
(
a − bω 

2 − y ∗ω 

t 
)p = ω 

−p 
[ 

a p − pω 

t y ∗a p−1 − 1 

2 

ω 

2 
(

pa p−2 
(
2 ab − p(y ∗) 2 + (y ∗) 2 

))
+ 

1 

6 

(p − 1) pω 

3 y ∗a p−3 
(
6 ab − p(y ∗) 2 + 2(y ∗) 2 

)
+ O 

(
ω 

4 
)] 

. 

Since p < 1 , ω 

(n −p) 
 1 for n > 1 when t 	 1 . Hence, 

ω 

−p 
(
a − bω 

2 + y ∗ω 

)p = a p ω 

−p + O 

(
ω 

(1 −p) 
)
. 

By removing the change of variable, we obtain: (
ae λt − be −λt − y ∗

)p = a p e λpt + O 

(
e −(1 −p) λt 

)
≈ a p e λpt , when , t 	 1 . (30) 

We compute the same term but in the case a < 0 
(
ae λt − be −λt − y ∗

)
< 0 . The Taylor series is the same, except for a minus

sign. It yields, (
ae λt − be −λt − y ∗

)p = −a p e λpt − O 

(
e −(1 −p) λt 

)
≈ −a p e λpt , when , t 	 1 . (31) 

Finally, 

| ae λt − be −λt − y ∗| p = | a | p e λpt + O 

(
e −(1 −p) λt 

)
≈ | a | p e λpt , when , t 	 1 . (32)

Thus, 

L UQ = | ae λt + be −λt − x ∗| p + | ae λt − be −λt + y ∗| p ≈ | a | p e λpt , when , t 	 1 . (33)

The stable manifold at a = 0 is aligned with a singular feature also at a = 0 . 

As for Eq. (8) considering p > 1 and ω = e −λt leads: 

L UQ = 

[| ae λt + be −λt − x ∗| p + | ae λt − be −λt + y ∗| p ]1 /p 

= ω 

−1 
[| a + bω 

2 − x ∗ω| p + | a − bω 

2 + y ∗ω| p ]1 /p 

= 2 

1 
p | a | ω 

−1 − 2 

−1+ 1 p (2 b + x ∗ − y ∗) + 2 

−3+ 1 p | a | −1 ·
(4 ab + (−1 + p)(−2 b + x ∗ + y ∗) 2 ) ω + O (ω) 2 (34) 

As before the leading term in ω leads to: 

L UQ ∼ 2 

1 
p | a | ω 

−1 (35) 

and similar considerations apply in neglected terms to the ones made for Eq. (22) , but now regarding to singularities at

a = 0 . Fig. 9 a) and b), illustrate how the stable manifold is aligned with singular features of the Lagrangian uncertainty

quantifier defined either by Eq. (8) or (9) . 

3.3. Discrete maps 

These findings in the previous two subsections can be easily extended to discrete time dynamical systems, which are 

also useful in applications. Discrete time dynamical systems are defined as maps. 
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Fig. 9. A representation of Eqs. (8) and (9) for t ∗ = 10 and target (x ∗, y ∗) = (0 . 5 , 0 . 5) (red asterisk) for the rotated linear saddle vector field for a) p = 2 ; b) 

p = 0 . 1 . It can be appreciated how the stable manifold is aligned with a singular feature. 

 

 

 

 

 

 

The autonomous saddle point 

Consider the following linear, area-preserving autonomous map: {
x n +1 = λx n 
y n +1 = 

1 
λ

y n , 
λ > 1 . (36) 

For an initial condition (x 0 , y 0 ) , the unique solution of this system is: {
x n = x 0 λ

n 

y n = y 0 λ
−n , 

λ > 1 . (37) 

As for the continuous time case, the origin (0,0) is a hyperbolic fixed point with stable and unstable manifolds: 

W 

s (0 , 0) = { (x, y ) ∈ R 

2 : x = 0 , y � = 0 } , (38)

W 

u (0 , 0) = { (x, y ) ∈ R 

2 : x � = 0 , y = 0 } , (39)

We apply (37) to (9) to obtain: 

L UQ ( x , n, p) = | x 0 λn − x ∗| p + | y 0 λ−n − y ∗| p . (40) 

Regrouping terms, we get 

L UQ ( x , n, p) = | x 0 | p | λn − a | p + | y 0 | p | λ−n − b| p , where a = 

x ∗

x 0 
, b = 

y ∗

y 0 
. (41)

Considering that the transformation e λt → λn can be directly applied to all the calculations performed in the continuous 

time case, we recover from Eq. (14) : 

L UQ ≈ | x 0 | p | λnp | + O 

(| λ| −n (1 −p) 
)
, when , n 	 1 . (42) 

When p < 1 , the dominant term is | x 0 | p λnp . Hence, the stable manifold at x = 0 is aligned with singular features of L UQ for

‘sufficiently large’ iteration n . 

The same is applicable to L UQ (8) . It yields, 

L UQ ≈ | x 0 ‖ λn | + O ( 1 ) , when , n 	 1 and p < 1 . (43) 

We note that the stable manifold at x = 0 is aligned with singular features of L UQ for a ‘sufficiently large’ iteration n . The

same issues as before regarding singularities on the manifold position apply. 

Fig. 10 a) and b), illustrate how the stable manifold is aligned with singular features of the Lagrangian uncertainty quan-

tifier defined either by Eq. (8) or (9) . 

The autonomous rotated saddle point 

We consider the following discrete dynamical system: 

F (x, y ) = A 

(
x 
y 

)
, where A = 

1 

2 λ

(
λ2 + 1 λ2 − 1 

λ2 − 1 λ2 + 1 

)
, λ > 1 . (44) 
12 
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Fig. 10. In Figure a) there is a representation for the autonomous saddle when we apply Eq. (8) for p = 2 . In b), we illustrate the same representation but 

for Eq. (9) when p = 0 . 1 . It can be appreciated how the stable manifold is aligned with the singular feature. 

 

 

 

 

 

 

It is easy to see that the stable and the unstable manifolds are given by the vectors (1 , −1) and (1,1) respectively. The

solution of this system yields to, {
x n = aλn + bλ−n 

y n = aλn − bλ−n , 
λ > 1 (45) 

where 

a = 

x 0 + y 0 
2 

, b = 

x 0 − y 0 
2 

. 

Again considering the transformation e λt → λn and the use of previous results for the continuous time case, we recover

from Eq. (33) : 

L UQ ( x , n, p) = | aλn + bλ−n − x ∗| p + | aλn − bλ−n − y ∗| p . 
Therefore, the dominant term is 

L UQ ( x , n, p) ∼ | a | p | λ| np . 

Since a = 

x 0 + y 0 
2 , there is a singular feature at x = −y, i.e., in the subspace generated by (1 , −1) . Hence, the stable manifold

is aligned with a singular feature of L UQ . 

The same is applicable to L UQ (8) . It yields, 

L UQ ( x , n, p) ∼ | a || λ| n , 
Hence, the stable manifold is aligned with a singular feature of L UQ . Fig. 11 a) and b), illustrates how the stable manifold is

aligned with singular features of the Lagrangian uncertainty quantifier defined either by Eqs. (8) or (9) . 

4. The Duffing equation 

Results in the previous sections are generalized to the autonomous nonlinear case by means of the Moser’s theorem 

[19] . This theorem applies to analytic two-dimensional symplectic maps having a hyperbolic fixed point or, similarly, to 

two-dimensional time-periodic Hamiltonian vector fields having a hyperbolic periodic orbit (which can be reduced to the 

former case considering a Poincaré map). The case of a Hamiltonian nonlinear autonomous system is a one-parameter family 

of symplectic maps, and therefore Moser’s theorem applies. Following proofs sketched by Lopesino et al. [10,17] results may 

be extended to the case of non-autonomous nonlinear dynamical systems by utilizing results like the Hartman–Gro βman 

theorem. 

This section discusses further results on the Lagrangian Uncertainty Quantifier by considering the evaluation of (8) over 

a vector field obtained from the nonlinear periodically forced Duffing equation: 

˙ x = y 

˙ y = x − x 3 + ε sin t (46) 

Prior to discuss outputs of (8) into Eq. (46) , we discuss the structure of invariant manifolds of hyperbolic trajectories in

Eq. (46) for the case ε = 0 . 1 and the persistence versus this time dependent perturbation of tori present in the unforced
13 
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Fig. 11. In Figure a) there is a representation for the rotated saddle when we apply Eq. (8) for p = 2 . In b), we illustrate the same representation but for 

Eq. (8) when p = 0 . 1 . It can be appreciate how the singular feature is aligned with stable manifold. 

Fig. 12. Evaluation of (6) for the Duffing Eq. (46) at t 0 = 0 . a) τ = 10 ; b) τ = 50 . At this τ the average of M in the smooth regions has converged and the 

level curve represent and invariant tori. 

 

 

 

 

 

 

 

 

 

 

 

version of Eq. (46) , i. e, ε = 0 . In the perturbed case, the hyperbolic fixed point placed at the origin, becomes a hyperbolic

periodic trajectory [7] , and their stable and unstable manifold can be highlighted by the Eq. (6) appeared in Section 2 [9] .

Additionally, as discussed in Lopesino et al. [10] a scale factor 1 / (2 τ ) applied to (6) converts the expression to an average,

which in compact Hamiltonian systems like (46) converges for τ → ∞ and when this convergence is observed, level curves 

correspond to invariant structures of the dynamical system. Convergence of means are computationally verifiable on tori, 

however on hyperbolic sets as discussed in García-Garrido et al. [18] , rounding computational errors practically prevent 

convergence. 

Fig. 12 illustrates these points. Panel a) shows invariant manifolds related to the hyperbolic trajectory that are obtained 

from (6) for τ = 10 . These structures become much more rich for larger τ as panel b) confirms. In this panel since the

average of M has converged in the smooth region, level curves in the area highlight tori. The outputs of Fig. 12 a) may be

split into two figures, by separating the backwards and forwards integration of Eq. (6) , which displays, respectively, the

unstable and stable manifolds. These outputs are depicted, respectively, in Fig. 13 a) and b). 

Fig. 14 shows the evaluation of L UQ as in Eq. (8) with p = 2 for t 0 = 0 , t = t 0 + τ = 10 and different targets. In panel

a) the chosen target is x ∗ = (0 . 1 , 0 . 1) . This target is within the chaotic region displayed in Fig. 12 b), close to the unstable

manifold of the Duffing equation. It is observed that minimum values are reached on the stable manifold and that the

structure of L UQ is correlated to it. This setting is similar to what was observed for the ocean case described in Section 2 ,

in which the observed oil evolution is aligned with the unstable manifold and minimum values of L UQ are found on the
14 
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Fig. 13. a) Evaluation of the backwards integration of (6) on the Duffing Eq. (46) at t 0 = 0 and τ = 10 . This represents the unstable manifold; b) Evaluation 

of the forwards integration of (6) on the Duffing Eq. (46) at t 0 = 0 and τ = 10 . This represents the stable manifold. 

Fig. 14. Evaluation of Eq. (8) on the Duffing Eq. (46) at t 0 = 0 , t = t 0 + τ = 10 with different targets. a) Target x ∗ = (0 . 1 , 0 . 1) ; b) target x ∗ = (1 , 0) ; c) target 

x ∗ = (0 , 1) . 

15 
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Fig. 15. Evaluation of Eq. (9) on the Duffing Eq. (46) at t 0 = 0 , for p = 0 . 1 and different targets. Black arrows highlight features that for this system are 

known to be spurious. a) t 0 = 0 , t = t 0 + τ = 10 and target x ∗ = (0 . 1 , 0 . 1) ; b) t 0 = 0 , t = t 0 + τ = 10 and target x ∗ = (−0 . 75 , 0 . 25) ; c) t 0 = 0 , t = t 0 + τ = 50 

and target x ∗ = (0 . 1 , 0 . 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stable manifold that are optimal pathways towards the unstable manifolds. In panel b) we show the results for the target

x ∗ = (1 , 0) which is within the right tori like structure highlighted in Fig. 12 b). Accordingly, uncertainty values are very low

for initial observations (x 0 , y 0 ) in the corresponding tori region, but very high for the tori like region at the left side. Indeed

initial observations in this region will never go near a final observation in the right tori like structure, and therefore this

model is structurally uncertain for those observations, i.e. the model is inadequate to represent those. Panel c) shows the 

computation of the uncertainty for a target x ∗ = (0 , 1) outside the geometry of the unstable invariant manifold displayed

in Fig. 13 a). It is remarkable the persistence in all these examples of an structure on the uncertainty field with singular

features linked to the stable manifold independently of the target value x ∗. 

Fig. 15 shows the evaluation of Eq. (9) with p = 0 . 1 , and different targets or integration periods. Panels a) and b) have

the same integration periods, but different targets. In them the black arrow points out different features that seem singular 

but do not correspond to any invariant manifold and in this sense they are spurious. This finding suggests that care must

be taken in the invariant interpretation of singular features of Eqs. (8) and (9) , although these features truly represent the

structure of uncertainty and in this sense they are not spurious. In the next section we will present results in the literature

that have used an equation similar to (8) to highlight Lagrangian structures. Fig. 15 c) shows the same than panel a) for

an integration period of 50. The black arrow marks a region, which from the analysis of Fig. 12 , is known to be covered

by tori, while the structure attained from Eq. (9) does not highlight this, again showing the presence of patterns that do

not have an invariant interpretation. Indeed, the ergodic partition theory discussed in Mezic and Wiggins [20] , Susuki and

Mezic [21] and implemented in Lopesino et al. [10] for Lagrangian Descriptors such as that in Eq. (6) , shows that this ability

to highlight tori, requires averaging along trajectories, while expressions Eq. (8) and (9) are not averages , and therefore do
16 



G. García-Sánchez, A.M. Mancho and S. Wiggins Commun Nonlinear Sci Numer Simulat 104 (2022) 106016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not qualify for the application of ergodic principles. These expressions are not suitable for identifying this kind of invariant 

objects. 

5. Discussion 

Our formal results have shown that expressions for uncertainty quantification given in Eqs. (8) and (9) provide singular 

features associated to the stable invariant manifolds of a hyperbolic trajectory. The numerical evidence found in the real- 

istic ocean application that has motivated the current work indicates that more complex flows in which more hyperbolic 

trajectories are present will behave the same for each hyperbolic trajectory. The fact that L UQ possess a structure associated

with stable invariant manifolds, indicates that in time dependent flows its structure will become more and more complex 

in longer time intervals, as does the structure of stable manifolds [9,11] . This reveals new hints about the behaviour of

uncertainty measurements in long time intervals, which are missed by measures of uncertainty just focused on averages 

or statistical moments of distributions. However, these statistical measurements are still of much interest to quantify with 

just one representative number the performance of a data set in a specific application. For instance, if the average of L UQ is

considered to be a representative number for uncertainty, the associated uncertainty for the model discussed in the intro- 

duction for Figs. 3 a), b) and 4 a) is respectively, 0.033 ◦, 0.031 ◦ or 0.030 ◦. A comparison of this number for different models

allows for determining which one is the most appropriate for describing a particular observation (see [3] ). 

Recently there has been much interest in uncertainty quantification involving trajectories in ocean data sets. Efforts in 

this direction are [22–25] . Vieira et al. [25] have developed a clustering method to partition the space of trajectory data

sets into distinct flow regions. This method contains free parameters and they use uncertainty quantification to assess the 

parameter dependence on the partitions they obtain. The work [24] discusses approaches for uncertainty quantification from 

a geometrical perspective, and uncertainty quantifiers based on distances are proposed, but no connections are proposed 

with invariant dynamical structures. Similarly in Huntley et al. [23] uncertainty quantifiers based on a descriptive statistics 

of distances between modelled trajectories and observations are used, but no relations are presented between these and 

the invariant dynamical structures. Results appeared in Kaszás and Haller [26] also discuss along these lines, but in the 

context of general models, not related to ocean data. In this work authors have established links between their measure of

uncertainty, model sensitivity, and the FTLE field, which is related to invariant manifolds. Authors achieve these results under 

explicit mathematical assumptions for the “true” model, however results in our work do not require such assumptions for 

the “ground truth”. The FTLE field is constructed from derivatives along trajectories (the Cauchy–Green strain tensor), while 

the L UQ field is not. It would be an interesting research direction to establish links between the FTLE and the L UQ fields, but

the authors have not pursued this. 

Equations similar to (8) or (9) have been used in the literature to highlight Lagrangian structures in oceanic flows. For

instance [27,28] have done so. Prants et al. [27] proposed to use the arc-length D to study the displacement of particles in

the coasts of Japan. 

D = 

√ 

(x f − x 0 ) 2 + (y f − y 0 ) 2 . (47) 

Here, D represents the relative displacement of a particle from its initial position (x 0 , y 0 ) to certain final one (x f , y f ) .

This expression is the analogue to Eq. (8) with p = 2 and target adjusted to each initial condition. However, in this work no

connections are established between Eq. (47) and uncertainty quantification. On the other hand, our results in the previous 

section indicate that nonlinearities introduce features in the L UQ pattern that do not have an invariant interpretation. 

6. Conclusions 

This article explores a definition for Uncertainty Quantification recently proposed in oceanic contexts [3] . The findings 

described in this article are of particular interest for they have important environmental applications. Nowadays, multiple 

ocean data sources are available and in this context our results allow a quantitative comparison of the transport properties 

associated with them. In this way discriminating the level of performance of different data sources will help to gain precision

in the description of dispersion of contaminants, determination of waste and plastic sources, etc. 

We have also examined the implications of this definition. It is found that for this definition, which is associated to

forward Uncertainty Quantification, stable invariant manifolds of hyperbolic trajectories of the underlying flow, provide a 

structure for it. That is, we found that the proposed Uncertainty Quantifier is a function that contains a very rich structure,

particularly for long time intervals, which is related to these well known structures from dynamical systems theory. For 

selected examples this statement has been proven. Also examples are discussed in which singular structures of the Uncer- 

tainty Quantifier highlights structures that are not aligned with invariant features of the dynamical system. Other invariant 

structures like tori, are not recovered by the Uncertainty Quantifier. Also, connections between UQ and invariant dynamical 

structures have been used to provide a framework for discussion on structural uncertainty, which is related to inadequate 

models. This vision enriches traditional descriptions of UQ on which structure is discussed just in terms of means and/or 

statistical moments of distributions. 
17 
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