Caracterización de Compuestos Fenólicos en Sub-productos de Variedades de Mango (Mangifera indica L.) Cultivados en España Mediante HPLC-ESI-QTOF-MS

De Ancos, B.¹, Sánchez-Moreno, C.¹, Gómez, R.¹, Colina-Coca, C.¹, González, M.², Lobo, M.G.³, Dorta, E.³

¹Dpto. de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040-Madrid, España, e-mail: ancos@ictan.csic.es

²Dpto.de Análisis Instrumental y Química Ambiental, Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (IQOG-CSIC),28006-Madrid, España

³Dpto. de Fruticultura Tropical, Instituto Canario de Investigaciones Agrarias, 38200-La Laguna, Tenerife, Islas Canarias, España

INTRODUCCIÓN

Los sub-productos (piel, semillas) obtenidos del procesado del mango contienen compuestos fenólicos bioactivos. La caracterización de la composición fenólica de dichos sub-productos es un paso esencial para su utilización como ingredientes funcionales

OBJETIVO

Caracterización de la composición fenólica de la piel y semillas de tres variedades de mango (Keitt, Sensation y Gomera 3) cultivados en las Islas Canarias (España), obtenidos por distintos procesos de extracción

MATERIAL Y MÉTODOS

Preparación muestras

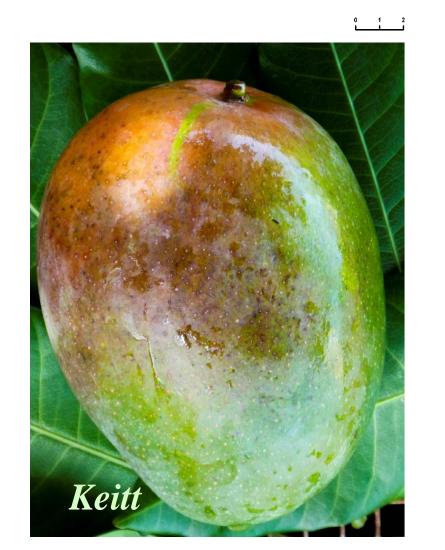


Foto 1. Variedades de mango utilizadas en este estudio

Separación manual (Piel y Semilla) Liofilización (50 mPa, -40ºC) Extracción Condiciones Óptimas

Extracción

Extracción Asistida por Microondas

PIEL

Extracción A (1:50, p:v)

Extracción B (1:10, p:v)

Etanol: Agua (50:50, v:v)

75 ºC

HPLC-ESI-QTOF

Peso: Volúmen

- •Tiempo de Extracción (60 min)
- Procesos de extracción (3)
- •Contenido de agua (50%)
- •pH del agua (3)
- Potencia 500w

SEMILLA

Acetonal: Agua (50:50, v:v) 50 °C

Peso: Volúmen

Extracción C (1:30, p:v)

Proceso de Purificación e Idenificación

Concentrar extracto crudo (40 °C)

Columna de Sephadex LH-20

Recuperación fenoles

Evaporación Sequedad

Redisolver, Filtrary
Almacenar-80 °C

HPLC-ESI-QTOF

Fase móvil: Ácido fórmico 1% en agua Milli-Q (A) y Ácido fórmico 1% en acetonitrilo (B) Tiempo: 70 min

Vol inyección: 10 μL Detector: 280,320,360nm

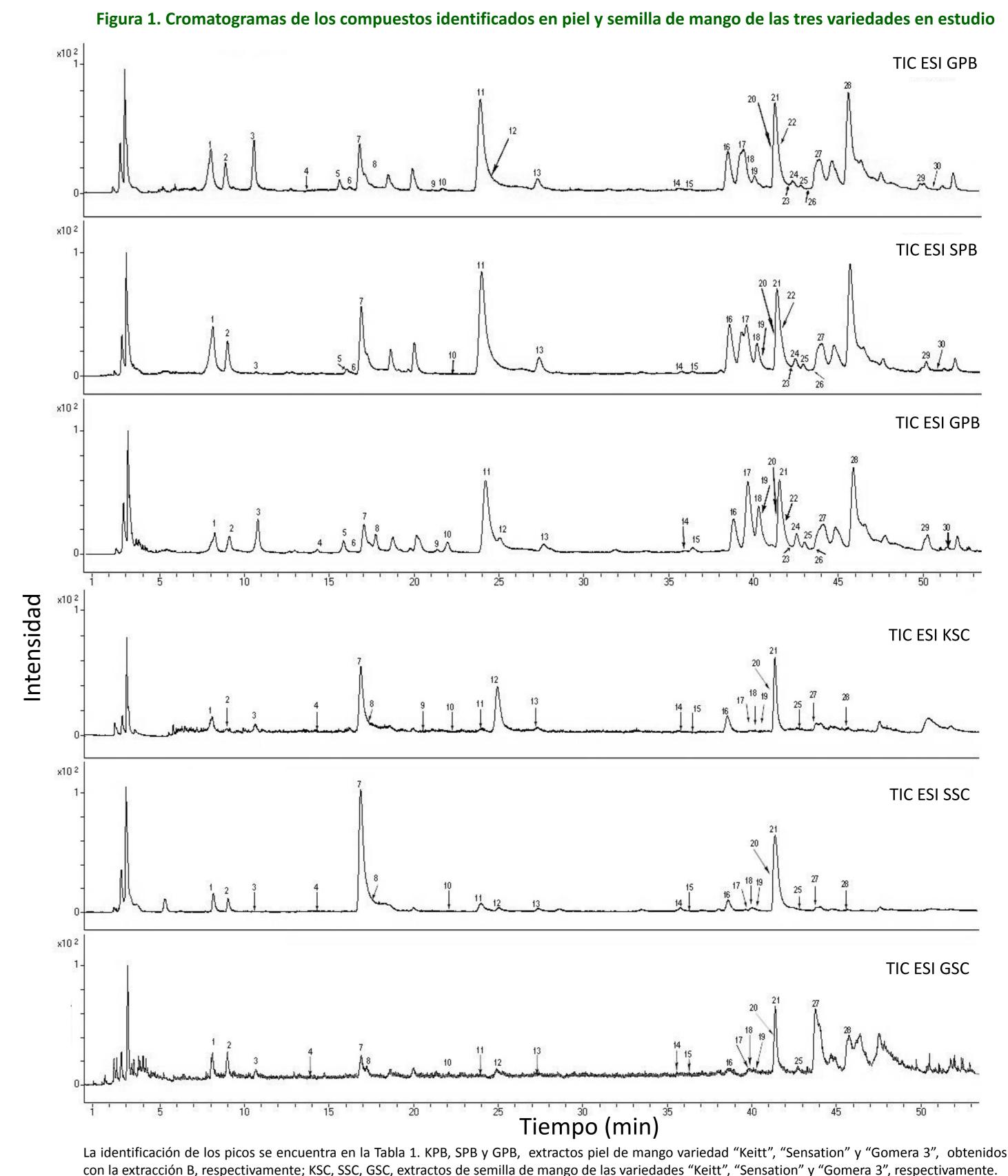
Condiciones: 0 min, 100% A; 15 min, 75% A; 30 min, 70% A; 70min, 20% A; 65min, 0%A; 70min, 100% A

RESULTADOS Y DISCUSIÓN

Tabla 1. Compuestos identificados en piel y semilla de mango de las tres variedades en estudio

Pico	Identificación	Muestra**	HPLC-ESI-QTOF				
			Tr	[M-H] ⁻	Iones Fragmentos Mayoritarios m/z (%)	FM	Score
1	Galoil glucosa	KSG	8.3	331.0671	169(100), 151(41), 89(19)	$C_{13}H_{16}O_{10}$	92.93
2	Ácido Gálico	KSG	9.2	169.0142	125(100), 79(26), 69(13)	$C_7H_6O_5$	98.83
3	Teogalin	KSG	10.8	343.0590	192(9), 91(100)	$C_{14}H_{16}O_{10}$	90.18
4	Maclurin-3-C-β-D-glucósido	KPB, GP, KSC, SSC, GSC	14.3	423.0945	333(19), 303(100), 223(7), 193(44), 169(11)	$C_{19}H_{20}O_{11}$	Barreto [∆]
5	Di-galoil-glucosa	KP, SPB, GP	15.8	483.0793	169(100), 125(10)	$C_{20}H_{20}O_{14}$	95.52
6	Di-galoil-glucosa	KP, SPB, GP	16.4	483.0793	169(100), 125(10)	$C_{20}H_{20}O_{14}$	95.52
7	Metil galato	KSG	17	183.0299	124(100), 78(6)	C ₈ H ₈ O ₅	96.93
8	Maclurin 3-C(2-0-galoil)β-D-glucósido	KP, SPA, GP ,KSC, SSC, GSC	17.7	575.1042	423(34), 407(30), 303(100), 285(80), 193(26), 169(34)	C ₂₆ H ₂₄ O ₁₅	91.12
9	Iriflophenone 3-C(2-0-galoil)β-D-glucósido	KP, GP, KS	21.3	559.1109	407(63), 389(13), 317(21), 287(100), 269(57), 245(9), 169(56)	C ₂₆ H ₂₄ O ₁₄	Barreto∆
10	Maclurin 3-C(2,3-di-O-galloyl)β-D-glucósido	KSG	21.9	727.1152	575(100), 407(9), 303(8), 169(7)	$C_{33}H_{28}O_{19}$	91.33
11	Etil galato	KSG	24.2	197.0455	169(13), 125(51), 124(100)	$C_9H_{10}O_5$	94.96
12	Mangiferina	KP, SPA, GP ,KSC ,SSC , GSC	25	421.0776	331(88), 301(100), 271(12), 183(6)	C ₁₉ H ₁₈ O ₁₁	96.37
13	Metil galato éster	KSG	27.7	335.0409	183(100), 124(8)	$C_{15}H_{12}O_9$	97.44
14	Tetra-O-galoil-glucósido	KSG	35.8	787.0999	635(39), 617(100), 465(16), 300(5), 169(16)	$C_{34}H_{28}O_{22}$	Barreto [∆]
15	Quercetin-3-O-diglicósido	KP, SP, GP	36.4	595.1305	595(100), 301(20), 300(74)	$C_{26}H_{28}O_{16}$	94.91
16	Metil galato éster	KSG	38.7	335.0409	183(100), 124(8)	$C_{15}H_{12}O_9$	97.44
17	Quercetin-3-O-glucósido (Isoquercitrin)	KSG	39.7	463.0882	301(72), 300(100), 179(6), 151(7)	$C_{21}H_{20}O_{12}$	90.28
18	Ácido Elágico	KSG	40	300.9990	300(100), 257(5), 164(7), 145(5)	$C_{14}H_6O_8$	98.71
19	Quercetin-3-O-galactósido	KSG	40.3	463.0882	301(72), 300(100), 179(6), 151(7)	$C_{21}H_{20}O_{12}$	90.28
20	Ácido valoneico dilactona	KSG	41.5	469.0524	433 (62), 301 (100), 169 (48)	$C_{24}H_{22}O_{10}$	Meyers [∆]
21	Penta-O-galoil-glucósido	KSG	41.5	939.1109	787(83), 769(100), 617(16), 770(28)	$C_{41}H_{32}O_{26}$	Barreto [∆]
22	Quercetin pentósido	KP, SP, GP	41.7	433.0776	301(82), 300(100)	$C_{20}H_{18}O_{11}$	89.71
23	Quercetin pentósido	KP, SP, GP	42.0	433.0776	301(82), 300(100)	$C_{20}H_{18}O_{11}$	89.71
24	Quercetin-3-O-ramnósido (Quercitrin)	KP, SP, GP	42.5	447.0933	301(97), 300(100), 285(31), 284(24), 255(8), 197(12)	C ₂₁ H ₂₀ O ₁₁	93.36
25	Quercetin-3-O-rutinósido	KSG	42.8	609.1813	302(19), 301(100), 169(6)	$C_{27}H_{30}O_{16}$	90.78
26	Quercetin pentósido	KP, SP, GP	43.0	433.0776	301(82), 300(100)	C ₂₀ H ₁₈ O ₁₁	89.71
27	Derivado de la ramnetina	KSG	44.1	545.0583	477(100), 315(29), 314(29), 169(27)	$C_{24}H_{18}O_{15}$	
28	Etil 2,4-dihidroxi-3-(3,4,5- trihidroxibenzoil)oxibenzoato	KSG	45.8	349.0576	198 (12), 197(100), 169(6), 124(5)	C ₁₆ H ₁₄ O ₉	91.35
29	Etil p-trigalato	KP, SPB, GP	50	501.0691	349(16), 197(100)	$C_{23}H_{18}O_{13}$	86.69
30	Ramnetina hexósido	KP, SP, GP	50.2	477.1038	315(90), 314(100), 299(16), 169(12)	$C_{22}H_{22}O_{12}$	93.91

KSG, extractos de piel y semilla de mango de las tres variedades; KP, GP, SP, extractos de piel de mango de las variedades "Keitt", "Gomera 3" y "Sensation", respectivamente; KPB, SPB extractos piel de mango variedad "Keitt" y "Sensation" obtenidos con la extracción B, respectivamente; SPA, extractos piel de mango variedad "Sensation" obtenidos con la extracción A; KSC, SSC, GSC, extractos de semilla de mango de las variedades "Keitt", "Sensation" y "Gomera 3", respectivamente. **Tr, Tiempo de retención; **FM**, Fórmula Molecular; **Score**, porcentaje de proximidad entre la fórmula molecular generada por el software Masshunter con la masa exacta y el patrón de distribución isotópica; Δ Autores que describen el compuesto


5 grupos principales

- Galatos y Galotaninos Benzofenonas
- FlavonoidesXantonas
- Ácidos elágico y Derivados

- Mayoritarios
- Galato de etilo
 Galato de metilo
- 2,4-dihidroxi-3(3,4,5)trihidroxibenzoil) oxibenzoato de etilo
- Penta-O-galloil-glucósido

CONCLUSIÓN

Se puede concluir que la metodología utilizada ha permitido separar e identificar los compuestos fenólicos de los sub-productos de mango. La extracción selectiva permite obtener extractos enriquecidos en determinados compuestos fenólicos en función del tipo de ingrediente funcional que se quiera diseñar.

AGRADECIMIENTOS

Este trabajo ha sido financiado por el proyecto RTA2006-00187 del INIA, el proyecto AGL2010-15910 (subprograma ALI) y parcialmente por el proyecto Consolider-Ingenio 2010, FUN-*C*-FOOD, CSD2007-00063. Eva Dorta agradece al INIA la concesión de la beca predoctoral