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Zero-field electrical resistivity over the temperature range of 4—300 K and magnetoresistance in
magnetic fields of up to 12 T have been measured ig(8gsGe; ). This system undergoes a
first-order magnetostructural transition Bt=240 K, from a high-temperature paramagnetic to a
low-temperature ferromagnetic phase, accompanied by a large drop in the resistivity. The
application of an external magnetic field abolg can induce this transition, and a giant negative
magnetoresistance effedk p/p=—20%) is observed associated with this first-order field-induced
transition. © 1998 American Institute of Physids$S0003-695(98)00449-5

Since the discovery of the giant magnetoresistance effedection of the specimen used in our previous magnetostruc-
(GMR) in Fe/Cr multilayers, an enormous experimental and tural investigation. Details on the materials used, preparation
theoretical effort has been focused on these artificially fabritechniques, and subsequent characterization can be found
cated structure$This active research has been motivated byelsewheré?! The alternating currer(ad initial magnetic sus-
their prospective use in magnetoresistive read-head technateptibility was measured in the temperature range of 200—
ogy. The GMR effect is usually attributed to spin-dependenB00 K using a modified mutual inductance Hartshorn bridge
scattering inside the bulk or at the interfaces, the overall with an excitation field of about 30 mOe of peak value at a
resistivity being lower for a parallel than for an antiparallel frequency of 15 Hz. The zero-field electrical resistivity over
arrangement of the magnetic moments. In addition to the&t—300 K and magnetoresistance isotherms up to 12 T be-
magnetic multilayers, other systems also show large magneween 200 and 300 K were measured by means of a six-
toresistive effects, namely granular alldysa-based manga- probe method on a bar-shaped sample. Before measure-
nese perovskitesand bulk intermetallic materianTypicaI ments, the sample, quite brittle, was polished and checked
examples of the latter are, for instance, the natural layerefbr possible cracks. Contact leads were ultrasonically sol-
SmMn,Ge, or the FeRh allo§where the GMR effect occurs dered to the sample. The relative error in the resistivity mea-
at a first-order field-induced transition from the antiferro- surements is about 0.05%; absolute values were determined
magnetic to the ferromagnetic state. The aim of this letter isyithin 5%.
to extend the study of the GMR effects in bulk intermetallic The temperature dependence of the zero-field electrical
systems to the G@Si, ,Geg,), alloys. resistivity, p, in the range of 200—300 K is shown in Fig. 1.

A giant magnetocaloric effedtthe highest reported to A drastic decrease in the resistivitp/p~20%, is clearly
date has been recently discovered in thes(®l, ,G6)s  observed at 237 K for decreasing temperatures with a ther-
alloys? making this system a potential candidate for mag-mal hysteresis of about 5 K. This abrupt drop coincides with
netic refrigeration. The composition range 0s2¢<0.5is of  the onset of the expected first-order magnetostructural phase
special interest. In this region, the giant magnetocaloric eftransition at this temperatureT =240 K), from a high-
fect is related to a first-order magnetiC transition from a paratemperature paramagnetic to a |OW_temperature ferromag_
magnetic to a low-temperature ferromagnetic state, at temetic stat€"**To illustrate this point, the temperature depen-
peratures ranging from 130¢0.24) to 276 K =0.5)"°  dence of the ac magnetic susceptibility has been included in
In a recent study of the G(Bi, ¢Ge, ) alloy, we have dem-  Fig 1. As can be also seen, the values of the resistivity in the
onstrated that the transition in questioNc&240K) is in - paramagnetic state depend on the thermal history of the
fact a first-order structural transition fromRiL12, /a mono-  sample. This irreversibility is likely due to the formation of
clinic (paramagneticto a Pnma orthorhombiferromagnet-  mjcrocracks when cycling the sample through the transition.
ic) structure'! This magnetostructural transition can be in- pg reported in a previous work, a large volume contraction,
duced reversibly by applying an external magnetic field,A\//v=0.4% takes place at the transitibnwhich may in-
giving rise to strong magnetoelastic effectsAM/V  troduce stress at the grain boundaries. In the inset of Fig. 1,
=0.4%). Therefore, these alloys are also attractive in vieWne resistivity in the whole temperature range of 4-300 K is
of their potential technological applications for magnetostric-shown. p follows a typical metallic behavidf and no other
tive transducers. In the present letter we report on the exissnomalies are observed. The value of the residual resistivity,
tence of GMR effects in GfiSi, {Ge; o) at the magnetostruc- |, — 73,0 cm, is relatively high, probably due to a large
tural transition. _ impurity concentration and static lattice imperfections.

The sample used in the present study was taken from a * 1 magnetostructural transition in G8i; {Ge,,) can
be induced reversibly by application of an external magnetic
aElectronic mail: morellon@posta.unizar.es field in the paramagnetic state!! Therefore, according to
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the resistivity results presented so far, a large magnetoresimagnetoresistance isotherms, is shown in Figd g varies
tance effect should be expected at this first-order fieldiinearly with temperature with a slope of 4:%.1 T/K and
induced phase transition. The experimental results foextrapolates to zero at the transition temperature. This value
the relative magnetoresistance, defined aSp/p  compares very well with that previously obtained from mag-
=[p(H,T)-p(0,T)]/p(0,T), are plotted in Fig. 2 at some netostriction measurement&.8 K/T).! A hysteresis of
selected temperatures. In the ferromagnetic phase, at terabou 1 T has also been observed in théH) dependence.
peratures below the transitiofsee for example Fig.(® at  All of the above results support the existence of a first-order
230 K], the magnetoresistance is small and negat#% at  field-induced phase transition from the paramagnetic to the
12 T) as expected for a ferromagnetic system with localizederromagnetic state. Consequently, a negative GMR effect of
moments'? The behavior of is completely different above  similar magnitude as the resistivity change at the transition in
Tc [see Figs. @)—2(e)]. Above some critical fielHcr, the  zero field(Fig. 1) is observed. It is noteworthy to point out
system undergoes a first-order field-induced phase transitioat Ap/p is almost constant foH >H g in the temperature
to the ferromagnetic state, and a negative GMR effect isange studied.
observed,Ap/p=—20%. The magnitude of this effect is In order to correlate the behavior of the magnetoresis-
comparable with that of other intermetallic compounds pretance with the magnetic properties, we tried to use the so-
senting first-order metamagnetic transitions such as FeRgalled “s-f model.” ¢ Although this model accounts for the
(50%),° Hf;_,TaFe, (6%), CeFeRy, (20%," GMR in granular systemtand dilute magnetic alloy$ it
SmMn,Ge, (5%),” and GgIn (10%)."° Nevertheless, the ori- does not explain the GMR effect observed in the
gin of the transition in GglSi, §G& 5 is of a structural  Gdy(Si; (Ge,,) alloy. The spin-dependent scattering at a
naturé* although it exhibits similar transport properties to paramagnetic—ferromagnetic transition in a system with lo-
the systems mentioned in which the corresponding transitiogalized moments system leads to a quite small variation in
is of purely magnetic origin. The temperature dependence afesistivity. The application of a magnetic field in this case
the values oHcg, calculated at the maximum slope of the would give a magnetoresistance value typically one order of
magnitude smaller than the one obserVet@herefore, other

Gds(Sil,sGez,z) 10

= (Tesla)

Aplp

CRITICAL FIELD, H
~
T

-0.25 1 1 L L 1 0 i 1 1 1
0 2 4 6 8 10 12 230 240 250 260 270 280

APPLIED MAGNETIC FIELD (Tesla) TEMPERATURE (K)

FIG. 2. Magnetoresistance ratdp/p=[p(H,T)-p(0,T)]/p(0,T) asafunc-  FIG. 3. Temperature dependence of the critical fi¢ldg, obtained from
tion of the applied magnetic field at some selected temperatures 275, the magnetoresistance isotherms for thes(Sig¢Ge, ) compound. The
(b) 270, (c) 260, (d) 250, (e) 240, and(f) 230 K. symbols indicate increasin@®) and decreasingO) magnetic field.
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