Coal and biomass combustion with CO₂ capture by CLOU process using a magnetic Fe-Mn-supported CuO oxygen carrier

Iñaki Adánez-Rubio *, Iván Samprón, María Teresa Izquierdo, Alberto Abad, Pilar Gayán, Juan Adánez

Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán, 4, Zaragoza 50018, Spain

ARTICLE INFO

Keywords:
CO₂ capture
Chemical looping combustion
CLOU
Biomass
Coal

ABSTRACT

The Chemical Looping with Oxygen Uncoupling (CLOU) process is a derivate technology of the Chemical Looping Combustion (CLC) process for the combustion of both renewable and non-renewable solid fuels. The present work studies the combustion and CO₂ capture efficiency of burning coal or biomass using a single Cu-based oxygen carrier with magnetic properties as an oxygen carrier. The combustion of two different coals and three different biomasses was performed in a 1.5 kW CLOU continuously operated unit for 36 h. The magnetic properties of the oxygen carrier were also studied after combustion and its separation from the ashes. Complete combustion of the fuel to CO₂ and H₂O was achieved in all cases. For both coals, CO₂ capture efficiency increased with fuel reactor temperature, with both reaching values of 97% at 900 °C. The same increase was obtained with the biomasses. The highest CO₂ capture efficiency for a biomass was obtained with pine sawdust, which achieved a value of 93%, followed by almond shell (86%) and olive stone (80%) at 900 °C. Oxygen carrier reactivity remained constant after use in the continuous unit with one small increase in the attrition jet index (AJI) value. The used particles were found to still be as magnetic as the fresh particles, and the fines were also highly magnetic. Values higher than 99% were achieved with separation from the fines reached. It was therefore proven that the elutriated oxygen carrier from the plant was still magnetic and could be easily separated from the elutriated ash.

1. Introduction

The Chemical Looping with Oxygen Uncoupling (CLOU) process is a derivate technology of the Chemical Looping Combustion (CLC) process for the combustion of both renewable and non-renewable solid fuels [1]. CLOU technology, which takes advantage of the properties of certain metal oxides to generate gaseous oxygen at high temperatures, may be particularly suitable for solid fuels, such as coal and biomass. The oxygen generated by the oxygen carrier reacts directly with the solid fuel, with which it is mixed in the fuel reactor. Oxygen carriers for the CLOU process must be able to react with oxygen in the air reactor and then release this oxygen through decomposition in the fuel reactor [2,3]. Fig. 1 illustrates the CLOU process. The diagram includes a carbon stripper to enable the unburnt char to be recirculated to the fuel reactor.

Reviews reporting on the CLC process with solid fuels can be found elsewhere [2,4]. A number of different oxygen carriers have been developed for the CLOU process [2,4], such as Cu and Mn-based oxygen carriers [5–7], Cu-Mn mixed oxides [8,9], Ca-Mn perovskites [10–13] and other mixed oxides containing Ca, Ti, Mn, Mg and Fe [14–19].

Recently, CuO and Cu-Mn oxygen carriers have shown good performance for the combustion of coal and biomass, with a high oxygen transport capacity, high O₂ release rate, high CO₂ capture efficiencies and the complete combustion of gases in the fuel reactor [6–8,20–23]. Mn-based mixed oxides with a perovskite structure, such as CaMnO₃ doped with Mg or Ti, have shown good behaviour for the combustion of gaseous fuels [13,24,25], but present incomplete conversion of the gases during solid fuel combustion [14,15].

One of the problems arising from the use of solids fuels in CLC is the presence of ashes, which makes it necessary to drain material from the reactors, with the corresponding loss of oxygen carrier together with the ash. Moreover, the formation of fines generated by attrition, together with fine ash particles, increases oxygen carrier loss. Magnetic separation could be a useful method for separating and recovering lost oxygen carrier, enabling its reuse [2]. Therefore, the use of a single oxygen carrier for CLOU process with magnetic properties would improve the...
recovery and reuse of the material and reduce CLC operating costs when burning solid fuels with CO₂ capture. With regard to oxygen carriers with magnetic properties, Mn-Fe-based oxygen carriers release O₂ by the CLOU mechanism through the decomposition of bixbyte [(MnₓFe₁₋ₓ)O₃] to spinel [(MnₓFe₁₋ₓ)₂O₄] [19,26]. However, their oxygen transport capacity is usually low, although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27]. The key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.

The aim of the present work is to analyse the performance of a Cu-based oxygen carrier with magnetic properties for the combustion of five renewable and non-renewable fuels in a 1.5 kWth CLOU continuous unit. The study was made of the effects of fuel type, fuel reactor temperature and oxygen excess in the air reactor on combustion and CO₂ capture efficiencies, and char conversion. The effect of continuous operation on the reactivity and magnetic properties of the oxygen carrier, and the ability of the oxygen carrier fines to be separated from both the elutriated ashes and bed material were also studied.

2. Experimental

2.1. Oxygen carrier

A Cu-based oxygen carrier developed at ICB-CSIC [30] was prepared in a spouted fluidized bed system (Glatt W51530 + OPP1) by spray granulation. As a support material, a magnetic Fe-Mn mixed oxide was prepared according to a patented method [29]. The oxygen carrier was prepared using Mn₃O₄ (Elkem), Fe₂O₃ (Acros chemicals) and CuO (Panreac, PRS) as raw materials. The amount of CuO in the particles was nominally 50g (g). Although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27], the key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.

The aim of the present work is to analyse the performance of a Cu-based oxygen carrier with magnetic properties for the combustion of five renewable and non-renewable fuels in a 1.5 kWth CLOU continuous unit. The study was made of the effects of fuel type, fuel reactor temperature and oxygen excess in the air reactor on combustion and CO₂ capture efficiencies, and char conversion. The effect of continuous operation on the reactivity and magnetic properties of the oxygen carrier, and the ability of the oxygen carrier fines to be separated from both the elutriated ashes and bed material were also studied.

2. Experimental

2.1. Oxygen carrier

A Cu-based oxygen carrier developed at ICB-CSIC [30] was prepared in a spouted fluidized bed system (Glatt W51530 + OPP1) by spray granulation. As a support material, a magnetic Fe-Mn mixed oxide was prepared according to a patented method [29]. The oxygen carrier was prepared using Mn₃O₄ (Elkem), Fe₂O₃ (Acros chemicals) and CuO (Panreac, PRS) as raw materials. The amount of CuO in the particles was nominally 50 g (g), although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27]. The key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.

The aim of the present work is to analyse the performance of a Cu-based oxygen carrier with magnetic properties for the combustion of five renewable and non-renewable fuels in a 1.5 kWth CLOU continuous unit. The study was made of the effects of fuel type, fuel reactor temperature and oxygen excess in the air reactor on combustion and CO₂ capture efficiencies, and char conversion. The effect of continuous operation on the reactivity and magnetic properties of the oxygen carrier, and the ability of the oxygen carrier fines to be separated from both the elutriated ashes and bed material were also studied.

2. Experimental

2.1. Oxygen carrier

A Cu-based oxygen carrier developed at ICB-CSIC [30] was prepared in a spouted fluidized bed system (Glatt W51530 + OPP1) by spray granulation. As a support material, a magnetic Fe-Mn mixed oxide was prepared according to a patented method [29]. The oxygen carrier was prepared using Mn₃O₄ (Elkem), Fe₂O₃ (Acros chemicals) and CuO (Panreac, PRS) as raw materials. The amount of CuO in the particles was nominally 50 g (g), although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27]. The key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.

The aim of the present work is to analyse the performance of a Cu-based oxygen carrier with magnetic properties for the combustion of five renewable and non-renewable fuels in a 1.5 kWth CLOU continuous unit. The study was made of the effects of fuel type, fuel reactor temperature and oxygen excess in the air reactor on combustion and CO₂ capture efficiencies, and char conversion. The effect of continuous operation on the reactivity and magnetic properties of the oxygen carrier, and the ability of the oxygen carrier fines to be separated from both the elutriated ashes and bed material were also studied.

2. Experimental

2.1. Oxygen carrier

A Cu-based oxygen carrier developed at ICB-CSIC [30] was prepared in a spouted fluidized bed system (Glatt W51530 + OPP1) by spray granulation. As a support material, a magnetic Fe-Mn mixed oxide was prepared according to a patented method [29]. The oxygen carrier was prepared using Mn₃O₄ (Elkem), Fe₂O₃ (Acros chemicals) and CuO (Panreac, PRS) as raw materials. The amount of CuO in the particles was nominally 50 g (g). Although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27], the key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.

The aim of the present work is to analyse the performance of a Cu-based oxygen carrier with magnetic properties for the combustion of five renewable and non-renewable fuels in a 1.5 kWth CLOU continuous unit. The study was made of the effects of fuel type, fuel reactor temperature and oxygen excess in the air reactor on combustion and CO₂ capture efficiencies, and char conversion. The effect of continuous operation on the reactivity and magnetic properties of the oxygen carrier, and the ability of the oxygen carrier fines to be separated from both the elutriated ashes and bed material were also studied.

2. Experimental

2.1. Oxygen carrier

A Cu-based oxygen carrier developed at ICB-CSIC [30] was prepared in a spouted fluidized bed system (Glatt W51530 + OPP1) by spray granulation. As a support material, a magnetic Fe-Mn mixed oxide was prepared according to a patented method [29]. The oxygen carrier was prepared using Mn₃O₄ (Elkem), Fe₂O₃ (Acros chemicals) and CuO (Panreac, PRS) as raw materials. The amount of CuO in the particles was nominally 50 g (g). Although the magnetic properties of some of these oxygen carriers have proven to remain constant after their use in continuous operation when burning solid and gas fuels [27], the key factor for the use of oxygen carriers of this type is that they maintain their magnetic properties after use in a continuous unit. It is therefore necessary to make this material inert for reaction while keeping its magnetic properties. In this regard, Pérez-Vega developed a magnetic material that was inert for CLC and CLOU reactions but highly magnetic for use as a support for CLOU materials [28,29].

In a previous work, two Cu-based oxygen carriers supported on a Mn-Fe mixed oxide were developed for the CLOU process [28]. They offered high reactivity, a high oxygen transport capacity and high and stable magnetic permeability after use in a batch fluidized bed reactor [30]. One of these was selected for the present work in order to analyse its performance for the CLOU process when burning coals of different rank and different biomasses in a 1.5 kWth continuous unit.
2.3. Solid fuels

Two coals and three biomasses were used for the CLOU experiments with the Cu30MnFe_Mag oxygen carrier. A medium-volatile bituminous coal (MVB) from Taldinski (Russia) and a subbituminous coal (SB) from Mina Invierno (Chile) were used for the purpose of covering different ranks of coal. Pine (*Pinus sylvestris*) sawdust, almond (*Prunus dulcis*) shells and olive (*Olea europaea*) stones were the biomasses used due to their general availability and their high annual production [32,33], respectively. The proximate and ultimate analyses of the coals and biomasses are shown in Tables 2 and 3, respectively. Particle size was +0.1–0.3 mm for coals and +0.5–2 mm for biomasses.

2.4. Experimental set-up

Fig. 2 provides a schematic view of the 1.5 kWth CLOU continuous unit. The set-up basically comprised two interconnected fluidized bed reactors –air and fuel reactors– joined by a loop seal, a riser for solids transport from the air reactor to the fuel reactor, a cyclone and a solids valve to control the solids circulation flow rate in the system. A diverting solids valve located below the cyclone allowed for measurement of the solid circulation flow rate at any time. Therefore, this design allowed the solids circulation flow rate between both reactors to be controlled and measured. A detailed description of the continuous unit can be found elsewhere [20].

\(N_2 \) was used as the fluidizing gas in the fuel reactor for better control of the process results. Recirculated \(CO_2 \) will be used in industrial units. The temperature of the fuel reactor was varied within the range of 750–900 °C and the gas flow was 300 Nl/h of \(N_2 \) corresponding to a gas velocity of 0.15 m/s of in the fuel reactor under operating conditions. The temperature in the air reactor was fixed at 850 °C and fluidized with a flow of 2600 Nl/h of air or air/\(N_2 \) mixtures to regenerate the oxygen carrier. The loop-seal was fluidized with a \(N_2 \) flow of 90 Nl/h to prevent mixing between the fuel and air reactor gas flows. The fuel was fed in by a double screw feeder just above the distributor plate in the fuel reactor to maximize the residence time of the volatile matter and char in contact with the oxygen carrier inside this reactor. In addition, in order to avoid the reverse of gas flow from the fuel reactor through the solid feed system, a \(N_2 \) flow of 18 Nl/h was fed at the entry to the screw feeders.

The inventory of oxygen carrier in the continuous unit was 3.4 kg, while the fuel reactor inventory was about 1 kg. \(CO, CO_2, H_2, CH_4 \) and \(O_2 \) were continuously analysed at the fuel reactor outlet, while \(CO, CO_2 \) and \(O_2 \) were analysed at the air reactor outlet. Non-dispersive infrared (NDIR) analysers (Siemens Ultrasmat 23) were used to analyse the \(CO, CO_2 \) and \(CH_4 \). For were used paramagnetic analysers (Siemens Ultrasmat 23 and Oxymat 6) were used for the \(O_2 \), and a thermal conductivity detector (Siemens Calomat 6) was used to analyse the \(H_2 \).

The experimental work analysed the effect of temperature on the combustion performance of two coals and three different biomasses. The effect of the oxygen excess on the performance of pine sawdust combustion was also studied. The main operating variables used in the coal and biomass combustion are summarized in Table 4. The same batch of oxygen carrier particles was used for 36 h of combustion and 63 h of hot fluidization. The fuel feeding rate varied between 110 and 170 g/h, corresponding to power inputs of between 680 and 840 Wth. The oxygen carrier circulation rate was modified within the 14–22 kg/h range, corresponding to oxygen carrier-to-fuel ratio values of between 2.3 and 3.

3. Data evaluation

The attrition jet index value (AJI) was calculated by considering the weight of the fine particles recovered in the filter after 5 h of testing using this equation:

\[
AJI = \frac{m_{180}}{m_{40}}
\]

Magnetic permeability, \(\mu (-) \), was calculated as follows:

\[
\mu(\mu_0) = 1 + \chi_m \left(\frac{m^3}{kg} \right) \left(\frac{kg}{m^3} \right)
\]

where \(\chi_m \) is the magnetic volumetric susceptibility of the oxygen carrier as measured using the MS2G magnetic susceptibility meter (single frequency sensor) connected to an MS3 magnetic susceptibility meter (Bartington Instruments). The magnetic susceptibility readings given by the sensor were relative to air, with the meter being reset to zero for this purpose. The value reported for each oxygen carrier was the average value of 3 consecutive measurements. \(\rho_{real} \) is the density of the oxygen carriers (kg/m³). Density was measured with a Micro-meritics AccuPyc II 1340 helium pycnometer.

The oxygen carrier-to-fuel ratio (\(\phi \)) was defined by the following equation [8]:

\[
\phi = \frac{\text{Oxygen supply by the oxygen carrier}}{\text{Oxygen demanded by the fuel for full combustion}}
\]

The air excess ratio, \(\lambda \), was defined by equation (4), and the values for the experimental work were always greater than 1.

\[
\lambda = \frac{\text{Oxygen fed to the air reactor}}{\text{Oxygen demanded by the fuel for full combustion}}
\]

Combustion and \(CO_2 \) capture efficiencies were calculated in order to study the performance of the CLOU process. The calculations were made with every analysed gas molar flow, \(F_g \), calculated from the measured gas concentration. Combustion efficiency in the fuel reactor (\(\eta_{\text{Comb.FR}} \)) was defined as the fraction of oxygen demanded by the volatile matter

Table 2

<table>
<thead>
<tr>
<th>Properties of the coals used in this work.</th>
<th>Medium-volatile bituminous coal Taldinski (Russia)</th>
<th>Subbituminous coal Mina Invierno (Chile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate Analysis (wt%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>5.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Volatile matter</td>
<td>32.0</td>
<td>34.6</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>52.1</td>
<td>35.9</td>
</tr>
<tr>
<td>Ash</td>
<td>10.1</td>
<td>15.3</td>
</tr>
<tr>
<td>Ultimate Analysis (wt%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>65.8</td>
<td>52.4</td>
</tr>
<tr>
<td>H</td>
<td>4.6</td>
<td>5.24</td>
</tr>
<tr>
<td>N</td>
<td>2.0</td>
<td>0.77</td>
</tr>
<tr>
<td>S</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>O*</td>
<td>11.3</td>
<td>11.9</td>
</tr>
<tr>
<td>LHV (kJ/kg)</td>
<td>26,600</td>
<td>18,900</td>
</tr>
</tbody>
</table>

*By difference

Table 3

<table>
<thead>
<tr>
<th>Properties of the biomass used in this work.</th>
<th>Pine sawdust</th>
<th>Almond shell</th>
<th>Olive stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate Analysis (wt%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>4.2</td>
<td>2.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Volatile matter</td>
<td>81.0</td>
<td>76.6</td>
<td>72.5</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>14.4</td>
<td>20.0</td>
<td>17.3</td>
</tr>
<tr>
<td>Ash</td>
<td>0.4</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Ultimate Analysis (wt%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>51.3</td>
<td>50.2</td>
<td>46.5</td>
</tr>
<tr>
<td>H</td>
<td>6.0</td>
<td>5.7</td>
<td>4.8</td>
</tr>
<tr>
<td>N</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>S</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>O*</td>
<td>37.8</td>
<td>40.5</td>
<td>38.3</td>
</tr>
<tr>
<td>LHV (kJ/kg)</td>
<td>19,158</td>
<td>18,071</td>
<td>17,807</td>
</tr>
</tbody>
</table>

*By difference
CO₂ combustion efficiency was relative to the amount of carbon initially present in the fuel that exited the fuel reactor outlet as CO₂.

\[\eta_{CC} = \frac{\text{CO₂ in gases from fuel reactor}}{\text{carbon in gases from fuel and air reactors}} \]

\[\eta_{Comb,FR} = 1 - \frac{\text{oxygen demanded by unburnt gases}}{\text{oxygen demanded by solid fuel converted in fuel reactor}} \]

CO₂ capture efficiency depended on the amount of unburnt char transferred from the fuel reactor to the air reactor. It was therefore dependent on rate of char conversion. Char conversion was calculated by taking into account the amount of char burnt in the fuel reactor and char fed to the fuel reactor as fixed carbon:

\[X_{char} = \frac{C_{fix} - C_{outAR} - C_{elut}}{C_{fix} - C_{slot}} \]

4. Results and discussion

4.1. Coal combustion and CO₂ capture efficiency

Coal combustion was carried out for 14 h by burning two different coals at fuel reactor temperatures ranging between 750 and 900 °C. It was observed that during the heating period from ambient temperature, the material was able to generate O₂ gas at fuel reactor operating temperatures starting at 750 °C. Once the fuel feeding commenced, no gaseous oxygen was detected in the fuel reactor flue gas, as can be seen in Fig. 3.

Fig. 4 shows combustion and CO₂ capture efficiencies, as well as the char conversion obtained during the combustion of the MBV coal and SB coals. In all cases, even at the lowest temperature tested (750 °C), a combustion efficiency higher than 99% was achieved for MBV coal, see Fig. 4a. Thus, the fuel reactor gases were fully oxidized and no oxygen polishing step [34] was required to complete the combustion. CO₂ capture efficiency increased with increasing fuel reactor temperature from 73% at 750 °C to 97% at 900 °C. The high CO₂ capture efficiencies achieved at these fuel reactor temperatures lower than 900 °C are of note. The increase in CO₂ capture efficiency was attributed to the increase in char conversion in the fuel reactor. As the conversion of char inside the fuel reactor increased, less unburnt char was transported to the air reactor, increasing CO₂ capture efficiency. Carbon balances performed with MVB coal showed a high elutriation of unburnt char, equivalent to 40% of the carbon fed into the system. Thus, the less carbon transferred to the air reactor, similar to a reduction in the coal fed into the system, the higher the CO₂ capture. Moreover, the low reactivity of this char did not allow the combustion of comminute small particles before being entrained from the fuel reactor. This was a consequence of the design of the unit, which did not provide for recirculation of the elutriated char material. This problem should be solved in an industrial unit with one circulating fuel reactor and a carbon stripper because the elutriated char will largely be recirculated to the fuel reactor for burning.

The effect of coal rank was also studied. For this purpose, SB coal with a power of 840 Wₘₜ was fed to the unit. Fig. 4b shows the combustion and CO₂ capture efficiencies and the char conversion found. For both coals, a combustion efficiency of over 99.9% was observed throughout the temperature range studied. On the other hand, it was observed that, as in the case of MBV coal, as the fuel reactor temperature increased, CO₂ capture efficiency and char conversion increased. Unlike MBV coal, where there was a large amount of unconverted char elutriated, in the case of the SB coal, the carbon balance closed with an error lower than 5%, and therefore the amount of elutriated char was minimum. This fact that a lower amount of carbon was elutriated from the fuel reactor was behind the higher char conversion values for SB coal in
all the fuel reactor temperature range studied. However, the CO₂ capture efficiency with the MBV coal was higher than that achieved with SB coal with fuel reactor temperatures lower than 900 °C due to the unburnt char being elutriated instead of being transferred to the air reactor, therefore magnifying its CO₂ capture efficiency. If all the elutriated char from the MBV coal had been transferred to the air reactor, its CO₂ capture efficiency would have decreased, reaching a maximum of 82% at 900 °C instead of 97%.

4.2. Biomass combustion and CO₂ capture efficiency

Biomass combustion tests were carried out for 22 h with three different types of biomass: pine sawdust, almond shells and olive stones. In all cases, the biomass was fed with a thermal power input of between 680 and 780 Wth.

Fig. 5 shows the CO₂ capture efficiency (Fig. 5a) and char conversion (Fig. 5b) achieved with the different biomasses used. Combustion efficiencies higher than 99.9 % were obtained with all the biomasses, even at the lowest temperature of 750 °C, with 100% achieved at 900 °C in all cases. CO₂ capture efficiency increased with increasing temperature due to the increase in char conversion in the fuel reactor (see Fig. 5b). Higher values at temperatures lower than 900 °C were found with respect to coal combustion due to the higher combustion reactivity of the biomass char compared to that of the coal char. This can be also attributed to the high volatile content in biomass, which is more easily burnt. The highest CO₂ capture efficiency was achieved with pine biomass, reaching a value of 93% at 900 °C. The highest CO₂ capture efficiencies were also found with this biomass when a Cu-Mn mixed oxide was used as the oxygen carrier [23]. As observed in previous works, this is the most reactive biomass and the one with which the best CO₂ capture efficiency results with biomasses were obtained with the use of a Cu-Mn mixed oxide [23].

Lower CO₂ capture efficiencies were obtained both for almond shells and olive stones due to the lower reactivity of the char generated, with 86% and 80% CO₂ capture efficiencies at 900 °C, respectively. It can be concluded that to achieve high CO₂ capture efficiencies above 95% with biomass, it is necessary to operate at temperatures higher than 900 °C in the fuel reactor. For all the biomasses, the carbon balance closed with errors lower than 5%, and therefore the amount of elutriated char was minimal.

Furthermore, the effect of air excess ratio (λ) was analysed during the combustion of the pine biomass. The temperature was kept fixed at 850 °C in both the fuel and air reactors. Fig. 6 plots the CO₂ capture efficiencies found as a function of λ. For values between 1.2 and 4, complete combustion was observed in all cases. In addition, CO₂ capture efficiency remained stable at between 91 and 92%. Therefore, the excess of oxygen in combustion did not significantly affect CO₂ capture efficiency.

4.3. Oxygen carrier characterisation

After the combustion experiments carried out in the 1.5 kWth continuous unit, the magnetic permeability was measured for the particles extracted from the fuel and air reactors, and the elutriated particles containing fines that were recovered by the cyclones. Moreover, the reactivity, AJI, crushing strength and magnetism of both fresh and used particles were analysed. Fines particles of a size lower than 45 μm were sieved from elutriated particles recovered by the cyclones.

With regard to magnetic permeability (μ), Table 5 shows that the particles inside the continuous unit were still as magnetic as the fresh ones. The fines were also highly magnetic. A small commercial magnet was used to verify the separation of the oxygen carrier from the ashes. The fines were separated from ashes with a separation efficiency of 99 wt%. With regard to the material extracted from both the fuel and air reactors, oxygen carrier recovery of 98% and 98.5%, respectively, could be verified. The oxygen carrier extracted from the unit was

Table 4

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Test</th>
<th>mω (kg/h)</th>
<th>mυ (g/h)</th>
<th>Power (Wth)</th>
<th>Tth (°C)</th>
<th>λ</th>
<th>mfr (kg/MWth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVB R01</td>
<td>14</td>
<td>110</td>
<td>800</td>
<td>750</td>
<td>2.5</td>
<td>3.3</td>
<td>910</td>
</tr>
<tr>
<td>MVB R02</td>
<td>14</td>
<td>110</td>
<td>800</td>
<td>800</td>
<td>2.5</td>
<td>3.3</td>
<td>910</td>
</tr>
<tr>
<td>MVB R03</td>
<td>14</td>
<td>110</td>
<td>800</td>
<td>850</td>
<td>2.5</td>
<td>3.3</td>
<td>910</td>
</tr>
<tr>
<td>MVB R04</td>
<td>14</td>
<td>110</td>
<td>900</td>
<td>750</td>
<td>2.5</td>
<td>3.3</td>
<td>910</td>
</tr>
<tr>
<td>SB C01</td>
<td>16</td>
<td>160</td>
<td>840</td>
<td>750</td>
<td>2.9</td>
<td>3.0</td>
<td>990</td>
</tr>
<tr>
<td>SB C02</td>
<td>16</td>
<td>160</td>
<td>840</td>
<td>800</td>
<td>2.9</td>
<td>3.0</td>
<td>990</td>
</tr>
<tr>
<td>SB C03</td>
<td>16</td>
<td>160</td>
<td>840</td>
<td>850</td>
<td>2.9</td>
<td>3.0</td>
<td>990</td>
</tr>
<tr>
<td>SB C04</td>
<td>16</td>
<td>160</td>
<td>900</td>
<td>900</td>
<td>2.9</td>
<td>3.3</td>
<td>990</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P01</td>
<td>18</td>
<td>140</td>
<td>745</td>
<td>750</td>
<td>2.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P02</td>
<td>18</td>
<td>140</td>
<td>745</td>
<td>800</td>
<td>2.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P03</td>
<td>18</td>
<td>140</td>
<td>745</td>
<td>850</td>
<td>2.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P04</td>
<td>18</td>
<td>140</td>
<td>745</td>
<td>900</td>
<td>2.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P05</td>
<td>22</td>
<td>145</td>
<td>775</td>
<td>850</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P06</td>
<td>22</td>
<td>145</td>
<td>775</td>
<td>850</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P07</td>
<td>22</td>
<td>145</td>
<td>775</td>
<td>850</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Pine sawdust</td>
<td>P08</td>
<td>22</td>
<td>145</td>
<td>775</td>
<td>850</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Almond shells</td>
<td>A01</td>
<td>18</td>
<td>170</td>
<td>785</td>
<td>750</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Almond shells</td>
<td>A02</td>
<td>18</td>
<td>170</td>
<td>785</td>
<td>800</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Almond shells</td>
<td>A03</td>
<td>18</td>
<td>170</td>
<td>785</td>
<td>850</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Almond shells</td>
<td>A04</td>
<td>18</td>
<td>170</td>
<td>785</td>
<td>900</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Olive stones</td>
<td>O01</td>
<td>21</td>
<td>135</td>
<td>680</td>
<td>750</td>
<td>3</td>
<td>4.3</td>
</tr>
<tr>
<td>Olive stones</td>
<td>O02</td>
<td>21</td>
<td>135</td>
<td>680</td>
<td>800</td>
<td>3</td>
<td>4.3</td>
</tr>
<tr>
<td>Olive stones</td>
<td>O03</td>
<td>21</td>
<td>135</td>
<td>680</td>
<td>850</td>
<td>3</td>
<td>4.3</td>
</tr>
<tr>
<td>Olive stones</td>
<td>O04</td>
<td>21</td>
<td>135</td>
<td>680</td>
<td>900</td>
<td>3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

The bold values represent the parameter that has been studied and varied in each experimental point.
demonstrated to still be magnetic and could easily be separated from the elutriated coal ash.

The reactivity of the oxygen carrier remained constant after 36 h of combustion, even with the presence of different ashes in the fuel reactor, see Fig. 7.

Table 1 shows that crushing strength remained fairly stable, although the attrition jet index (AJI) increased from 0.6% to 3.4% after 36 h of combustion; however, it was still below the 5% considered acceptable for FCC catalysts, which means that the oxygen carrier showed good mechanical stability with operation time.

4.4. Discussion

The results obtained with the present oxygen carrier can be compared with previous Cu and CuMn-based oxygen carriers. As regards coal combustion, similar results were obtained with a Cu-Mn mixed
oxides in a 1.5 kWth continuous unit burning the same coals [8,21]. However, when using a Cu-based oxygen carrier, it was necessary to operate at a temperature of at least 925 °C in the fuel reactor to reach similar CO₂ capture efficiencies [6,20]. Adánez-Rubio et al. found CO₂ capture values of around 94–98% using MVB coal and bituminous “El Cerrejón” Bituminous coal, respectively, when operating at a temperature range of 900–925 °C using CuO on MgAl₂O₄ as oxygen carrier with a higher CuO content (60 wt%). Note that gaseous oxygen concentration released at equilibrium ranged between 0.1 vol% at 800 °C and 1.5 vol% at 900 °C for CuO, with negligible concentrations found at temperatures lower than 800 °C. Thus, the high CO₂ capture found at low temperatures could be attributed to the O₂ released by the different mixed oxides generated that contained Fe and Mn, alone or with Cu, present in the material used as support. The oxygen carrier in this case released O₂ at lower temperatures than CuO, although the mixed oxide had been inertized during preparation [27,28]. Thus, the presence of Mn-Fe mixed oxides, already having a small CLOU effect by itself, improves the CO₂ capture efficiency performance of this Cu-based oxygen carrier when burning coal.

Where the biomasses were used as fuel, the results obtained with the Cu30MnFe_Mag improved the values obtained with a single-oxide, 60% CuO on MgAl₂O₄ oxygen carrier burning pine sawdust, which needed a temperature of at least 900 °C inside the fuel reactor to achieve complete combustion there, with a similar CO₂ capture efficiency achieved at this temperature [7]. However, better results were found using a Cu-Mn mixed oxide as oxygen carrier in the interval of fuel reactor temperatures studied for pine sawdust combustion, and slightly better with almond and olive stones [23], as can be seen in Fig. 8.

The combustion efficiencies found for the coals and biomasses used indicated that very high and similar values (greater than 99.9 %) were reached regardless of fuel reactivity, showing the very high reactivity of the volatile matter with the gaseous oxygen released by the oxygen carrier. Note the important differences in the volatile matter content in the biomasses (75–80 %) and in the coals (about 35%).

The differences found in CO₂ capture efficiencies are related to the amount of char transferred to the air reactor for burning, reducing the capture efficiency. Coal char conversion showed a single strong increase with temperature (see Fig. 3); however, in the case of the biomasses, char conversion was always high, although dependence on temperature was less important. These differences must be attributed to differences in char reactivities. It is well known that biomass char has a higher reactivity than coal char, although subbituminous coals are highly reactive. However, it is necessary to also consider that particle size distribution was much higher in the biomasses (+0.5–2 mm) than in the coals used (+0.1–0.3 mm), which obviously reduces their char conversion rates.

Therefore, the developed oxygen carrier shows a good performance for the combustion of different types of fuels and good mechanical stability. It also retained its magnetic properties to make it easily separable from the elutriated ashes.

5. Conclusions

The combustion of two different coals and three biomasses in a 1.5 kWth GLOU continuous unit of for 36 h was studied using a Cu-based oxygen carrier with magnetic properties. the effect of the process on the magnetic properties of the oxygen carrier after the combustion of different fuels and their separation from the ashes was also investigated. The CO₂ capture efficiency for both coals increased with fuel reactor temperature, achieving values of 97% at 900 °C. The same behaviour was observed with the biomasses, although lower CO₂ capture efficiencies were always found with respect to the highly reactive coal used. The highest CO₂ capture efficiency for a biomass was obtained with pine sawdust, with a value of 93% reached at 900 °C. Lower CO₂ capture efficiencies were found with almond shells and olive stones due to the lower reactivity of the char generated, with 86% and 80% CO₂ capture efficiencies achieved, respectively, at 900 °C. Thus, in order to achieve CO₂ capture efficiencies above 95% with biomass, it is necessary to exceed 900 °C in the fuel reactor.

The effect of excess of oxygen on the combustion of the pine biomass was also analysed. With air excess ratio values between 1.2 and 4, CO₂ capture efficiency remained stable above 91%. Therefore, excess oxygen did not affect CO₂ capture efficiency.

The reactivity of the oxygen carrier was found to remain constant after 36 h of combustion, with a small increase in the AJI value of between 0.6% and 3.4%, but still below the 5% limit value. The used particles were still as magnetic as the fresh ones. The recovered fines were also highly magnetic. Separation of the oxygen carrier from recovered ashes and from both fuel and air reactor solids shows efficiencies higher than 98%. It was therefore proven that the elutriated oxygen carrier from the plant was still magnetic and could be separated easily from the elutriated coal ash.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The work presented in this article was supported by the SWINELOOP project (Grant PID2019-106441RB-I00 funded by MCIN/AEI/10.13039/501100011033) and the Spanish Research Council (CSIC) through the Intramural Project (201980E043). I. Adánez-Rubio acknowledges for “Juan de la Cierva” Program (Grant JICYC2019-038987-I funded by MCIN/AEI/10.13039/501100011033). I. Samprón acknowledges for the pre-doctoral fellowship (Grant PRE-086217 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”).

Bibliography