

(11) EP 3 827 665 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.06.2021 Bulletin 2021/22

(51) Int Cl.: **A01H 4/00** (2006.01)

(21) Application number: 19383042.9

(22) Date of filing: 26.11.2019

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

KH MA MD TN

(71) Applicant: Consejo Superior de Investigaciones Científicas (CSIC) 28006 Madrid (ES)

- (72) Inventors:
 - SÁNCHEZ TESTILLANO, Pilar 28040 Madrid (ES)

- MARTINEZ GIL, Ana 28040 Madrid (ES)
- GIL AYUSO-GONTAN, Carmen 28040 Madrid (ES)
- BERENGUER PEINADO, Eduardo 28040 Madrid (ES)
- CARNEROS GARCÍA, Elena 28040 Madrid (ES)
- PÉREZ PÉREZ, Yolanda 28040 Madrid (ES)
- (74) Representative: Pons Glorieta Ruben Dario 4 28010 Madrid (ES)

(54) MAMMAL KINASE INHIBITORS TO PROMOTE IN VITRO EMBRYOGENESIS INDUCTION OF PLANTS

(57) The present invention relates to the use of mammal kinase inhibitors, preferably human kinase inhibitors, to promote the induction of *in vitro* embryogenesis, a strategy never used in plants systems before. The results

obtained indicated that these inhibitors have beneficial effects in both crop and forest plants in *in vitro* systems of microspore and somatic embryogenesis.

Description

10

20

30

50

[0001] The invention relates to the use of mammal kinase inhibitors to promote *in vitro* induction of plant embryogenesis and plant regeneration. Furthermore, the present invention discloses methods to promote *in vitro* induction of plant embryogenesis and plant regeneration by the use of mammal kinase inhibitors.

BACKGROUND ART

[0002] The ability of many plant cells to regenerate embryos through *in vitro* culture is extensively exploited by companies for regeneration, propagation and selection of high quality/adapted plant material in agroforestry and industrial sectors, a technology that permits the propagation of plants with increased genetic gain, reducing time and cost in breeding and conservation programs. The capacity to regenerate adult fertile plants from *in vitro* cultured explants is well described for many species and through various developmental pathways. Multiple environmental factors have been shown to determine the *in vitro* responses of plant tissues.

[0003] Through *in vitro* embryogenesis, somatic cells from donor plants can be reprogrammed by different treatments (mainly stress and hormonal treatments), giving rise to entire embryos that further germinate and ultimately produce a plant. *In vitro* embryogenesis can also be induced from microspores, precursors cells of pollen grains. Due to the haploid condition of these cells, microspore embryogenesis is a useful biotechnological tool in plant breeding as a source of new genetic variability, fixed in fully homozygous plants in only one generation.

[0004] In the case of woody species, somatic embryogenesis has many advantages since classical genetic breeding programs have important limitations in trees due to their long-life span, and difficulties of seed conservation and vegetative reproduction. Somatic embryogenesis has a great potential for large-scale propagation and cryopreservation of tree elite genotypes, as well as for transformation strategies.

[0005] In vitro systems of somatic and microspore embryogenesis have been developed for many plant species belonging to a wide range of families. The primary advantage of *in vitro* plant propagation is the rapid production of high numbers of high quality, disease-free and uniform planting material for agroindustry companies. Despite decades of research, poor *in vitro* regeneration is still a lingering problem with the process still being highly inefficient in many species of economic interest in the fields of agriculture and forestry, a fact that severely affects the application and cost of this technology in plant breeding and conservation programs.

[0006] The yield of somatic and microspore-derived embryo production has several bottlenecks at various stages of the process. One of the major problems is the low proportion of cells that are reprogrammed and initiate embryogenesis, being embryogenesis initiation efficiency a crucial step. Therefore, new strategies are necessary to improve *in vitro* embryogenesis induction in different species of economic interest, such as crops and forest plant species.

35 DESCRIPTION OF THE INVENTION

[0007] To solve the aforementioned limitations, a general object of the invention is to provide the use of mammal kinase inhibitors, preferably human kinase inhibitors, preferably human glycogen synthase kinase-3β (GSK3β) and/or leucine-rich repeat kinase 2 (LRRK2) inhibitors compounds and methods for such uses to induce plant embryogenesis. [0008] In their search for novel strategies to improve the induction of embryogenesis and embryo production of plants, the inventors surprisingly found that mammal kinase inhibitors, preferably human kinase inhibitors, have a positive effect on plant embryogenesis initiation. Moreover, the present disclosure shows that treatments with these inhibitors have been successfully applied to different in vitro protocols, in liquid or solid media, and with direct, indirect and secondary/recurrent embryogenesis, providing similar promoting effects over embryogenesis induction. The inventors have demonstrated that mammal kinase inhibitors, preferably human kinase inhibitors, preferably inhibitors of GSK3β and/or LRRK2 lead to an increase in the in vitro embryogenesis induction, from both somatic cells and microspores, in crop and forest plant species (Figs. 1-3). Furthermore, the inventors demonstrated that this surprising effect is obtained with several inhibitors for several human kinases, all of them having different molecular structures. (Figs. 4-5). Additionally, the inventors show that the increase in induction of plant embryogenesis is obtained both in liquid and in solid embryogenesis cultures using as a starting material both microspores (microspore embryogenesis) as well as other plant explants (somatic embryogenesis) (Figs. 7-12). Moreover, the inventors confirmed through DNA staining and fluorescence microscopy that the proembryos obtained and quantified from cultures treated with the inhibitors were indeed multicellular microspores (Fig. 6), the first sign of embryogenesis initition. These experiments support the use of such small molecule inhibitors of mammal kinases as new tools to promote the induction and optimization of in vitro plant embryogenesis. Finally, these results suggest that common mechanisms may operate in other in vitro plant systems and that a similar strategy could be extended to other species to increase embryogenesis induction efficiency and plant cell reprogramming. [0009] Thus, a first aspect of the present invention relates to the use of at least a mammal kinases inhibitor to improve in vitro plant embryogenesis induction.

[0010] The term "mammal" as used herein refers to any animal classified as a mammal including cows, horses, dogs, cats, rats, mice, primates and human beings. In a preferred embodiment of the invention, the mammal is a human.

[0011] The term "kinase" as used herein refers to a member of an enzyme superfamily which functions to phosphorylate one or more proteins, this is, they have protein kinase activity. The terms also relate to a nucleic acid encoding the protein/enzyme.

[0012] In a preferred embodiment of the invention the mammal kinases are human kinases.

20

[0013] For the purposes of the invention the mammal kinase, preferably human kinase is selected from a list consisting of: CDK1 (UniProt:P06493), CDK10 (UniProt:Q15131), CDK11A (UniProt:Q9UQ88), CDK11B (UniProt:P21127), CDK12 (UniProt:Q9NYV4), CDK13 (UniProt:Q14004), CDK14 (UniProt:O94921), CDK15 (UniProt:Q96Q40), CDK16 (Uni-Prot:Q00536), CDK17 (UniProt:Q00537), CDK18 (UniProt:Q07002), CDK19 (UniProt:Q9BWU1), CDK2 (Uni-Prot:P24941), CDK20 (UniProt:Q8IZL9), CDK3 (UniProt:Q00526), CDK4 (UniProt:P11802), CDK5 (UniProt:Q00535), CDK6 (UniProt:Q00534), CDK7 (UniProt:P50613), CDK8 (UniProt:P49336), CDK9 (UniProt:P50750), CDKL1 (Uni-Prot:Q00532), CDKL2 (UniProt:Q92772), CDKL3 (UniProt:Q8IVW4), CDKL4 (UniProt:Q5MAI5), CDKL5 (Uni-Prot:076039), CLK1 (UniProt:P49759), CLK2 (UniProt:P49760), CLK3 (UniProt:P49761), CLK4 (UniProt:Q9HAZ1), DYRK1A (UniProt:Q13627), DYRK1B (UniProt:Q9Y463), DYRK2 (UniProt:Q92630), DYRK3 (UniProt:O43781), DYRK4 (UniProt:Q9NR20), GSK3A (UniProt:P49840), GSK3B (UniProt:P49841), HIPK1 (UniProt:Q86Z02), HIPK2 (Uni-Prot:Q9H2X6), HIPK3 (UniProt:Q9H422), HIPK4 (UniProt:Q8NE63), ICK (UniProt:Q9UPZ9), MAK (UniProt:P20794), MAPK1 (UniProt:P28482), MAPK10 (UniProt:P53779), MAPK11 (UniProt:Q15759), MAPK12 (UniProt:P53778), MAPK13 (UniProt:O15264), MAPK14 (UniProt:Q16539), MAPK15 (UniProt:Q8TD08), MAPK3 (UniProt:P27361), MAPK4 (UniProt:P31152), MAPK6 (UniProt:Q16659), MAPK7 (UniProt:Q13164), MAPK8 (UniProt:P45983), MAPK9 (UniProt:P45984), MOK (UniProt:Q9UQ07), NLK (UniProt:Q9UBE8), PRPF4B (UniProt:Q13523), SRPK1 (Uni-Prot:Q96SB4), SRPK2 (UniProt:P78362), SRPK3 (UniProt:Q9UPE1), ACVR1 (UniProt:Q04771), ACVR1B (Uni-Prot:P36896), ACVR1C (UniProt:Q8NER5), ACVR2A (UniProt:P27037), ACVR2B (UniProt:Q13705), ACVRL1 (Uni-Prot:P37023), AMHR2 (UniProt:Q16671), ANKK1 (UniProt:Q8NFD2), ARAF (UniProt:P10398), BMPR1A (Uni-Prot:P36894), BMPR1B (UniProt:000238), BMPR2 (UniProt:Q13873), BRAF (UniProt:P15056), ILK (UniProt:Q13418), IRAK1 (UniProt:P51617), IRAK2 (UniProt:043187), IRAK3 (UniProt:Q9Y616), IRAK4 (UniProt:Q9NWZ3), KSR1 (UniProtQ8IVT5), KSR2 (UniProt:Q6VAB6), LIMK1 (UniProt:P53667), LIMK2 (UniProt:P53671), LRRK1 (Uni-Prot:Q38SD2), LRRK2 (UniProt:Q5S007), RAF1 (UniProt:P04049), RIPK1 (UniProt:Q13546), RIPK2 (UniProt:043353), RIPK3 (UniProt:Q9Y572), RIPK4 (UniProt:P57078), TESK1 (UniProt:Q15569), TESK2 (UniProt:Q96S53), TGFBR1 (UniProt:Q96S53), iProt:P36897), TGFBR2 (UniProt:P37173), TNNI3K (UniProt:Q59H18), MLKL (UniProt:Q8NB16), - All accession numbers correspond to UniProt release of 16 of October 2019.

[0014] In a further embodiment of the present invention, the mammal kinases, preferably human kinases are selected from GSK3 β and/or LRRK2.

[0015] As used herein the term GSK3β refers to the glycogen synthase kinase 3 beta protein (EC:2.7.11.26) set forth by Uniprot Accesion Nos: P49841-1 (SEQ ID NO: 1) and P49841-2 (SEQ ID NO:2), or alternatively by GenBank Accession Nos. NP_002084.2 (SEQ ID NO: 2), NP_001139628.1 (SEQ ID NO: 1), NP_001341525.1 (SEQ ID NO: 3) and/or XP_006713673.1 (SEQ ID NO: 4) having the WNT signalling regulatory activity via its kinase activity.

[0016] In a further embodiment the mammal kinase GSK3 β comprises an amino acid sequence with at least 90% identity with any of the SEQ ID NOs.:1 to 4, preferably 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity with any of the SEQ ID NOs.: 1 to 4. In a more preferred embodiment, the mammal kinase GSK3 β comprises any of the SEQ ID NOs.: 1 to 4. In a more preferred embodiment, the mammal kinase GSK3 β consists of any of the SEQ ID NOs.: 1 to 4.

[0017] The term "identity", as used herein, refers to the proportion of identical amino acids between two compared peptides or proteins or the proportion of identical nucleotides between two compared nucleotide sequences. The methods for comparing sequences are known in the state of the art, and include, but not limited to, the programs BLASTP or BLASTN, ClustalW and FASTA. We can consider that peptides, proteins or nucleotide sequences with percent identities of at least 90% will maintain the same properties as the sequence to which they refer.

[0018] As used herein the term LRRK2 refers to the leucine-rich repeat kinase 2 protein (EC 2.7.11.1) set forth by Uniprot Accession No: Q5S007 (SEQ ID NO: 5), or alternatively by GenBank Accession Nos. AAI17181.1 (SEQ ID NO: 6) and/or AAV63975.1 (SEQ ID NO: 7).

[0019] In a further preferred embodiment, the mammal kinase LRRK2 comprises an amino acid sequence having at least 90% sequence identity with any of the SEQ ID NO.: 5 to 7, preferably 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity with any of SEQ ID NO.: 5 to 7. In a more preferred embodiment, the mammal kinase LRRK2 comprises any of the SEQ ID NO.: 5 to 7. In a more preferred embodiment, the mammal kinase LRRK2 consists of any of the SEQ ID NO.: 5 to 7.

⁵⁵ [0020] In a further preferred embodiment of the present invention, the mammal kinase inhibitors to induce *in vitro* plant embryogenesis are selected from GSK3β inhibitors and/or LRRK2 inhibitors.

[0021] As used herein, the term "inhibitor" is interchangeably used to denote "antagonist". These terms define compounds or compositions which have the capability of decreasing certain enzyme activity or competing with the activity

or function of a substrate of said enzyme. As used in the present invention, refers to a chemical compound (naturally occurring or non-naturally occurring), such as a biological macromolecule (e.g., polynucleotide, protein or polypeptide, hormone, polysaccharide, lipid), an organic molecule (e.g., a small organic molecule), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian, including human) cells or tissues which has been evaluated to reduce, diminish or inhibit (directly or indirectly) the activity of a kinase.

[0022] As used herein the term "GSK3 β inhibitor" or "LRRK2 inhibitor" refers to any molecule as described above, capable of inhibiting the activity of GSK3 β or LRRK2 as determined by specifically inhibiting levels of phosphorylated substrates specific for GSK3 β or LRRK2 (out of total substrates present in a cell).

[0023] In a further preferred embodiment of the present invention, the GSK3β inhibitors to induce *in vitro* plant embryogenesis are selected from a list consisting of thiadiazolidindiones (Formula I), iminothiadiazoles (Formula II), disubstituted maleimides (Formula III) and disusbtituted carbohydrazides (Formula IV):

Thiadiazolidindiones of Formula (I):

15

10

$$X \xrightarrow{A} Y$$
 $G=E$

20

25

Formula (I),

wherein:

A is $-C(R^1)_2$ -, -O- or $-NR^1$ -;

E is -NR1- or -CR1R2- and the substituent R2 is absent if ----- is a second bond between E and G;

G is -S-, -NR1- or -CR1R2- and the substituent R2 is absent if ----- is a second bond between E and G;

----- may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused aryl group;

 R^1 and R^2 are independently selected from hydrogen, (C_1-C_8) alkyl, cycloakyl, haloalkyl, aryl, $-(Z)_n$ -aryl, heteroaryl, $-OR^3$, $-C(O)R^3$, $-(Z)_n$ - $C(O)OR^3$ - and $-S(O)_{t^-}$ or as indicated R^2 can be such that E with G then form a fused aryl group; Z is independently selected from $-C(R^3)(R^4)$ -, -C(O)-, -O-, $-C(-NR^3)$ -, $-S(O)_{t^-}$ and $-N(R^3)$ -; n is zero, one or two; t is zero, one or two; R^3 and R^4 are independently selected from hydrogen, (C_1-C_8) alkyl, aryl and heterocyclic; X and Y are independently selected from -O, -S, $-N(R^3)$ and $-C(R^3)(R^2)$.

35

30

[0024] In a preferred embodiment of the inhibitor of Formula (I), A is -NR¹-, E is -NR¹-, G is -S- and X and Y are from =O. [0025] In a more preferred embodiment of the inhibitor of Formula (I), R¹ is independently selected from hydrogen, (C_1-C_8) alkyl, aryl, and $-(C(R^3)(R^4))$ n-aryl; n is zero, one or two, R³ and R⁴ are each independently selected from hydrogen, (C_1-C_8) alkyl, aryl and heterocyclic. More preferably R¹ is independently selected from (C_1-C_8) alkyl or $-(C(R^3)(R^4))$ n-aryl., [0026] In another preferred embodiment, the inhibitor of Formula (I) is 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8).

[0027] Iminothiadiazoles of Formula (II):

45

$$R_3 N N R_2$$

50

55

Formula (II)

wherein: R_1 is selected from H, CN, NO_2 , F, CI, Br, I, or a group X_1 - R_1 , wherein X_1 is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene, C_2 - C_6 alkynylene, C_3 - C_{10} cycloalkylene, C_3 - C_{10} heterocycloalkylene, arylene and heteroaryl; being X_1 optionally substituted with at least one or more groups which may be identical or different and are selected from H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} heterocycloalkyl, F, CI, Br, I, -OH, =O, -CN,- NO_2 , - CO_2 R₄, - OR_4 , - $OR_$

 R_1 ' is selected from H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, aryl, heteroaryl, C_3 - C_{10} cycloalkyl or C_3 - C_{10} heterocycloalkyl; being R_1 ' optionally substituted with one or more groups X_1 '- R_8 which may be identical or different; being R_1 ' optionally substituted with one or more groups X_1 '- R_8 which may be identical or different;

5

10

 X_1 ' is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene, C_2 - C_5 alkynylene, arylene, heteroarylene, C_3 - C_{10} cycloalkylene and C_3 - C_{10} heterocycloalkylene, -C(O)O-, amino, -O-, -S- and -SO₂-; being X_1 ' optionally substituted with at least one or more groups which may be identical or different and are selected from H, C_1 - C_3 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_4 - C_7 cycloalkyl, F, Cl, Br, I, =O, -CN, -NO₂, -CO₂R₄, -OR₄, -SR₄, -SO₂NR₆R₇, =NR₄ and -NR₆R₇ being R₆ and R₇ independently selected from R₄ and R₅

 $R_8 \text{ is H, -OH, =0, -NO}_2, CN, F, CI, Br, I, C_1-C_4 \text{ alkyI, -CO}_2R_{6a}, -C(=0)R_{6a}, C(=S)R_{6a}, SO_2R_{6a}, SO_3R_{6a}, SO_3R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, SO_6R_{6a}, C(=O)NR_{6a}R_{7a}, C(=S)NR_{6a}R_{7a}, C(=N-CN)NR_{6a}R_{7a}, C(=N-SO_2NH_2)NR_{6a}R_{7a}, C(=CH-NO_2)NR_{6a}R_{7a}, SO_2NR_{6a}R_{7a}, C(=NR_{6a})NHR_{7a}, C(=NR_{6a})R_{7a}, C(=NR_{6a})R_$

15

20

25

 R_4 and R_5 are independently selected from: H, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_3\text{-}C_7$ $X_4\text{-cycloalkyl},$ $X_4\text{-cyclobetyl},$ $X_4\text{-cyclohetyl},$ $X_4\text{-cyclohetyl},$ $X_4\text{-pyridinyl},$ $X_4\text{-pyrid$

 X_4 is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene; each one of the groups optionally substituted with one or more groups which may be identical or different and are selected from =0, -NO₂, CN, F, CI, Br, I, C_1 - C_4 alkyl,- CO_2R_{10} , - $C(=O)R_{10}$, OR_{10} , $C(=O)NR_{10}R_{11}$, - $SO_2NR_{10}R_{11}$ and $NR_{10}R_{11}$;

 R_{10} and R_{11} are independently selected from H and C_1 - C_6 alkyl;

30

 R_2 is selected from $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, aryl, heteroaryl, $C_3\text{-}C_{10}$ cycloalkyl and $C_3\text{-}C_{10}$ heterocycloalkyl, CN or amino; being R_2 optionally substituted with at least one or more groups which may be identical or different and are selected from H, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, aryl, heteroaryl, $C_3\text{-}C_{10}$ cycloalkyl y $C_3\text{-}C_{10}$ heterocycloalkyl, =0, -NO2, CN, F, Cl, Br, I, $C_1\text{-}C_4$ alkyl, -CO2 R_{6b} , -C(=0) R_{6b} , SO2 R_{6b} , SO8 R_{6b} , SO3 R_{6b} , SR6 R_{6b} , OR6 R_{7b} , SO2 R_{6b} , SO2 R_{6b} , SO3 R_{6b} , SO

 R_3 is -CH₂- R_3 '; R_3 ' is selected from heteroaryl, -C(O)OR₁₂,

or R_3 ' is selected from - $(CH_2)_nOR_{6e}$, n being between 1 and 20, with the condition, that R_3 ' cannot be - $(CH_2)_2$ -OH, R_{6e} being selected from R_4 and R_5 ,

or R_3 ' is selected from -(CH_2)_n-(C_3 - C_{10} heterocycloalkyl), with n being 0 to 20

 R_{12} is independently selected from the groups defined for R_{10} ;

50

45

regarding that "cycloalkyl" comprises preferably a group C_3 - C_{10} cycloalkyl, more particularly a saturated cycloalkyl group saturated with the length indicated in the ring, as for example; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, or cyclodecyl and also comprises unsaturated cycloalkyls that contain one or more double bonds in the carbonated chain as for example cycloalkenyl groups C_3 - C_{10} such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclononenyl, or cyclodecenyl and related to the bonds, for the rest of the molecule, the cycloalkyl group may contain single or double bonds, in other words, it may be saturated or unsaturated and may optionally be substituted with one or more times, independently from the other groups with an alkyl group C_1 - C_6 and/or an halogen and/or an OR^f group and/or a NR^g 1 R^g 2 group as for example 2-methylcyclopropyl, 2,2-dimethylcyclopropyl, 3,-dimethylaminocyclopentyl, 3-hydroxycyclohexyl, 3-dimethylaminocyclobutyl, 3-dimethylaminocyclopentyl groups;

55

and that the term "heterocycloalkyl" comprises preferably a cycloalkyl group C_3 - C_{10} , as defined before, wherein one of the atoms of the rings is an heteroatom like NH, NR^{d3}, O, S or groups like C (O), S (O), S(O)₂, or also a group C_n -cyclo alkyl, wherein n is a number selected from 3, 4, 5, 6, 7, 8, 9 and 10, wherein one or more of the carbon atoms are substituted by the heteroatoms or before cited groups in order to be a C_n -cycloheteroalkyl group; they

also comprises unsaturated cycloheteroalkyl groups that contain one or more double bonds in the carbonated chain, therefore related to the bonds, for the rest of the molecule, cycloheteroalkyl group may contain single and double bonds, in other words, it may be saturated or unsaturated and may optionally substituted one or more times, independently of the other groups with an alkyl group C_1 - C_6 and/or an halogen and/or an OR^f group and/or a group and that the C_n -cycloheteroalkyl group is related for example to heterocycles of three members expressed as C3-heterocycloalkyl named oxyranyles.

[0028] In a preferred embodiment, the inhibitor of Formula of formula (II) is selected from:

- 2,3-Diphenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 3-(4-Methoxyphenyl)-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 2-(4-Methoxyphenyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 2-(4-Nitrophenyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 2-Phenyl-5-(3-pyridylmethylimino)-3-(4-trifluoromethylphenyl)-2,5-dihydro-1,2,4-thiadiazole
 - 2-(1-Naphthyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 3-(1-Naphthyl)-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 3-Methyl-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
 - 5-Ethoxycarbonylmethylimino-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-Ethoxycarbonylmethylimino-3-(4-methoxyphenyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-Ethoxycarbonylmethylimino-2-(4-methoxyphenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-Ethoxycarbonylmethylimino-2-(4-nitrophenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-(2-Hydroxyethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-(2-Hydroxyethylimino)-3-(4-methoxyphenyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-(2-Hydroxyethylimino)-2-(4-methoxyphenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-(2-Hydroxyethylimino)-2-(1-naphthyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
 - 5-(2-Hydroxyethylimino)-3-(1-naphthyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole, and
 - 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole.

[0029] More preferably 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15).

[0030] Disubstituted maleimides of Formula (III):

$$O$$
 R^2
 N
 R^1

Formula (III)

wherein: R¹ is selected from H or C₁-C₁₀ alkyl and R² is selected from C₁-C₁₀ alkyl or C₂-C₁₀ alkenyl; being optionally substituted by halogen.

[0031] In a preferred embodiment of the inhibitor of Formula (III), R^1 is C_1 - C_5 alkyl and R^2 is C_1 - C_5 alkyl.

[0032] In a more preferred embodiment, the inhibitor of Formula (III) is 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36).

50 [0033] Disusbtituted carbohydrazides of Formula (IV):

55

5

15

20

25

30

35

40

$$R_{3_{n}} = \begin{bmatrix} R_{4} & O & O & R_{6} \\ N & N & N \\ N & R_{5} & O \end{bmatrix}$$

Formula (IV)

wherein R_1 is selected from H and C_1 - C_5 alkyl, optionally substituted, R_2 is C_5 - C_{15} alkyl, optionally substituted, R_3 is selected from H, halogen, C_1 - C_5 alkyl, optionally substituted, and -(O)- C_1 - C_5 alkyl, optionally substituted, n is between 1 and 4, R_4 , R_5 y R_6 are each independently selected from H and C_1 - C_5 alkyl, optionally substituted.

[0034] In a preferred embodiment of the inhibitor of Formula (IV), R_3 , R_4 , R_5 , or R_6 are H.

[0035] In another preferred embodiment of the inhibitor of Formula (IV), R_1 and R_2 are each independently selected from C_9 - C_{12} alkyl.

[0036] In a more preferred embodiment, the inhibitor of Formula (IV) is 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-di-hydroquinoline-3-carbohydrazide (VP0.7).

[0037] For the purposes of the current invention, preferably the GSK3 β inhibitors are selected from: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8); 5-(2-morpholinethylimino)-2,3-diphenyl-2,5-di-hydro-1,2,4-thiadiazole (VP3.15); 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36); and 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroguinoline-3-carbohydrazide (VP0.7).

[0038] In a further embodiment of the present invention, the LRRK2 inhibitors to induce *in vitro* plant embryogenesis are selected from the substituted N-(benzotiazolil-4-morfolinobenzamide (Formula V) and the (E,Z)-3-(morpholinoimino)indolin-2-one, named as IGS4.75.

Formula (V)

wherein: R₁ is selected from H, C₁-C₆ alkyl, halogen, CF₃, and -O-C₁-C₆.alkyl.

[0039] In a preferred embodiment of the inhibitor of Formula (V), R₁ is H.

[0040] In another preferred embodiment of the inhibitor of Formula (V), R_1 is a C_1 - C_4 alkyl. In a more preferred embodiment of the compound (V), R_1 is selected from methyl or isopropyl.

[0041] In another preferred embodiment of the inhibitor of Formula (V), R₁ is selected from F, CI or Br.

[0042] In another preferred embodiment of the inhibitor of Formula (V), R₁ is a -O-C₁-C₄ alkyl. In a more preferred embodiment of the inhibitor of Formula (V), R₁ is selected from -O-methyl, -O-ethyl and -O-propyl.

[0043] In another preferred embodiment of the inhibitor of Formula (V), R₁ is CF₃.

[0044] In another preferred embodiment, the inhibitor of Formula (V) is selected from the following list:

• N-(benzothiazole-2-yl)-4-morpholinobenzamide,

5

10

30

35

50

55

- N-(6-methoxybenzothiazole-2-yl)-4-morpholinobenzamide,
- N-(6-trifluoromethylbenzothiazole-2-yl)-4-morpholinobenzamide,
- N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),
- N-(6-chlorobenzothiazole-2-yl)-4-morpholinobenzamide,
- N-(6-fluorobenzothiazole-2-vl)-4-morpholinobenzamide (JZ1.6).
- N-(6-ethoxybenzothiazole-2-yl)-4-morpholinobenzamide,
 - N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24),
 - N-(6-propoxybenzothiazole-2-yl)-4-morpholinobenzamide,
 - N-(6-isopropylbenzothiazole-2-yl)-4-morpholinobenzamide.

[0045] More preferably the inhibitor of Formula (V) is selected from N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3), N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6) and N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24).

[0046] For the purposes of the current invention, preferably the LRRK2 inhibitors are selected from: N-(6-metilbenzotiazol-2-il)-4-morfolinobenzamida (JZ1.3), N-(6-flurobenzotiazol-2-il)-4-morfolinobenzamida, (JZ1.6) and N-(6-bromobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.24) and (*E,Z*)-3-(morpholinoimino)indolin-2-one (IGS4.75).

[0047] In another embodiment of the present invention, the induction of *in vitro* plant embryogenesis comprises increased plant embryo growth and/or increased embryo production yield. As it is shown in the examples, the results states that all of the inhibitors tested lead to an increase of embryogenesis induction efficiency in the range of 20-25% for GSK3β inhibitors and 23-30% for LRRK2 inhibitors, when applied at their optimal concentration.

[0048] As used herein, the term "plant embryo growth regulator" refers to any compound capable of inducing plant embryo growth, preferably embryos from agricultural and/or forest plant.

[0049] As used herein, the term "embryo production yield" refers to the number of individual embryos resulting from *in vitro* embryogenesis induction, preferably microspore and/or somatic embryogenesis.

[0050] In another embodiment of the present invention, the mammal kinase inhibitors are used in *in vitro* plant embryogenesis wherein the embryogenesis is somatic and/or by microspores.

[0051] The term "somatic embryogenesis" as used herein refers to a type of plant tissue culture where a piece of a donor plant, composed by somatic cells, is excised, cultured and induced to form multiple embryos, which can further germinate and produce entire plants.

[0052] The term "microspore embryogenesis" as used herein refers to a unique process in which haploid, immature pollen (microspores) are induced by different treatments to form embryos in culture. These microspore-derived embryos can then be germinated and converted to homozygous doubled haploid plants by chromosome doubling agents and/or through spontaneous doubling.

[0053] In a further embodiment of the present invention, the mammal kinase inhibitors are used to induce *in vitro* plant embryogenesis wherein the plants are crops and/or forests plants.

[0054] As used herein the term "plant" refers to a whole plant or parts thereof. The phrase "plant part" refers to isolated plant cells or isolated plant parts (tissues) such as from which plants can be (re)generated, including plant protoplasts, plant cali, plant clumps, and plant cells that are intact in plants, or part of plants, such as seeds, leaves, stems, pollens, roots, root tips, anthers, ovules, petals, flowers, seedlings, embryos and bolls.

30

[0055] In a preferred embodiment the crop plants as used herein are selected from the list consisting of: Medicago spp., Prunus spp., Angelica spp., Pimpinella spp., Ceratonia siliqua, Malus spp., Areca spp, Arracacia spp, Maranta spp., Cynara spp., Daucus carota, Anacardium occidentale, Asparagus spp., Persea spp., Pearl spp., Pennisetum spp., Vigna spp., Musa spp., Sechium edule, Jatropha spp., Cocos nucifera, Hordeum spp., Apium graveolens, Cyclamen spp., Atalantia spp. Anethum graveoles, Vigna subterranea, Laurus spp., Phaseolus spp. Ocumum spp., Cinnamomum verum, Paulinia cupana, Areca spp., Annona reticulate, Piper spp., Acacia spp., Rubus spp. Vaccinium spp. Bertholletia excelsa, Sesamum indicum, Artocarpus spp., Vicia spp, Fagopyrum esculentum, Carum carvi, Elettaria cardamomum, Ricinus communis, Castanea sativa, Cicer spp. Cichorium spp, Eugenia aromatica, Syzygium aromaticum, Trifolium spp. Erythroxypum spp., Cola spp., Brassica spp., Valerianella locusta, Gossypium spp., Lepidium sativum, Cucumis spp., Ficus carica, Corylus spp., Furcraea macrophylla, Linum spp., Geranium spp., Zingiber spp., Panax spp., Ribes spp., Vitis vinifera, Lygeum spartum, Dactylis spp., Arachis hypogaea, Corylus avellana, Cannabis sativa, Crotalaria juncea, Lawsonia inermis, Armoracia rusticana, Indigofera tinctoria, Jasminum spp., Helianthus spp., Actinidia deliciosa, Lavandula spp., Citrus spp., Cymbopogon citratus, Lens culinaris, Lespedeza spp., Lactuca spp., Litchi chinensis, Eriobotrya japonica, Lupinus spp., Macadamia spp., Zea mays, Mangifera spp., Secale spp, Setaria italica, Echinochloa esculenta, Pennisetum americanum, Panicum miliaceum, Mentha spp., Morus spp., Sinapis spp., Avena spp., Elaeis guineensis, Abelmoschus esculentus, Hibiscus esculentus, Olea spp, Allium spp., Papaver spp., Borassus flabellifer, Elaeis guineensis, Pastinaca sativa, Pisum sativum, Pyrus communis, Carya illinoensis, Capsicum spp., Cajanus cajan, Ananas comosus, Pistacia vera, Punica granatum, Solamum spp., Ipomoea spp. Cucurbita spp., Chrysanthemum spp., Aspidosperma spp., Cydonia oblonga, Cinchona spp., Chenopodium quinoa, Raphanus sativus, Rubus spp., Agrostis spp., Rheum spp., Oryza spp., Rose spp., Hevea brasiliensis, Lolium spp. Crocus savitus, Vitellaria paradoxa, Butyrospermum parkii, Agave spp., Glycine spp., Triticum spp., Spinacia oleracea, Fragaria spp., Beta spp., Sorghum spp.,

spp., Citrullus lanatus, Dioscorea spp., Ilex paraguariensis, Pennisetum glaucum, Setaria italic, Eleusine coracana, Panicum virgatum, Echinochloa frumentacea, Paspalum scrobiculatum, Digitaria exilis, Milium effusum, Phalaris canariensis, Coix lacryma-jobi. Where so applicable the crop plants species here listed include all different sub-species, varieties and cultivars existent, including, without limitation, regional, seasonal and agricultural varieties.

Thymus spp., Timothy spp., Phleum pratense, Phleum alpinum, Saccharum officinarum, Nicotiana spp., Bixa spp, Solanum spp., Lotus spp., Triticale (Hybrid of Triticum aestivum and Secale cereale), Curcuma spp., Vanilla planifolia, Juglans

[0056] In a more preferred embodiment, the crop plants are selected from the list consisting of: *Hordeum spp., Zea mays, Secale spp, Setaria italica, Panicum miliaceum, Avena spp., Oryza spp., Triticum spp, Sorghum spp., Triticale*

(Hybrid of Triticum aestivum and Secale cereale), Pennisetum glaucum, Eleusine coracana, Phalaris canariensis, Cynara spp., Daucus carota, Piper spp, Trifolium spp, Brassica spp, Lactuca spp, Mentha spp, Allium spp., Pisum sativum, Capsicum spp, Solamum spp, Cucurbita spp, Chenopodium quinoa, Rubus spp, Spinacia oleracea, Beta spp, Solanum spp., Helianthus spp., Gossypium spp, Arachis hypogaea, Cannabis sativa, Saccharum officinarum, Linum spp., Glycine spp., Nicotiana spp, Medicago spp., and/or Agrostis spp. In a more preferred embodiment, the crop plants belong to Hordeum spp. and/or Brassica spp.

[0057] In another preferred embodiments the forest plants are selected from a list consisting of: Araucaria spp., Cryptomeria japonica, Cupressus spp, Juniperus spp., Sequoia sempervirens, Sequoiadendron giganteum, Thuja spp, Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale, Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Paulownia tomentosa, Adansonia spp, Capparis spp, Sambucus spp., Carica papaya, Euonymus spp, Hevea brasiliensis, Manihot spp., Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Carya spp., Juglans spp., Cinnamomum spp., Laurus spp., Persea spp., Swietenia spp., Artocarpus spp., Ficus spp., Morus spp., Myrtus communis, Psidium spp., Nothofagus spp., Fraxinus spp., Olea europaea, Platanus spp., Dendrocalamus asper, Malus spp., Photinia spp., Photinia × fraser, Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Solanum erianthum; Theobroma cacao, Camellia spp., Tilia spp., Ulmus spp., Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Solanum betaceum Cav.), Indian olive (Elaeocarpus robustus L.); bottle palm (Hyophorbe lagenicaulis), Indian rosewood (Dalbergia sissoo), canela petrea (Ocotea catharinensis Mez.), Sandalwood (Santalum album), Echinacea purpurea L., longan (Dimocarpus longan Lour.), (Aspidosperma polyneuron Mull.Arg), rattan (Calamus spp.), jojoba (Simmondsia chiensis), (Aegle marmelos L.), black cohosh (Actaea racemosa L.), Gomortega keule, Cyclamen spp., Hybrid Aspen (Populus tremuloides x Populus tremula), Oil palm (Elaeis guineensis Jacq.), Passiflora spp., Açaí palm (Euterpe oleracea Mart.), tree-fern (Cyathea delgadii Sternb.), Eucalyptus spp., Hybrid Larch (Larix x eurolepis Henry), neem (Azadirachta indica). Where so applicable the forest plants species here listed include all different sub-species, varieties and cultivars existent, including, without limitation, regional, seasonal and agricultural varieties.

20

30

35

[0058] In a more preferred embodiment, the forest plants are selected from the list consisting of: Araucaria spp., Cupressus spp, Juniperus spp., Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale, Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Carica papaya, Hevea brasiliensis, Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Cinnamomum spp., Laurus spp, Persea spp., Morus spp., Psidium spp., Fraxinus spp., Olea europaea, Platanus spp, Malus spp., Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Theobroma cacao, Camellia spp., Ulmus spp., Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Eucalyptus spp. In a more preferred embodiment, the forest plants belong to Quercus spp.

[0059] In a further aspect, the invention relates to a method, here onwards the method of the invention, to induce *in vitro* plant embryogenesis, where the method comprising:

a. culturing the microspores and/or explants in a culture medium suitable for embryo development; and b. adding mammal kinase inhibitors to the culture medium of step a); and c. culturing for a period sufficient to obtain embryos.

40 [0060] The term "culture medium" as used herein is intended to indicate any material either solid or liquid in which plant cells, tissues, organs and whole plants may grow. Additives may be provided to the cells in the form of media, and environmental conditions controlled. There are many types of plant tissue culture media comprised of mixtures of mineral salts containing essential oligoelements plus various additives like amino acids, sugars, growth regulators and vitamins which must therefore be added to the culture medium to allow development of (pro)embryo, explant and/or plant growth. Examples of plant tissue culture medium are, without limitation, Chu (N6) medium (Duchefa, Sigma-Aldrich), Clc/Ipomoea CP medium (Duchefa), CLC/Ipomoea ep medium (Duchefa), DKV/Junglans medum (Duchefa, Sigma-Aldrich), Erikson medium (Duchefa), Gamborg B5 medium (Duchefa, Sigma-Aldrich), Gresshoff and Doy medium (Duchefa), Lindemann orchid medium (Duchefa), NLN medium (Duchefa), Nitsch medium (Duchefa), Woody plant medium (Duchefa, Sigma-Aldrich), Linsmaier and Skoog medium (Duchefa), Litvay medium (Duchefa), Quorin and Lepoivre medium (Duchefa), 50 Rugini olive medium (Duchefa), Schenk and Hildebrant medium (Duchefa, Sigma-Aldrich), White's medium (Duchefa, Sigma-Aldrich), Westvaco WV5 medium (Duchefa), Murashige and Skoog medium (Duchefa, Sigma-Aldrich), Murashige and Skoog medium with B5 vitamins (Duchefa), Murashige and Skoog medium with Nitsch vitamins (Duchefa), Murashige and Skoog medium van der Salm (Duchefa), Hoagland's n°2 basal salt mixture (Sigma-Aldrich), Sommer macronutrients + MS micronutrients and vitamins (Testillano et al. 2018, Plant Cell Culture Protocols, eds. V.M. Loyola-Vargas & N. Ochoa-Alejo. Springer and Bussines Media. pp. 247-256), KBP medium (Kumlehn et al. 2006).

[0061] As used herein, the term "plant embryo" refers to a somatic plant embryo or a microspore plant embryo. Somatic plant embryos may be produced by culturing embryogenic tissue by standard methods under laboratory conditions in which some of the cells comprising the tissue, the responsive ones, are induced to reprogram and develop into complete

embryos. In the same sense, microspore plant embryo may be produced by culturing either anthers containing microspores or isolated microspores in appropriate culture medium under defined conditions in which some microspores, the responsive ones, are induced to reprogram and develop into complete haploid and doubled-haploid embryos.

[0062] As used herein, "plant embryo" includes embryos at various stages of development.

[0063] The term "explant" as used herein refers to a piece of tissue taken from a donor plant for culturing.

[0064] In a preferred embodiment, the method of the invention is a method wherein the embryogenesis is somatic and/or by microspores.

[0065] All the terms and definitions mentioned previously by the use of the mammal's kinase inhibitors to induce *in vitro* plant embryogenesis, apply in the same way to the method to induce *in vitro* plant embryogenesis disclosed herein.

[0066] Thus, in another preferred embodiment, the method of the invention is a method wherein the mammal kinases are human kinases, preferably GSK3β and/or LRRK2, as it has been disclosed previously.

[0067] In a further preferred embodiment, the method of the invention is a method wherein the plants are crops and/or forest plants.

[0068] In yet another preferred embodiment, the method of the invention is a method wherein the crop plants are selected from the list consisting of: Hordeum spp., Zea mays, Secale spp, Setaria italica, Panicum miliaceum, Avena spp., Oryza spp., Triticum spp, Sorghum spp., Triticale (Hybrid of Triticum aestivum and Secale cereale), Pennisetum glaucum, Eleusine coracana, Phalaris canariensis, Cynara spp., Daucus carota, Piper spp, Trifolium spp, Brassica spp, Lactuca spp, Mentha spp, Allium spp., Pisum sativum, Capsicum spp, Solamum spp, Cucurbita spp, Chenopodium quinoa, Rubus spp, Spinacia oleracea, Beta spp, Solanum spp., Helianthus spp., Gossypium spp, Arachis hypogaea, Cannabis sativa, Saccharum officinarum, Linum spp., Glycine spp., Nicotiana spp, Medicago spp., and/or Agrostis spp. In a more preferred embodiment, the crop plants belong to Brassica spp. and/or Hordeum spp.

[0069] In another preferred embodiment, the method of the invention is a method wherein the forest plants are selected from the list consisting of: Araucaria spp., Cupressus spp, Juniperus spp., Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale, Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Carica papaya, Hevea brasiliensis, Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Cinnamomum spp., Laurus spp, Persea spp., Morus spp., Psidium spp., Fraxinus spp., Olea europaea, Platanus spp, Malus spp., Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Theobroma cacao, Camellia spp., Ulmus spp., Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Eucalyptus spp. In a more preferred embodiment, the forest plants belong to Quercus spp.

[0070] In a further preferred embodiment, the method of the invention is a method wherein the GSK3β inhibitors inhibitors used are the same as described above. In a more preferred embodiment, the GSK3β inhibitors are selected from a list consisting of: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8), 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36), 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7).

In a further preferred embodiment, the method of the invention is a method wherein the LRRK2 inhibitors used are the same as described above. In a more preferred embodiment, are selected from a list consisting of: N-(6-metil-benzotiazol-2-il)-4-morfolinobenzamida (JZ1.3), N-(6-flurobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.6), N-(6-bro-mobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.24), and (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).

[0072] In a further preferred embodiment, the method of the invention is a method wherein the inhibitor concentration ranges from 0.1 μ M to 100 μ M inclusive. Preferably the inhibitor concentrations have ranges of 0.5 - 10 μ M, 10 - 20 μ M, 20 - 30 μ M, 30 - 40 μ M, 40 - 50 μ M, 50 - 60 μ M, 70 - 80 μ M, 80 - 90 μ M, 90 - 100 μ M. More preferably the inhibitor concentrations have ranges of 0.1 - 5 μ M, 5 - 10 μ M, 10 - 15 μ M, 15 - 20 μ M, 20 - 25 μ M, 25 - 30 μ M, 30 - 35 μ M, 35 - 40 μ M, 40 - 45 μ M, 45 - 50 μ M, 50 - 55 μ M, 55 - 60 μ M, 60 - 65 μ M, 65 - 70 μ M, 70 - 75 μ M, 75 - 80 μ M, 80 - 85 μ M, 85 - 90 μ M, 90 - 95 μ M, 95 - 100 μ M.

[0073] In a further preferred embodiment, the method of the invention is a method wherein the culture medium is a liquid medium and the inhibitor concentration ranges from 0.1 μM to 100 μM inclusive, preferably from 0.5 μM to 5 μM inclusive.

[0074] In another preferred embodiment, the method of the invention is a method wherein the culture medium is a solid medium and the inhibitor concentration ranges from 0.1 μ M to 100 μ M inclusive, preferably from 25 μ M to 50 μ M.

[0075] In a more preferred embodiment, wherein the embryogenesis is an embryogenesis from microspores, the inhibitor concentration ranges from 0.1 μ M to 100 μ M inclusive, preferably from 0.5 μ M to 10 μ M and more preferably from 0.5 μ M to 5 μ M wherein the culture medium is a liquid media. In another preferred embodiment, the inhibitor concentration ranges from 20 μ M to 100 μ M inclusive, preferably from 25 μ M to 50 μ M, wherein the culture medium is a solid media.

[0076] In a more preferred embodiment, wherein the embryogenesis in a somatic embryogenesis, the inhibitor concentration ranges from 20 μ M to 100 μ M inclusive, preferably from 25 μ M to 50 μ M, wherein the culture medium is a solid media.

[0077] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skilled in the art to which this invention belongs. Methods and materials similar or equivalent to those described herein can be used in the practice of the present invention. Throughout the description and claims the word "comprise" and its variations are not intended to exclude other technical features, additives, components, or steps. Additional objects, advantages and features of the invention will become apparent to those skilled in the art upon examination of the description or may be learned by practice of the invention. The following examples and drawings are provided by way of illustration and are not intended to be limiting of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0078]

10

15

35

40

45

50

55

- Fig. 1. *In vitro* microspore embryogenesis in *B. napus*. Cotyledonary embryos developed from isolated microspore culture in liquid medium without mammal's kinase inhibitors. Fig. 2. *In vitro* microspore embryogenesis in *H. vulgare*. Cotyleoptilar and leaf-stage embryos developed from isolated microspore culture in liquid medium without mammal's kinase inhibitors.
- **Fig. 3.** *In vitro* **somatic embryogenesis in** *Q. suber.* Embryos at different developmental stages, cultured in solid medium without mammal's kinase inhibitors, emerging from proembryogenic masses and other embryos, some of them have differentiated fully mature cotyledonary embryos.
- Fig. 4. Effects of four different GSK3β inhibitors (TDZD.8, VP3.15, VP3.36 and VP0.7) over embryogenesis induction efficiency in *B. napus* microspore cultures. Columns indicate percent change of proembryos at 4 days and referred to the mean percentage of proembryos in control cultures which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's *t*-test at *P* ≤ 0.05.
- Fig. 5. Effects of four different LRRK2 inhibitors (JZ1.3, JZ1.6, JZ1.24 and IGS4.75) over embryogenesis induction efficiency in *B. napus* microspore cultures. Columns indicate percent change of proembryos at 4 days and refer to the mean percentage of proembryos in control cultures, which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's *t*-test at *P* ≤ 0.05.
- Fig. 6. Proembryos in TDZD.8-treated cultures of microspore embryogenesis of *B. napus*. After 4 days in culture, proembryos (arrows) coexisted with non-responding and dead microspores (smaller structures); DAPI staining (right panel) reveals that proembryos contain several nuclei (arrows), indicating embryogenesis initiation.
 - Fig. 7. Effects of TDZD.8 (GSK3 β inhibitor) and JZ1.24 (LRRK2 inhibitor) over embryogenesis induction efficiency in *B. napus* microspore cultures. Columns indicate percent change of proembryos at 4 days and refer to the mean percentage of proembryos in control cultures, which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's *t*-test at $P \le 0.05$.
 - Fig. 8. Evaluation of germination capacity of embryos produced in microspore cultures of *B. napus*. Germinating embryos from control (left) and treated (right) cultures, showing well-developed roots and hypocotyls in most embryos, in both conditions.
 - Fig. 9. Effects of selected GSK3 β and LRRK2 inhibitors (TDZD.8 and JZ1.24, respectively) over embryogenesis induction efficiency in *H. vulgare* microspore cultures. Columns indicate percent change of proembryos at 4 days in control (untreated) and treated cultures. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's *t*-test at $P \le 0.05$.
 - Fig. 10. Effects of selected GSK3 β and LRRK2 inhibitors (TDZD.8 and JZ1.24) over embryo production in *H. vulgare* microspore cultures. Columns indicate mean number of embryos per plate formed at 40 days in control (untreated) and treated cultures. Different letters on columns indicate significant differences according to ANOVA and Tukey's tests at $P \le 0.05$.
 - Figure 11: Effects of selected GSK3 β and LRRK2 inhibitors (TDZD.8 and JZ1.24) over embryo production in *Q. suber* somatic embryogenesis. Columns indicate mean number of embryos per gram of initial explant, in control (untreated) and treated cultures. Different letters on columns indicate significant differences according to ANOVA and Tukey's tests at $P \le 0.05$.
 - Figure 12: Effects of selected GSK3 β and LRRK2 inhibitors (TDZD.8 and JZ1.24) over embryo production in *Q. suber* microspore embryogenesis. Columns indicate mean number of embryos per gram of initial explant, in control (untreated) and treated cultures. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's *t*-test at $P \le 0.05$.

Examples

30

50

Methodology

1.1. Microspore embryogenesis of B. napus, through isolated microspore culture (protocol without inhibitors)

[0079] B. napus L. (rapeseed) cv. 'Topas' line DH407 plants were used as donor plants. Rapeseed seeds were germinated and grew under controlled conditions (relative humidity 60%, 15°C under long-day photoperiod 16 h light and 8 h dark at 10°C) in a growth chamber in pots containing a mixture of organic substrate and vermiculite (2/1, v/v). [0080] Flower buds containing vacuolated microspores, the most responsive stage for microspore induction, were isolated for microspore culture as previously described (Prem et al., 2012 BMC Plant Biology 12, 127). The selected buds were surface-sterilized in 5.0% (v/v) commercial bleach (5% active chlorine) for 20 min and then rinsed 6-7 times with sterile distilled water. Ten to 15 buds were crushed using a cold mortar and pestle in 5 ml of cold NLN-13 medium containing 13% sucrose (w/v). The suspension was filtered through 48 µm nylon mesh and the filtrate collected in 15ml falcon centrifuge tubes. The crushed buds were rinsed with 5 ml NLN-13 to make up the volume to 10 ml and the filtrate was then centrifuged at 1100 rpm for 5 min at 4°C. The pellet was re-suspended in 10 ml of cold NLN-13 and centrifuged as mentioned above. This process was repeated three times for washing of the microspores. The final pellet was suspended in the NLN-13, and the cell density was adjusted to 10,000 cells per ml. The cell suspension was then poured into 90-mm Petri dishes (10 ml per Petri dish) and cultured in darkness. For embryogenesis induction, microspore cultures were subjected to an in vitro stress treatment of 32°C for 15 days. In response to the inductive treatment, responsive microspores divide and produce multicellular structures or proembryos, still confined within the microspore wall (exine). Such structures are considered to be the first sign of embryogenesis initiation; they can be found after 4-6 days in culture. When globular/heart shaped embryos were observed (around 20 days), cultures were shifted to 25°C on a gyratory shaker at 60 rpm until complete development and maturation of the embryos was observed (Fig. 1), normally around 30 days in culture.

1.2. Microspore embryogenesis of H. vulgare, through isolated microspore culture (protocol without inhibitors)

[0081] *H. vulgare* L. cv. Igri plants were used as donor plants. Seeds were vernalized in soil for one month at 4 °C, and then transferred for one month in a plant growth chamber at 18°C for germination and growth. Finally, plants were transferred to a greenhouse under 18°C temperature.

[0082] Spikes containing microspores at the stage of vacuolated microspore, the most responsive stage for embryogenesis induction, were collected and surface sterilized by immersion in 5% bleach for 20 min, followed by 4 washes with sterile distilled water. Isolated microspore culture was settled as previously described (Rodriguez-Serrano et al., 2012, Journal of Experimental Botany 63(5), 2007-2024). The sterilized spikes were pre-treated at 4°C for 21-24 days as stress treatment to induce microspore embryogenesis. Microspore were isolated blending spikes in 20 ml of precooled 0.4 M mannitol at 4°C, using a Waring Blender pre-cooled in a refrigerator at -20°C, and the extract was filtered through a 100 µm nylon mesh into a beaker pre-cooled at -20°C. The collected microspore suspension was transferred into a 50 ml tube and centrifuged at 800 rpm for 10 min at 4 °C. After removing the supernatant, the pellet was resuspended in 4 ml of pre-cooled 0.55 M maltose and transferred in 15ml falcon tube. 1.5 ml of 0.4 M mannitol solution were cautiously added unmixed. After gradient centrifugation at 800 rpm for 10 min at 4 °C, the interphase band consisting of an almost pure population of vacuolated microspores was resuspended in 0.4M mannitol solution giving a final volume of 10 ml. After counting cells in the Neubauer chamber, the pelleted microspores were diluted in an appropriate volume of KBP medium to obtain a cell density of 1.1 X 10⁵ cells per ml, and plated in 30 mm Petri dishes, at a volume of 1 ml per plate. Then, microspore cultures were incubated at 25 °C in the dark, and microspores reprogrammed and produced multicellular structures/proembryos that can be found after 4-6 days in culture, as the first sign of embryogenesis initiation. Proembryos further developed and produced coleoptylar and mature embryos (Fig. 2), which were observed after 30 days.

1.3. Microspore embryogenesis of Q. suber, through anther culture (protocol without inhibitors)

[0083] Branches with several catkins were cut and collected from *Q. suber* trees in the countryside (El Pardo region, Madrid, Spain), during the flowering period (from early May to early-mid June). Cut tips of branches were immediately covered with moist cotton and aluminium foil, and transferred to the laboratory, where they were kept in the dark at 4 °C for several days, until use for *in vitro* culture. Selected catkins were separated from branches and sterilized by immersion in 70% ethanol for 30-60 s, under vacuum, to aid penetration of the solvent. They were then immersed in 2% sodium hypochlorite with 1% Tween-20 for 20 min, with magnetic stirring. After three washes in sterile distilled water, catkins were prepared for dissection and anther excision.

[0084] Anther culture and microspore embryogenesis induction were performed as previously described (Testillano

et al. 2018, Forestry Sciences Vol. 84. Springer International Publishing AG. pp. 93-105). Anthers containing vacuolated microspores, the most responsive stage for embryogenesis induction, were carefully excised from sterilized catkins under aseptic conditions and plated in Petri dishes of 90 mm diameter on solid induction medium which contained Sommer medium macronutrients, Murashige and Skoog (MS) micronutrients and vitamins, as well as 30 g/L sacarose and activated charcoal. Anthers were placed in linear arrays of 10-12 anthers each, with a gap of around 5 mm between each anther, and up to 100 anthers per Petri dish. Embryogenesis was induced by stress treatment at 33°C in darkness for 5 days. After this inductive treatment, the anther cultures were transferred to 25 °C in darkness. In the following 20-30 days, responsive anthers become swollen and proembryos and small proembryogenic masses were visible as very small white structures emerging from the anther interior, breaking the tissues of the anther wall. After some more days, proembryos and proembryogenic masses grew and formed globular embryos by direct and indirect embryogenesis from individual microspores.

[0085] Microspore-derived embryogenic masses and embryos were transferred to new plates with proliferation medium which has a similar composition to induction medium except that it does not contain activated charcoal and is supplemented with 0.5 g/L glutamine. They were kept at 25 °C in darkness and sub-cultured every month in the same medium, where embryogenic masses can proliferate and spontaneously originate new globular embryos, which further developed heart-shaped, torpedo and cotyledonary embryos. In proliferation medium, some of these embryos produced new embryos by secondary and recurrent embryogenesis.

1.4. Somatic embryogenesis of Q. suber, through immature zygotic embryos culture (protocol without inhibitors)

20

30

40

50

[0086] Immature pollinated acorns were collected from *Q. suber* L. (cork oak) trees in the countryside (El Pardo region, Madrid, Spain) during fruit development period (late August and September), transferred to the laboratory and kept at 4°C for one week before *in vitro* culture initiation. Immature acorns were selected at the most responsive stage to somatic embryogenesis induction; they are those with small size, around 1 cm diameter, and green colour; they contain immature zygotic embryos at the early cotyledonary stage.

[0087] Immature zygotic embryos were carefully excised from the acorns by dissecting the surrounding tissues with the help of scalpel and forceps. After dissection, explants (immature zygotic embryos) were sterilized by immersion in 70% ethanol for 30 s and in 2% sodium hypochlorite for 20 min, followed by three rinses in sterile distilled water of 10 min each. Five explants were placed per plate.

[0088] Somatic embryogenesis was induced as previously described (Testillano et al. 2018, Plant Cell Culture Protocols, eds. V.M. Loyola-Vargas & N. Ochoa-Alejo. Springer and Bussines Media. pp. 247-256). Explants were first cultured in solid induction medium, which contains Sommer macronutrients, MS micronutrients and vitamins, 0.5mg/l Glutamine, 30g/l Sucrose, and 0.5mg/l 2,4-Dichlorophenoxyacetic acid (2,4-D), for one month at 25°C and 16/8h light/darkness. During this induction period, cell reprogramming occurs in some responsive cells which initiated the embryogenesis pathway, producing small proembryogenic masses. Then, the explants were transferred to solid proliferation medium, with the same composition but growth regulator-free (without 2,4-D). During the next weeks of culture in the proliferation medium, proembryogenic masses proliferated and protruded from different parts of the explants; they produce new embryogenic masses and embryos, which in turn give rise to new embryos, that developed to fully developed cotyledonary embryos, by recurrent and secondary embryogenesis (Fig. 3).

1.5. Treatment with mammal kinases inhibitors on microspore embryogenesis cultures of *B. napus* and *H. vulgare* in liquid media

[0089] The compounds were added to the microspore liquid culture media by using stock solutions of 10 mM in DMSO. Appropriate volumes of stock solutions of the drugs were added to the culture media to get the selected working concentrations of the inhibitors, keeping DMSO concentration below 0.2%.

- In *B. napus* microspore cultures: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8), 5-(2-Morpholinethylim-ino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36), 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7), N-(6-methylbenzo-thiazole-2-yl)-4-morpholinobenzamide (JZ1.3), N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6) and N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24). and (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75) were tested at 3-4 different concentrations, ranging from 0.5 to 5 μM.
- In H. vulgare microspore cultures: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8) and N-(6-bromoben-zothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) inhibitors at the selected concentrations (2.5 μM and 5μ, respectively) were tested.

[0090] The compounds were added from culture initiation and their effect on embryogenesis efficiency was assessed. Several plates of the same cultures were kept without the inhibitors, as controls.

1.6. Evaluation of the effect of mammal kinases inhibitors over *in vitro* embryogenesis induction in isolated microspore cultures of *B. napus* and *H. vulgare*

[0091] Embryogenesis induction was quantified in control and treated-cultures by the number of proembryos formed (considered the first sign of embryogenesis initiation), as previously described, and by the number of embryos produced after 40 days. Proembryos were easily identified under inverted microscope in 4 day-culture plates as rounded multicellular structures with higher size and density than microspores, still surrounded by the exine (special microspore wall). Embryos produced after 40 days in culture were quantified through images captured under a stereo microscope. Randomly obtained micrographs from inverted and stereo microscopes were collected from untreated and treated microspore culture plates. Mean percentage of proembryos and mean number of embryos per plate were obtained from three independent experiments per each *in vitro* system and treatment. A minimum of 1000 proembryos were counted for each treatment and plant species. Results on proembryos were expressed as percentages (percent change) and referred to the mean percentage of proembryos in control cultures, which has been normalized to 100%.

[0092] In order to evaluate whether proembryo structures of treated cultures, identified under the inverted microscope for quantification, were actually dividing microspores, similar to the same structures in control cultures, a simply staining technique was performed to visualize nuclei inside proembryos. Samples from control and treated-cultures of 4 days, containing proembryos, were stained with 10 μ g/mL 4',6-diamidine-2-phenyl indole dihydrochloride (DAPI). Squash preparations were analysed under fluorescence microscopy using UV excitation for observing nuclei.

1.7. Evaluation of quality/germination capacity of embryos produced after treatment with mammal kinases inhibitors

[0093] To evaluate the quality of embryos produced in microspore embryogenesis cultures in the presence of the mammal kinases inhibitors, embryo germination assays were performed. *B. napus* microspore cotyledonary embryos originated from control and treated-cultures were used for *in vitro* embryo germination and conversion to plantlets as previously described (Prem et al., 2012, BMC Plant Biology 12, 127). The 34 - 40 old dicotyledonous embryos, after air desiccation on sterile filter paper were germinated in MS medium containing sucrose 2 % (w/v) and gelled with 7 g/L bacteriological agar (w/v). Microspore derived-embryos were incubated for 15 - 20 days at 18°C in darkness conditions till activation of radicle and plumule, and quantified in terms of percentage of embryos showing normal growth, similar to zygotic embryo germination.

35 1.8. Treatments with kinases inhibitors on microspore and somatic embryogenesis cultures of *Q. suber* in solid media

[0094] Since the *in vitro* systems of *Q. suber* were two-step processes in solid culture media, a different strategy than in liquid microspore cultures was applied for the treatments with the mammal kinases inhibitors. During *in vitro* embryogenesis of *Q. suber*, after incubation in induction medium, the transfer of explants to proliferating medium involves the multiplication of proembryogenic masses, embryogenesis initiation, by recurrent and secondary embryogenesis, and embryo development. Therefore, treatments with the mammal kinases inhibitors were performed during the first 15-30 days in proliferating media, and afterwards, explants with emerging embryos were transferred to fresh proliferating media without the inhibitor.

[0095] Since solid media involve much less diffusion and availability of compounds to cells in comparison with liquid media, as referred in other *in vitro* systems, the concentration of the mammal kinases inhibitors used in solid media was around 10X higher than in liquid media, in the range of 25 to 100 μ M. Appropriate volumes of stock solutions of 10 mM in DMSO of the selected compounds were added to cooled media, before its gelling, keeping DMSO concentration below 0.2%. Mock parallel plates of the same cultures were kept as controls.

1.9. Evaluation of the effect of inhibitors over *in vitro* embryogenesis induction in microspore and somatic embryogenesis cultures of *Q. suber*

[0096] Embryogenesis induction efficiency was quantified in control and treated-cultures by the number of cotyledonary embryos produced by 15-30 days of treatment (culture medium containing the inhibitor) followed by 30 days of recovery (culture medium without inhibitor). Embryo production was estimated as the number of cotyledonary embryos originated per gram of embryogenic masses at culture initiation.

25

30

20

5

50

Results

30

40

1.1. Effect of kinases inhibitors over microscope embryogenesis cultures B. napus

[0097] To evaluate the effect of the kinase inhibitors over in vitro embryogenesis induction, we first tested them in B. napus microspore embryogenesis, as a model platform to check the mammal kinases inhibitors and different concentrations. After these analyses, one selected mammal kinases inhibitor of each category was tested in other two plant species, H. vulgare and Q. suber, with different in vitro systems. The efficiency of embryogenesis induction was evaluated in control cultures and cultures treated with the mammal kinases inhibitors, at different concentrations. The results for the GSK3 β inhibitors and LRRK2 inhibitors tested are shown as the percentage of proembryos (first sign of embryogenesis initiation) in Figs. 4 and 5, respectively. The presence of the inhibitors in the culture media affected the production of proembryos in comparison with control cultures, being the proportion of proembryos different depending on the concentration used. Four inhibitors of GSK3β TDZD8; VP3.15, VP3.36, VP0.7 were tested at 3-4 concentrations in the range of $0.1\mu M$ to $5\mu M$. The results of the quantification of the proembryos produced, as first sign of embryogenesis initiation. in control and treated cultures showed that all inhibitors, at least with one or two of the concentrations used, led to an increase of the production of proembryos (Figs. 4 and 5). The concentrations and compounds that provided an improvement of embryogenesis initiation yield were the following: GSK3β inhibitors, 0.5μM and 1μM TDZD-8, 2.5μM VP3.15, 2.5μM VP3.36, and 5μM VP0.7 (Fig. 4); LRRK2 inhibitors, 2.5μM JZ1.24, 5μM JZ1.3, 5μM IGS4.75, and 1μM JZ1.6 (Fig. 5). With the other concentrations, treated cultures showed a proportion of proembryos either similar to or slightly higher than control cultures (Figs. 4 and 5), while they did not show any deleterious/toxic effect.

[0098] The results showed that the increase of embryogenesis induction efficiency provided by the use of the inhibitors was in the range of 20-25% for GSK3 β inhibitors and 23-30% for LRRK2 inhibitors.

[0099] To confirm that proembryos quantified in treated cultures were multicellular microspores that have initiated embryogenesis, squash preparations from control and treated cultures at 4 days were stained with DAPI and observed under fluorescence microscopy. Results showed that proembryos from treated cultures contained several nuclei (Fig. 6), as in control cultures, indicating that they were actually dividing microspores that likely initiated embryogenesis.

[0100] Taking into account these results in *B. napus*, the compounds that were selected for testing in other *in vitro* embryogenesis systems were:

- 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD.8) as GSK3β inhibitor and
 - N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) as LRRK2 inhibitor.

[0101] As it is showed in Fig 7, the selected compounds, the GSK3 β inhibitor TDZD.8 and the LRRK2 inhibitor JZ1.24 showed an increase of embryogenesis efficiency, i.e. increase in the percentage of proembryos that was of 20% increase in the case of 0.5 μ M TDZD.8, and 27.5% increase in the case of 2.5 μ M JZ1.24. in *B. napus* microspore cultures (Fig. 7). [0102] The quality of the embryos produced in microspore cultures treated with the mentioned inhibitors was evaluated by germination assays. Fully developed cotyledonary embryos from control and treatedcultures, produced after 30 days were desiccated and cultured under germination conditions. Results showed that embryos from treated cultures germinated very well, producing roots and hypocotyl, similarly and in the same proportion than embryos from control cultures (Fig. 8).

1.2. Effect of kinase inhibitors over microscope embryogenesis cultures of *H. vulgare*

[0103] The selected inhibitors, TDZ.8 and JZ1.24 were tested in microspore embryogenesis cultures of a different crop, *H. vulgare*. The inhibitors were firstly applied at the same concentrations that provided the best results in *B. napus*, 0.5μM TDZD8 and 2.5μM JZ1.24, but the results obtained (percentage of proembryos) in *H. vulgare* treated cultures using these concentrations were similar to control cultures. Therefore, two slightly higher concentrations were tested for both inhibitors (1μM and 2.5μM for TDZD8; and 2.5μM and 5μM for JZ1.24). The results showed that the two inhibitors lead to an increase in the embryogenesis initiation in *H. vulgare*, when used at slightly different concentrations than in *B. napus*, 2.5 μM TDZD8 and 5 μM JZ1.24. This indicates that optimal concentrations of these inhibitors could differ among species, probably due to differences in cell wall and permeability properties, and the specific features of each plant and *in vitro* system. The quantification of the proembryos formed at 4 days showed that treatments with the two inhibitors at the selected concentrations enhanced embryogenesis induction efficiency in *H. vulgare*, being the increase in proembryo formation of 27% in the case of 2.5 μM TDZD8, and 47% in the case of 5 μM JZ1.24-treated cultures (Fig. 9).

[0104] Untreated and treated cultures further developed and total number of embryos produced per plate at 40 days was quantified. Microspore cultures treated with these inhibitors produced more embryos than control cultures, being the increment of 22% for JZ1.24 and 15% for TDZD8 (Fig. 10).

[0105] The results indicated that small molecule inhibitors of mammalian GSK3β and LRRK2 produced a similar

promoting effect in *H. vulgare* than in *B. napus* microspore cultures, an increase of *in vitro* embryogenesis induction efficiency.

1.3. Effect of kinase inhibitors over microspore and somatic embryogenesis cultures of Q. suber

[0106] In order to evaluate the possibility to extend the findings from *B. napus* and H. *vulgare* to more distant species and processes, the selected inhibitors, TDZD.8 and JZ1.24, were applied to a forest woody species *Q. suber,* in which two different embryogenesis *in vitro* systems were established, somatic embryogenesis from immature zygotic embryos and microspore embryogenesis, two culture systems that consisted in two-step cultures in solid media.

[0107] Inhibitor treatments were applied at concentrations 10X higher than in liquid media, because of the lower diffusion and availability of compounds in gelled medium. The evaluation of the effects of the compounds over embryogenesis efficiency in the two systems were assessed by the quantification of the embryos produced in control and treated cultures. Results showed that treatments with the two types of inhibitors increased embryogenesis induction efficiency and lead to higher embryo production, in somatic embryogenesis from immature zygotic embryos cultures (Fig. 11), as well as in microspore embryogenesis from anther cultures (Fig. 12).

[0108] The results indicated that also in a woody species and in different *in vitro* embryogenesis systems, involving solid culture media, the small molecule inhibitors of mammalian GSK3β and LRRK2 produced the same effect than in rapeseed and barley systems in liquid media, an increase of *in vitro* embryogenesis induction efficiency.

Conclusions

[0109] The present invention deals with a major challenge of *in vitro* plant propagation techniques, that is to improve the efficiency of embryogenesis induction for rapid production of high numbers of high quality, disease-free and uniform planting material for agroindustry companies, reducing time and costs, in many species of economic interest. The new strategy reported in the present invention uses for the first time in plant *in vitro* systems inhibitors of mammalian protein kinases, specifically inhibitors of GSK3 β and LRRK2 families, which have demonstrated capacity to increase embryogenesis induction and embryo production yield in three different crop and forest species. Moreover, treatments with these inhibitors have been successfully applied to different *in vitro* protocols, in liquid or solid media, and with direct, indirect and secondary/recurrent embryogenesis, providing similar promoting effects over embryogenesis. Several inhibitors of each group, with different molecular structure, have shown to be able to enhance embryogenesis efficiency, giving additional support to the use of these type of small molecules as new tools to optimize *in vitro* plant embryogenesis protocols.

2. Synthesis and characterisation of the inibitors of the present invention.

2.1. Inhibitors of Formula (I)

[0110] 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8) is disclosed in Martinez A et al. (Martinez A et al. J Med Chem. 2002; 45(6):1292-9).

2.2. Inhibitors of Formula (II)

[0111] All of inhibotors of Formula (II), including 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), are disclosed in EP2484670A1.

2.3. Inhibitors of Formula (III)

[0112] 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36) is disclosed in Perez DI *et al.* (Perez DI et al. J Med Chem. 2011; 54(12):4042-56).

2.4. Inhibitors of Formula (IV)

[0113] 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7) is disclosed in Palomo V et al. (Palomo V et al. J Med Chem. 201; 60(12):4983-5001).

2.5. Inhibitors of Formula (V)

[0114] N-(benzothiazole-2-yl)-4-morpholinobenzamide: 276.0 mg of 4-morpholinobenzoic acid (1.3 mmol), 331.00

16

5

10

20

35

30

45

40

50

55

mg of EDCI (1.4 mmol), 24.4 mg of DMAP (0.3 mmol) and 335 μL (2.4 mmol) of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-aminobenzothiazole (1.3 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO₃ and NaCl, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by chromatography in a flash column using a mixture of eluents $CH_2CI_2/MeOH$ (20:1) to obtain a yellow solid (72 mg, 16%). HPLC Purity >95%. MS: m/z 340 [M + 1]⁺. ¹H NMR (300 MHz, CDCI₃) δ 10.21 (s, 1 H, NH), 7.90 (d, J = 9.0 Hz, 2 H), 7.84 (dd, J = 8.5, 1.5 Hz, 1 H), 7.62 (dd, J = 8.3, 1.2 Hz, 1 H), 7.44 - 7.35 (m, 1 H), 7.35 - 7.27 (m, 1 H), 4.01 - 3.71 (m, 4 H), 3.49 - 3.16 (m, 4 H). ¹³C NMR (75 MHz, DMSO- d_6) δ 164.6, 159.1, 154.3, 148.2, 132.2, 129.4, 126.0, 123.7, 121.3, 121.1, 120.7, 113.8, 66.5, 47.4.

[0115] *N*-(6-methoxybenzothiazole-2-yl)-4-morpholinobenzamide: 230.0 mg of 4-morpholinobenzoic acid (1.1 mmol), 276.6 mg of EDCI (1.4 mmol), 24.43 mg of DMAP (0.2 mmol) and 248 μ L (1.7 mmol) of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-methoxybenzothiazole (1.1 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO₃ and NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents CH₂Cl₂/MeOH (50:1) to obtain a yellow solid (36 mg, 9%). P.f.: 237.6-240.0 °C. HPLC Purity: 95%. MS: m/z 370 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ 9.47 (s, 1H), 7.88 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.33 (d, J = 2.6 Hz, 1H), 7.04 (dd, J = 8.8, 2.6 Hz, 1H), 6.94 (d, J = 9.0 Hz, 2H), 3.93-3.83 (m, 7H), 3.36-3.31 (m, 4H). ¹³C NMR (75 MHz, DMSO- d_6) δ 164.8, 156.9, 156.0, 153.8, 142.7, 132.8, 129.8, 120.8, 120.5, 114.80, 113.1, 104.6, 65.8, 55.6, 46.8.

[0116] *N*-(6-trifluoromethylbenzothiazole-2-yl)-4-morpholinobenzamide: 189.9 mg of 4-morpholinobenzoic acid (0.9 mmol), 228.53 mg of EDCI (1.2 mmol), 22.41 mg of DMAP (0.2 mmol) and 223 μ L (1.5 mmol) of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-trifluorobenzothiazole (0.9 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO₃ and NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage@Isolera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid (79 mg, 26%). P.f.: 218.5-218.5 °C. HPLC Purity: 95%. MS: m/z 408 [M+H]+. ¹H NMR (300 MHz, CDCl₃) δ 10.85 (s, 1H), 8.13 (s, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.57-7.53 (m, 2H), 6.84 (d, J = 9.0 Hz, 2H), 3.87-3.83 (m, 4H), 3.31-3.26 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 163.8, 160.8, 153.4, 149.4, 131.2, 128.5, 124.9 (d, J = 32.5 Hz), 124.3, 122.1 (d, J = 3.4 Hz), 119.6 (d, J = 32.2 Hz), 118.0 (d, J = 4.2 Hz), 112.7, 65.4, 46.3, 28.6. C₁₉H₁₆F₃N₃O₂S: Theoretical (%) C, 56.01; H, 3.96; N, 10.31; S, 7.87. Found (%) C, 56.13; H, 3.98; N, 10.38; S, 7.59.

[0117] *N*-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3): 252.4 mg of 4-morpholinobenzoic acid (1.2 mmol), 303.5 mg of EDCI (1.58 mmol), 20.06 mg of DMAP (0.2 mmol) and 272 μL (1.9 mmol) of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-methylbenzothiazole (1.2 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of HCI (0.1M), saturated NaHCO₃ and saturated NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage®Isolera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid (43 mg, 10%). P.f.: 287.7-288.8 °C. MS (ESI+): m/z 354 [M+H]+. ¹H NMR (300 MHz, CDCI₃) δ 10.56 (s, 1H), 7.89 (d, J= 8.9 Hz, 2H), 7.63 (s, 1H), 7.42 (d, J=8.3 Hz, 1H), 7.16 (dd, J=8.3, 1.7 Hz, 1H), 6.85 (d, J=8.9 Hz, 1H), 3.87-3.83 (m, 4H), 3.29-3.26 (m, 4H), 2.46 (s, 3H). ¹³C NMR (75 MHz, CDCI₃) δ 164.7, 158.5, 154.2, 146.1, 133.7, 132.3, 129.4, 127.5, 121.3, 121.1, 120.3, 113.8, 66.5, 47.5, 21.4. C₁₉H₁₉N₃O₂S: Theoretical (%) C, 64.57; H, 5.42; N, 11.89; S, 9.07. Found (%) C, 64.33; H, 5.38; N, 11.85; S, 8.96.

[0118] *N*-(6-chlorobenzothiazole-2-yl)-4-morpholinobenzamide: 224.4 mg of 4-morpholinobenzoic acid (1.1 mmol), 269.89 mg of EDCI (1.4 mmol), 26.4 mg of DMAP (0.2 mmol) and 242 μ L (1.7 mmol) of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-chlorobenzothiazole (1.1 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of HCI (0.1M), saturated NaHCO₃ and saturated NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage®Isolera One) using a mixture of eluents hexane/AcOEt to obtain a white solid (96 mg, 24%). P.f.: 245.4-246.4 °C. HPLC Purity: 97%. MS: m/z 374 [M+H]⁺. ¹H NMR (300 MHz, CDCI₃) δ 10.25 (s, 1H), 7.89 (d, J = 8.9 Hz, 2H), 7.81 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.33 (dd, J = 8.7, 2.1 Hz, 1H), 6.89 (d, J = 9.0 Hz, 2H), 3.92-3.82 (m, 4H), 3.33-3.30 (m, 4H). ¹³C NMR (75 MHz, CDCI₃) δ 164.5, 159.3, 154.4, 146.8, 139.7, 133.5, 129.4, 126.7, 121.5, 121.0, 120.8, 113.7, 66.5, 47.4. C₁₈H₁₆CIN₃O₂S: Theoretical (%) C, 57.83; H, 4.31; N, 11.24; S, 8.58. Found (%) C, 57.56; H, 4.09; N, 11.43; S, 8.40.

[0119] N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.6): 168.20 mg of 4-morpholinobenzoic acid (1.2 mmol), 296.3 mg of EDCI (1.5 mmol), 29.05 mg of DMAP (0.2 mmol) and 265 μ L (1.9 mmol) of triethylamine were

dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-fluorobenzothiazole (1.2 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of HCI (0.1M), saturated NaHCO₃ and saturated NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage®Isolera One) using a mixture of eluents hexane/AcOEt to obtain a white solid (79 mg, 19%). P.f.: 228.3-229.3 °C. HPLC Purity: 98%. MS: m/z 358 [M+H]+. ¹H NMR (300 MHz, CDCI₃) δ 9.96 (s, 1H), 7.81 (d, J = 8.9 Hz, 2H), 7.74 (d, J = 2.1 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.28 (dd, J = 8.7, 2.1 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 3.87-3.85 (m, 4H), 3.34-3.30 (m, 4H). ¹³C NMR (75 MHz, CDCI₃) δ 164.4, 159.2, 154.4, 147.0, 138.7, 133.6, 129.3, 126.8, 121.6, 121.0, 120.8, 113.8, 66.5, 47.4. $C_{18}H_{16}FN_3O_2S$: Theoretical (%) C, 60.49; H, 4.51; N, 11.76; S, 8.97. Found (%) C, 60.68; H, 4.50; N, 11.55; S, 8.72.

[0120] N-(6-ethoxybenzothiazole-2-yl)-4-morpholinobenzamide: 213.1 mg of 4-morpholinobenzoic acid (1.0 mmol), 256.2 mg of EDCI (1.3 mmol), 25.12 mg of DMAP (0.2 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 200 mg of 2-amino-6-ethoxybenzothiazole (1.0 mmol) and 229 μL of triethylamine (1.9 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of HCI (0.1M), saturated NaHCO₃ and saturated NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage®Isolera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid (20 mg, 5%). P.f.: 222.8-223.8 °C. HPLC Purity: 95%. MS: m/z 384 [M+H] $^+$. ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.9 Hz, 1H), 7.35-7.18 (m, 1H), 7.04 (dd, J = 8.9, 2.4 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 4.07 (q, J = 6.9 Hz, 2H), 3.89-3.69 (m, 4H), 3.38-3.25 (m, 4H), 1.43 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.4, 157.1, 156.0, 154.2, 142.3, 133.3, 129.3, 121.3, 121.2, 119.7, 115.5, 114.2, 113.8, 106.0, 104.9, 99.5, 66.5, 64.1, 64.1, 47.5, 14.8.[0121] N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24): 180.9 mg of 4-morpholinobenzoic acid (0.9 mmol), 217.6 mg of EDCI (1.1 mmol), 21.33 mg of DMAP (0.2 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 200 mg of 2-amino-6-bromobenzothiazole (0.9 mmol) and 195 µl of triethylamine (1.4 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of HCI (0.1M), saturated NaHCO₃ and saturated NaCI, respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage®Isolera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid (41 mg, 11%). P.f.: 237.5-238.5 °C. HPLC Purity: 98%. MS: m/z 418 [M+H] +. ¹H NMR (300 MHz, CDCl₃) δ 10.51 (s, 1H), 7.96 (s, 1H), 7.87 (d, J = 9.0 Hz, 3H), 7.44 (dd, J = 8.6, 1.9 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 6.86 (d, J= 9.0 Hz, 3H), 3.89-3.83 (m, 11H), 3.33-3.26 (m, 11H). 13 C NMR (75 MHz, CDCl₃) δ 165.2, 160.4, 154.8, 147.1, 134.1, 130.0, 129.9, 124.3, 122.1, 121.1, 117.2, 114.1, 66.9, 47.8.

[0122] *N*-(6-propoxybenzothiazole-2-yl)-4-morpholinobenzamide: 248.8 mg of 4-morpholinobenzoic acid (1.2 mmol), 299.00 mg of EDCI (1.6 mmol), 29.3 mg of DMAP (0.2 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 250 mg of 2-amino-6-propoxybenzothiazole (1.2 mmol) and 267.6 μ L (1.9 mmol) of triethylamine were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with a HCl solution (0.1M). Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents $CH_2CI_2/MeOH$ (50:1) to obtain a yellow solid (127 mg, 27%). HPLC Purity>95%. MS: m/z 398 [M+H]+. ¹H NMR (300 MHz, CDCI₃) δ 7.88 (d, J = 9.0 Hz, 2H), 7.46 (d, J = 8.9 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 6.96 (dd, J = 8.9, 2.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 2H), 3.98 (t, J = 6.6 Hz, 2H), 3.89 - 3.83 (m, 4H), 3.32 - 3.27 (m, 4H), 1.85 (h, J = 7.3 Hz, 2H), 1.06 (t, J = 7.4 Hz, 2H). I C NMR (75 MHz, CDCI₃) δ 163.6, 156.3, 155.2, 153.3, 141.27, 132.2, 128.4, 120.4, 120.3, 114.5, 112.8, 103.9, 69.2, 65.5, 46.5, 21.6, 9.5. $C_{21}H_{23}N_3O_3S$: Theoretical (%) C, 63.46; C, H, 5.83; C, N, 10.57; C, 8.07. Found (%) C, 63.73; C, 7.74, N, 10.09; C, 7.71.

[0123] *N*-(6-isopropylbenzothiazole-2-yl)-4-morpholinobenzamide: 269.4 mg of 4-morpholinobenzoic acid (1.3 mmol), 324.00 mg of EDCI (1.7 mmol), 32.00 mg of DMAP (0.3 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 250 mg of 2-amino-6-isopropylbenzothiazole (1.3 mmol) and 290.0 μ L (2.1 mmol) of triethylamine were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with a HCl solution (0.1M). Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents $CH_2CI_2/MeOH$ (50:1) to obtain a yellow solid (218.4 mg, 44%). HPLC Purity>95%. MS: m/z 382 [M+H]+. ¹H NMR (300 MHz, CDCI₃) δ 10.35 (s, 1H), 7.89 (d, J = 9.0 Hz, 2H), 7.68 (d, J = 1.7 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.26 - 7.22 (m, 1H), 6.88 (d, J = 9.0 Hz, 2H), 3.89 - 3.81 (m, 4H), 3.33 - 3.25 (m, 4H), 3.03 (p, J = 6.9 Hz, 1H), 1.31 (d, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCI₃) δ 163.7, 157.7, 153.2, 145.3, 143.9, 131.3, 128.4, 124.0, 120.4, 119.4, 119.1, 117.5, 112.8, 65.5, 46.5, 33.2, 23.3. $C_{21}H_{23}N_3O_2S$: Theoretical (%) C, 66.12; H, 6.08; N, 11.00; S, 8.40. Found (%) C, 66.09; H, 6.13; N, 10.69; S, 8.54.

[0124] 2.6. Inhibitor of formula (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75): is disclosed in Salado IG. et al., (Salado IG. et al., Eur J Med Chem. 2017 Sep 29;138:328-342).

SEQUENCE LISTING

	<110> CSIC - Consejo Superior de Investigaciones Científicas
5	<120> Mammal kinase inhibitors for the induction of the in vitro embryogenesis of plants
	<130> 1641.1479
10	<160> 7
	<170> PatentIn version 3.5
	<210> 1 <211> 420
15	<212> PRT <213> Homo sapiens
	<400> 1
20	Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro 1 5 10 15
	Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys 20 25 30
25	Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro
	35 40 45
30	Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn 50 55 60
	Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu
35	65 70 75 80
	Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg 85 90 95
40	Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu
	100 105 110
45	Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu 115 120 125
	113 120 123
	Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg 130 135 140
50	
	His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu 145 150 155 160
55	Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly 165 170 175

	Ile	Cys	His	Arg 180	Asp	Ile	Lys	Pro	Gln 185	Asn	Leu	Leu	Leu	Asp 190	Pro	Asp
5	Thr	Ala	Val 195	Leu	Lys	Leu	Cys	Asp 200	Phe	Gly	Ser	Ala	Lys 205	Gln	Leu	Val
10	Arg	Gly 210	Glu	Pro	Asn	Val	Ser 215	Tyr	Ile	Cys	Ser	Arg 220	Tyr	Tyr	Arg	Ala
	Pro 225	Glu	Leu	Ile	Phe	Gly 230	Ala	Thr	Asp	Tyr	Thr 235	Ser	Ser	Ile	Asp	Val 240
15	Trp	Ser	Ala	Gly	Cys 2 4 5	Val	Leu	Ala	Glu	Leu 250	Leu	Leu	Gly	Gln	Pro 255	Ile
20	Phe	Pro	Gly	Asp 260	Ser	Gly	Val	Asp	Gln 265	Leu	Val	Glu	Ile	Ile 270	Lys	Val
25	Leu	Gly	Thr 275	Pro	Thr	Arg	Glu	Gln 280	Ile	Arg	Glu	Met	Asn 285	Pro	Asn	Tyr
	Thr	Glu 290	Phe	Lys	Phe	Pro	Gln 295	Ile	Lys	Ala	His	Pro 300	Trp	Thr	Lys	Val
30	Phe 305	Arg	Pro	Arg	Thr	Pro 310	Pro	Glu	Ala	Ile	A la 315	Leu	Cys	Ser	Arg	Leu 320
35	Leu	Glu	Tyr	Thr	Pro 325	Thr	Ala	Arg	Leu	Thr 330	Pro	Leu	Glu	Ala	Cys 335	Ala
	His	Ser	Phe	Phe 340	Asp	Glu	Leu	Arg	Asp 345	Pro	Asn	Val	Lys	Leu 350	Pro	Asn
40	Gly	Arg	Asp 355	Thr	Pro	Ala	Leu	Phe 360	Asn	Phe	Thr	Thr	Gln 365	Glu	Leu	Ser
45	Ser	A sn 370	Pro	Pro	Leu	Ala	Thr 375	Ile	Leu	Ile	Pro	Pro 380	His	Ala	Arg	Ile
50	Gln 385	Ala	Ala	Ala	Ser	Thr 390	Pro	Thr	Asn	Ala	Thr 395	Ala	Ala	Ser	Asp	A la 4 00
	Asn	Thr	Gly	Asp	Arg 405	Gly	Gln	Thr	Asn	Asn 410	Ala	Ala	Ser	Ala	Ser 415	Ala
55	Ser	Asn	Ser	Thr 420												

5	<210 <211 <212 <213	L> 4 2> 1	2 433 PRT Homo	sap	iens											
			2 Gly	Arg		Arg	Thr	Thr	Ser		Ala	Glu	Ser	Cys		Pro
10	1 Val	Gln	Gln	Pro	5 Ser	λla	Dhe	G1v	Ser	10	Luc	Va 1	Ser	Ara	15 Asn	T.ve
	Vai	GIII	GIII	20	per	AIG	1116	GIY	25	Mec	цуз	Val	Der	30	изр	цуз
15	Asp	Gly	Ser 35	Lys	Val	Thr	Thr	Val 40	Val	Ala	Thr	Pro	Gly 4 5	Gln	Gly	Pro
20	Asp	Arg 50	Pro	Gln	Glu	Val	Ser 55	Tyr	Thr	Asp	Thr	Lys 60	Val	Ile	Gly	Asn
05	Gly 65	Ser	Phe	Gly	Val	Val 70	Tyr	Gln	Ala	Lys	Leu 75	Cys	Asp	Ser	Gly	Glu 80
25	Leu	Val	Ala	Ile	Lys 85	Lys	Val	Leu	Gln	Asp 90	Lys	Arg	Phe	Lys	Asn 95	Arg
30	Glu	Leu	Gln	Ile 100	Met	Arg	Lys	Leu	Asp 105	His	Cys	Asn	Ile	Val 110	Arg	Leu
35	Arg	Tyr	Phe 115	Phe	Tyr	Ser	Ser	Gly 120	Glu	Lys	Lys	Asp	Glu 125	Val	Tyr	Leu
40	Asn	Leu 130	Val	Leu	Asp	Tyr	Val 135	Pro	Glu	Thr	Val	Туг 140	Arg	Val	Ala	Arg
 0	His 145	Tyr	Ser	Arg	Ala	Lys 150	Gln	Thr	Leu	Pro	Val 155	Ile	Tyr	Val	Lys	Leu 160
45	Tyr	Met	Tyr	Gln	Leu 165	Phe	Arg	Ser	Leu	Ala 170	Tyr	Ile	His	Ser	Phe 175	Gly
50	Ile	Cys	His	Arg 180	Asp	Ile	Lys	Pro	Gln 185	Asn	Leu	Leu	Leu	Asp 190	Pro	Asp
	Thr	Ala	Val 195	Leu	Lys	Leu	Суѕ	Asp 200	Phe	Gly	Ser	Ala	Lys 205	Gln	Leu	Val
55	Arg	Gly 210	Glu	Pro	Asn	Val	Ser 215	Tyr	Ile	Cys	Ser	Arg 220	Tyr	Tyr	Arg	Ala

	Pro Gl	ı Leu	Ile	Phe	Gly 230	Ala	Thr	Asp	Tyr	Thr 235	Ser	Ser	Ile	Asp	Val 240
5	Trp Se	r Ala		Cys 2 4 5	Val	Leu	Ala	Glu	Leu 250	Leu	Leu	Gly	Gln	Pro 255	Ile
10	Phe Pr	o Gly	Asp 260	Ser	Gly	Val	Asp	Gln 265	Leu	Val	Glu	Ile	Ile 270	Lys	Val
45	Leu Gl	y Thr 275	Pro	Thr	Arg	Glu	Gln 280	Ile	Arg	Glu	Met	A sn 285	Pro	Asn	Tyr
15	Thr Gl		Lys	Phe	Pro	Gln 295	Ile	Lys	Ala	His	Pro 300	Trp	Thr	Lys	Asp
20	Ser Se	r Gly	Thr	Gly	His 310	Phe	Thr	Ser	Gly	Val 315	Arg	Val	Phe	Arg	Pro 320
25	Arg Th	r Pro		Glu 325	Ala	Ile	Ala	Leu	Cys 330	Ser	Arg	Leu	Leu	Glu 335	Tyr
	Thr Pr	o Thr	Ala 340	Arg	Leu	Thr	Pro	Leu 345	Glu	Ala	Cys	Ala	His 350	Ser	Phe
30	Phe As	9 Glu 355	Leu	Arg	Asp	Pro	As n 360	Val	Lys	Leu	Pro	As n 365	Gly	Arg	Asp
35	Thr Pro		Leu	Phe	Asn	Phe 375	Thr	Thr	Gln	Glu	Leu 380	Ser	Ser	Asn	Pro
40	Pro Le	u Ala	Thr	Ile	Leu 390	Ile	Pro	Pro	His	Ala 395	Arg	Ile	Gln	Ala	Ala 400
	Ala Se	r Thr	Pro	Thr 405	Asn	Ala	Thr	Ala	Ala 410	Ser	Asp	Ala	Asn	Thr 415	Gly
45	Asp Ar	g Gly	Gln 4 20	Thr	Asn	Asn	Ala	Ala 425	Ser	Ala	Ser	Ala	Ser 430	Asn	Ser
50	Thr														
55	<210> <211> <212> <213>	3 387 PRT Homo	sapi	ens											

	<400)> :	3													
5	Met 1	Ser	Gly	Arg	Pro 5	Arg	Thr	Thr	Ser	Phe 10	Ala	Glu	Ser	Cys	Lys 15	Pro
	Val	Gln	Gln	Pro 20	Ser	Ala	Phe	Gly	Ser 25	Met	Lys	Val	Ser	Arg 30	Asp	Lys
10	Asp	Gly	Ser 35	Lys	Val	Thr	Thr	Val 40	Val	Ala	Thr	Pro	Gly 4 5	Gln	Gly	Pro
15	Asp	Arg 50	Pro	Gln	Glu	Val	Ser 55	Tyr	Thr	Asp	Thr	Lys 60	Val	Ile	Gly	Asn
	Gly 65	Ser	Phe	Gly	Val	Val 70	туг	Gln	Ala	Lys	Le u 75	Суз	Asp	Ser	Gly	Glu 80
20	Leu	Val	Ala	Ile	Lys 85	Lys	Val	Leu	Gln	Asp 90	Lys	Arg	Phe	Lys	As n 95	Arg
25	Glu	Leu	Gln	Ile 100	Met	Arg	Lys	Leu	Asp 105	His	Cys	Asn	Ile	Val 110	Arg	Leu
30	Arg	Tyr	Phe 115	Phe	Tyr	Ser	Ser	Gly 120	Glu	Lys	Lys	Asp	Glu 125	Val	Tyr	Leu
30	Asn	Leu 130	Val	Leu	Asp	Tyr	Val 135	Pro	Glu	Thr	Val	Tyr 140	Arg	Val	Ala	Arg
35	His 145	Tyr	Ser	Arg	Ala	Lys 150	Gln	Thr	Leu	Pro	Val 155	Ile	Tyr	Val	Lys	Leu 160
40	Tyr	Met	Tyr	Gln	Leu 165	Phe	Arg	Ser	Leu	Ala 170	Tyr	Ile	His	Ser	Phe 175	Gly
	Ile	Cys	His	Ar g 180	Asp	Ile	Lys	Pro	Gln 185	Asn	Leu	Leu	Leu	Asp 190	Pro	Asp
45	Thr	Ala	Val 195	Leu	Lys	Leu	Cys	Asp 200	Phe	Gly	Ser	Ala	Lys 205	Gln	Leu	Val
50	Arg	Gly 210	Glu	Pro	Asn	Val	Ser 215	Tyr	Ile	Cys	Ser	Arg 220	Tyr	Туг	Arg	Ala
	Pro 225	Glu	Leu	Ile	Phe	Gly 230	Ala	Thr	Asp	туг	Thr 235	Ser	Ser	Ile	Asp	Val 240

Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Gly Gln Pro Ile

55

	245 250 255	
5	Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Va 260 265 270	1
	Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Ty 275 280 285	r
10	Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Va 290 295 300	1
15	Phe Arg Pro Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Le 305 310 315 32	
20	Leu Glu Tyr Thr Pro Thr Ala Arg Leu Thr Pro Leu Glu Ala Cys Al 325 330 335	a
	His Ser Phe Phe Asp Glu Leu Arg Asp Pro Asn Val Lys Leu Pro As 340 345 350	n
25	Gly Arg Asp Thr Pro Ala Leu Phe Asn Phe Thr Thr Gln Asp Ala As 355 360 365	n
30	Thr Gly Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala Se 370 380	r
	Asn Ser Thr 385	
35	<210> 4 <211> 400 <212> PRT <213> Homo sapiens	
40	<400> 4	
	Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pr 1 5 10 15	0
45	Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Ly 20 25 30	s
50	Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pr 35 40 45	0
55	Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly As 50 55 60	n
	Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Gl	u

	65					70					75					80
5	Leu	Val	Ala	Ile	Lys 85	Lys	Val	Leu	Gln	Asp 90	Lys	Arg	Phe	Lys	As n 95	Arg
10	Glu	Leu	Gln	Ile 100	Met	Arg	Lys	Leu	Asp 105	His	Cys	Asn	Ile	Val 110	Arg	Leu
	Arg	Tyr	Phe 115	Phe	Tyr	Ser	Ser	Gly 120	Glu	Lys	Lys	Asp	Glu 125	Val	Tyr	Leu
15	Asn	Leu 130	Val	Leu	Asp	Tyr	Val 135	Pro	Glu	Thr	Val	Tyr 140	Arg	Val	Ala	Arg
20	His 145	Tyr	Ser	Arg	Ala	Lys 150	Gln	Thr	Leu	Pro	Val 155	Ile	Tyr	Val	Lys	Leu 160
	Tyr	Met	туг	Gln	Leu 165	Phe	Arg	Ser	Leu	Ala 170	Tyr	Ile	His	Ser	Phe 175	Gly
25	Ile	Cys	His	Arg 180	Asp	Ile	Lys	Pro	Gln 185	Asn	Leu	Leu	Leu	Asp 190	Pro	Asp
30	Thr	Ala	Val 195	Leu	Lys	Leu	Cys	Asp 200	Phe	Gly	Ser	Ala	Lys 205	Gln	Leu	Val
35	Arg	Gly 210	Glu	Pro	Asn	Val	Ser 215	Tyr	Ile	Cys	Ser	Arg 220	Tyr	Tyr	Arg	Ala
	Pro 225	Glu	Leu	Ile		Gly 230		Thr			Thr 235		Ser	Ile	_	Val 240
40	Trp	Ser	Ala	Gly	Cys 2 4 5	Val	Leu	Ala	Glu	Leu 250	Leu	Leu	Gly	Gln	Pro 255	Ile
45	Phe	Pro	Gly	Asp 260	Ser	Gly	Val	Asp	Gln 265	Leu	Val	Glu	Ile	Ile 270	Lys	Val
50	Leu	Gly	Thr 275	Pro	Thr	Arg	Glu	Gln 280	Ile	Arg	Glu	Met	As n 285	Pro	Asn	Tyr
	Thr	Glu 290	Phe	Lys	Phe	Pro	Gln 295	Ile	Lys	Ala	His	Pro 300	Trp	Thr	Lys	Asp
55	Ser 305	Ser	Gly	Thr	Gly	His 310	Phe	Thr	Ser	Gly	Val 315	Arg	Val	Phe	Arg	Pro 320

	Arg	Thr	Pro	Pro	Glu 325	Ala	Ile	Ala	Leu	Cys 330	Ser	Arg	Leu	Leu	Glu 335	Tyr
5	Thr	Pro	Thr	Ala 340	Arg	Leu	Thr	Pro	Leu 345	Glu	Ala	Cys	Ala	His 350	Ser	Phe
10	Phe	Asp	Glu 355	Leu	Arg	Asp	Pro	A sn 360	Val	Lys	Leu	Pro	As n 365	Gly	Arg	Asp
	Thr	Pro 370	Ala	Leu	Phe	Asn	Phe 375	Thr	Thr	Gln	Asp	Ala 380	Asn	Thr	Gly	Asp
15	Ar g 385	Gly	Gln	Thr	Asn	As n 390	Ala	Ala	Ser	Ala	Ser 395	Ala	Ser	Asn	Ser	Thr 400
20	<210 <211 <212 <213	L> 2 2> E	5 2527 PRT Homo	sapi	iens											
25	<400)> 5	5													
	Met 1	Ala	Ser	Gly	Ser 5	Cys	Gln	Gly	Cys	Glu 10	Glu	Asp	Glu	Glu	Thr 15	Leu
30	Lys	Lys	Leu	Ile 20	Val	Arg	Leu	Asn	Asn 25	Val	Gln	Glu	Gly	Lys 30	Gln	Ile
35	Glu	Thr	Leu 35	Val	Gln	Ile	Leu	Glu 40	Asp	Leu	Leu	Val	Phe 45	Thr	Tyr	Ser
	Glu	Arg 50	Ala	Ser	Lys	Leu	Phe 55	Gln	Gly	Lys	Asn	Ile 60	His	Val	Pro	Leu
40	Le u 65	Ile	Val	Leu	Asp	Ser 70	Tyr	Met	Arg	Val	Ala 75	Ser	Val	Gln	Gln	Val 80
45	Gly	Trp	Ser	Leu	Leu 85	Cys	Lys	Leu	Ile	Glu 90	Val	Cys	Pro	Gly	Thr 95	Met
50	Gln	Ser	Leu	Met 100	Gly	Pro	Gln	Asp	Val 105	Gly	Asn	Asp	Trp	Glu 110	Val	Leu
	Gly	Val	His 115	Gln	Leu	Ile	Leu	Lys 120	Met	Leu	Thr	Val	His 125	Asn	Ala	Ser
55	Val	Asn 130	Leu	Ser	Val	Ile	Gly 135	Leu	Lys	Thr	Leu	Asp 140	Leu	Leu	Leu	Thr

	Ser 145	Gly	Lys	Ile	Thr	Leu 150	Leu	Ile	Leu	Asp	Glu 155	Glu	Ser	Asp	Ile	Phe 160
5	Met	Leu	Ile	Phe	Asp 165	Ala	Met	His	Ser	Phe 170	Pro	Ala	Asn	Asp	Glu 175	Val
10	Gln	Lys	Leu	Gly 180	Cys	Lys	Ala	Leu	His 185	Val	Leu	Phe	Glu	Arg 190	Val	Ser
	Glu	Glu	Gln 195	Leu	Thr	Glu	Phe	Val 200	Glu	Asn	Lys	Asp	Туг 205	Met	Ile	Leu
15	Leu	Ser 210	Ala	Leu	Thr	Asn	Phe 215	Lys	Asp	Glu	Glu	Glu 220	Ile	Val	Leu	His
20	Val 225	Leu	His	Cys	Leu	His 230	Ser	Leu	Ala	Ile	Pro 235	Cys	Asn	Asn	Val	Glu 240
25	Val	Leu	Met	Ser	Gly 2 4 5	Asn	Val	Arg	Cys	Tyr 250	Asn	Ile	Val	Val	G1u 255	Ala
	Met	Lys	Ala	Phe 260	Pro	Met	Ser	Glu	Arg 265	Ile	Gln	Glu	Val	Ser 270	Cys	Cys
30	Leu	Leu	His 275	Arg	Leu	Thr	Leu	Gly 280	Asn	Phe	Phe	Asn	Ile 285	Leu	Val	Leu
35	Asn	Glu 290	Val	His	Glu	Phe	Val 295	Val	Lys	Ala	Val	Gln 300	Gln	Tyr	Pro	Glu
	Asn 305	Ala	Ala	Leu	Gln	Ile 310	Ser	Ala	Leu	Ser	Cys 315	Leu	Ala	Leu	Leu	Thr 320
40	Glu	Thr	Ile	Phe	Leu 325	Asn	Gln	Asp	Leu	Glu 330	Glu	Lys	Asn	Glu	As n 335	Gln
45	Glu	Asn	Asp	Asp 340	Glu	Gly	Glu	Glu	Asp 345	Lys	Leu	Phe	Trp	Leu 350	Glu	Ala
50	Cys	Tyr	Lys 355	Ala	Leu	Thr	Trp	His 360	Arg	Lys	Asn	Lys	His 365	Val	Gln	Glu
	Ala	Al a 370	Cys	Trp	Ala	Leu	A sn 375	Asn	Leu	Leu	Met	Туг 380	Gln	Asn	Ser	Leu
55	His 385	Glu	Lys	Ile	Gly	Asp 390	Glu	Asp	Gly	His	Phe 395	Pro	Ala	His	Arg	Glu 400

	Val	Met	Leu	Ser	Met 4 05	Leu	Met	His	Ser	410	Ser	Lys	Glu	Val	Phe 415	Gln
5	Ala	Ser	Ala	Asn 420	Ala	Leu	Ser	Thr	Leu 425	Leu	Glu	Gln	Asn	Val 430	Asn	Phe
10	Arg	Lys	Ile 435	Leu	Leu	Ser	Lys	Gly 440	Ile	His	Leu	Asn	Val 445	Leu	Glu	Leu
	Met	Gln 450	Lys	His	Ile	His	Ser 455	Pro	Glu	Val	Ala	Glu 460	Ser	Gly	Cys	Lys
15	Met 465	Leu	Asn	His	Leu	Phe 470	Glu	Gly	Ser	Asn	Thr 475	Ser	Leu	Asp	Ile	Met 480
20	Ala	Ala	Val	Val	Pro 485	Lys	Ile	Leu	Thr	Val 490	Met	Lys	Arg	His	Glu 495	Thr
25	Ser	Leu	Pro	Val 500	Gln	Leu	Glu	Ala	Leu 505	Arg	Ala	Ile	Leu	His 510	Phe	Ile
	Val	Pro	Gly 515	Met	Pro	Glu	Glu	Ser 520	Arg	Glu	Asp	Thr	G1u 525	Phe	His	His
30	Lys	Leu 530	Asn	Met	Val	Lys	Lys 535	Gln	Cys	Phe	Lys	As n 5 4 0	Asp	Ile	His	Lys
35	Leu 545	Val	Leu	Ala	Ala	Leu 550	Asn	Arg	Phe	Ile	Gly 555	Asn	Pro	Gly	Ile	Gln 560
40	Lys	Cys	Gly	Leu	Lys 565	Val	Ile	Ser	Ser	Ile 570	Val	His	Phe	Pro	Asp 575	Ala
40	Leu	Glu	Met	Leu 580	Ser	Leu	Glu	Gly	Ala 585	Met	Asp	Ser	Val	Leu 590	His	Thr
45	Leu	Gln	Met 595	Tyr	Pro	Asp	Asp	Gln 600	Glu	Ile	Gln	Cys	Leu 605	Gly	Leu	Ser
50	Leu	Ile 610	Gly	Tyr	Leu	Ile	Thr 615	Lys	Lys	Asn	Val	Phe 620	Ile	Gly	Thr	Gly
	His 625	Leu	Leu	Ala	Lys	Ile 630	Leu	Val	Ser	Ser	Leu 635	Tyr	Arg	Phe	Lys	Asp 640
55	Val	Ala	Glu	Ile	Gln 645	Thr	Lys	Gly	Phe	Gln 650	Thr	Ile	Leu	Ala	11e 655	Leu

	Lys	Leu	Ser	A la 660	Ser	Phe	Ser	Lys	Leu 665	Leu	Val	His	His	Ser 670	Phe	Asp
5	Leu	Val	Ile 675	Phe	His	Gln	Met	Ser 680	Ser	Asn	Ile	Met	Glu 685	Gln	Lys	Asp
10	Gln	Gln 690	Phe	Leu	Asn	Leu	Cys 695	Cys	Lys	Cys	Phe	Ala 700	Lys	Val	Ala	Met
	Asp 705	Asp	Tyr	Leu	Lys	Asn 710	Val	Met	Leu	Glu	Arg 715	Ala	Cys	Asp	Gln	Asn 720
15	Asn	Ser	Ile	Met	Val 725	Glu	Cys	Leu	Leu	Leu 730	Leu	Gly	Ala	Asp	Ala 735	Asn
20	Gln	Ala	Lys	Glu 740	Gly	Ser	Ser	Leu	Ile 745	Cys	Gln	Val	Cys	Glu 750	Lys	Glu
25	Ser	Ser	Pro 755	Lys	Leu	Val	Glu	Leu 760	Leu	Leu	Asn	Ser	Gly 765	Ser	Arg	Glu
	Gln	As p 770	Val	Arg	Lys	Ala	Leu 775	Thr	Ile	Ser	Ile	Gly 780	Lys	Gly	Asp	Ser
30	Gln 785	Ile	Ile	Ser	Leu	Leu 790	Leu	Arg	Arg	Leu	A la 795	Leu	Asp	Val	Ala	Asn 800
35	Asn	Ser	Ile	Cys	Leu 805	Gly	Gly	Phe	Cys	Ile 810	Gly	Lys	Val	Glu	Pro 815	Ser
40	Trp	Leu	Gly	Pro 820	Leu	Phe	Pro	Asp	Lys 825	Thr	Ser	Asn	Leu	Arg 830	Lys	Gln
	Thr	Asn	Ile 835	Ala	Ser	Thr	Leu	Ala 8 4 0	Arg	Met	Val	Ile	Arg 845	Tyr	Gln	Met
45	Lys	Ser 850	Ala	Val	Glu	Glu	Gly 855	Thr	Ala	Ser	Gly	Ser 860	Asp	Gly	Asn	Phe
50	Ser 865	Glu	Asp	Val	Leu	Ser 870	Lys	Phe	Asp	Glu	Trp 875	Thr	Phe	Ile	Pro	Asp 880
55	Ser	Ser	Met	Asp	Ser 885	Val	Phe	Ala	Gln	Ser 890	Asp	Asp	Leu	Asp	Ser 895	Glu
55	Gly	Ser	Glu	Gly	Ser	Phe	Leu	Val	Lys	Lys	Lys	Ser	Asn	Ser	Ile	Ser

	900 905 910	
5	Val Gly Glu Phe Tyr Arg Asp Ala Val Leu Gln Arg Cys Ser Pro As 915 920 925	n
10	Leu Gln Arg His Ser Asn Ser Leu Gly Pro Ile Phe Asp His Glu As 930 935 940	р
	Leu Leu Lys Arg Lys Ile Leu Ser Ser Asp Asp Ser Leu Ar 945 950 955 96	
15	Ser Ser Lys Leu Gln Ser His Met Arg His Ser Asp Ser Ile Ser Se 965 970 975	r
20	Leu Ala Ser Glu Arg Glu Tyr Ile Thr Ser Leu Asp Leu Ser Ala As 980 985 990	n
25	Glu Leu Arg Asp Ile Asp Ala Leu Ser Gln Lys Cys Cys Ile Ser 995 1000 1005	Val
25	His Leu Glu His Leu Glu Lys Leu Glu Leu His Gln Asn Ala Leu 1010 1015 1020	
30	Thr Ser Phe Pro Gln Gln Leu Cys Glu Thr Leu Lys Ser Leu Thr 1025 1030 1035	
35	His Leu Asp Leu His Ser Asn Lys Phe Thr Ser Phe Pro Ser Tyr 1040 1045 1050	!
	Leu Leu Lys Met Ser Cys Ile Ala Asn Leu Asp Val Ser Arg Asn 1055 1060 1065	
40	Asp Ile Gly Pro Ser Val Val Leu Asp Pro Thr Val Lys Cys Pro 1070 1075 1080	!
45	Thr Leu Lys Gln Phe Asn Leu Ser Tyr Asn Gln Leu Ser Phe Val 1085 1090 1095	
50	Pro Glu Asn Leu Thr Asp Val Val Glu Lys Leu Glu Gln Leu Ile 1100 1105 1110	1
	Leu Glu Gly Asn Lys Ile Ser Gly Ile Cys Ser Pro Leu Arg Leu 1115 1120 1125	l
55	Lys Glu Leu Lys Ile Leu Asn Leu Ser Lys Asn His Ile Ser Ser 1130 1135 1140	

	Leu	Ser 1145	Glu	Asn	Phe	Leu	Glu 1150	Ala	Cys	Pro	Lys	Val 1155	Glu	Ser	Phe
5	Ser	Ala 1160	Arg	Met	Asn	Phe	Leu 1165	Ala	Ala	Met	Pro	Phe 1170	Leu	Pro	Pro
10	Ser	Met 1175	Thr	Ile	Leu	Lys	Leu 1180	Ser	Gln	Asn	Lys	Phe 1185	Ser	Cys	Ile
	Pro	Glu 1190	Ala	Ile	Leu	Asn	Leu 1195	Pro	His	Leu	Arg	Ser 1200	Leu	Asp	Met
15	Ser	Ser 1205	Asn	Asp	Ile	Gln	Туг 1210	Leu	Pro	Gly	Pro	Ala 1215	His	Trp	Lys
20	Ser	Leu 1220	Asn	Leu	Arg	Glu	Leu 1225	Leu	Phe	Ser	His	Asn 1230	Gln	Ile	Ser
25	Ile	Leu 1235	Asp	Leu	Ser	Glu	Lys 1240	Ala	Tyr	Leu	Trp	Ser 1245	Arg	Val	Glu
	Lys	Leu 1250	His	Leu	Ser	His	As n 1255	Lys	Leu	Lys	Glu	Ile 1260	Pro	Pro	Glu
30	Ile	Gly 1265	Cys	Leu	Glu	Asn	Leu 1270	Thr	Ser	Leu	Asp	Val 1275	Ser	Tyr	Asn
35	Leu	Glu 1280	Leu	Arg	Ser	Phe	Pro 1285	Asn	Glu	Met	Gly	Lys 1290	Leu	Ser	Lys
40		Trp 1295	_				-							Asp	Phe
40	Lys	His 1310	Ile	Gly	Cys	Lys	Ala 1315	Lys	Asp	Ile	Ile	Arg 1320	Phe	Leu	Gln
45	Gln	Arg 1325	Leu	Lys	Lys	Ala	Val 1330	Pro	Tyr	Asn	Arg	Met 1335	Lys	Leu	Met
50	Ile	Val 13 4 0	Gly	Asn	Thr	Gly	Ser 1345	Gly	Lys	Thr	Thr	Leu 1350	Leu	Gln	Gln
	Leu	Met 1355	Lys	Thr	Lys	Lys	Ser 1360	Asp	Leu	Gly	Met	Gln 1365	Ser	Ala	Thr
55	Val	Gly 1370	Ile	Asp	Val	Lys	Asp 1375	Trp	Pro	Ile	Gln	Ile 1380	Arg	Asp	Lys

	Arg Ly 13		Asp	Leu	Val	Leu 1390		Val	Trp	Asp	Phe 1395	Ala	Gly	Arg
5	Glu Gl 14		Tyr	Ser	Thr	His 1405	Pro	His	Phe	Met	Thr 1410	Gln	Arg	Ala
10	Leu Ty		Ala	Val	Tyr	Asp 1420	Leu	Ser	Lys	Gly	Gln 1 42 5	Ala	Glu	Val
	Asp Al 14		Lys	Pro	Trp	Leu 1435	Phe	Asn	Ile	Lys	Ala 1440	Arg	Ala	Ser
15	Ser Se 14		Val	Ile	Leu	Val 1450	Gly	Thr	His	Leu	Asp 1455	Val	Ser	Asp
20	Glu Ly 14		Arg	Lys	Ala	Cys 1465		Ser	Lys	Ile	Thr 1470	Lys	Glu	Leu
25	Leu As	_	Arg	Gly	Phe	Pro 1480	Ala	Ile	Arg	Asp	Tyr 1485	His	Phe	Val
	Asn Al 14		Glu	Glu	Ser	Asp 1495	Ala	Leu	Ala	Lys	Leu 1500	Arg	Lys	Thr
30	Ile Il 15		Glu	Ser	Leu	Asn 1510	Phe	Lys	Ile	Arg	Asp 1515	Gln	Leu	Val
35	Val Gl		Leu	Ile	Pro	Asp 1525	Cys	Tyr	Val	Glu	Leu 1530	Glu	Lys	Ile
40	Ile Le 15			_	_	Asn 1540							Val	Ile
40	Asp Ar 15		Arg	Leu	Leu	Gln 1555	Leu	Val	Arg	Glu	Asn 1560	Gln	Leu	Gln
45	Leu As		Asn	Glu	Leu	Pro 1570	His	Ala	Val	His	Phe 1575	Leu	Asn	Glu
50	Ser Gl	-	Leu	Leu	His	Phe 1585	Gln	Asp	Pro	Ala	Leu 1590	Gln	Leu	Ser
	Asp Le 15	_	Phe	Val	Glu	Pro 1600	Lys	Trp	Leu	Cys	Lys 1605	Ile	Met	Ala
55	Gln II		Thr	Val	Lys	Val 1615	Glu	Gly	Cys	Pro	Lys 1620	His	Pro	Lys

	Gly	Ile 1625	Ile	Ser	Arg	Arg	Asp 1630	Val	Glu	Lys	Phe	Leu 1635	Ser	Lys	Lys
5	Arg	Lys 1640	Phe	Pro	Lys	Asn	Tyr 1645	Met	Ser	Gln	Tyr	Phe 1650	Lys	Leu	Leu
10	Glu	Lys 1655	Phe	Gln	Ile	Ala	Leu 1660	Pro	Ile	Gly	Glu	Glu 1665	Tyr	Leu	Leu
	Val	Pro 1670	Ser	Ser	Leu	Ser	Asp 1675		Arg	Pro	Val	Ile 1680	Glu	Leu	Pro
15	His	Cys 1685	Glu	Asn	Ser	Glu	Ile 1690	Ile	Ile	Arg	Leu	Tyr 1695	Glu	Met	Pro
20	Tyr	Phe 1700	Pro	Met	Gly	Phe	Trp 1705	Ser	Arg	Leu	Ile	Asn 1710	Arg	Leu	Leu
25	Glu	Ile 1715	Ser	Pro	Tyr	Met	Leu 1720	Ser	Gly	Arg	Glu	Arg 1725	Ala	Leu	Arg
	Pro	Asn 1730	Arg	Met	Tyr	Trp	Arg 1735	Gln	Gly	Ile	Tyr	Leu 1740	Asn	Trp	Ser
30	Pro	Glu 17 4 5	Ala	туг	Cys	Leu	Val 1750	Gly	Ser	Glu	Val	Leu 1755	Asp	Asn	His
35	Pro	Glu 1760	Ser	Phe	Leu	Lys	Ile 1765	Thr	Val	Pro	Ser	Cys 1770	Arg	Lys	Gly
40	Cys	Ile 1775	Leu	Leu	Gly	Gln	Val 1780	Val	Asp	His	Ile	Asp 1785	Ser	Leu	Met
	Glu	Glu 1790	Trp	Phe	Pro	Gly	Leu 1795	Leu	Glu	Ile	Asp	Ile 1800	Cys	Gly	Glu
45	Gly	Glu 1805	Thr	Leu	Leu	Lys	Lys 1810	Trp	Ala	Leu	Tyr	Ser 1815	Phe	Asn	Asp
50	Gly	Glu 1820	Glu	His	Gln	Lys	Ile 1825	Leu	Leu	Asp	Asp	Leu 1830	Met	Lys	Lys
55	Ala	Glu 1835	Glu	Gly	Asp	Leu	Leu 18 4 0	Val	Asn	Pro	Asp	Gln 1845	Pro	Arg	Leu
	Thr	Ile	Pro	Ile	Ser	Gln	Ile	Ala	Pro	Asp	Leu	Ile	Leu	Ala	Asp

	1850)		1855		1860	
5	Leu Pro 1865	, - :	Ile Met	Leu As 1870	sn Asn Asp	Glu Leu 1875	Glu Phe Glu
10	Gln Ala 1880		Phe Leu	Leu Gl 1885	y Asp Gly	Ser Phe 1890	Gly Ser Val
	Tyr Arg 1895		Tyr Glu	Gly Gl 1900	u Glu Val	Ala Val 1905	Lys Ile Phe
15	Asn Lys 1910		Ser Leu	Arg Le	eu Leu Arg	Gln Glu 1920	Leu Val Val
20	Leu Cys 1925		His His	Pro Se 1930	er Leu Ile	Ser Leu 1935	Leu Ala Ala
05	Gly Ile 1940		Arg Met	Leu Va 1945	al Met Glu	Leu Ala 1950	Ser Lys Gly
25	Ser Leu 1955		Leu Leu	Gln Gl 1960	n Asp Lys	Ala Ser 1965	Leu Thr Arg
30	Thr Leu 1970		Arg Ile	Ala Le 1975	eu His Val	Ala Asp 1980	Gly Leu Arg
35	Tyr Leu 1985		Ala Met	Ile Il 1990	e Tyr Arg	Asp Leu 1995	Lys Pro His
	Asn Val 2000			-	r Pro Asn		Ile Ile Ala
40	Lys Ile 2015	_	Tyr Gly	Ile Al 2020	a Gln Tyr.	Cys Cys 2025	Arg Met Gly
45	Ile Lys 2030		Glu Gly	Thr Pr 2035	o Gly Phe	Arg Ala 2040	Pro Glu Val
50	Ala Arg 2045	_	Val Ile	Tyr As 2050	sn Gln Gln	Ala Asp 2055	Val Tyr Ser
	Phe Gly 2060		Leu Tyr	Asp I1 2065	e Leu Thr	Thr Gly 2070	Gly Arg Ile
55	Val Glu 2075		Lys Phe	Pro As 2080	sn Glu Phe	Asp Glu 2085	Leu Glu Ile

	Gln	Gly 2090		Leu	Pro	Asp	Pro 2095	Val	Lys	Glu	Tyr	Gly 2100	Cys	Ala	Pro
5	Trp	Pro 2105	Met	Val	Glu	Lys	Leu 2110	Ile	Lys	Gln	Cys	Leu 2115	Lys	Glu	Asn
10	Pro	Gln 2120	Glu	Arg	Pro	Thr	Ser 2125	Ala	Gln	Val	Phe	Asp 2130	Ile	Leu	Asn
	Ser	Ala 2135	Glu	Leu	Val	Cys	Leu 2140	Thr	Arg	Arg	Ile	Leu 2145	Leu	Pro	Lys
15	Asn	Val 2150	Ile	Val	Glu	Cys	Met 2155	Val	Ala	Thr	His	His 2160	Asn	Ser	Arg
20	Asn	Ala 2165	Ser	Ile	Trp	Leu	Gly 2170	Cys	Gly	His	Thr	Asp 2175	Arg	Gly	Gln
25	Leu	Ser 2180	Phe	Leu	Asp	Leu	Asn 2185	Thr	Glu	Gly	Tyr	Thr 2190	Ser	Glu	Glu
	Val	Ala 2195	Asp	Ser	Arg	Ile	Leu 2200	Cys	Leu	Ala	Leu	Val 2205	His	Leu	Pro
30	Val	Glu 2210	Lys	Glu	Ser	Trp	Ile 2215	Val	Ser	Gly	Thr	Gln 2220	Ser	Gly	Thr
35	Leu	Leu 2225	Val	Ile	Asn	Thr	Glu 2230	Asp	Gly	Lys	Lys	Arg 2235	His	Thr	Leu
40		Lys 2240			-				-		-	_		Ser	Phe
40	Ser	Lys 2255	Gln	Ser	Lys	Gln	Lys 2260	Asn	Phe	Leu	Leu	Val 2265	Gly	Thr	Ala
45	Asp	Gly 2270	Lys	Leu	Ala	Ile	Phe 2275	Glu	Asp	Lys	Thr	Val 2280	Lys	Leu	Lys
50	Gly	Ala 2285	Ala	Pro	Leu	Lys	Ile 2290	Leu	Asn	Ile	Gly	Asn 2295	Val	Ser	Thr
	Pro	Leu 2300	Met	Cys	Leu	Ser	Glu 2305	Ser	Thr	Asn	Ser	Thr 2310	Glu	Arg	Asn
55	Val	Met 2315	Trp	Gly	Gly	Cys	Gly 2320	Thr	Lys	Ile	Phe	Ser 2325	Phe	Ser	Asn

	Asp Phe Thr Ile Gln Lys Leu Ile Glu Thr Arg Thr Ser Gln Leu 2330 2335 2340
5	Phe Ser Tyr Ala Ala Phe Ser Asp Ser Asn Ile Ile Thr Val Val 2345 2350 2355
10	Val Asp Thr Ala Leu Tyr Ile Ala Lys Gln Asn Ser Pro Val Val 2360 2365 2370
	Glu Val Trp Asp Lys Lys Thr Glu Lys Leu Cys Gly Leu Ile Asp 2375 2380 2385
15	Cys Val His Phe Leu Arg Glu Val Met Val Lys Glu Asn Lys Glu 2390 2395 2400
20	Ser Lys His Lys Met Ser Tyr Ser Gly Arg Val Lys Thr Leu Cys 2405 2410 2415
25	Leu Gln Lys Asn Thr Ala Leu Trp Ile Gly Thr Gly Gly His 2420 2425 2430
	Ile Leu Leu Asp Leu Ser Thr Arg Arg Leu Ile Arg Val Ile 2435 2440 2445
30	Tyr Asn Phe Cys Asn Ser Val Arg Val Met Met Thr Ala Gln Leu 2450 2455 2460
35	Gly Ser Leu Lys Asn Val Met Leu Val Leu Gly Tyr Asn Arg Lys 2465 2470 2475
40	Asn Thr Glu Gly Thr Gln Lys Gln Lys Glu Ile Gln Ser Cys Leu 2480 2485 2490
40	Thr Val Trp Asp Ile Asn Leu Pro His Glu Val Gln Asn Leu Glu 2495 2500
45	Lys His Ile Glu Val Arg Lys Glu Leu Ala Glu Lys Met Arg Arg 2510 2515 2520
50	Thr Ser Val Glu 2525
	<210> 6 <211> 2527 <212> PRT
55	<213> Homo sapiens <400> 6

	Met 1	Ala	Ser	Gly	Ser 5	Cys	Gln	Gly	Cys	Glu 10	Glu	Asp	Glu	Glu	Thr 15	Leu
5	Lys	Lys	Leu	Ile 20	Val	Arg	Leu	Asn	Asn 25	Val	Gln	Glu	Gly	Lys 30	Gln	Ile
10	Glu	Thr	Leu 35	Val	Gln	Ile	Leu	Glu 40	Asp	Leu	Leu	Val	Phe 45	Thr	Tyr	Ser
	Glu	His 50	Ala	Ser	Lys	Leu	Phe 55	Gln	Gly	Lys	Asn	Ile 60	His	Val	Pro	Leu
15	Leu 65	Ile	Val	Leu	Asp	Ser 70	Tyr	Met	Arg	Val	Ala 75	Ser	Val	Gln	Gln	Val 80
20	Gly	Trp	Ser	Leu	Leu 85	Cys	Lys	Leu	Ile	Glu 90	Val	Cys	Pro	Gly	Thr 95	Met
25	Gln	Ser	Leu	Met 100	Gly	Pro	Gln	Asp	Val 105	Gly	Asn	Asp	Trp	Glu 110	Val	Leu
	Gly	Val	His 115	Gln	Leu	Ile	Leu	Lys 120	Met	Leu	Thr	Val	His 125	Asn	Ala	Ser
30	Val	As n 130	Leu	Ser	Val	Ile	Gly 135	Leu	Lys	Thr	Leu	Asp 140	Leu	Leu	Leu	Thr
35	Ser 145	Gly	Lys	Ile	Thr	Leu 150	Leu	Ile	Leu	Asp	Glu 155	Glu	Ser	Asp	Ile	Phe 160
	Met	Leu	Ile	Phe	Asp 165	Ala	Met	His	Ser	Phe 170	Pro	Ala	Asn	Asp	Glu 175	Val
40	Gln	Lys	Leu	Gly 180	Cys	Lys	Ala	Leu	His 185	Val	Leu	Phe	Glu	Arg 190	Val	Ser
45	Glu	Glu	Gln 195	Leu	Thr	Glu	Phe	Val 200	Glu	Asn	Lys	Asp	Tyr 205	Met	Ile	Leu
50	Leu	Ser 210	Ala	Leu	Thr	Asn	Phe 215	Lys	Asp	Glu	Glu	Glu 220	Ile	Val	Leu	His
	Val 225	Leu	His	Cys	Leu	His 230	Ser	Leu	Ala	Ile	Pro 235	Cys	Asn	Asn	Val	Glu 240
55	Val	Leu	Met	Ser	Gly 2 4 5	Asn	Val	Arg	Cys	Tyr 250	Asn	Ile	Val	Val	G1u 255	Ala

	Met	Lys	Ala	Phe 260	Pro	Met	Ser	Glu	Arg 265	Ile	Gln	Glu	Val	Ser 270	Cys	Cys
5	Leu	Leu	His 275	Arg	Leu	Thr	Leu	Gly 280	Asn	Phe	Phe	Asn	Ile 285	Leu	Val	Leu
10	Asn	Glu 290	Val	His	Glu	Phe	Val 295	Val	Lys	Ala	Val	Gln 300	Gln	Tyr	Pro	Glu
-	Asn 305	Ala	Ala	Leu	Gln	Ile 310	Ser	Ala	Leu	Ser	Cys 315	Leu	Ala	Leu	Leu	Thr 320
15	Glu	Thr	Ile	Phe	Leu 325	Asn	Gln	Asp	Leu	Glu 330	Glu	Lys	Asn	Glu	A sn 335	Gln
20	Glu	Asn	Asp	Asp 340	Glu	Gly	Glu	Gl u	Asp 3 4 5	Lys	Leu	Phe	Trp	Le u 350	Glu	Ala
25	Cys	Tyr	Lys 355	Ala	Leu	Thr	Trp	His 360	Arg	Lys	Asn	Lys	His 365	Val	Gln	Glu
	Ala	Ala 370	Cys	Trp	Ala	Leu	As n 375	Asn	Leu	Leu	Met	Tyr 380	Gln	Asn	Ser	Leu
30	His 385	Glu	Lys	Ile	Gly	Asp 390	Glu	Asp	Gly	His	Phe 395	Pro	Ala	His	Arg	Glu 400
35	Val	Met	Leu	Ser	Met 405	Leu	Met	His	Ser	Ser 410	Ser	Lys	Glu	Val	Phe 415	Gln
40	Ala	Ser		Asn 420	Ala	Leu		Thr			Glu	Gln	Asn	Val 430	Asn	Phe
	Arg	Lys	Ile 435	Leu	Leu	Ser	Lys	Gly 440	Ile	His	Leu	Asn	Val 445	Leu	Glu	Leu
45	Met	Gln 450	Lys	His	Ile	His	Ser 455	Pro	Glu	Val	Ala	Glu 460	Ser	Gly	Cys	Lys
50	Met 465	Leu	Asn	His	Leu	Phe 470	Glu	Gly	Ser	Asn	Thr 475	Ser	Leu	Asp	Ile	Met 480
55	Ala	Ala	Val	Val	Pro 485	Lys	Ile	Leu	Thr	Val 490	Met	Lys	Arg	His	Glu 495	Thr
	Ser	Leu	Pro	Val	Gln	Leu	Glu	Ala	Leu	Arg	Ala	Ile	Leu	His	Phe	Ile

				500					505					510		
5	Val	Pro	Gly 515	Met	Pro	Glu	Glu	Ser 520	Arg	Glu	Asp	Thr	Glu 525	Phe	His	His
10	Lys	Leu 530	Asn	Met	Val	Lys	Lys 535	Gln	Cys	Phe	Lys	Asn 540	Asp	Ile	His	Lys
	Leu 545	Val	Leu	Ala	Ala	Le u 550	Asn	Arg	Phe	Ile	Gly 555	Asn	Pro	Gly	Ile	Gln 560
15	Lys	Cys	Gly	Leu	Lys 565	Val	Ile	Ser	Ser	Ile 570	Val	His	Phe	Pro	Asp 575	Ala
20	Leu	Glu	Met	Leu 580	Ser	Leu	Glu	Gly	Ala 585	Met	Asp	Ser	Val	Leu 590	His	Thr
	Leu	Gln	Met 595	Tyr	Pro	Asp	Asp	Gln 600	Glu	Ile	Gln	Cys	Leu 605	Gly	Leu	Ser
25	Leu	Ile 610	Gly	Tyr	Leu	Ile	Thr 615	Lys	Lys	Asn	Val	Phe 620	Ile	Gly	Thr	Gly
30	His 625	Leu	Leu	Ala	Lys	Ile 630	Leu	Val	Ser	Ser	Leu 635	Tyr	Arg	Phe	Lys	Asp 640
35	Val	Ala	Glu	Ile	Gln 645	Thr	Lys	Gly	Phe	Gln 650	Thr	Ile	Leu	Ala	Ile 655	Leu
	Lys	Leu	Ser	Ala 660	Ser		Ser	_				His		Ser 670		Asp
40	Leu	Val	Ile 675	Phe	His	Gln	Met	Ser 680	Ser	Asn	Ile	Met	Glu 685	Gln	Lys	Asp
45	Gln	Gln 690	Phe	Leu	Asn	Leu	Cys 695	Cys	Lys	Cys	Phe	Ala 700	Lys	Val	Ala	Met
50	Asp 705	Asp	Tyr	Leu	Lys	As n 710	Val	Met	Leu	Glu	Arg 715	Ala	Cys	Asp	Gln	Asn 720
	Asn	Ser	Ile	Met	Val 725	Glu	Cys	Leu	Leu	Leu 730	Leu	Gly	Ala	Asp	Ala 735	Asn
55	Gln	Ala	Lys	Glu 740	Gly	Ser	Ser	Leu	Ile 7 4 5	Cys	Gln	Val	Cys	Glu 750	Lys	Glu

	Ser	Ser	Pro 755	Lys	Leu	Val	Glu	Leu 760	Leu	Leu	Asn	Ser	Gly 765	Ser	Arg	Glu
5	Gln	Asp 770	Val	Arg	Lys	Ala	Leu 775	Thr	Ile	Ser	Ile	Gly 780	Lys	Gly	Asp	Ser
10	Gln 785	Ile	Ile	Ser	Leu	Leu 790	Leu	Arg	Arg	Leu	Ala 795	Leu	Asp	Val	Ala	Asn 800
45	Asn	Ser	Ile	Суѕ	Leu 805	Gly	Gly	Phe	Cys	Ile 810	Gly	Lys	Val	Glu	Pro 815	Ser
15	Trp	Leu	Gly	Pro 820	Leu	Phe	Pro	Asp	Lys 825	Thr	Ser	Asn	Leu	Arg 830	Lys	Gln
20	Thr	Asn	Ile 835	Ala	Ser	Thr	Leu	Ala 8 4 0	Arg	Met	Val	Ile	Arg 845	Tyr	Gln	Met
25	Lys	Ser 850	Ala	Val	Glu	Glu	Gly 855	Thr	Ala	Ser	Gly	Ser 860	Asp	Gly	Asn	Phe
	Ser 865	Glu	Asp	Val	Leu	Ser 870	Lys	Phe	Asp	Glu	Trp 875	Thr	Phe	Ile	Pro	Asp 880
30	Ser	Ser	Met	Asp	Ser 885	Val	Phe	Ala	Gln	Ser 890	Asp	Asp	Leu	Asp	Ser 895	Glu
35	Gly	Ser	Glu	Gly 900	Ser	Phe	Leu	Val	Lys 905	Lys	Lys	Ser	Asn	Ser 910	Ile	Ser
40	Val	Gly	Glu 915	Phe	Tyr	Arg	Asp	Ala 920	Val	Leu	Gln	Arg	Cys 925	Ser	Pro	Asn
	Leu	Gln 930	Arg	His	Ser	Asn	Ser 935	Leu	Gly	Pro	Ile	Phe 940	Asp	His	Glu	Asp
45	Leu 945	Leu	Lys	Arg	Lys	Arg 950	Lys	Ile	Leu	Ser	Ser 955	Asp	Asp	Ser	Leu	Arg 960
50	Ser	Ser	Lys	Leu	Gln 965	Ser	His	Met	Arg	His 970	Ser	Asp	Ser	Ile	Ser 975	Ser
	Leu	Ala	Ser	Glu 980	Arg	Glu	Tyr	Ile	Thr 985	Ser	Leu	Asp	Leu	Ser 990	Ala	Asn
55	Glu	Leu	Arg 995	Asp	Ile	Asp	Ala	Leu 1000		Glr	Lys	Cys	100		e Se	er Val

	His	Leu 1010		His	Leu	Glu	Lys 1015		Glu	Leu	His	Gln 1020	Asn	Ala	Leu
5	Thr	Ser 1025	Phe	Pro	Gln	Gln	Leu 1030	Cys	Glu	Thr	Leu	Lys 1035	Ser	Leu	Thr
10	His	Leu 1040		Leu	His	Ser	Asn 1045	_	Phe	Thr	Ser	Phe 1050	Pro	Ser	Tyr
	Leu	Leu 1055	Lys	Met	Ser	Cys	Ile 1060	Ala	Asn	Leu	Asp	Val 1065	Ser	Arg	Asn
15	Asp	Ile 1070	Gly	Pro	Ser	Val	Val 1075	Leu	Asp	Pro	Thr	Val 1080	Lys	Cys	Pro
20	Thr	Leu 1085	Lys	Gln	Phe	Asn	Leu 1090	Ser	Tyr	Asn	Gln	Leu 1095	Ser	Phe	Val
25	Pro	Glu 1100	Asn	Leu	Thr	Asp	Val 1105	Val	Glu	Lys	Leu	Glu 1110	Gln	Leu	Ile
	Leu	Glu 1115	Gly	Asn	Lys	Ile	Ser 1120	Gly	Ile	Cys	Ser	Pro 1125	Leu	Arg	Leu
30	Lys	Glu 1130	Leu	Lys	Ile	Leu	As n 1135	Leu	Ser	Lys	Asn	His 1140	Ile	Ser	Ser
35	Leu	Ser 1145	Glu	Asn	Phe	Leu	Glu 1150	Ala	Cys	Pro	Lys	Val 1155	Glu	Ser	Phe
40	Ser	Ala 1160	Arg	Met	Asn	Phe	Leu 1165	Ala	Ala	Met	Pro	Phe 1170	Leu	Pro	Pro
40	Ser	Met 1175	Thr	Ile	Leu	Lys	Leu 1180	Ser	Gln	Asn	Lys	Phe 1185	Ser	Cys	Ile
45	Pro	Glu 1190	Ala	Ile	Leu	Asn	Leu 1195	Pro	His	Leu	Arg	Ser 1200	Leu	Asp	Met
50	Ser	Ser 1205	Asn	Asp	Ile	Gln	Tyr 1210	Leu	Pro	Gly	Pro	Ala 1215	His	Trp	Lys
	Ser	Leu 1220	Asn	Leu	Arg	Glu	Leu 1225	Leu	Phe	Ser	His	Asn 1230	Gln	Ile	Ser
55	Ile	Leu 1235	Asp	Leu	Ser	Glu	Lys 1240	Ala	Tyr	Leu	Trp	Ser 1245	Arg	Val	Glu

	Lys	Leu 1250	His	Leu	Ser	His	Asn 1255		Leu	Lys	Glu	Ile 1260	Pro	Pro	Glu
5	Ile	Gly 1265	Cys	Leu	Glu	Asn	Leu 1270	Thr	Ser	Leu	Asp	Val 1275	Ser	Tyr	Asn
10	Leu	Glu 1280	Leu	Arg	Ser	Phe	Pro 1285	Asn	Glu	Met	Gly	Lys 1290	Leu	Ser	Lys
	Ile	Trp 1295	Asp	Leu	Pro	Leu	Asp 1300	Glu	Leu	His	Leu	Asn 1305	Phe	Asp	Phe
15	Lys	His 1310	Ile	Gly	Cys	Lys	Ala 1315	Lys	Asp	Ile	Ile	Arg 1320	Phe	Leu	Gln
20	Gln	Arg 1325	Leu	Lys	Lys	Ala	Val 1330	Pro	Tyr	Asn	Arg	Met 1335	Lys	Leu	Met
25	Ile	Val 1340	Gly	Asn	Thr	Gly	Ser 1345		Lys	Thr	Thr	Leu 1350	Leu	Gln	Gln
	Leu	Met 1355	Lys	Thr	Lys	Lys	Ser 1360	Asp	Leu	Gly	Met	Gln 1365	Ser	Ala	Thr
30	Val	Gly 1370	Ile	Asp	Val	Lys	Asp 1375	Trp	Pro	Ile	Gln	Ile 1380	Arg	Asp	Lys
35	Arg	Lys 1385	Arg	Asp	Leu	Val	Leu 1390	Asn	Val	Trp	Asp	Phe 1395	Ala	Gly	Arg
40	Glu	Glu 1 4 00	Phe	Tyr	Ser	Thr	His 1 4 05	Pro	His	Phe	Met	Thr 1410	Gln	Arg	Ala
40	Leu	Tyr 1415	Leu	Ala	Val	Tyr	Asp 1420	Leu	Ser	Lys	Gly	Gln 1425	Ala	Glu	Val
45	Asp	Ala 1430	Met	Lys	Pro	Trp	Leu 1435	Phe	Asn	Ile	Lys	Ala 1440	Arg	Ala	Ser
50	Ser	Ser 1445	Pro	Val	Ile	Leu	Val 1450	Gly	Thr	His	Leu	Asp 1455	Val	Ser	Asp
	Glu	Lys 1460	Gln	Arg	Lys	Ala	Cys 1 4 65	Met	Ser	Lys	Ile	Thr 1470	Lys	Glu	Leu
55	Leu	Asn	Lys	Arg	Gly	Phe	Pro	Ala	Ile	Arg	Asp	Tyr	His	Phe	Val

	1475	5		1480		1485	
5	Asn Ala 1490		Glu Ser	Asp Al 1495	a Leu Ala	Lys Leu 1500	Arg Lys Thr
10	Ile Ile 1505		Ser Leu	Asn Ph	e Lys Ile	Arg Asp 1515	Gln Leu Val
	Val Gly 1520		Ile Pro	Asp Cy 1525	s Tyr Val	Glu Leu 1530	Glu Lys Ile
15	Ile Leu 1535		Arg Lys	Asn Va 1540	l Pro Ile	Glu Phe 1545	Pro Val Ile
20	Asp Arg 1550		Leu Leu	Gln Le 1555	eu Val Arg	Glu Asn 1560	Gln Leu Gln
	Leu Asp 1565		Glu Leu	Pro Hi 1570	s Ala Val	His Phe 1575	Leu Asn Glu
25	Ser Gly 1580		Leu His	Phe Gl 1585	n Asp Pro	Ala Le u 1590	Gln Leu Ser
30	Asp Leu 1595	_	Val Glu	Pro Ly 1600	s Trp Leu	Cys Lys 1605	Ile Met Ala
35	Gln Ile 1610		Val Lys	Val Gl 1615	u Gly Cys	Pro Lys 1620	His Pro Lys
	Gly Ile 1625			_	l Glu Lys		Ser Lys Lys
40	Arg Lys		Lys Asn	Tyr Me 1645	t Thr Gln	Tyr Phe 1650	Lys Leu Leu
45	Glu Lys 1655		Ile Ala	Leu Pr 1660	o Ile Gly	Glu Glu 1665	Tyr Leu Leu
50	Val Pro 1670		Leu Ser	Asp Hi 1675	s Arg Pro	Val Ile 1680	Glu Leu Pro
	His Cys 1685		Ser Glu	Ile Il 1690	e Ile Arg	Leu Tyr 1695	Glu Met Pro
55	Tyr Phe 1700		Gly Phe	Trp Se	er Arg Leu	Ile Asn 1710	Arg Leu Leu

	Glu	Ile 1715	Ser	Pro	Tyr	Met	Leu 1720	Ser	Gly	Arg	Glu	Arg 1725	Ala	Leu	Arg
5	Pro	As n 1730	Arg	Met	Tyr	Trp	Arg 1735	Gln	Gly	Ile	Tyr	Leu 1740	Asn	Trp	Ser
10	Pro	Glu 1745	Ala	Tyr	Cys	Leu	Val 1750	Gly	Ser	Glu	Val	Leu 1755	Asp	Asn	His
	Pro	Glu 1760	Ser	Phe	Leu	Lys	Ile 1765	Thr	Val	Pro	Ser	Cys 1770	Arg	Lys	Gly
15	Cys	Ile 1775	Leu	Leu	Gly	Gln	Val 1780	Val	Asp	His	Ile	Asp 1785	Ser	Leu	Met
20	Glu	Glu 1790	Trp	Phe	Pro	Gly	Leu 1795	Leu	Glu	Ile	Asp	Ile 1800	Cys	Gly	Glu
25	Gly	Glu 1805	Thr	Leu	Leu	Lys	Lys 1810	Trp	Ala	Leu	Tyr	Ser 1815	Phe	Asn	Asp
	Gly	Glu 1820	Glu	His	Gln	Lys	Ile 1825	Leu	Leu	Asp	Asp	Leu 1830	Met	Lys	Lys
30	Ala	Glu 1835	Glu	Gly	Asp	Leu	Leu 1840	Val	Asn	Pro	Asp	Gln 1845	Pro	Arg	Leu
35	Thr	Ile 1850	Pro	Ile	Ser	Gln	Ile 1855	Ala	Pro	Asp	Leu	Ile 1860	Leu	Ala	Asp
40		Pro 1865	_							-				Phe	Glu
40	Gln	A la 1880	Pro	Glu	Phe	Leu	Leu 1885	Gly	Asp	Gly	Ser	Phe 1890	Gly	Ser	Val
45	Tyr	Arg 1895	Ala	Ala	Tyr	Glu	Gly 1900	Glu	Glu	Val	Ala	Val 1905	Lys	Ile	Phe
50	Asn	Lys 1910	His	Thr	Ser	Leu	Arg 1915	Leu	Leu	Arg	Gln	Glu 1920	Leu	Val	Val
	Leu	Cys 1925	His	Leu	His	His	Pro 1930	Ser	Leu	Ile	Ser	Leu 1935	Leu	Ala	Ala
55	Gly	Ile 1940	Arg	Pro	Arg	Met	Leu 1945	Val	Met	Gl u	Leu	Ala 1950	Ser	Lys	Gly

	Ser	Leu 1955		Arg	Leu	Leu	Gln 1960		Asp	Lys	Ala	Ser 1965	Leu	Thr	Arg
5	Thr	Leu 1970	Gln	His	Arg	Ile	Ala 1975	Leu	His	Val	Ala	Asp 1980	Gly	Leu	Arg
10	Tyr	Leu 1985	His	Ser	Ala	Met	Ile 1990	Ile	Tyr	Arg	Asp	Leu 1995	Lys	Pro	His
	Asn	Val 2000	Leu	Leu	Phe	Thr	Leu 2005	Tyr	Pro	Asn	Ala	Ala 2010	Ile	Ile	Ala
15	Lys	Ile 2015	Ala	Asp	Tyr	Gly	Ile 2020	Ala	Gln	Tyr	Cys	Cys 2025	Arg	Met	Gly
20	Ile	Lys 2030	Thr	Ser	Glu	Gly	Thr 2035	Pro	Gly	Phe	Arg	Ala 2040	Pro	Glu	Val
25	Ala	Arg 2045	Gly	Asn	Val	Ile	Tyr 2050	Asn	Gln	Gln	Ala	Asp 2055	Val	Tyr	Ser
	Phe	Gly 2060	Leu	Leu	Leu	Tyr	Asp 2065	Ile	Leu	Thr	Thr	Gly 2070	Gly	Arg	Ile
30	Val	Glu 2075	Gly	Leu	Lys	Phe	Pro 2080	Asn	Glu	Phe	Asp	Glu 2085	Leu	Glu	Ile
35	Gln	Gly 2090	Lys	Leu	Pro	Asp	Pro 2095	Val	Lys	Glu	Tyr	Gly 2100	Cys	Ala	Pro
40	Trp	Pro 2105	Met	Val	Glu	Lys	Leu 2110	Ile	Lys	Gln	Cys	Leu 2115	Lys	Glu	Asn
40	Pro	Gln 2120	Glu	Arg	Pro	Thr	Ser 2125	Ala	Gln	Val	Phe	Asp 2130	Ile	Leu	Asn
45	Ser	Ala 2135	Glu	Leu	Val	Cys	Leu 2140	Thr	Arg	Arg	Ile	Leu 2145	Leu	Pro	Lys
50	Asn	Val 2150	Ile	Val	Glu	Cys	Met 2155	Val	Ala	Thr	His	His 2160	Asn	Ser	Arg
	Asn	Ala 2165	Ser	Ile	Trp	Leu	Gly 2170	Cys	Gly	His	Thr	Asp 2175	Arg	Gly	Gln
55	Leu	Ser 2180	Phe	Leu	Asp	Leu	Asn 2185	Thr	Glu	Gly	Tyr	Thr 2190	Ser	Glu	Glu

	Val	Ala 2195		Ser	Arg	Ile	Leu 2200		Leu	Ala	Leu	Val 2205	His	Leu	Pro
5	Val	Glu 2210	Lys	Glu	Ser	Trp	Ile 2215	Val	Ser	Gly	Thr	Gln 2220	Ser	Gly	Thr
10	Leu	Leu 2225	Val	Ile	Asn	Thr	Glu 2230	Asp	Gly	Lys	Lys	Arg 2235	His	Thr	Leu
	Glu	Lys 22 4 0	Met	Thr	Asp	Ser	Val 22 4 5		Cys	Leu	Tyr	Cys 2250	Asn	Ser	Phe
15	Ser	Lys 2255	Gln	Ser	Lys	Gln	Lys 2260	Asn	Phe	Leu	Leu	Val 2265	Gly	Thr	Ala
20	Asp	Gly 2270	Lys	Leu	Ala	Ile	Phe 2275	Glu	Asp	Lys	Thr	Val 2280	Lys	Leu	Lys
25	Gly	Ala 2285	Ala	Pro	Leu	Lys	Ile 2290	Leu	Asn	Ile	Gly	Asn 2295	Val	Ser	Thr
	Pro	Leu 2300	Met	Cys	Leu	Ser	Glu 2305	Ser	Thr	Asn	Ser	Thr 2310	Glu	Arg	Asn
30	Val	Met 2315	_	Gly	Gly	Cys	Gly 2320	Thr	Lys	Ile	Phe	Ser 2325	Phe	Ser	Asn
35	Asp	Phe 2330	Thr	Ile	Gln	Lys	Leu 2335	Ile	Glu	Thr	Arg	Thr 2340	Ser	Gln	Leu
40	Phe	Ser 2345	Tyr	Ala	Ala	Phe	Ser 2350	Asp	Ser	Asn	Ile	Ile 2355	Thr	Val	Val
	Val	Asp 2360	Thr	Ala	Leu	туг	Ile 2365	Ala	Lys	Gln	Asn	Ser 2370	Pro	Val	Val
45	Glu	Val 2375	Trp	Asp	Lys	Lys	Thr 2380	Glu	Lys	Leu	Cys	Gly 2385	Leu	Ile	Asp
50	Cys	Val 2390	His	Phe	Leu	Arg	Glu 2395	Val	Thr	Val	Lys	Glu 2 4 00	Asn	Lys	Glu
	Ser	Lys 2 4 05	His	Lys	Met	Ser	Tyr 2 4 10	Ser	Gly	Arg	Val	Lys 2 4 15	Thr	Leu	Cys
55	Leu	Gln	Lys	Asn	Thr	Ala	Leu	Trp	Ile	Gly	Thr	Gly	Gly	Gly	His

	2420	2425	2430
5	Ile Leu Leu Leu Asp Leu	Ser Thr Arg Arg Leu	Ile Arg Val Ile
	2435	2440	2445
-	Tyr Asn Phe Cys Asn Ser	Val Arg Val Met Met	Thr Ala Gln Leu
	2450	2455	2460
10	Gly Ser Leu Lys Asn Val	Met Leu Val Leu Gly	Tyr Asn Arg Lys
	2465	2470	2475
15	Asn Thr Glu Gly Thr Gln	Lys Gln Lys Glu Ile	Gln Ser Cys Leu
	2480	2485	2490
20	Thr Val Trp Asp Ile Asn	Leu Pro His Glu Val	Gln Asn Leu Glu
	2495	2500	2505
	Lys His Ile Glu Val Arg	Lys Glu Leu Ala Glu	Lys Met Arg Arg
	2510	2515	2520
25	Thr Ser Val Glu 2525		
30	<210> 7 <211> 2527 <212> PRT <213> Homo sapiens <400> 7		
35	Met Ala Ser Gly Ser Cys G	in Gly Cys Glu Glu As 10	sp Glu Glu Thr Leu 15
40	Lys Lys Leu Ile Val Arg L	eu Asn Asn Val Gln Gl	lu Gly Lys Gln Ile
	20	25	30
	Glu Thr Leu Val Gln Ile L	eu Glu Asp Leu Leu Va	al Phe Thr Tyr Ser
	35	40	45
45	Glu His Ala Ser Lys Leu P 50 5	he Gln Gly Lys Asn II 5 60	
50	Leu Ile Val Leu Asp Ser T	yr Met Arg Val Ala Se 75	er Val Gln Gln Val 80
55	Gly Trp Ser Leu Leu Cys L	ys Leu Ile Glu Val Cy	ys Pro Gly Thr Met
	85	90	95
	Gln Ser Leu Met Gly Pro G	In Asp Val Gly Asn As	sp Trp Glu Val Leu

				100					105					110		
5	Gly	Val	His 115	Gln	Leu	Ile	Leu	Lys 120	Met	Leu	Thr	Val	His 125	Asn	Ala	Ser
10	Val	A sn 130	Leu	Ser	Val	Ile	Gly 135	Leu	Lys	Thr	Leu	Asp 140	Leu	Leu	Leu	Thr
	Ser 145	Gly	Lys	Ile	Thr	Le u 150	Leu	Ile	Leu	Asp	Glu 155	Glu	Ser	Asp	Ile	Phe 160
15	Met	Leu	Ile	Phe	Asp 165	Ala	Met	His	Ser	Phe 170	Pro	Ala	Asn	Asp	Glu 175	Val
20	Gln	Lys	Leu	Gly 180	Cys	Lys	Ala	Leu	His 185	Val	Leu	Phe	Glu	Arg 190	Val	Ser
	Glu	Glu	Gln 195	Leu	Thr	Glu	Phe	Val 200	Glu	Asn	Lys	Asp	туг 205	Met	Ile	Leu
25	Leu	Ser 210	Ala	Ser	Thr	Asn	Phe 215	Lys	Asp	Glu	Glu	Glu 220	Ile	Val	Leu	His
30	Val 225	Leu	His	Cys	Leu	His 230	Ser	Leu	Ala	Ile	Pro 235	Cys	Asn	Asn	Val	Glu 240
35	Val	Leu	Met	Ser	Gly 2 4 5	Asn	Val	Arg	Cys	Tyr 250	Asn	Ile	Val	Val	Glu 255	Ala
	Met	Lys	Ala	Phe 260	Pro		Ser								_	Cys
40	Leu	Leu	His 275	Arg	Leu	Thr	Leu	Gly 280	Asn	Phe	Phe	Asn	Ile 285	Leu	Val	Leu
45	Asn	Glu 290	Val	His	Glu	Phe	Val 295	Val	Lys	Ala	Val	Gln 300	Gln	Tyr	Pro	Glu
50	Asn 305	Ala	Ala	Leu	Gln	Ile 310	Ser	Ala	Leu	Ser	Cys 315	Leu	Ala	Leu	Leu	Thr 320
	Glu	Thr	Ile	Phe	Leu 325	Asn	Gln	Asp	Leu	Glu 330	Glu	Lys	Asn	Glu	A sn 335	Gln
55	Glu	Asn	Asp	Asp 340	Glu	Gly	Glu	Gl u	Asp 345	Lys	Leu	Phe	Trp	Le u 350	Glu	Ala

	Cys	Tyr	Lys 355	Ala	Leu	Thr	Trp	H is 360	Arg	Lys	Asn	Lys	His 365	Val	Gln	Glu
5	Ala	Ala 370	Cys	Trp	Ala	Leu	As n 375	Asn	Leu	Leu	Met	Tyr 380	Gln	Asn	Ser	Leu
10	His 385	Glu	Lys	Ile	Gly	Asp 390	Glu	Asp	Gly	His	Phe 395	Pro	Ala	His	Arg	Glu 400
	Val	Met	Leu	Ser	Met 405	Leu	Met	His	Ser	Ser 410	Ser	Lys	Glu	Val	Phe 415	Gln
15	Ala	Ser	Ala	Asn 420	Ala	Leu	Ser	Thr	Leu 425	Leu	Glu	Gln	Asn	Val 430	Asn	Phe
20	Arg	Lys	Ile 435	Leu	Leu	Ser	Lys	Gly 440	Ile	His	Leu	Asn	Val 445	Leu	Glu	Leu
25	Met	Gln 4 50	Lys	His	Ile	His	Ser 455	Pro	Glu	Val	Ala	Glu 460	Ser	Gly	Cys	Lys
	Met 465	Leu	Asn	His	Leu	Phe 470	Glu	Gly	Ser	Asn	Thr 475	Ser	Leu	Asp	Ile	Met 480
30	Ala	Ala	Val	Val	Pro 485	Lys	Ile	Leu	Thr	Val 490	Met	Lys	Arg	His	Glu 495	Thr
35	Ser	Leu	Pro	Val 500	Gln	Leu	Glu	Ala	Leu 505	Arg	Ala	Ile	Leu	His 510	Phe	Ile
40	Val	Pro	Gly 515					Ser 520	_		-				His	His
40	Lys	Leu 530	Asn	Met	Val	Lys	Lys 535	Gln	Cys	Phe	Lys	As n 540	Asp	Ile	His	Lys
45	Leu 545	Val	Leu	Ala	Ala	Leu 550	Asn	Arg	Phe	Ile	Gly 555	Asn	Pro	Gly	Ile	Gln 560
50	Lys	Cys	Gly	Leu	Lys 565	Val	Ile	Ser	Ser	Ile 570	Val	His	Phe	Pro	Asp 575	Ala
	Leu	Glu	Met	Leu 580	Ser	Leu	Glu	Gly	Ala 585	Met	Asp	Ser	Val	Leu 590	His	Thr
55	Leu	Gln	Met 595	Tyr	Pro	Asp	Asp	Gln 600	Glu	Ile	Gln	Cys	Leu 605	Gly	Leu	Ser

	Leu	Ile 610	Gly	Tyr	Leu	Ile	Thr 615	Lys	Lys	Asn	Val	Phe 620	Ile	Gly	Thr	Gly
5	His 625	Leu	Leu	Ala	Lys	Ile 630	Leu	Val	Ser	Ser	Leu 635	Tyr	Arg	Phe	Lys	Asp 640
10	Val	Ala	Glu	Ile	Gln 6 4 5	Thr	Lys	Gly	Phe	Gln 650	Thr	Ile	Leu	Ala	Ile 655	Leu
45	Lys	Leu	Ser	Ala 660	Ser	Phe	Ser	Lys	Leu 665	Leu	Val	His	His	Ser 670	Phe	Asp
15	Leu	Val	11e 675	Phe	His	Gln	Met	Ser 680	Ser	Asn	Ile	Met	Glu 685	Gln	Lys	Asp
20	Gln	Gln 690	Phe	Leu	Asn	Leu	Cys 695	Cys	Lys	Cys	Phe	Ala 700	Lys	Val	Ala	Met
25	Asp 705	Asp	Tyr	Leu	Lys	A sn 710	Val	Met	Leu	Glu	A rg 715	Ala	Cys	Asp	Gln	Asn 720
	Asn	Ser	Ile	Met	Val 725	Glu	Cys	Leu	Leu	Leu 730	Leu	Gly	Ala	Asp	Ala 735	Asn
30	Gln	Ala	Lys	Glu 7 4 0	Gly	Ser	Ser	Leu	Ile 745	Cys	Gln	Val	Cys	Glu 750	Lys	Glu
35	Ser	Ser	Pro 755	Lys	Leu	Val	Glu	Le u 760	Leu	Leu	Asn	Ser	Gly 765	Ser	Arg	Glu
40	Gln	Asp 770		-	_		Leu 775					Gly 780	_	Gly	Asp	Ser
70	Gln 785	Ile	Ile	Ser	Leu	Leu 790	Leu	Arg	Arg	Leu	A la 795	Leu	Asp	Val	Ala	A sn 800
45	Asn	Ser	Ile	Cys	Leu 805	Gly	Gly	Phe	Cys	Ile 810	Gly	Lys	Val	Glu	Pro 815	Ser
50	Trp	Leu	Gly	Pro 820	Leu	Phe	Pro	Asp	Lys 825	Thr	Ser	Asn	Leu	Ar g 830	Lys	Gln
	Thr	Asn	Ile 835	Ala	Ser	Thr	Leu	Ala 8 4 0	Arg	Met	Val	Ile	Arg 845	Tyr	Gln	Met
55	Lys	Ser 850	Ala	Val	Glu	Glu	Gly 855	Thr	Ala	Ser	Gly	Ser 860	Asp	Gly	Asn	Phe

	Ser 865	Glu	Asp	Val	Leu	Ser 870	Lys	Phe	Asp	Glu	Trp 875	Thr	Phe	Ile	Pro	Asp 880
5	Ser	Ser	Met	Asp	Ser 885	Val	Phe	Ala	Gln	Ser 890	Asp	Asp	Leu	Asp	Ser 895	
10	Gly	Ser	Glu	Gly 900	Ser	Phe	Leu	Val	Lys 905	Lys	Lys	Ser	Asn	Ser 910		Ser
	Val	Gly	Glu 915	Phe	Tyr	Arg	Asp	Ala 920	Val	Leu	Gln	Arg	Cys 925	Ser	Pro	Asn
15	Leu	Gln 930	Arg	His	Ser	Asn	Ser 935	Leu	Gly	Pro	Ile	Phe 940	Asp	His	Glu	Asp
20	Leu 945	Leu	Lys	Arg	Lys	A rg 950	Lys	Ile	Leu	Ser	Ser 955	Asp	Asp	Ser	Leu	Arg 960
25	Ser	Ser	Lys	Leu	Gln 965	Ser	His	Met	Arg	His 970	Ser	Asp	Ser	Ile	Ser 975	
	Leu	Ala	Ser	Glu 980	Arg	Glu	Tyr	Ile	Thr 985	Ser	Leu	Asp	Leu	Ser 990		Asn
30	Glu	Leu	Arg 995	Asp	Ile	Asp	Ala	Leu 100		r Glr	ı Lys	з Суз	5 Cy:		le S	er Val
30		Leu 1010	995 Glu	-		Ī		1000)		Ī	.s G	10	05		
35	His	Leu	995 Glu) Phe	ı His	s Lei	ı Glı	1 Lys 101	1000 s Lo 15) eu Gi		- eu Hi	.s Gl 10	10 Ln 2 020	05 Asn		Leu
	His Thr	Leu 1010	995 Glu) Phe	i His	s Leu	- 1 Glu	1 Lys 101 1 Let 103	1000 s L4 15 C3) eu Gl	lu Le	- eu Hi	is Gi 10 eu Ly 10	100 ln 20 020 78 20	05 Asn Ser	Ala Leu	Leu Thr
35	His Thr	Leu 1010 Ser 1025	995 Glu) Phe 5 Asp	His Pro	s Leu o Glr 1 His	ı Glu	Les 103	1000 s Lo 15 1 C; 30 h Ly) eu G ys G ys P	lu Le lu Th	- nr Le	seu Ly 10 10 10 10 10	100 ln 20 ys 30 035	Asn Ser	Ala Leu Ser	Leu Thr Tyr
35 40	His Thr His	Leu 1010 Ser 1025 Leu 1040	Glu Phe Asr Gly Gly	e Pro	s Leu O Glr His	i Glu	1 Lys 101 103 104 104 106	1000 s Lo 15 1 C: 30 n L: 45	O ys Gi ys Pi la As	lu Le lu Th ne Th	eu Hi	Ly Ly 10 er Ph 10 fr Vanr Vanr Vanr Vanr Vanr Vanr Vanr Van	100 ln ; 020 ys ; 035 ne ; 050	Asn Ser Pro	Ala Leu Ser	Leu Thr Tyr Asn
35 40 45	His Thr His Leu	Leu 1010 Ser 1025 Leu 1040 Leu 1055	995 Glu) Phe 6 Asp	His Pro	Glr His	n Glr S Ser Cys	1 Lys 103 1 Let 103 2 Asr 104 3 Ual 107	1000 s L4 15 1 C3 30 n L3 45 e A3	o ys Gi ys Pi la As	lu Le lu Th ne Th sn Le	eu Hinr Le	sp Vanr Vanr Vanr Vanr Vanr Vanr Vanr Vanr	100 ln 20 200 78 3 335 ne 3 3050	O5 Asn Ser Pro Ser	Ala Leu Ser Arg	Leu Thr Tyr Asn Pro

	1100	1		1105			1110	
5	Leu Glu 1115		Lys Ile	Ser (Gly Ile	Cys Ser	Pro Leu 1125	Arg Leu
10	Lys Glu 1130	_	Ile Leu	Asn :	Leu Ser	Lys Asn	His Ile 1140	Ser Ser
	Leu Ser 1145		Phe Leu	Glu 1 1150	Ala Cys	Pro Lys	Val Glu 1155	Ser Phe
15	Ser Ala 1160		Asn Phe	Leu 1	Ala Ala	Met Pro	Phe Leu 1170	Pro Pro
20	Ser Met 1175		Leu Lys	Leu :	Ser Gln	Asn Lys	Phe Ser 1185	Cys Ile
25	Pro Glu 1190		Leu Asn	Leu 1	Pro His	Leu Arg	Ser Leu 1200	Asp Met
25	Ser Ser 1205		Ile Gln	Tyr :	Leu Pro	Gly Pro	Ala His 1215	Trp Lys
30	Ser Leu 1220		Arg Glu	Leu :	Leu Phe	Ser His	Asn Gln 1230	Ile Ser
35	Ile Leu 1235		Ser Glu	Lys 1 1240	Ala Tyr	Leu Trp	Ser Arg 1245	Val Glu
40	Lys Leu 1250					Lys Glu	Ile Pro 1260	Pro Glu
40	Ile Gly 1265	-	Glu Asn	Leu 1270	Thr Ser	Leu Asp	Val Ser 1275	Tyr Asn
45	Leu Glu 1280		Ser Phe	Pro 1 1285	Asn Glu	Met Gly	Lys Leu 1290	Ser Lys
50	Ile Trp 1295	_	Pro Leu	Asp 1300	Glu Leu	His Leu	Asn Phe 1305	Asp Phe
	Lys His 1310	,	Cys Lys	Ala :	Lys Asp	Ile Ile	Arg Phe 1320	Leu Gln
55	Gln Arg 1325		Lys Ala	Val 1	Pro Tyr	Asn Arg	Met Lys 1335	Leu Met

	Ile	Val 1340	Gly	Asn	Thr	Gly	Ser 1345	Gly	Lys	Thr	Thr	Leu 1350	Leu	Gln	Gln
5	Leu	Met 1355	Lys	Thr	Lys	Lys	Ser 1360	Asp	Leu	Gly	Met	Gln 1365	Ser	Ala	Thr
10	Val	Gly 1370	Ile	Asp	Val	Lys	Asp 1375	-	Pro	Ile	Gln	Ile 1380	Arg	Asp	Lys
	Arg	Lys 1385	Arg	Asp	Leu	Val	Leu 1390	Asn	Val	Trp	Asp	Phe 1395	Ala	Gly	Arg
15	Glu	Glu 1 4 00	Phe	Tyr	Ser	Thr	His 1405	Pro	His	Phe	Met	Thr 1410	Gln	Arg	Ala
20	Leu	Туг 1415	Leu	Ala	Val	Tyr	Asp 1420	Leu	Ser	Lys	Gly	Gln 1 42 5	Ala	Glu	Val
25	Asp	Ala 1430	Met	Lys	Pro	Trp	Leu 1435	Phe	Asn	Ile	Lys	Ala 1440	Arg	Ala	Ser
	Ser	Ser 1445	Pro	Val	Ile	Leu	Val 1450	Gly	Thr	His	Leu	Asp 1455	Val	Ser	Asp
30	Glu	Lys 1460	Gln	Arg	Lys	Ala	Cys 1465	Met	Ser	Lys	Ile	Thr 1470	Lys	Glu	Leu
35	Leu	Asn 1475	Lys	Arg	Gly	Phe	Pro 1480	Ala	Ile	Arg	Asp	Tyr 1485	His	Phe	Val
40		Ala 1490					Asp 1495				_			Lys	Thr
40	Ile	Ile 1505	Asn	Glu	Ser	Leu	As n 1510	Phe	Lys	Ile	Arg	Asp 1515	Gln	Leu	Val
45	Val	Gly 1520	Gln	Leu	Ile	Pro	Asp 1525	Суз	Tyr	Val	Glu	Leu 1530	Glu	Lys	Ile
50	Ile	Leu 1535	Ser	Glu	Arg	Lys	Asn 15 4 0	Val	Pro	Ile	Glu	Phe 15 4 5	Pro	Val	Ile
	Asp	Arg 1550	Lys	Arg	Leu	Leu	Gln 1555	Leu	Val	Arg	Glu	Asn 1560	Gln	Leu	Gln
55	Leu	Asp 1565	Glu	Asn	Glu	Leu	Pro 1570	His	Ala	Val	His	Phe 1575	Leu	Asn	Glu

	Ser	Gly 1580	Val	Leu	Leu	His	Phe 1585		Asp	Pro	Ala	Leu 1590	Gln	Leu	Ser
5	Asp	Leu 1595	Tyr	Phe	Val	Glu	Pro 1600	Lys	Trp	Leu	Cys	Lys 1605	Ile	Met	Ala
10	Gln	Ile 1610	Leu	Thr	Val	Lys	Val 1615		Gly	Cys	Pro	Lys 1620	His	Pro	Lys
	Gly	Ile 1625	Ile	Ser	Arg	Arg	Asp 1630	Val	Glu	Lys	Phe	Leu 1635	Ser	Lys	Lys
15	Arg	Lys 1640	Phe	Pro	Lys	Asn	Туг 1645	Met	Ser	Gln	Tyr	Phe 1650	Lys	Leu	Leu
20	Glu	Lys 1655	Phe	Gln	Ile	Ala	Leu 1660	Pro	Ile	Gly	Glu	Glu 1665	Tyr	Leu	Leu
25	Val	Pro 1670	Ser	Ser	Leu	Ser	Asp 1675	His	Arg	Pro	Val	Ile 1680	Glu	Leu	Pro
	His	Cys 1685	Glu	Asn	Ser	Glu	Ile 1690	Ile	Ile	Arg	Leu	Tyr 1695	Glu	Met	Pro
30	Tyr	Phe 1700	Pro	Met	Gly	Phe	Trp 1705	Ser	Arg	Leu	Ile	Asn 1710	Arg	Leu	Leu
35	Glu	Ile 1715	Ser	Pro	Tyr	Met	Leu 1720	Ser	Gly	Arg	Glu	Arg 1725	Ala	Leu	Arg
40		Asn 1730	-		_	_	_		_		_			Trp	Ser
40	Pro	Glu 1745	Ala	Tyr	Cys	Leu	Val 1750	Gly	Ser	Glu	Val	Leu 1755	Asp	Asn	His
45	Pro	Glu 1760	Ser	Phe	Leu	Lys	Ile 1765	Thr	Val	Pro	Ser	Cys 1770	Arg	Lys	Gly
50	Cys	Ile 1775	Leu	Leu	Gly	Gln	Val 1780	Val	Asp	His	Ile	Asp 1785	Ser	Leu	Met
	Glu	Glu 1790	Trp	Phe	Pro	Gly	Leu 1795	Leu	Glu	Ile	Asp	Ile 1800	Cys	Gly	Glu
55	Gly	Glu 1805	Thr	Leu	Leu	Lys	Lys 1810	Trp	Ala	Leu	Tyr	Ser 1815	Phe	Asn	Asp

	Gly	Glu 1820		His	Gln	Lys	Ile 1825		Leu	Asp	Asp	Le u 1830	Met	Lys	Lys
5	Ala	Glu 1835	Glu	Gly	Asp	Leu	Leu 1840	Val	Asn	Pro	Asp	Gln 1845	Pro	Arg	Leu
10	Thr	Ile 1850	Pro	Ile	Ser	Gln	Ile 1855	Ala	Pro	Asp	Leu	Ile 1860	Leu	Ala	Asp
	Leu	Pro 1865	Arg	Asn	Ile	Met	Leu 1870	Asn	Asn	Asp	Glu	Leu 1875	Glu	Phe	Glu
15	Gln	Ala 1880	Pro	Glu	Phe	Leu	Leu 1885	Gly	Asp	Gly	Ser	Phe 1890	Gly	Ser	Val
20	Tyr	Arg 1895	Ala	Ala	Tyr	Glu	Gly 1900	Glu	Glu	Val	Ala	Val 1905	Lys	Ile	Phe
25	Asn	Lys 1910	His	Thr	Ser	Leu	Arg 1915	Leu	Leu	Arg	Gln	Glu 1920	Leu	Val	Val
	Leu	Cys 1925	His	Leu	His	His	Pro 1930	Ser	Leu	Ile	Ser	Leu 1935	Leu	Ala	Ala
30	Gly	Ile 1940	Arg	Pro	Arg	Met	Leu 1945	Val	Met	Glu	Leu	A la 1950	Ser	Lys	Gly
35	Ser	Leu 1955	Asp	Arg	Leu	Leu	Gln 1960	Gln	Asp	Lys	Ala	Ser 1965	Leu	Thr	Arg
40	Thr	Le u 1970	Gln	His	Arg	Ile	Ala 1975	Leu	His	Val	Ala	Asp 1980	Gly	Leu	Arg
	Tyr	Leu 1985	His	Ser	Ala	Met	Ile 1990	Ile	Tyr	Arg	Asp	Leu 1995	Lys	Pro	His
45	Asn	Val 2000	Leu	Leu	Phe	Thr	Leu 2005	Tyr	Pro	Asn	Ala	Ala 2010	Ile	Ile	Ala
50	Lys	Ile 2015	Ala	Asp	Tyr	Gly	Ile 2020	Ala	Gln	Tyr	Cys	Cys 2025	Arg	Met	Gly
	Ile	Lys 2030	Thr	Ser	Glu	Gly	Thr 2035	Pro	Gly	Phe	Arg	Ala 2040	Pro	Glu	Val
55	Ala	Arg	Gly	Asn	Val	Ile	Tyr	Asn	Gln	Gln	Ala	Asp	Val	Tyr	Ser

		2045					2050					2055			
5	Phe	Gly 2060	Leu	Leu	Leu	Tyr	Asp 2065		Leu	Thr	Thr	Gly 2070	Gly	Arg	Ile
10	Val	Glu 2075	Gly	Leu	Lys	Phe	Pro 2080	Asn	Glu	Phe	Asp	Glu 2085	Leu	Glu	Ile
10	Gln	Gly 2090	-	Leu	Pro	Asp	Pro 2095	Val	Lys	Glu	Tyr	Gly 2100	Cys	Ala	Pro
15	Trp	Pro 2105	Met	Val	Glu	Lys	Leu 2110		Lys	Gln	Cys	Leu 2115	Lys	Glu	Asn
20	Pro	Gln 2120	Glu	Arg	Pro	Thr	Ser 2125	Ala	Gln	Val	Phe	Asp 2130	Ile	Leu	Asn
	Ser	Ala 2135	Glu	Leu	Val	Cys	Leu 2140	Thr	Arg	Arg	Ile	Leu 2145	Leu	Pro	Lys
25	Asn	Val 2150	Ile	Val	Glu	Cys	Met 2155	Val	Ala	Thr	His	His 2160	Asn	Ser	Arg
30	Asn	Ala 2165	Ser	Ile	Trp	Leu	Gly 2170	Cys	Gly	His	Thr	Asp 2175	Arg	Gly	Gln
35	Leu	Ser 2180	Phe	Leu	Asp	Leu	Asn 2185	Thr	Glu	Gly	Tyr	Thr 2190	Ser	Glu	Glu
	Val	Ala 2195	Asp	Ser	Arg	Ile	Leu 2200	Cys	Leu	Ala	Leu	Val 2205	His	Leu	Pro
40	Val	Glu 2210	Lys	Glu	Ser	Trp	Ile 2215	Val	Ser	Gly	Thr	Gln 2220	Ser	Gly	Thr
45	Leu	Leu 2225	Val	Ile	Asn	Thr	Glu 2230	Asp	Gly	Lys	Lys	Arg 2235	His	Thr	Leu
50	Glu	Lys 22 4 0	Met	Thr	Asp	Ser	Val 22 4 5	Thr	Cys	Leu	Tyr	Cys 2250	Asn	Ser	Phe
	Ser	Lys 2255	Gln	Ser	Lys	Gln	Lys 2260	Asn	Phe	Leu	Leu	Val 2265	Gly	Thr	Ala
55	Asp	Gly 2270	Lys	Leu	Ala	Ile	Phe 2275	Glu	Asp	Lys	Thr	Val 2280	Lys	Leu	Lys

	Gly	Ala 2285		Pro	Leu	Lys	Ile 2290		Asn	Ile	Gly	Asn 2295	Val	Ser	Thr
5	Pro	Leu 2300	Met	Cys	Leu	Ser	Glu 2305	Ser	Thr	Asn	Ser	Thr 2310	Glu	Arg	Asn
10	Val	Met 2315	-	Gly	Gly	Cys	Gly 2320		Lys	Ile	Phe	Ser 2325	Phe	Ser	Asn
	Asp	Phe 2330	Thr	Ile	Gln	Lys	Leu 2335	Ile	Glu	Thr	Arg	Thr 2340	Ser	Gln	Leu
15	Phe	Ser 2345	Tyr	Ala	Ala	Phe	Ser 2350	Asp	Ser	Asn	Ile	Ile 2355	Thr	Val	Val
20	Val	Asp 2360	Thr	Ala	Leu	Tyr	Ile 2365	Ala	Lys	Gl n	Asn	Ser 2370	Pro	Val	Val
25	Glu	Val 2375	Trp	Asp	Lys	Lys	Thr 2380	Glu	Lys	Leu	Cys	Gly 2385	Leu	Ile	Asp
	Cys	Val 2390	His	Phe	Leu	Arg	Glu 2395	Val	Met	Val	Lys	Glu 2 4 00	Asn	Lys	Glu
30	Ser	Lys 2405		Lys	Met	Ser	Tyr 2410	Ser	Gly	Arg	Val	Lys 2 4 15	Thr	Leu	Cys
35	Leu	Gln 2420	-	Asn	Thr	Ala	Leu 2425	-	Ile	Gly	Thr	Gly 2430	Gly	Gly	His
40	Ile	Leu 2435	Leu	Leu	Asp	Leu	Ser 2440	Thr	Arg	Arg	Leu	Ile 2 44 5	Arg	Val	Ile
40	Tyr	Asn 2450	Phe	Cys	Asn	Ser	Val 2455	Arg	Val	Met	Met	Thr 2460	Ala	Gln	Leu
45	Gly	Ser 2465	Leu	Lys	Asn	Val	Met 2470	Leu	Val	Leu	Gly	Tyr 2475	Asn	Arg	Lys
50	Asn	Thr 2480	Glu	Gly	Thr	Gln	Lys 2 4 85	Gln	Lys	Gl u	Ile	Gln 2 49 0	Ser	Cys	Leu
	Thr	Val 2 4 95	Trp	Asp	Ile	Asn	Leu 2500	Pro	His	Gl u	Val	Gln 2505	Asn	Leu	Glu
55	Lys	His 2510	Ile	Glu	Val	Arg	Lys 2515		Leu	Ala	Glu	Lys 2520		Arg	Arg

Thr Ser Val Glu 2525

5

15

Claims

- 1. Use of at least a mammal kinases inhibitor to improve in *vitro* plant embryogenesis induction.
- 10 2. Use according to claim 1 wherein the mammal kinases are human kinases, preferably the kinases GSK3β and/or LRRK2.
 - 3. Use according to any of claims 1 to 2 wherein the kinase GSK3β comprises the sequence selected from the list consisting of SEQ ID NO: 1 to 4, and the kinase LRRK2 comprises the sequence selected from the list consisting of SEQ ID NO: 5 to 7.
 - 4. Use according to any of claims 1 to 3 wherein the embryogenesis is somatic and/or by microspores.
- 5. Use according to any of claims 1 to 4 wherein the plants are crops plants, preferably Brassica spp. and/or Hordeum 20 spp, or wherein the plants are forest plants, preferably Quercus spp.
 - 6. Use according to any of claims 1 to 5, wherein the mammal kinases inhibitor is selected from a compound of Formula (I) or a salt thereof:

25

30

$$X \xrightarrow{A} Y$$
 $G = E$

Formula (I)

35 A is $-C(R^1)_{2^-}$, -O- or $-NR^1$ -; E is $-NR^1$ - or $-CR^1R^2$ - and the substituent R^2 is absent if ----- is a second bond between

E and G; G is -S-, -NR1- or -CR1R2- and the substituent R2 is absent if ----- is a second bond between E and G; ----- may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused aryl group; R¹ and R² are independently selected from hydrogen, (C₁-C₈)alkyl, cycloakyl, haloalkyl, aryl, $-(Z)_n$ -aryl, heteroaryl, $-OR^3$, $-C(O)R^3$, $-C(O)OR^3$, $-(Z)_n$ - $-C(O)OR^3$ - and $-S(O)_t$ - or as indicated R^2 can be such that E with G then form a fused aryl group; Z is independently selected from -C(R³)(R⁴)-, -C(O)-, -O-, -C(=NR³)-, -S(O)_t- and-N(R³)-; n is zero, one or two; t is zero, one or two; R³ and R⁴ are independently selected from hydrogen, (C_1-C_8) alkyl, aryl and heterocyclic; X and Y are independently selected from =0, =S, $=N(R^3)$ and $=C(R^1)(R^2)$; a compound of Formula (II) or a salt thereof:

45

50

40

$$R_3 N N R_2$$

Formula (II),

55 wherein:

> R₁ is selected from H, CN, NO₂, F, CI, Br, I, or a group X₁-R₁' wherein X₁ is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene, C_2 - C_6 alkynylene, C_3 - C_{10} cycloalkylene, C_3 - C_{10} heterocycloalkylene,

arylene and heteroaryl; being X₁ optionally substituted;

 R_1 ' is selected from H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, aryl, heteroaryl, C_3 - C_{10} cycloalkyl or C_3 - C_{10} heterocycloalkyl; being R_1 ' optionally substituted;

 R_2 is selected from C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, aryl, heteroaryl, C_3 - C_{10} cycloalkyl and C_3 - C_{10} heterocycloalkyl, CN or amino; being R_2 optionally substituted;

R₃ is -CH₂- R₃'; R₃' is selected from heteroaryl, -C(O)OR₁₂,

or R_3 ' is selected from -(CH₂)_nOR_{6e}, n being between 1 and 20, with the condition, that R_3 ' cannot be -(CH₂)₂-OH, R_{6e} being selected from R_4 and R_5 ,

or R_3 ' is selected from - $(CH_2)_n$ - $(C_3$ - C_{10} heterocycloalkyl), with n being 0 to 20; and R_{12} is independently selected from H and C_1 - C_6 alkyl;

 R_4 and R_5 are independently selected from: H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 X_4 -cycloalkyl, X_4 -cyclobetyl, X_4 -cyclobetyl, X_4 -benzyl, X_4 -pyridinyl, X_4 -pirimidinyl, X_4 -pyrendinyl, X_4 -pyrrolyl, X_4 -pyrrolyl, X_4 -pyrrolyl, and X_4 -pyranyl saturated or unsaturated; X_4 is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene; being R_4 and R_5 optionally substituted;

a compound of Formula (III) or a salt thereof:

Formula (III)

wherein:

5

10

15

20

25

30

35

40

45

 R_1 is selected from H or C_1 - C_{10} alkyl and R^2 is selected from C_1 - C_{10} alkyl or C_2 - C_{10} alkenyl; being optionally substituted by halogen;

a compound of Formula (IV) or a salt thereof:

 $R_3 = \begin{cases} R_4 & O & O & R_6 \\ N & N & N \\ N & R_5 & O \end{cases}$

50 wherein:

 R_1 is selected from H and C_1 - C_5 alkyl, optionally substituted,, R_2 is C_5 - C_{15} alkyl, optionally substituted, R_3 is selected from H, halogen, C_1 - C_5 alkyl, optionally substituted, and -(O)- C_1 - C_5 alkyl, optionally substituted, n is between 1 and 4, R_4 , R_5 y R_6 are each independently selected from H and C_1 - C_5 alkyl, optionally substituted; a compound of Formula (V) or a salt thereof

Formula (IV)

55

Formula (V),

10 wherein:

5

 R_1 is selected from H, C_1 - C_6 alkyl, halogen, CF_3 , and -O- C_1 - C_6 .alkyl; and (E,Z)-3-(morpholinoimino)indolin-2-one or a salt thereof.

15 7. Use according to any of claims 1 to 6, wherein the mammal kinases inhibitor is selecting from a list consisting of:

4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8),

5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15),

3-acetyl-4-(1-methyl-1 H-indol-3-yl)-1 H-pirrol-2,5-dione (VP3.36),

4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7),

N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),

N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6),

N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24), and

(E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).

25

30

20

- 8. Method to induce in vitro plant embryogenesis, comprising:
 - a. culturing the microspores and/or explants in a culture medium suitable for embryo development; and
 - b. adding mammal kinase inhibitors to the culture medium of a); and
 - c. culturing for a period sufficient to obtain embryos.
- 9. Method according to claim 8 wherein the mammal kinases are human kinases, preferably GSK3β and/or LRRK2.
- 10. Method according to any of claims 8 to 9 wherein the kinase GSK3β comprises the sequence selected from the list consisting of SEQ ID NO: 1 to 4, and the kinase LRRK2 comprises the sequence selected from the list consisting of SEQ ID NO: 5 to 7.
 - 11. Method according to any of claims 8 to 10 wherein the embryogenesis is somatic and/or by microspores.
- **12.** Method according to any of claims 8 to 11 wherein the plants are crops plants, preferably *Brassica spp.* and/or *Hordeum spp*, or wherein the plants are forest plants, preferably *Quercus spp.*
 - **13.** Method according to any of claims 8 to 12, wherein the mammal kinases inhibitor is selecting from a compound of Formula (I) or a salt thereof:

45

50

Formula (I)

55 wherein

A is $-C(R^1)_{2^-}$, -O- or $-NR^1$ -; E is $-NR^1$ - or $-CR^1R^2$ - and the substituent R^2 is absent if ----- is a second bond between E and G; G is -S-, $-NR^1$ - or $-CR^1R^2$ - and the substituent R^2 is absent if ----- is a second bond between E and G;may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused

aryl group; R^1 and R^2 are independently selected from hydrogen, (C_1-C_8) alkyl, cycloakyl, haloalkyl, aryl,- $(Z)_n$ -aryl, heteroaryl, $-OR^3$, $-C(O)R^3$, $-C(O)CR^3$, $-(Z)_n$ - $C(O)CR^3$ - and $-S(O)_t$ - or as indicated R^2 can be such that E with G then form a fused aryl group; Z is independently selected from $-C(R^3)(R^4)$ -, -C(O)-, -O-, $-C(=NR^3)$ -, $-S(O)_t$ - and $-N(R^3)$ -; n is zero, one or two; t is zero, one or two; R^3 and R^4 are independently selected from hydrogen, (C_1-C_8) alkyl, aryl and heterocyclic; X and Y are independently selected from $-C(R^3)$ 0 and $-C(R^3)$ 1 and $-C(R^3)$ 2; a compound of Formula (II) or a salt thereof:

$$R_3 N N R_2$$

Formula (II)

wherein:

5

10

15

20

25

30

35

40

45

50

 R_1 is selected from H, CN, NO_2 , F, Cl, Br, I, or a group X_1 - R_1 ' wherein X_1 is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene, C_2 - C_6 alkynylene, C_3 - C_{10} cycloalkylene, C_3 - C_{10} heterocycloalkylene, arylene and heteroaryl; being X_1 optionally substituted;

 R_1 ' is selected from H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, aryl, heteroaryl, C_3 - C_{10} cycloalkyl or C_3 - C_{10} heterocycloalkyl; being R_1 ' optionally substituted;

 R_2 is selected from C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, aryl, heteroaryl, C_3 - C_{10} cycloalkyl and C_3 - C_{10} heterocycloalkyl, CN or amino; being R_2 optionally substituted;

R₃ is -CH₂- R₃'; R₃' is selected from heteroaryl, -C(O)OR₁₂,

or R_3 ' is selected from - $(CH_2)_nOR_{6e}$, n being between 1 and 20, with the condition, that R_3 ' cannot be - $(CH_2)_2$ -OH, R_{6e} being selected from R_4 and R_5 ,

or R_3 ' is selected from -(CH_2)_n-(C_3 - C_{10} heterocycloalkyl), with n being 0 to 20; and R_{12} is independently selected from H and C_1 - C_6 alkyl;

 R_4 and R_5 are independently selected from: H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 X_4 -cycloalkyl, X_4 -cyclobetyl, X_4 -cyclobetyl, X_4 -benzyl, X_4 -pyridinyl, X_4 -pirimidinyl, X_4 -pyrendinyl, X_4 -pyrrolyl, X_4 -pyrrolyl, X_4 -pyrrolyl, and X_4 -pyranyl saturated or unsaturated; X_4 is a single bond or a group selected from C_1 - C_6 alkylene, C_2 - C_6 alkenylene; being R_4 and R_5 optionally substituted;

a compound of Formula (III) or a salt thereof:

$$R^2$$

Formula (III)

whoroin

 R_1 is selected from H or C_1 - C_{10} alkyl and R^2 is selected from C_1 - C_{10} alkyl or C_2 - C_{10} alkenyl; being optionally substituted by halogen;

a compound of Formula (IV) or a salt thereof:

$$R_{3_{n}} \xrightarrow{R_{4}} O \xrightarrow{O} O \xrightarrow{R_{6}} R_{5}$$

Formula (IV)

wherein:

5

10

15

20

25

30

35

40

50

55

 R_1 is selected from H and C_1 - C_5 alkyl, optionally substituted,, R_2 is C_5 - C_{15} alkyl, optionally substituted, R_3 is selected from H, halogen, C_1 - C_5 alkyl, optionally substituted, and -(O)- C_1 - C_5 alkyl, optionally substituted, n is between 1 and 4, R_4 , R_5 y R_6 are each independently selected from H and C_1 - C_5 alkyl, optionally substituted; a compound of Formula (V) or a salt thereof:

Formula (V)

wherein:

 R_1 is selected from H, C_1 - C_6 alkyl, halogen, CF_3 , and -O- C_1 - C_6 .alkyl; and (E,Z)-3-(morpholinoimino)indolin-2-one or a salt thereof.

14. Method according to any of claims 8 to 13, wherein the mammal kinase inhibitor is selecting from a list consisting of:

4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8),

5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15),

3-acetyl-4-(1-methyl-1 H-indol-3-yl)-1 H-pirrol-2,5-dione (VP3.36),

4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7),

N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),

N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6),

N-(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) and

(E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).

45 **15.** Method according to any of claims 8 to 14 wherein the mammal kinase inhibitor concentration ranges from 0.5 μM to 100 μM.

62

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

GSK3\beta Inhibitor selected

LRRK2 Inhibitor selected

Fig. 7

Fig. 8

H. vulgare (Embryos per plate)

Fig. 10

Fig. 11

Fig. 12

EUROPEAN SEARCH REPORT

Application Number EP 19 38 3042

5

		DOCUMENTS CONSID	ERED TO BE RE	LEVANT		
	Category	03.45	ndication, where approp		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	Х	WO 2019/075295 A1 ([US]) 18 April 2019 * the whole documen	PIONEER HI BRI (2019-04-18)	ED INT 1	-15	INV. A01H4/00
15	Т	WO 2016/016894 A1 (4 February 2016 (20 * the whole documen	16-02-04)	/ [IL])		
20	A	WO 03/037072 A2 (UN ZUO JIANRU [US] ET 8 May 2003 (2003-05 * the whole documen	AL.) 5-08)	R [US]; 1	-15	
25						
30						TECHNICAL FIELDS SEARCHED (IPC)
35						
40						
45						
1		The present search report has				
50	-	Place of search Munich	Date of comple 20 May	tion of the search	K۵۱	ler, Yves
		ATEGORY OF CITED DOCUMENTS	-	: theory or principle un		
55	X:par Y:par doc A:tecl	ticularly relevant if taken alone ticularly relevant if combined with anot ument of the same category noglojcal background n-written disclosure	her D L	: earlier patent docum after the filing date : document cited in the : document cited for of	ent, but publis e application ther reasons	hed on, or
((P:inte	rmediate document	-	document		very condition in the

73

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 38 3042

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

20-05-2020

10	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
	WO 2019075295	A1	18-04-2019	AU WO	2018347545 A1 2019075295 A1	16-04-2020 18-04-2019
15	WO 2016016894	A1	04-02-2016	CN EP JP US WO	108064274 A 3194572 A1 2017525351 A 2017275593 A1 2016016894 A1	22-05-2018 26-07-2017 07-09-2017 28-09-2017 04-02-2016
20	WO 03037072	A2	08-05-2003	AT AT CA CA DE	360060 T 452966 T 2464147 A1 2821597 A1 60219673 T2	15-05-2007 15-01-2010 08-05-2003 08-05-2003 16-08-2007
25				EP ES MX US	1451301 A2 1785481 A1 2286290 T3 PA04004003 A 2003082813 A1 2005071898 A1	01-09-2004 16-05-2007 01-12-2007 29-10-2004 01-05-2003 31-03-2005
<i>30</i> <i>35</i>				US US US US US	2010169997 A1 2011078823 A1 2011252506 A1 2012102594 A1 2013205442 A1	01-07-2010 31-03-2011 13-10-2011 26-04-2012 08-08-2013
40				W0 	03037072 A2	08-05-2003
45						
50						
55	FORM P0459					
-	正 					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 2484670 A1 [0111]

Non-patent literature cited in the description

- TESTILLANO et al. Plant Cell Culture Protocols. Springer, 2018, 247-256 [0060] [0088]
- PREM et al. BMC Plant Biology, 2012, vol. 12, 127 [0080] [0093]
- RODRIGUEZ-SERRANO et al. Journal of Experimental Botany, 2012, vol. 63 (5), 2007-2024 [0082]
- TESTILLANO et al. Forestry Sciences. Springer International Publishing, 2018, vol. 84, 93-105 [0084]
- MARTINEZ A et al. *J Med Chem.*, 2002, vol. 45 (6), 1292-9 [0110]
- PEREZ DI et al. J Med Chem., 2011, vol. 54 (12), 4042-56 [0112]
- PALOMO V et al. J Med Chem., vol. 60 (12), 4983-5001 [0113]
- **SALADO IG. et al.** *Eur J Med Chem.*, 29 September 2017, vol. 138, 328-342 **[0124]**