EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.06.2021 Bulletin 2021/22
(51) Int Cl.:

A01H 4/00 ${ }^{(2006.01)}$
(21) Application number: 19383042.9
(22) Date of filing: $\mathbf{2 6}$.11.2019
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
KH MA MD TN
(71) Applicant: Consejo Superior de Investigaciones Científicas
(CSIC)
28006 Madrid (ES)
(72) Inventors:

- SÁNCHEZ TESTILLANO, Pilar 28040 Madrid (ES)
- MARTINEZ GIL, Ana 28040 Madrid (ES)
- GIL AYUSO-GONTAN, Carmen 28040 Madrid (ES)
- BERENGUER PEINADO, Eduardo 28040 Madrid (ES)
- CARNEROS GARCÍA, Elena 28040 Madrid (ES)
- PÉREZ PÉREZ, Yolanda 28040 Madrid (ES)
(74) Representative: Pons Glorieta Ruben Dario 4 28010 Madrid (ES)
(54) MAMMAL KINASE INHIBITORS TO PROMOTE IN VITRO EMBRYOGENESIS INDUCTION OF PLANTS
(57) The present invention relates to the use of mammal kinase inhibitors, preferably human kinase inhibitors, to promote the induction of in vitro embryogenesis, a strategy never used in plants systems before. The results
obtained indicated that these inhibitors have beneficial effects in both crop and forest plants in in vitro systems of microspore and somatic embryogenesis.

EP 3827665 A1

Description

[0001] The invention relates to the use of mammal kinase inhibitors to promote in vitro induction of plant embryogenesis and plant regeneration. Furthermore, the present invention discloses methods to promote in vitro induction of plant embryogenesis and plant regeneration by the use of mammal kinase inhibitors.

BACKGROUND ART

[0002] The ability of many plant cells to regenerate embryos through in vitro culture is extensively exploited by companies for regeneration, propagation and selection of high quality/adapted plant material in agroforestry and industrial sectors, a technology that permits the propagation of plants with increased genetic gain, reducing time and cost in breeding and conservation programs. The capacity to regenerate adult fertile plants from in vitro cultured explants is well described for many species and through various developmental pathways. Multiple environmental factors have been shown to determine the in vitro responses of plant tissues.
[0003] Through in vitro embryogenesis, somatic cells from donor plants can be reprogrammed by different treatments (mainly stress and hormonal treatments), giving rise to entire embryos that further germinate and ultimately produce a plant. In vitro embryogenesis can also be induced from microspores, precursors cells of pollen grains. Due to the haploid condition of these cells, microspore embryogenesis is a useful biotechnological tool in plant breeding as a source of new genetic variability, fixed in fully homozygous plants in only one generation.
[0004] In the case of woody species, somatic embryogenesis has many advantages since classical genetic breeding programs have important limitations in trees due to their long-life span, and difficulties of seed conservation and vegetative reproduction. Somatic embryogenesis has a great potential for large-scale propagation and cryopreservation of tree elite genotypes, as well as for transformation strategies.
[0005] In vitro systems of somatic and microspore embryogenesis have been developed for many plant species belonging to a wide range of families. The primary advantage of in vitro plant propagation is the rapid production of high numbers of high quality, disease-free and uniform planting material for agroindustry companies. Despite decades of research, poor in vitro regeneration is still a lingering problem with the process still being highly inefficient in many species of economic interest in the fields of agriculture and forestry, a fact that severely affects the application and cost of this technology in plant breeding and conservation programs.
[0006] The yield of somatic and microspore-derived embryo production has several bottlenecks at various stages of the process. One of the major problems is the low proportion of cells that are reprogrammed and initiate embryogenesis, being embryogenesis initiation efficiency a crucial step. Therefore, new strategies are necessary to improve in vitro embryogenesis induction in different species of economic interest, such as crops and forest plant species.

DESCRIPTION OF THE INVENTION

[0007] To solve the aforementioned limitations, a general object of the invention is to provide the use of mammal kinase inhibitors, preferably human kinase inhibitors, preferably human glycogen synthase kinase-3 (GSK3 β) and/or leucine-rich repeat kinase 2 (LRRK2) inhibitors compounds and methods for such uses to induce plant embryogenesis. [0008] In their search for novel strategies to improve the induction of embryogenesis and embryo production of plants, the inventors surprisingly found that mammal kinase inhibitors, preferably human kinase inhibitors, have a positive effect on plant embryogenesis initiation. Moreover, the present disclosure shows that treatments with these inhibitors have been successfully applied to different in vitro protocols, in liquid or solid media, and with direct, indirect and secondary/recurrent embryogenesis, providing similar promoting effects over embryogenesis induction. The inventors have demonstrated that mammal kinase inhibitors, preferably human kinase inhibitors, preferably inhibitors of GSK3 β and/or LRRK2 lead to an increase in the in vitro embryogenesis induction, from both somatic cells and microspores, in crop and forest plant species (Figs. 1-3). Furthermore, the inventors demonstrated that this surprising effect is obtained with several inhibitors for several human kinases, all of them having different molecular structures. (Figs. 4-5). Additionally, the inventors show that the increase in induction of plant embryogenesis is obtained both in liquid and in solid embryogenesis cultures using as a starting material both microspores (microspore embryogenesis) as well as other plant explants (somatic embryogenesis) (Figs. 7-12). Moreover, the inventors confirmed through DNA staining and fluorescence microscopy that the proembryos obtained and quantified from cultures treated with the inhibitors were indeed multicellular microspores (Fig. 6), the first sign of embryogenesis initition. These experiments support the use of such small molecule inhibitors of mammal kinases as new tools to promote the induction and optimization of in vitro plant embryogenesis. Finally, these results suggest that common mechanisms may operate in other in vitro plant systems and that a similar strategy could be extended to other species to increase embryogenesis induction efficiency and plant cell reprogramming. [0009] Thus, a first aspect of the present invention relates to the use of at least a mammal kinases inhibitor to improve in vitro plant embryogenesis induction.

EP 3827665 A1

[0010] The term "mammal" as used herein refers to any animal classified as a mammal including cows, horses, dogs, cats, rats, mice, primates and human beings. In a preferred embodiment of the invention, the mammal is a human.
[0011] The term "kinase" as used herein refers to a member of an enzyme superfamily which functions to phosphorylate one or more proteins, this is, they have protein kinase activity. The terms also relate to a nucleic acid encoding the protein/enzyme.
[0012] In a preferred embodiment of the invention the mammal kinases are human kinases.
[0013] For the purposes of the invention the mammal kinase, preferably human kinase is selected from a list consisting of: CDK1 (UniProt:P06493), CDK10 (UniProt:Q15131), CDK11A (UniProt:Q9UQ88), CDK11B (UniProt:P21127), CDK12 (UniProt:Q9NYV4), CDK13 (UniProt:Q14004), CDK14 (UniProt:O94921), CDK15 (UniProt:Q96Q40), CDK16 (UniProt:Q00536), CDK17 (UniProt:Q00537), CDK18 (UniProt:Q07002), CDK19 (UniProt:Q9BWU1), CDK2 (UniProt:P24941), CDK20 (UniProt:Q8IZL9), CDK3 (UniProt:Q00526), CDK4 (UniProt:P11802), CDK5 (UniProt:Q00535), CDK6 (UniProt:Q00534), CDK7 (UniProt:P50613), CDK8 (UniProt:P49336), CDK9 (UniProt:P50750), CDKL1 (UniProt:Q00532), CDKL2 (UniProt:Q92772), CDKL3 (UniProt:Q8IVW4), CDKL4 (UniProt:Q5MAI5), CDKL5 (UniProt:076039), CLK1 (UniProt:P49759), CLK2 (UniProt:P49760), CLK3 (UniProt:P49761), CLK4 (UniProt:Q9HAZ1), DYRK1A (UniProt:Q13627), DYRK1B (UniProt:Q9Y463), DYRK2 (UniProt:Q92630), DYRK3 (UniProt:O43781), DYRK4 (UniProt:Q9NR20), GSK3A (UniProt:P49840), GSK3B (UniProt:P49841), HIPK1 (UniProt:Q86Z02), HIPK2 (UniProt:Q9H2X6), HIPK3 (UniProt:Q9H422), HIPK4 (UniProt:Q8NE63), ICK (UniProt:Q9UPZ9), MAK (UniProt:P20794), MAPK1 (UniProt:P28482), MAPK10 (UniProt:P53779), MAPK11 (UniProt:Q15759), MAPK12 (UniProt:P53778), MAPK13 (UniProt:O15264), MAPK14 (UniProt:Q16539), MAPK15 (UniProt:Q8TD08), MAPK3 (UniProt:P27361), MAPK4 (UniProt:P31152), MAPK6 (UniProt:Q16659), MAPK7 (UniProt:Q13164), MAPK8 (UniProt:P45983), MAPK9 (UniProt:P45984), MOK (UniProt:Q9UQ07), NLK (UniProt:Q9UBE8), PRPF4B (UniProt:Q13523), SRPK1 (UniProt:Q96SB4), SRPK2 (UniProt:P78362), SRPK3 (UniProt:Q9UPE1), ACVR1 (UniProt:Q04771), ACVR1B (UniProt:P36896), ACVR1C (UniProt:Q8NER5), ACVR2A (UniProt:P27037), ACVR2B (UniProt:Q13705), ACVRL1 (UniProt:P37023), AMHR2 (UniProt:Q16671), ANKK1 (UniProt:Q8NFD2), ARAF (UniProt:P10398), BMPR1A (UniProt:P36894), BMPR1B (UniProt:000238), BMPR2 (UniProt:Q13873), BRAF (UniProt:P15056), ILK (UniProt:Q13418), IRAK1 (UniProt:P51617), IRAK2 (UniProt:043187), IRAK3 (UniProt:Q9Y616), IRAK4 (UniProt:Q9NWZ3), KSR1 (UniProtQ8IVT5), KSR2 (UniProt:Q6VAB6), LIMK1 (UniProt:P53667), LIMK2 (UniProt:P53671), LRRK1 (UniProt:Q38SD2), LRRK2 (UniProt:Q5S007), RAF1 (UniProt:P04049), RIPK1 (UniProt:Q13546), RIPK2 (UniProt:043353), RIPK3 (UniProt:Q9Y572), RIPK4 (UniProt:P57078), TESK1 (UniProt:Q15569), TESK2 (UniProt:Q96S53), TGFBR1 (UniProt:P36897), TGFBR2 (UniProt:P37173), TNNI3K (UniProt:Q59H18), MLKL (UniProt:Q8NB16), - All accession numbers correspond to UniProt release of 16 of October 2019.
[0014] In a further embodiment of the present invention, the mammal kinases, preferably human kinases are selected from GSK3 β and/or LRRK2.
[0015] As used herein the term GSK3 β refers to the glycogen synthase kinase 3 beta protein ($E C: 2.7 .11 .26$) set forth by Uniprot Accesion Nos: P49841-1 (SEQ ID NO: 1) and P49841-2 (SEQ ID NO:2), or alternatively by GenBank Accession Nos. NP_002084.2 (SEQ ID NO: 2), NP_001139628.1 (SEQ ID NO: 1), NP_001341525.1 (SEQ ID NO: 3) and/or XP_006713673.1 (SEQ ID NO: 4) having the WNT signalling regulatory activity via its kinase activity.
[0016] In a further embodiment the mammal kinase GSK3 β comprises an amino acid sequence with at least 90% identity with any of the SEQ ID NOs.: 1 to 4 , preferably $91,92,93,94,95,96,97,98,99$ or 100% identity with any of the SEQ ID NOs.: 1 to 4. In a more preferred embodiment, the mammal kinase GSK3ß comprises any of the SEQ ID NOs.: 1 to 4. In a more preferred embodiment, the mammal kinase GSK3 β consists of any of the SEQ ID NOs.: 1 to 4 .
[0017] The term "identity", as used herein, refers to the proportion of identical amino acids between two compared peptides or proteins or the proportion of identical nucleotides between two compared nucleotide sequences. The methods for comparing sequences are known in the state of the art, and include, but not limited to, the programs BLASTP or BLASTN, ClustalW and FASTA. We can consider that peptides, proteins or nucleotide sequences with percent identities of at least 90% will maintain the same properties as the sequence to which they refer.
[0018] As used herein the term LRRK2 refers to the leucine-rich repeat kinase 2 protein (EC 2.7.11.1) set forth by Uniprot Accession No: Q5S007 (SEQ ID NO: 5), or alternatively by GenBank Accession Nos. AAl17181.1 (SEQ ID NO: 6) and/or AAV63975.1 (SEQ ID NO: 7).
[0019] In a further preferred embodiment, the mammal kinase LRRK2 comprises an amino acid sequence having at least 90% sequence identity with any of the SEQ ID NO.: 5 to 7 , preferably $91,92,93,94,95,96,97,98,99$ or 100% identity with any of SEQ ID NO.: 5 to 7 . In a more preferred embodiment, the mammal kinase LRRK2 comprises any of the SEQ ID NO.: 5 to 7 . In a more preferred embodiment, the mammal kinase LRRK2 consists of any of the SEQ ID NO.: 5 to 7 .
[0020] In a further preferred embodiment of the present invention, the mammal kinase inhibitors to induce in vitro plant embryogenesis are selected from GSK3 β inhibitors and/or LRRK2 inhibitors.
[0021] As used herein, the term "inhibitor" is interchangeably used to denote "antagonist". These terms define compounds or compositions which have the capability of decreasing certain enzyme activity or competing with the activity

EP 3827665 A1

or function of a substrate of said enzyme. As used in the present invention, refers to a chemical compound (naturally occurring or non-naturally occurring), such as a biological macromolecule (e.g., polynucleotide, protein or polypeptide, hormone, polysaccharide, lipid), an organic molecule (e.g., a small organic molecule), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian, including human) cells or tissues which has been evaluated to reduce, diminish or inhibit (directly or indirectly) the activity of a kinase.
[0022] As used herein the term "GSK3 β inhibitor" or "LRRK2 inhibitor" refers to any molecule as described above, capable of inhibiting the activity of GSK3 β or LRRK2 as determined by specifically inhibiting levels of phosphorylated substrates specific for GSK3 β or LRRK2 (out of total substrates present in a cell).
[0023] In a further preferred embodiment of the present invention, the GSK3 β inhibitors to induce in vitro plant embryogenesis are selected from a list consisting of thiadiazolidindiones (Formula I), iminothiadiazoles (Formula II), disubstituted maleimides (Formula III) and disusbtituted carbohydrazides (Formula IV):
Thiadiazolidindiones of Formula (I):

Formula (I),
wherein:
A is - $\mathrm{C}\left(\mathrm{R}^{1}\right)_{2}{ }_{2}$, - O - or -NR ${ }^{1}$-;
E is $-N R^{1}$ - or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and G;
G is $-S-,-N R^{1}$ - or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and G;
------ may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused aryl group;
R^{1} and R^{2} are independently selected from hydrogen, $\left(C_{1}-C_{8}\right)$ alkyl, cycloakyl, haloalkyl, aryl, -(Z$)_{n}$-aryl, heteroaryl, $-O R^{3},-C(O) R^{3},-C(O) O R^{3},-(Z)_{n}-C(O) O R^{3}-$ and $-S(O)_{t}$ - or as indicated R^{2} can be such that E with G then form a fused aryl group; Z is independently selected from $-C\left(R^{3}\right)\left(R^{4}\right)$-, $-C(O)-,-O-,-C\left(=N R^{3}\right)$-, $-S(O)_{t}$ and $-N\left(R^{3}\right)$-; n is zero, one or two; t is zero, one or two; R^{3} and R^{4} are independently selected from hydrogen, ($\mathrm{C}_{1}-\mathrm{C}_{8}$)alkyl, aryl and heterocyclic; X and Y are independently selected from $=O,=S,=N\left(R^{3}\right)$ and $=C\left(R^{1}\right)\left(R^{2}\right)$.
[0024] In a preferred embodiment of the inhibitor of Formula (I), A is $-N R^{1}$-, E is $-N R^{1}-, G$ is $-S$ - and X and Y are from $=0$.
[0025] In a more preferred embodiment of the inhibitor of Formula (I), R^{1} is independently selected from hydrogen, $\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right)$ alkyl, aryl, and $-\left(\mathrm{C}\left(\mathrm{R}^{3}\right)\left(\mathrm{R}^{4}\right)\right.$)n-aryl; n is zero, one or two, R^{3} and R^{4} are each independently selected from hydrogen, $\left(C_{1}-C_{8}\right)$ alkyl, aryl and heterocyclic. More preferably R^{1} is independently selected from $\left(C_{1}-C_{8}\right)$ alkyl or- $\left(C\left(R^{3}\right)\left(R^{4}\right)\right) n$-aryl., [0026] In another preferred embodiment, the inhibitor of Formula (I) is 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8).
[0027] Iminothiadiazoles of Formula (II):

Formula (II)
wherein: R_{1} is selected from $H, C N, N O_{2}, F, C l, B r, I$, or a group $X_{1}-R_{1}{ }^{\prime}$ wherein X_{1} is a single bond or a group selected from $C_{1}-C_{6}$ alkylene, $C_{2}-C_{6}$ alkenylene, $C_{2}-C_{6}$ alkynylene, $C_{3}-C_{10}$ cycloalkylene, $C_{3}-C_{10}$ heterocycloalkylene, arylene and heteroaryl; being X_{1} optionally substituted with at least one or more groups which may be identical or different and are selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{OH},=\mathrm{O},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{CO}_{2} \mathrm{R}_{4},-\mathrm{OR}_{4},-\mathrm{SR}_{4},-\mathrm{SO}_{2} \mathrm{NR}_{4} \mathrm{R}_{5},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}_{4}$ or $-\mathrm{NR}_{4} \mathrm{R}_{6}$;

EP 3827665 A1

$\mathrm{R}_{1}{ }^{\prime}$ is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{7}$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl or $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl; being R_{1} ' optionally substituted with one or more groups $\mathrm{X}_{1}{ }^{\prime}-\mathrm{R}_{8}$ which may be identical or different; being R_{1} ' optionally substituted with one or more groups $X_{1}{ }^{\prime}-R_{8}$ which may be identical or different;
$X_{1}{ }^{\prime}$ is a single bond or a group selected from $C_{1}-C_{6}$ alkylene, $C_{2}-C_{6}$ alkenylene, $C_{2}-C_{5}$ alkynylene, arylene, heteroarylene, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkylene and $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkylene, $-\mathrm{C}(\mathrm{O}) \mathrm{O}$-, amino, - - -, -S - and $-\mathrm{SO}_{2}$-; being $\mathrm{X}_{1}{ }^{\prime}$ optionally substituted with at least one or more groups which may be identical or different and are selected from H , $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{5}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{5}$ alkynyl, $\mathrm{C}_{4}-\mathrm{C}_{7}$ cycloalkyl, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},=\mathrm{O},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{CO}_{2} \mathrm{R}_{4},-\mathrm{OR}_{4},-\mathrm{SR}_{4}$, $-\mathrm{SO}_{2} N R_{6} R_{7},=N R_{4}$ and $-N R_{6} R_{7}$ being R_{6} and R_{7} independently selected from R_{4} and R_{5}
R_{8} is $\mathrm{H},-\mathrm{OH},=\mathrm{O},-\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{CO}_{2} \mathrm{R}_{6 \mathrm{a}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}_{6 \mathrm{a}}, \mathrm{C}(=\mathrm{S}) \mathrm{R}_{6 \mathrm{a}}, \mathrm{SO}_{2} \mathrm{R}_{6 \mathrm{a}}, \mathrm{SOR}_{6 \mathrm{a}}, \mathrm{SO}_{3} \mathrm{R}_{6 \mathrm{a}}$, $\mathrm{SR}_{6 \mathrm{a}}, \mathrm{OR}_{6 \mathrm{a}}, \mathrm{C}(=\mathrm{O}) \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}, \mathrm{C}(=\mathrm{S}) \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}, \mathrm{C}(=\mathrm{N}-\mathrm{CN}) \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}, \mathrm{C}\left(=\mathrm{N}-\mathrm{SO}_{2} \mathrm{NH}_{2}\right) \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}, \mathrm{C}\left(=\mathrm{CH}-\mathrm{NO}_{2}\right) \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}$, $\mathrm{SO}_{2} \mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}, \mathrm{C}\left(=\mathrm{NR}_{6 \mathrm{a}}\right) \mathrm{NHR}_{7 \mathrm{a}}, \mathrm{C}\left(=\mathrm{NR}_{6 \mathrm{a}}\right) \mathrm{R}_{7 \mathrm{a}}$ or $\mathrm{NR}_{6 \mathrm{a}} \mathrm{R}_{7 \mathrm{a}}$, being $\mathrm{R}_{6 \mathrm{a}}$ and $\mathrm{R}_{7 \mathrm{a}}$ independently selected from R_{4} and R_{5};
R_{4} and R_{5} are independently selected from: $H, C_{1}-C_{6}$ alkyl, $C_{2}-C_{6}$ alkenyl, $C_{2}-C_{6}$ alkynyl, $C_{3}-C_{7} X_{4}$-cycloalkyl, X_{4}-cyclobutyl, X_{4}-cyclopentyl, X_{4}-cyclohexyl, X_{4}-cycloheptyl, X_{4}-benzyl, X_{4}-pyridinyl, X_{4}-pirimidinyl, X_{4}-pyperidinyl, X_{4}-pyrrolidinyl, X_{4}-pyrrolyl, X_{4}-imidazolyl and X_{4}-pyranyl saturated or unsaturated; being optionally substituted the groups R_{4} and R_{5} with one or more groups selected from $=\mathrm{O},-\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{CO}_{2} \mathrm{R}_{10},-\mathrm{C}(=\mathrm{O}) \mathrm{R}_{10}$, $\mathrm{C}(=\mathrm{S}) \mathrm{R}_{10}, \mathrm{SO}_{2} \mathrm{R}_{10}, \mathrm{SOR}_{10}, \mathrm{SO}_{3} \mathrm{R}_{10}, \mathrm{SR}_{10}, \mathrm{OR}_{10}, \mathrm{C}(=\mathrm{O}) \mathrm{NR}_{10} \mathrm{R}_{11}, \mathrm{C}\left(=\mathrm{N}-\mathrm{SO}_{2} \mathrm{NH}_{2}\right) \mathrm{NR}_{10} \mathrm{R}_{11}, \mathrm{C}\left(=\mathrm{CH}-\mathrm{NO}_{2}\right) \mathrm{NR}_{10} \mathrm{R}_{11}$, $\mathrm{SO}_{2} \mathrm{NR}_{10} \mathrm{R}_{11}, \mathrm{C}\left(=\mathrm{NR}_{10}\right) \mathrm{NHR}_{11}, \mathrm{C}\left(=\mathrm{NR}_{10}\right) \mathrm{R}_{11}$ and $\mathrm{NR}_{10} \mathrm{R}_{11}$;
X_{4} is a single bond or a group selected from $C_{1}-C_{6}$ alkylene, $C_{2}-C_{6}$ alkenylene; each one of the groups optionally substituted with one or more groups which may be identical or different and are selected from $=\mathrm{O},-\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{F}, \mathrm{Cl}$, $\mathrm{Br}, \mathrm{I}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{CO}_{2} \mathrm{R}_{10},-\mathrm{C}(=\mathrm{O}) \mathrm{R}_{10}, \mathrm{OR}_{10}, \mathrm{C}(=\mathrm{O}) \mathrm{NR}_{10} \mathrm{R}_{11},-\mathrm{SO}_{2} \mathrm{NR}_{10} \mathrm{R}_{11}$ and $\mathrm{NR}_{10} \mathrm{R}_{11}$;
R_{10} and R_{11} are independently selected from H and $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R_{2} is selected from $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl and $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl, CN or amino; being R_{2} optionally substituted with at least one or more groups which may be identical or different and are selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl y $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl, =O, $-\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{CO}_{2} \mathrm{R}_{6 \mathrm{~b}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}_{6 \mathrm{~b}}, \mathrm{SO}_{2} \mathrm{R}_{6 \mathrm{~b}}, \mathrm{SOR}_{6 \mathrm{~b}}, \mathrm{SO}_{3} \mathrm{R}_{6 \mathrm{~b}}$, $S R_{6 b}, O R_{6 b}, C(=O) N R_{6 b} R_{7 b}, S O_{2} N R_{6 b} R_{7 b}$, and $N R_{6 b} R_{7 b}$, being $R_{6 b}$ and $R_{7 b}$ independently selected from R_{4} and R_{5};
R_{3} is $-\mathrm{CH}_{2}-\mathrm{R}_{3}{ }^{\prime} ; \mathrm{R}_{3}{ }^{\prime}$ is selected from heteroaryl, $-\mathrm{C}(\mathrm{O}) \mathrm{OR}_{12}$,
or $\mathrm{R}_{3}{ }^{\prime}$ is selected from - $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR}_{6 e}$, n being between 1 and 20 , with the condition, that $\mathrm{R}_{3}{ }^{\prime}$ cannot be $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{OH}$, $R_{6 e}$ being selected from R_{4} and R_{5},
or $\mathrm{R}_{3}{ }^{\prime}$ is selected from $-\left(\mathrm{CH}_{2}\right)_{n}-\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right.$ heterocycloalkyl), with n being 0 to 20
R_{12} is independently selected from the groups defined for R_{10};
regarding that "cycloalkyl" comprises preferably a group $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, more particularly a saturated cycloalkyl group saturated with the length indicated in the ring, as for example; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, or cyclodecyl and also comprises unsaturated cycloalkyls that contain one or more double bonds in the carbonated chain as for example cycloalkenyl groups $\mathrm{C}_{3}-\mathrm{C}_{10}$ such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cycloctenyl, cyclononenyl, or cyclodecenyl and related to the bonds, for the rest of the molecule, the cycloalkyl group may contain single or double bonds, in other words, it may be saturated or unsaturated and may optionally be substituted with one or more times, independently from the other groups with an alkyl group $\mathrm{C}_{1}-\mathrm{C}_{6}$ and/or an halogen and/or an OR^{f} group and/or a $\mathrm{NR}^{91} \mathrm{R}^{\mathrm{g} 2}$ group as for example 2-methylcyclopropyl, 2,2-dimethylcyclopropyl, 2,2-dimethylcyclobutyl, 3-hydroxycyclopentyl, 3-hydroxycyclohexyl, 3-dimethylaminocyclobutyl, 3-dimethylaminocyclopentyl and 4-dimethylaminocyclohexyl groups;
and that the term "heterocycloalkyl" comprises preferably a cycloalkyl group $\mathrm{C}_{3}-\mathrm{C}_{10}$, as defined before, wherein one of the atoms of the rings is an heteroatom like $\mathrm{NH}, \mathrm{NR}^{\mathrm{d} 3}, \mathrm{O}, \mathrm{S}$ or groups like $\mathrm{C}(\mathrm{O}), \mathrm{S}(\mathrm{O}), \mathrm{S}(\mathrm{O})_{2}$, or also a group C_{n}-cyclo alkyl, wherein n is a number selected from $3,4,5,6,7,8,9$ and 10 , wherein one or more of the carbon atoms are substituted by the heteroatoms or before cited groups in order to be a C_{n}-cycloheteroalkyl group; they

EP 3827665 A1

also comprises unsaturated cycloheteroalkyl groups that contain one or more double bonds in the carbonated chain, therefore related to the bonds, for the rest of the molecule, cycloheteroalkyl group may contain single and double bonds, in other words, it may be saturated or unsaturated and may optionally substituted one or more times, independently of the other groups with an alkyl group $\mathrm{C}_{1}-\mathrm{C}_{6}$ and/or an halogen and/or an ORf^{f} group and/or a group and that the C_{n}-cycloheteroalkyl group is related for example to heterocycles of three members expressed as C3heterocycloalkyl named oxyranyles.
[0028] In a preferred embodiment, the inhibitor of Formula of formula (II) is selected from:

2,3-Diphenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
3-(4-Methoxyphenyl)-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
2-(4-Methoxyphenyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
2-(4-Nitrophenyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
2-Phenyl-5-(3-pyridylmethylimino)-3-(4-trifluoromethylphenyl)-2,5-dihydro-1,2,4-thiadiazole
2-(1-Naphthyl)-3-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
3-(1-Naphthyl)-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
3-Methyl-2-phenyl-5-(3-pyridylmethylimino)-2,5-dihydro-1,2,4-thiadiazole
5-Ethoxycarbonylmethylimino-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole
5-Ethoxycarbonylmethylimino-3-(4-methoxyphenyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-Ethoxycarbonylmethylimino-2-(4-methoxyphenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-Ethoxycarbonylmethylimino-2-(4-nitrophenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-(2-Hydroxyethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole
5-(2-Hydroxyethylimino)-3-(4-methoxyphenyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-(2-Hydroxyethylimino)-2-(4-methoxyphenyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-(2-Hydroxyethylimino)-2-(1-naphthyl)-3-phenyl-2,5-dihydro-1,2,4-thiadiazole
5-(2-Hydroxyethylimino)-3-(1-naphthyl)-2-phenyl-2,5-dihydro-1,2,4-thiadiazole, and
5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole.
[0029] More preferably 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15).
[0030] Disubstituted maleimides of Formula (III):

Formula (III)
wherein: R^{1} is selected from H or $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl and R^{2} is selected from $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl or $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkenyl; being optionally substituted by halogen.
[0031] In a preferred embodiment of the inhibitor of Formula (III), R^{1} is $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl and R^{2} is $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl.
[0032] In a more preferred embodiment, the inhibitor of Formula (III) is 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-
2,5-dione (VP3.36).
[0033] Disusbtituted carbohydrazides of Formula (IV):

Formula (IV)

wherein R_{1} is selected from H and $C_{1}-C_{5}$ alkyl, optionally substituted, R_{2} is $C_{5}-C_{15}$ alkyl, optionally substituted, R_{3} is selected from H, halogen, $C_{1}-C_{5}$ alkyl, optionally substituted, and $-(\mathrm{O})-\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted, n is between 1 and $4, R_{4}, R_{5}$ y R_{6} are each independently selected from H and $C_{1}-C_{5}$ alkyl, optionally substituted.
[0034] In a preferred embodiment of the inhibitor of Formula (IV), $\mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}$, or R_{6} are H .
[0035] In another preferred embodiment of the inhibitor of Formula (IV), R_{1} and R_{2} are each independently selected from $\mathrm{C}_{9}-\mathrm{C}_{12}$ alkyl.
[0036] In a more preferred embodiment, the inhibitor of Formula (IV) is 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-di-hydroquinoline-3-carbohydrazide (VP0.7).
[0037] For the purposes of the current invention, preferably the GSK3 β inhibitors are selected from: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8); 5-(2-morpholinethylimino)-2,3-diphenyl-2,5-di-hydro-1,2,4-thiadiazole (VP3.15); 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36); and 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7).
[0038] In a further embodiment of the present invention, the LRRK2 inhibitors to induce in vitro plant embryogenesis are selected from the substituted N -(benzotiazolil-4-morfolinobenzamide (Formula V) and the (E, Z)-3-(morpholinoimino) indolin-2-one, named as IGS4.75.

Formula (V)
wherein: R_{1} is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, halogen, CF_{3}, and $-\mathrm{O}_{-\mathrm{C}_{1}-\mathrm{C}_{6} \text {.alkyl. }}$.
[0039] In a preferred embodiment of the inhibitor of Formula (V), R_{1} is H .
[0040] In another preferred embodiment of the inhibitor of Formula (V), R_{1} is a $C_{1}-C_{4}$ alkyl. In a more preferred embodiment of the compound $(V), R_{1}$ is selected from methyl or isopropyl.
[0041] In another preferred embodiment of the inhibitor of Formula $(\mathrm{V}), \mathrm{R}_{1}$ is selected from F, Cl or Br .
[0042] In another preferred embodiment of the inhibitor of Formula $(\mathrm{V}), \mathrm{R}_{1}$ is a $-\mathrm{O}-\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl. In a more preferred embodiment of the inhibitor of Formula (V), R_{1} is selected from -O-methyl, -O-ethyl and -O-propyl.
[0043] In another preferred embodiment of the inhibitor of Formula $(\mathrm{V}), \mathrm{R}_{1}$ is CF_{3}.
[0044] In another preferred embodiment, the inhibitor of Formula $(\mathrm{V}$) is selected from the following list:

- N -(benzothiazole-2-yl)-4-morpholinobenzamide,
- N -(6-methoxybenzothiazole-2-yl)-4-morpholinobenzamide,
- N -(6-trifluoromethylbenzothiazole-2-yl)-4-morpholinobenzamide,
- N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),
- N -(6-chlorobenzothiazole-2-yl)-4-morpholinobenzamide,
- N -(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.6),
- N -(6-ethoxybenzothiazole-2-yl)-4-morpholinobenzamide,
- N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24),
- N -(6-propoxybenzothiazole-2-yl)-4-morpholinobenzamide,
- N -(6-isopropylbenzothiazole-2-yl)-4-morpholinobenzamide.

EP 3827665 A1

[0045] More preferably the inhibitor of Formula (V) is selected from N -(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3), N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6) and N -(6-bromobenzothiazole-2-yl)-4morpholinobenzamide (JZ1.24).
[0046] For the purposes of the current invention, preferably the LRRK2 inhibitors are selected from: N -(6-metilbenzo- tiazol-2-il)-4-morfolinobenzamida (JZ1.3), N-(6-flurobenzotiazol-2-il)-4-morfolinobenzamida, (JZ1.6) and N-(6-bro-mobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.24) and (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).
[0047] In another embodiment of the present invention, the induction of in vitro plant embryogenesis comprises increased plant embryo growth and/or increased embryo production yield. As it is shown in the examples, the results states that all of the inhibitors tested lead to an increase of embryogenesis induction efficiency in the range of 20-25\% for GSK3 3 inhibitors and $23-30 \%$ for LRRK2 inhibitors, when applied at their optimal concentration.
[0048] As used herein, the term "plant embryo growth regulator" refers to any compound capable of inducing plant embryo growth, preferably embryos from agricultural and/or forest plant.
[0049] As used herein, the term "embryo production yield" refers to the number of individual embryos resulting from in vitro embryogenesis induction, preferably microspore and/or somatic embryogenesis.
[0050] In another embodiment of the present invention, the mammal kinase inhibitors are used in in vitro plant embryogenesis wherein the embryogenesis is somatic and/or by microspores.
[0051] The term "somatic embryogenesis" as used herein refers to a type of plant tissue culture where a piece of a donor plant, composed by somatic cells, is excised, cultured and induced to form multiple embryos, which can further germinate and produce entire plants.
[0052] The term "microspore embryogenesis" as used herein refers to a unique process in which haploid, immature pollen (microspores) are induced by different treatments to form embryos in culture. These microspore-derived embryos can then be germinated and converted to homozygous doubled haploid plants by chromosome doubling agents and/or through spontaneous doubling.
[0053] In a further embodiment of the present invention, the mammal kinase inhibitors are used to induce in vitro plant embryogenesis wherein the plants are crops and/or forests plants.
[0054] As used herein the term "plant" refers to a whole plant or parts thereof. The phrase "plant part" refers to isolated plant cells or isolated plant parts (tissues) such as from which plants can be (re)generated, including plant protoplasts, plant cali, plant clumps, and plant cells that are intact in plants, or part of plants, such as seeds, leaves, stems, pollens, roots, root tips, anthers, ovules, petals, flowers, seedlings, embryos and bolls.
[0055] In a preferred embodiment the crop plants as used herein are selected from the list consisting of: Medicago spp., Prunus spp., Angelica spp., Pimpinella spp., Ceratonia siliqua, Malus spp., Areca spp, Arracacia spp, Maranta spp., Cynara spp., Daucus carota, Anacardium occidentale, Asparagus spp., Persea spp., Pearl spp., Pennisetum spp., Vigna spp., Musa spp., Sechium edule, Jatropha spp., Cocos nucifera, Hordeum spp., Apium graveolens, Cyclamen spp., Atalantia spp. Anethum graveoles, Vigna subterranea, Laurus spp., Phaseolus spp. Ocumum spp., Cinnamomum verum, Paulinia cupana, Areca spp., Annona reticulate, Piper spp., Acacia spp., Rubus spp. Vaccinium spp. Bertholletia excelsa, Sesamum indicum, Artocarpus spp., Vicia spp, Fagopyrum esculentum, Carum carvi, Elettaria cardamomum, Ricinus communis, Castanea sativa, Cicer spp. Cichorium spp, Eugenia aromatica, Syzygium aromaticum, Trifolium spp. Erythroxypum spp., Cola spp., Brassica spp., Valerianella locusta, Gossypium spp., Lepidium sativum, Cucumis spp., Ficus carica, Corylus spp., Furcraea macrophylla, Linum spp., Geranium spp., Zingiber spp., Panax spp., Ribes spp., Vitis vinifera, Lygeum spartum, Dactylis spp., Arachis hypogaea, Corylus avellana, Cannabis sativa, Crotalaria juncea, Lawsonia inermis, Armoracia rusticana, Indigofera tinctoria, Jasminum spp., Helianthus spp., Actinidia deliciosa, Lavandula spp., Citrus spp., Cymbopogon citratus, Lens culinaris, Lespedeza spp., Lactuca spp., Litchi chinensis, Eriobotrya japonica, Lupinus spp., Macadamia spp., Zea mays, Mangifera spp., Secale spp, Setaria italica, Echinochloa esculenta, Pennisetum americanum, Panicum miliaceum, Mentha spp., Morus spp., Sinapis spp., Avena spp., Elaeis guineensis, Abelmoschus esculentus, Hibiscus esculentus, Olea spp, Allium spp., Papaver spp., Borassus flabellifer, Elaeis guineensis, Pastinaca sativa, Pisum sativum, Pyrus communis, Carya illinoensis, Capsicum spp., Cajanus cajan, Ananas comosus, Pistacia vera, Punica granatum, Solamum spp., Ipomoea spp. Cucurbita spp., Chrysanthemum spp., Aspidosperma spp., Cydonia oblonga, Cinchona spp., Chenopodium quinoa, Raphanus sativus, Rubus spp., Agrostis spp., Rheum spp., Oryza spp., Rose spp., Hevea brasiliensis, Lolium spp. Crocus savitus, Vitellaria paradoxa, Butyrospermum parkii, Agave spp.,Glycine spp., Triticum spp., Spinacia oleracea, Fragaria spp., Beta spp., Sorghum spp., Thymus spp., Timothy spp., Phleum pratense, Phleum alpinum, Saccharum officinarum, Nicotiana spp., Bixa spp, Solanum spp., Lotus spp., Triticale (Hybrid of Triticum aestivum and Secale cereale), Curcuma spp., Vanilla planifolia, Juglans spp., Citrullus lanatus, Dioscorea spp., Ilex paraguariensis, Pennisetum glaucum, Setaria italic, Eleusine coracana, Panicum virgatum, Echinochloa frumentacea, Paspalum scrobiculatum, Digitaria exilis, Milium effusum, Phalaris canariensis, Coix lacryma-jobi. Where so applicable the crop plants species here listed include all different sub-species, varieties and cultivars existent, including, without limitation, regional, seasonal and agricultural varieties.
[0056] In a more preferred embodiment, the crop plants are selected from the list consisting of: Hordeum spp., Zea mays, Secale spp, Setaria italica, Panicum miliaceum, Avena spp., Oryza spp., Triticum spp, Sorghum spp., Triticale

EP 3827665 A1

(Hybrid of Triticum aestivum and Secale cereale), Pennisetum glaucum, Eleusine coracana, Phalaris canariensis, Cynara spp., Daucus carota, Piper spp, Trifolium spp, Brassica spp, Lactuca spp, Mentha spp, Allium spp., Pisum sativum, Capsicum spp, Solamum spp, Cucurbita spp, Chenopodium quinoa, Rubus spp, Spinacia oleracea, Beta spp, Solanum spp., Helianthus spp., Gossypium spp, Arachis hypogaea, Cannabis sativa, Saccharum officinarum, Linum spp., Glycine spp., Nicotiana spp, Medicago spp., and/or Agrostis spp. In a more preferred embodiment, the crop plants belong to Hordeum spp. and/or Brassica spp.
[0057] In another preferred embodiments the forest plants are selected from a list consisting of: Araucaria spp., Cryptomeria japonica, Cupressus spp, Juniperus spp., Sequoia sempervirens, Sequoiadendron giganteum, Thuja spp, Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale, Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Paulownia tomentosa, Adansonia spp, Capparis spp, Sambucus spp., Carica papaya, Euonymus spp, Hevea brasiliensis, Manihot spp., Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Carya spp., Juglans spp., Cinnamomum spp., Laurus spp, Persea spp., Swietenia spp., Artocarpus spp., Ficus spp., Morus spp., Myrtus communis, Psidium spp., Nothofagus spp., Fraxinus spp., Olea europaea, Platanus spp, Dendrocalamus asper, Malus spp., Photinia spp, Photinia \times fraser, Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Solanum erianthum; Theobroma cacao, Camellia spp., Tilia spp., Ulmus spp., Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Solanum betaceum Cav.), Indian olive (Elaeocarpus robustus L.); bottle palm (Hyophorbe lagenicaulis), Indian rosewood (Dalbergia sissoo), canela petrea (Ocotea catharinensis Mez.), Sandalwood (Santalum album), Echinacea purpurea L., Iongan (Dimocarpus longan Lour.), (Aspidosperma polyneuron Mull.Arg), rattan (Calamus spp.), jojoba (Simmondsia chiensis), (Aegle marmelos L.), black cohosh (Actaea racemosa L.), Gomortega keule, Cyclamen spp., Hybrid Aspen (Populus tremuloides x Populus tremula), Oil palm (Elaeis guineensis Jacq.), Passiflora spp., Açaí palm (Euterpe oleracea Mart.), tree-fern (Cyathea delgadii Sternb.), Eucalyptus spp., Hybrid Larch (Larix x eurolepis Henry), neem (Azadirachta indica). Where so applicable the forest plants species here listed include all different sub-species, varieties and cultivars existent, including, without limitation, regional, seasonal and agricultural varieties.
[0058] In a more preferred embodiment, the forest plants are selected from the list consisting of: Araucaria spp., Cupressus spp, Juniperus spp., Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale, Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Carica papaya, Hevea brasiliensis, Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Cinnamomum spp., Laurus spp, Persea spp., Morus spp., Psidium spp., Fraxinus spp., Olea europaea, Platanus spp, Malus spp., Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Theobroma cacao, Camellia spp., Ulmus spp.,Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Eucalyptus spp. In a more preferred embodiment, the forest plants belong to Quercus spp.
[0059] In a further aspect, the invention relates to a method, here onwards the method of the invention, to induce in vitro plant embryogenesis, where the method comprising:
a. culturing the microspores and/or explants in a culture medium suitable for embryo development; and
b. adding mammal kinase inhibitors to the culture medium of step a); and c. culturing for a period sufficient to obtain embryos.
[0060] The term "culture medium" as used herein is intended to indicate any material either solid or liquid in which plant cells, tissues, organs and whole plants may grow. Additives may be provided to the cells in the form of media, and environmental conditions controlled. There are many types of plant tissue culture media comprised of mixtures of mineral salts containing essential oligoelements plus various additives like amino acids, sugars, growth regulators and vitamins which must therefore be added to the culture medium to allow development of (pro)embryo, explant and/or plant growth. Examples of planttissue culture medium are, without limitation, Chu (N6) medium (Duchefa, Sigma-Aldrich), Clc/lpomoea CP medium (Duchefa), CLC/Ipomoea ep medium (Duchefa), DKV/Junglans medum (Duchefa, Sigma-Aldrich), Erikson medium (Duchefa), Gamborg B5 medium (Duchefa, Sigma-Aldrich), Gresshoff and Doy medium (Duchefa), Lindemann orchid medium (Duchefa), NLN medium (Duchefa), Nitsch medium (Duchefa), Woody plant medium (Duchefa, SigmaAldrich), Linsmaier and Skoog medium (Duchefa), Litvay medium (Duchefa), Quorin and Lepoivre medium (Duchefa), Rugini olive medium (Duchefa), Schenk and Hildebrant medium (Duchefa, Sigma-Aldrich), White's medium (Duchefa, Sigma-Aldrich), Westvaco WV5 medium (Duchefa), Murashige and Skoog medium (Duchefa, Sigma-Aldrich), Murashige and Skoog medium with B5 vitamins (Duchefa), Murashige and Skoog medium with Nitsch vitamins (Duchefa), Murashige and Skoog medium van der Salm (Duchefa), Hoagland's $n^{\circ} 2$ basal salt mixture (Sigma-Aldrich), Sommer macronutrients + MS micronutrients and vitamins (Testillano et al. 2018, Plant Cell Culture Protocols, eds. V.M. Loyola-Vargas \& N. Ochoa-Alejo. Springer and Bussines Media. pp. 247-256), KBP medium (Kumlehn et al. 2006).
[0061] As used herein, the term "plant embryo" refers to a somatic plant embryo or a microspore plant embryo. Somatic plant embryos may be produced by culturing embryogenic tissue by standard methods under laboratory conditions in which some of the cells comprising the tissue, the responsive ones, are induced to reprogram and develop into complete

EP 3827665 A1

embryos. In the same sense, microspore plant embryo may be produced by culturing either anthers containing microspores or isolated microspores in appropriate culture medium under defined conditions in which some microspores, the responsive ones, are induced to reprogram and develop into complete haploid and doubled-haploid embryos.
[0062] As used herein, "plant embryo" includes embryos at various stages of development.
[0063] The term "explant" as used herein refers to a piece of tissue taken from a donor plant for culturing.
[0064] In a preferred embodiment, the method of the invention is a method wherein the embryogenesis is somatic and/or by microspores.
[0065] All the terms and definitions mentioned previously by the use of the mammal's kinase inhibitors to induce in vitro plant embryogenesis, apply in the same way to the method to induce in vitro plant embryogenesis disclosed herein.
[0066] Thus, in another preferred embodiment, the method of the invention is a method wherein the mammal kinases are human kinases, preferably GSK3 β and/or LRRK2, as it has been disclosed previously.
[0067] In a further preferred embodiment, the method of the invention is a method wherein the plants are crops and/or forest plants.
[0068] In yet another preferred embodiment, the method of the invention is a method wherein the crop plants are selected from the list consisting of: Hordeum spp., Zea mays, Secale spp, Setaria italica, Panicum miliaceum, Avena spp., Oryza spp., Triticum spp, Sorghum spp., Triticale (Hybrid of Triticum aestivum and Secale cereale), Pennisetum glaucum, Eleusine coracana, Phalaris canariensis, Cynara spp., Daucus carota, Piper spp, Trifolium spp, Brassica spp, Lactuca spp, Mentha spp, Allium spp., Pisum sativum, Capsicum spp, Solamum spp, Cucurbita spp, Chenopodium quinoa, Rubus spp, Spinacia oleracea, Beta spp, Solanum spp., Helianthus spp., Gossypium spp, Arachis hypogaea, Cannabis sativa, Saccharum officinarum, Linum spp., Glycine spp., Nicotiana spp, Medicago spp., and/or Agrostis spp. In a more preferred embodiment, the crop plants belong to Brassica spp. and/or Hordeum spp.
[0069] In another preferred embodiment, the method of the invention is a method wherein the forest plants are selected from the list consisting of: Araucaria spp., Cupressus spp, Juniperus spp., Abies spp., Cedrus spp, Larix spp, Picea spp., Pinus spp., Pseudotsuga spp, Taxus spp., Ginkgo biloba, Acer spp., Anacardium occidentale,Mangifera spp, Pistacia spp, Cocos nucifera, Phoenix spp, Betula spp., Corylus spp, Carica papaya, Hevea brasiliensis, Acacia spp., Robinia spp, Castanea spp, Fagus spp, Quercus spp., Cinnamomum spp., Laurus spp, Persea spp., Morus spp., Psidium spp., Fraxinus spp., Olea europaea, Platanus spp, Malus spp., Prunus spp., Pyrus spp., Coffea spp., Citrus spp., Populus spp., Salix spp., Theobroma cacao, Camellia spp., Ulmus spp.,Tamarillo, (Cyphomandra betacea (Cav.) (Sendtn.); Eucalyptus spp. In a more preferred embodiment, the forest plants belong to Quercus spp.
[0070] In a further preferred embodiment, the method of the invention is a method wherein the GSK3 β inhibitors inhibitors used are the same as described above. In a more preferred embodiment, the GSK3 3 inhibitors are selected from a list consisting of: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8), 5-(2-Morpholinethylimino)-2,3-diphe-nyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36), 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7).
[0071] In a further preferred embodiment, the method of the invention is a method wherein the LRRK2 inhibitors used are the same as described above. In a more preferred embodiment, are selected from a list consisting of: N -(6-metil-benzotiazol-2-il)-4-morfolinobenzamida (JZ1.3), N-(6-flurobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.6), N-(6-bro-mobenzotiazol-2-il)-4-morfolinobenzamida (JZ1.24), and (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).
[0072] In a further preferred embodiment, the method of the invention is a method wherein the inhibitor concentration ranges from $0.1 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive. Preferably the inhibitor concentrations have ranges of $0.5-10 \mu \mathrm{M}, 10-20$ $\mu \mathrm{M}, 20-30 \mu \mathrm{M}, 30-40 \mu \mathrm{M}, 40-50 \mu \mathrm{M}, 50-60 \mu \mathrm{M}, 70-80 \mu \mathrm{M}, 80-90 \mu \mathrm{M}, 90-100 \mu \mathrm{M}$. More preferably the inhibitor concentrations have ranges of $0.1-5 \mu \mathrm{M}, 5-10 \mu \mathrm{M}, 10-15 \mu \mathrm{M}, 15-20 \mu \mathrm{M}, 20-25 \mu \mathrm{M}, 25-30 \mu \mathrm{M}, 30-35 \mu \mathrm{M}, 35$ $-40 \mu \mathrm{M}, 40-45 \mu \mathrm{M}, 45-50 \mu \mathrm{M}, 50-55 \mu \mathrm{M}, 55-60 \mu \mathrm{M}, 60-65 \mu \mathrm{M}, 65-70 \mu \mathrm{M}, 70-75 \mu \mathrm{M}, 75-80 \mu \mathrm{M}, 80-85 \mu \mathrm{M}$, $85-90 \mu \mathrm{M}, 90-95 \mu \mathrm{M}, 95-100 \mu \mathrm{M}$.
[0073] In a further preferred embodiment, the method of the invention is a method wherein the culture medium is a liquid medium and the inhibitor concentration ranges from $0.1 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive, preferably from $0.5 \mu \mathrm{M}$ to $5 \mu \mathrm{M}$ inclusive.
[0074] In another preferred embodiment, the method of the invention is a method wherein the culture medium is a solid medium and the inhibitor concentration ranges from $0.1 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive, preferably from $25 \mu \mathrm{M}$ to 100 $\mu \mathrm{M}$, preferably from $25 \mu \mathrm{M}$ to $50 \mu \mathrm{M}$.
[0075] In a more preferred embodiment, wherein the embryogenesis is an embryogenesis from microspores, the inhibitor concentration ranges from $0.1 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive, preferably from $0.5 \mu \mathrm{M}$ to $10 \mu \mathrm{M}$ and more preferably from $0.5 \mu \mathrm{M}$ to $5 \mu \mathrm{M}$ wherein the culture medium is a liquid media. In another preferred embodiment, the inhibitor concentration ranges from $20 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive, preferably from $25 \mu \mathrm{M}$ to $50 \mu \mathrm{M}$, wherein the culture medium is a solid media.
[0076] In a more preferred embodiment, wherein the embryogenesis in a somatic embryogenesis, the inhibitor concentration ranges from $20 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$ inclusive, preferably from $25 \mu \mathrm{M}$ to $50 \mu \mathrm{M}$, wherein the culture medium is a solid media.
[0077] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skilled in the art to which this invention belongs. Methods and materials similar or equivalent to those described herein can be used in the practice of the present invention. Throughout the description and claims the word "comprise" and its variations are not intended to exclude other technical features, additives, components, or steps. Additional objects, advantages and features of the invention will become apparent to those skilled in the art upon examination of the description or may be learned by practice of the invention. The following examples and drawings are provided by way of illustration and are not intended to be limiting of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0078]
Fig. 1. In vitro microspore embryogenesis in B. napus. Cotyledonary embryos developed from isolated microspore culture in liquid medium without mammal's kinase inhibitors. Fig. 2. In vitro microspore embryogenesis in H. vulgare. Cotyleoptilar and leaf-stage embryos developed from isolated microspore culture in liquid medium without mammal's kinase inhibitors.
Fig. 3. In vitro somatic embryogenesis in Q. suber. Embryos at different developmental stages, cultured in solid medium without mammal's kinase inhibitors, emerging from proembryogenic masses and other embryos, some of them have differentiated fully mature cotyledonary embryos.
Fig. 4. Effects of four different GSK3 β inhibitors (TDZD.8, VP3.15, VP3.36 and VP0.7) over embryogenesis induction efficiency in B. napus microspore cultures. Columns indicate percent change of proembryos at 4 days and referred to the mean percentage of proembryos in control cultures which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's t-test at $P \leq 0.05$.
Fig. 5. Effects of four different LRRK2 inhibitors (JZ1.3, JZ1.6, JZ1.24 and IGS4.75) over embryogenesis induction efficiency in B. napus microspore cultures. Columns indicate percent change of proembryos at 4 days and refer to the mean percentage of proembryos in control cultures, which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's t-test at $P \leq 0.05$.
Fig. 6. Proembryos in TDZD.8-treated cultures of microspore embryogenesis of B. napus. After 4 days in culture, proembryos (arrows) coexisted with non-responding and dead microspores (smaller structures); DAPI staining (right panel) reveals that proembryos contain several nuclei (arrows), indicating embryogenesis initiation.
Fig. 7. Effects of TDZD. 8 (GSK3 β inhibitor) and JZ1.24 (LRRK2 inhibitor) over embryogenesis induction efficiency in B. napus microspore cultures. Columns indicate percent change of proembryos at 4 days and refer to the mean percentage of proembryos in control cultures, which has been normalized to 100%. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's t-test at $P \leq 0.05$.
Fig. 8. Evaluation of germination capacity of embryos produced in microspore cultures of B. napus. Germinating embryos from control (left) and treated (right) cultures, showing well-developed roots and hypocotyls in most embryos, in both conditions.
Fig. 9. Effects of selected GSK3 β and LRRK2 inhibitors (TDZD. 8 and JZ1.24, respectively) over embryogenesis induction efficiency in H. vulgare microspore cultures. Columns indicate percent change of proembryos at 4 days in control (untreated) and treated cultures. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's t-test at $P \leq 0.05$.
Fig. 10. Effects of selected GSK3 β and LRRK2 inhibitors (TDZD. 8 and JZ1.24) over embryo production in H. vulgare microspore cultures. Columns indicate mean number of embryos per plate formed at 40 days in control (untreated) and treated cultures. Different letters on columns indicate significant differences according to ANOVA and Tukey's tests at $P \leq 0.05$.
Figure 11: Effects of selected GSK3 β and LRRK2 inhibitors (TDZD. 8 and JZ1.24) over embryo production in Q. suber somatic embryogenesis. Columns indicate mean number of embryos per gram of initial explant, in control (untreated) and treated cultures. Different letters on columns indicate significant differences according to ANOVA and Tukey's tests at $P \leq 0.05$.
Figure 12: Effects of selected GSK3 β and LRRK2 inhibitors (TDZD. 8 and JZ1.24) over embryo production in Q. suber microspore embryogenesis. Columns indicate mean number of embryos per gram of initial explant, in control (untreated) and treated cultures. Asterisks on columns indicate statistically significant differences with control cultures, as assessed by Student's t-test at $P \leq 0.05$.

EP 3827665 A1

Examples

Methodology

1.1. Microspore embryogenesis of B. napus, through isolated microspore culture (protocol without inhibitors)

[0079] B. napus L. (rapeseed) cv. 'Topas' line DH407 plants were used as donor plants. Rapeseed seeds were germinated and grew under controlled conditions (relative humidity $60 \%, 15^{\circ} \mathrm{C}$ under long-day photoperiod 16 h light and 8 h dark at $10^{\circ} \mathrm{C}$) in a growth chamber in pots containing a mixture of organic substrate and vermiculite ($2 / 1, \mathrm{v} / \mathrm{v}$).
[0080] Flower buds containing vacuolated microspores, the most responsive stage for microspore induction, were isolated for microspore culture as previously described (Prem et al., 2012 BMC Plant Biology 12, 127). The selected buds were surface-sterilized in $5.0 \%(\mathrm{v} / \mathrm{v})$ commercial bleach (5% active chlorine) for 20 min and then rinsed $6-7$ times with sterile distilled water. Ten to 15 buds were crushed using a cold mortar and pestle in 5 ml of cold NLN-13 medium containing 13% sucrose (w / v). The suspension was filtered through $48 \mu \mathrm{~m}$ nylon mesh and the filtrate collected in 15ml falcon centrifuge tubes. The crushed buds were rinsed with $5 \mathrm{ml} \mathrm{NLN}-13$ to make up the volume to 10 ml and the filtrate was then centrifuged at 1100 rpm for 5 min at $4^{\circ} \mathrm{C}$. The pellet was re-suspended in 10 ml of cold NLN-13 and centrifuged as mentioned above. This process was repeated three times for washing of the microspores. The final pellet was suspended in the NLN-13, and the cell density was adjusted to 10,000 cells per ml. The cell suspension was then poured into $90-\mathrm{mm}$ Petri dishes (10 ml per Petri dish) and cultured in darkness. For embryogenesis induction, microspore cultures were subjected to an in vitro stress treatment of $32^{\circ} \mathrm{C}$ for 15 days. In response to the inductive treatment, responsive microspores divide and produce multicellular structures or proembryos, still confined within the microspore wall (exine). Such structures are considered to be the first sign of embryogenesis initiation; they can be found after 4-6 days in culture. When globular/heart shaped embryos were observed (around 20 days), cultures were shifted to $25^{\circ} \mathrm{C}$ on a gyratory shaker at 60 rpm until complete development and maturation of the embryos was observed (Fig. 1), normally around 30 days in culture.

1.2. Microspore embryogenesis of H. vulgare, through isolated microspore culture (protocol without inhibitors)

[0081] H. vulgare L. cv. Igri plants were used as donor plants. Seeds were vernalized in soil for one month at $4{ }^{\circ} \mathrm{C}$, and then transferred for one month in a plant growth chamber at $18^{\circ} \mathrm{C}$ for germination and growth. Finally, plants were transferred to a greenhouse under $18^{\circ} \mathrm{C}$ temperature.
[0082] Spikes containing microspores at the stage of vacuolated microspore, the most responsive stage for embryogenesis induction, were collected and surface sterilized by immersion in 5% bleach for 20 min , followed by 4 washes with sterile distilled water. Isolated microspore culture was settled as previously described (Rodriguez-Serrano et al., 2012, Journal of Experimental Botany 63(5), 2007-2024). The sterilized spikes were pre-treated at $4^{\circ} \mathrm{C}$ for $21-24$ days as stress treatment to induce microspore embryogenesis. Microspore were isolated blending spikes in 20 ml of precooled 0.4 M mannitol at $4^{\circ} \mathrm{C}$, using a Waring Blender pre-cooled in a refrigerator at $-20^{\circ} \mathrm{C}$, and the extract was filtered through a $100 \mu \mathrm{~m}$ nylon mesh into a beaker pre-cooled at $-20^{\circ} \mathrm{C}$. The collected microspore suspension was transferred into a 50 ml tube and centrifuged at 800 rpm for 10 min at $4^{\circ} \mathrm{C}$. After removing the supernatant, the pellet was resuspended in 4 ml of pre-cooled 0.55 M maltose and transferred in 15 ml falcon tube. 1.5 ml of 0.4 M mannitol solution were cautiously added unmixed. After gradient centrifugation at 800 rpm for 10 min at $4^{\circ} \mathrm{C}$, the interphase band consisting of an almost pure population of vacuolated microspores was resuspended in 0.4 M mannitol solution giving a final volume of 10 ml . After counting cells in the Neubauer chamber, the pelleted microspores were diluted in an appropriate volume of KBP medium to obtain a cell density of 1.1×10^{5} cells per ml , and plated in 30 mm Petri dishes, at a volume of 1 ml per plate. Then, microspore cultures were incubated at $25^{\circ} \mathrm{C}$ in the dark, and microspores reprogrammed and produced multicellular structures/proembryos that can be found after 4-6 days in culture, as the first sign of embryogenesis initiation. Proembryos further developed and produced coleoptylar and mature embryos (Fig. 2), which were observed after 30 days.

1.3. Microspore embryogenesis of Q. suber, through anther culture (protocol without inhibitors)

[0083] Branches with several catkins were cut and collected from Q. suber trees in the countryside (EI Pardo region, Madrid, Spain), during the flowering period (from early May to early-mid June). Cut tips of branches were immediately covered with moist cotton and aluminium foil, and transferred to the laboratory, where they were kept in the dark at 4 ${ }^{\circ} \mathrm{C}$ for several days, until use for in vitro culture. Selected catkins were separated from branches and sterilized by immersion in 70% ethanol for $30-60 \mathrm{~s}$, under vacuum, to aid penetration of the solvent. They were then immersed in 2% sodium hypochlorite with 1% Tween- 20 for 20 min , with magnetic stirring. After three washes in sterile distilled water, catkins were prepared for dissection and anther excision.
[0084] Anther culture and microspore embryogenesis induction were performed as previously described (Testillano

EP 3827665 A1

et al. 2018, Forestry Sciences Vol. 84. Springer International Publishing AG. pp. 93-105). Anthers containing vacuolated microspores, the most responsive stage for embryogenesis induction, were carefully excised from sterilized catkins under aseptic conditions and plated in Petri dishes of 90 mm diameter on solid induction medium which contained Sommer medium macronutrients, Murashige and Skoog (MS) micronutrients and vitamins, as well as $30 \mathrm{~g} / \mathrm{L}$ sacarose and activated charcoal. Anthers were placed in linear arrays of 10-12 anthers each, with a gap of around 5 mm between each anther, and up to 100 anthers per Petri dish. Embryogenesis was induced by stress treatment at $33^{\circ} \mathrm{C}$ in darkness for 5 days. After this inductive treatment, the anther cultures were transferred to $25^{\circ} \mathrm{C}$ in darkness. In the following 20-30 days, responsive anthers become swollen and proembryos and small proembryogenic masses were visible as very small white structures emerging from the anther interior, breaking the tissues of the anther wall. After some more days, proembryos and proembryogenic masses grew and formed globular embryos by direct and indirect embryogenesis from individual microspores.
[0085] Microspore-derived embryogenic masses and embryos were transferred to new plates with proliferation medium which has a similar composition to induction medium except that it does not contain activated charcoal and is supplemented with $0.5 \mathrm{~g} / \mathrm{L}$ glutamine. They were kept at $25^{\circ} \mathrm{C}$ in darkness and sub-cultured every month in the same medium, where embryogenic masses can proliferate and spontaneously originate new globular embryos, which further developed heart-shaped, torpedo and cotyledonary embryos. In proliferation medium, some of these embryos produced new embryos by secondary and recurrent embryogenesis.

1.4. Somatic embryogenesis of Q. suber, through immature zygotic embryos culture (protocol without inhibitors)

[0086] Immature pollinated acorns were collected from Q. suber L. (cork oak) trees in the countryside (El Pardo region, Madrid, Spain) during fruit development period (late August and September), transferred to the laboratory and kept at $4^{\circ} \mathrm{C}$ for one week before in vitro culture initiation. Immature acorns were selected at the most responsive stage to somatic embryogenesis induction; they are those with small size, around 1 cm diameter, and green colour; they contain immature zygotic embryos at the early cotyledonary stage.
[0087] Immature zygotic embryos were carefully excised from the acorns by dissecting the surrounding tissues with the help of scalpel and forceps. After dissection, explants (immature zygotic embryos) were sterilized by immersion in 70% ethanol for 30 s and in 2% sodium hypochlorite for 20 min , followed by three rinses in sterile distilled water of 10 min each. Five explants were placed per plate.
[0088] Somatic embryogenesis was induced as previously described (Testillano et al. 2018, Plant Cell Culture Protocols, eds. V.M. Loyola-Vargas \& N. Ochoa-Alejo. Springer and Bussines Media. pp. 247-256). Explants were first cultured in solid induction medium, which contains Sommer macronutrients, MS micronutrients and vitamins, $0.5 \mathrm{mg} / \mathrm{I}$ Glutamine, $30 \mathrm{~g} / \mathrm{I}$ Sucrose, and $0.5 \mathrm{mg} / \mathrm{I} 2,4$-Dichlorophenoxyacetic acid (2,4-D), for one month at $25^{\circ} \mathrm{C}$ and $16 / 8 \mathrm{~h}$ light/darkness. During this induction period, cell reprogramming occurs in some responsive cells which initiated the embryogenesis pathway, producing small proembryogenic masses. Then, the explants were transferred to solid proliferation medium, with the same composition but growth regulator-free (without 2,4-D). During the next weeks of culture in the proliferation medium, proembryogenic masses proliferated and protruded from different parts of the explants; they produce new embryogenic masses and embryos, which in turn give rise to new embryos, that developed to fully developed cotyledonary embryos, by recurrent and secondary embryogenesis (Fig. 3).

1.5. Treatment with mammal kinases inhibitors on microspore embryogenesis cultures of B. napus and H. vulgare in liquid media

[0089] The compounds were added to the microspore liquid culture media by using stock solutions of 10 mM in DMSO. Appropriate volumes of stock solutions of the drugs were added to the culture media to get the selected working concentrations of the inhibitors, keeping DMSO concentration below 0.2%.

- In B. napus microspore cultures: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8), 5-(2-Morpholinethylim-ino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36), 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7), N-(6-methylbenzo-thiazole-2-yl)-4-morpholinobenzamide (JZ1.3), N -(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6) and N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24). and (E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75) were tested at 3-4 different concentrations, ranging from 0.5 to $5 \mu \mathrm{M}$.
- In H. vulgare microspore cultures: 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8) and N-(6-bromoben-zothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) inhibitors at the selected concentrations ($2.5 \mu \mathrm{M}$ and 5μ, respectively) were tested.

EP 3827665 A1

[0090] The compounds were added from culture initiation and their effect on embryogenesis efficiency was assessed. Several plates of the same cultures were kept without the inhibitors, as controls.

1.6. Evaluation of the effect of mammal kinases inhibitors over in vitro embryogenesis induction in isolated microspore cultures of B. napus and H. vulgare

[0091] Embryogenesis induction was quantified in control and treated-cultures by the number of proembryos formed (considered the first sign of embryogenesis initiation), as previously described, and by the number of embryos produced after 40 days. Proembryos were easily identified under inverted microscope in 4 day-culture plates as rounded multicellular structures with higher size and density than microspores, still surrounded by the exine (special microspore wall). Embryos produced after 40 days in culture were quantified through images captured under a stereo microscope. Randomly obtained micrographs from inverted and stereo microscopes were collected from untreated and treated microspore culture plates. Mean percentage of proembryos and mean number of embryos per plate were obtained from three independent experiments per each in vitro system and treatment. A minimum of 1000 proembryos were counted for each treatment and plant species. Results on proembryos were expressed as percentages (percent change) and referred to the mean percentage of proembryos in control cultures, which has been normalized to 100%.
[0092] In order to evaluate whether proembryo structures of treated cultures, identified under the inverted microscope for quantification, were actually dividing microspores, similar to the same structures in control cultures, a simply staining technique was performed to visualize nuclei inside proembryos. Samples from control and treated-cultures of 4 days, containing proembryos, were stained with $10 \mu \mathrm{~g} / \mathrm{mL} 4^{\prime}, 6$-diamidine-2-phenyl indole dihydrochloride (DAPI). Squash preparations were analysed under fluorescence microscopy using UV excitation for observing nuclei.

1.7. Evaluation of quality/germination capacity of embryos produced after treatment with mammal kinases inhibitors

[0093] To evaluate the quality of embryos produced in microspore embryogenesis cultures in the presence of the mammal kinases inhibitors, embryo germination assays were performed. B. napus microspore cotyledonary embryos originated from control and treated-cultures were used for in vitro embryo germination and conversion to plantlets as previously described (Prem et al., 2012, BMC Plant Biology 12, 127). The $34-40$ old dicotyledonous embryos, after air desiccation on sterile filter paper were germinated in MS medium containing sucrose 2% (w / v) and gelled with $7 \mathrm{~g} / \mathrm{L}$ bacteriological agar (w/v). Microspore derived-embryos were incubated for $15-20$ days at $18^{\circ} \mathrm{C}$ in darkness conditions till activation of radicle and plumule, and quantified in terms of percentage of embryos showing normal growth, similar to zygotic embryo germination.
1.8. Treatments with kinases inhibitors on microspore and somatic embryogenesis cultures of Q. suber in solid media
[0094] Since the in vitro systems of Q. suber were two-step processes in solid culture media, a different strategy than in liquid microspore cultures was applied for the treatments with the mammal kinases inhibitors. During in vitro embryogenesis of Q. suber, after incubation in induction medium, the transfer of explants to proliferating medium involves the multiplication of proembryogenic masses, embryogenesis initiation, by recurrent and secondary embryogenesis, and embryo development. Therefore, treatments with the mammal kinases inhibitors were performed during the first 15-30 days in proliferating media, and afterwards, explants with emerging embryos were transferred to fresh proliferating media without the inhibitor.
[0095] Since solid media involve much less diffusion and availability of compounds to cells in comparison with liquid media, as referred in other in vitro systems, the concentration of the mammal kinases inhibitors used in solid media was around 10X higher than in liquid media, in the range of 25 to $100 \mu \mathrm{M}$. Appropriate volumes of stock solutions of 10 mM in DMSO of the selected compounds were added to cooled media, before its gelling, keeping DMSO concentration below 0.2%. Mock parallel plates of the same cultures were kept as controls.

1.9. Evaluation of the effect of inhibitors over in vitro embryogenesis induction in microspore and somatic embryogenesis cultures of Q. suber

[0096] Embryogenesis induction efficiency was quantified in control and treated-cultures by the number of cotyledonary embryos produced by 15-30 days of treatment (culture medium containing the inhibitor) followed by 30 days of recovery (culture medium without inhibitor). Embryo production was estimated as the number of cotyledonary embryos originated per gram of embryogenic masses at culture initiation.

EP 3827665 A1

Results

1.1. Effect of kinases inhibitors over microscope embryogenesis cultures B. napus

[0097] To evaluate the effect of the kinase inhibitors over in vitro embryogenesis induction, we first tested them in B. napus microspore embryogenesis, as a model platform to check the mammal kinases inhibitors and different concentrations. After these analyses, one selected mammal kinases inhibitor of each category was tested in other two plant species, H. vulgare and Q. suber, with different in vitro systems. The efficiency of embryogenesis induction was evaluated in control cultures and cultures treated with the mammal kinases inhibitors, at different concentrations. The results for the GSK3 β inhibitors and LRRK2 inhibitors tested are shown as the percentage of proembryos (first sign of embryogenesis initiation) in Figs. 4 and 5 , respectively. The presence of the inhibitors in the culture media affected the production of proembryos in comparison with control cultures, being the proportion of proembryos different depending on the concentration used. Four inhibitors of GSK3 β TDZD8; VP3.15, VP3.36, VP0.7 were tested at $3-4$ concentrations in the range of $0.1 \mu \mathrm{M}$ to $5 \mu \mathrm{M}$. The results of the quantification of the proembryos produced, as first sign of embryogenesis initiation, in control and treated cultures showed that all inhibitors, at least with one or two of the concentrations used, led to an increase of the production of proembryos (Figs. 4 and 5). The concentrations and compounds that provided an improvement of embryogenesis initiation yield were the following: GSK3 β inhibitors, $0.5 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$ TDZD-8, $2.5 \mu \mathrm{M}$ VP3.15,
 (Fig. 5). With the other concentrations, treated cultures showed a proportion of proembryos either similar to or slightly higher than control cultures (Figs. 4 and 5), while they did not show any deleterious/toxic effect.
[0098] The results showed that the increase of embryogenesis induction efficiency provided by the use of the inhibitors was in the range of $20-25 \%$ for GSK3 β inhibitors and $23-30 \%$ for LRRK2 inhibitors.
[0099] To confirm that proembryos quantified in treated cultures were multicellular microspores that have initiated embryogenesis, squash preparations from control and treated cultures at 4 days were stained with DAPI and observed under fluorescence microscopy. Results showed that proembryos from treated cultures contained several nuclei (Fig. 6), as in control cultures, indicating that they were actually dividing microspores that likely initiated embryogenesis.
[0100] Taking into account these results in B. napus, the compounds that were selected for testing in other in vitro embryogenesis systems were:

- 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD.8) as GSK3 β inhibitor and
- N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) as LRRK2 inhibitor.
[0101] As it is showed in Fig 7, the selected compounds, the GSK3 β inhibitor TDZD. 8 and the LRRK2 inhibitor JZ1. 24 showed an increase of embryogenesis efficiency, i.e. increase in the percentage of proembryos that was of 20% increase in the case of $0.5 \mu \mathrm{M}$ TDZD.8, and 27.5% increase in the case of $2.5 \mu \mathrm{M} \mathrm{JZ1.24} .\mathrm{in} \mathrm{B} .\mathrm{napus} \mathrm{microspore} \mathrm{cultures} \mathrm{(Fig}. \mathrm{7)}$. [0102] The quality of the embryos produced in microspore cultures treated with the mentioned inhibitors was evaluated by germination assays. Fully developed cotyledonary embryos from control and treatedcultures, produced after 30 days were desiccated and cultured under germination conditions. Results showed that embryos from treated cultures germinated very well, producing roots and hypocotyl, similarly and in the same proportion than embryos from control cultures (Fig. 8).

1.2. Effect of kinase inhibitors over microscope embryogenesis cultures of H. vulgare

[0103] The selected inhibitors, TDZ. 8 and JZ1.24 were tested in microspore embryogenesis cultures of a different crop, H. vulgare. The inhibitors were firstly applied at the same concentrations that provided the best results in B. napus, $0.5 \mu \mathrm{M}$ TDZD8 and $2.5 \mu \mathrm{M} \mathrm{JZ1.24} ,\mathrm{but} \mathrm{the} \mathrm{results} \mathrm{obtained} \mathrm{(percentage} \mathrm{of} \mathrm{proembryos)} \mathrm{in} H$. vulgare treated cultures using these concentrations were similar to control cultures. Therefore, two slightly higher concentrations were tested for both inhibitors ($1 \mu \mathrm{M}$ and $2.5 \mu \mathrm{M}$ for TDZD8; and $2.5 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$ for JZ1.24). The results showed that the two inhibitors lead to an increase in the embryogenesis initiation in H. vulgare, when used at slightly different concentrations than in B. napus, $2.5 \mu \mathrm{M}$ TDZD8 and $5 \mu \mathrm{M} \mathrm{JZ1.24}$. This indicates that optimal concentrations of these inhibitors could differ among species, probably due to differences in cell wall and permeability properties, and the specific features of each plant and in vitro system. The quantification of the proembryos formed at 4 days showed that treatments with the two inhibitors at the selected concentrations enhanced embryogenesis induction efficiency in H. vulgare, being the increase in proembryo formation of 27% in the case of $2.5 \mu \mathrm{M}$ TDZD8, and 47% in the case of $5 \mu \mathrm{M} \mathrm{JZ1.24-treated} \mathrm{cultures} \mathrm{(Fig}. \mathrm{9)}$. [0104] Untreated and treated cultures further developed and total number of embryos produced per plate at 40 days was quantified. Microspore cultures treated with these inhibitors produced more embryos than control cultures, being the increment of 22% for JZ1. 24 and 15\% for TDZD8 (Fig. 10).
[0105] The results indicated that small molecule inhibitors of mammalian GSK3 β and LRRK2 produced a similar

EP 3827665 A1

promoting effect in H. vulgare than in B. napus microspore cultures, an increase of in vitro embryogenesis induction efficiency.

1.3. Effect of kinase inhibitors over microspore and somatic embryogenesis cultures of Q. suber

[0106] In order to evaluate the possibility to extend the findings from B. napus and H . vulgare to more distant species and processes, the selected inhibitors, TDZD. 8 and JZ1.24, were applied to a forest woody species Q. suber, in which two different embryogenesis in vitro systems were established, somatic embryogenesis from immature zygotic embryos and microspore embryogenesis, two culture systems that consisted in two-step cultures in solid media.
[0107] Inhibitor treatments were applied at concentrations 10X higher than in liquid media, because of the lower diffusion and availability of compounds in gelled medium. The evaluation of the effects of the compounds over embryogenesis efficiency in the two systems were assessed by the quantification of the embryos produced in control and treated cultures. Results showed that treatments with the two types of inhibitors increased embryogenesis induction efficiency and lead to higher embryo production, in somatic embryogenesis from immature zygotic embryos cultures (Fig. 11), as well as in microspore embryogenesis from anther cultures (Fig. 12).
[0108] The results indicated that also in a woody species and in different in vitro embryogenesis systems, involving solid culture media, the small molecule inhibitors of mammalian GSK3 β and LRRK2 produced the same effect than in rapeseed and barley systems in liquid media, an increase of in vitro embryogenesis induction efficiency.

Conclusions

[0109] The present invention deals with a major challenge of in vitro plant propagation techniques, that is to improve the efficiency of embryogenesis induction for rapid production of high numbers of high quality, disease-free and uniform planting material for agroindustry companies, reducing time and costs, in many species of economic interest. The new strategy reported in the present invention uses for the first time in plant in vitro systems inhibitors of mammalian protein kinases, specifically inhibitors of GSK3 β and LRRK2 families, which have demonstrated capacity to increase embryogenesis induction and embryo production yield in three different crop and forest species. Moreover, treatments with these inhibitors have been successfully applied to different in vitro protocols, in liquid or solid media, and with direct, indirect and secondary/recurrent embryogenesis, providing similar promoting effects over embryogenesis. Several inhibitors of each group, with different molecular structure, have shown to be able to enhance embryogenesis efficiency, giving additional support to the use of these type of small molecules as new tools to optimize in vitro plant embryogenesis protocols.

2. Synthesis and characterisation of the inibitors of the present invention.

2.1. Inhibitors of Formula (I)

[0110] 4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8) is disclosed in Martinez A et al. (Martinez A et al. J Med Chem. 2002; 45(6):1292-9).

2.2. Inhibitors of Formula (II)

[0111] All of inhibotors of Formula (II), including 5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15), are disclosed in EP2484670A1.

2.3. Inhibitors of Formula (III)

[0112] 3-acetyl-4-(1-methyl-1H-indol-3-yl)-1H-pirrol-2,5-dione (VP3.36) is disclosed in Perez DI et al. (Perez DI et al. J Med Chem. 2011; 54(12):4042-56).

2.4. Inhibitors of Formula (IV)

[0113] 4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7) is disclosed in Palomo V et al. (Palomo V et al. J Med Chem. 201; 60(12):4983-5001).

2.5. Inhibitors of Formula (V)

[0114] N-(benzothiazole-2-yl)-4-morpholinobenzamide: 276.0 mg of 4-morpholinobenzoic acid (1.3 mmol), 331.00

EP 3827665 A1

mg of $\mathrm{EDCl}(1.4 \mathrm{mmol}), 24.4 \mathrm{mg}$ of DMAP $(0.3 \mathrm{mmol})$ and $335 \mu \mathrm{~L}(2.4 \mathrm{mmol})$ of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2 -aminobenzothiazole (1.3 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO_{3} and NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by chromatography in a flash column using a mixture of eluents $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1)$ to obtain a yellow solid ($72 \mathrm{mg}, 16 \%$). HPLC Purity $>95 \%$. MS: m/z $340[\mathrm{M}+1]^{+} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.16(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 164.6,159.1,154.3,148.2,132.2,129.4,126.0,123.7,121.3,121.1,120.7,113.8,66.5,47.4$.
[0115] N-(6-methoxybenzothiazole-2-yl)-4-morpholinobenzamide: 230.0 mg of 4 -morpholinobenzoic acid (1.1 $\mathrm{mmol}), 276.6 \mathrm{mg}$ of EDCI (1.4 mmol), 24.43 mg of DMAP (0.2 mmol) and $248 \mu \mathrm{~L}(1.7 \mathrm{mmol})$ of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-methoxybenzothiazole (1.1 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO_{3} and NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50: 1)$ to obtain a yellow solid ($36 \mathrm{mg}, 9 \%$). P.f.: 237.6-240.0 ${ }^{\circ} \mathrm{C}$. HPLC Purity: 95%. MS: m/z $370[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 7 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 164.8,156.9,156.0,153.8,142.7,132.8,129.8,120.8,120.5,114.80,113.1,104.6$, 65.8, 55.6, 46.8 .
[0116] N-(6-trifluoromethylbenzothiazole-2-yl)-4-morpholinobenzamide: 189.9 mg of 4-morpholinobenzoic acid (0.9 mmol), 228.53 mg of $\operatorname{EDCI}(1.2 \mathrm{mmol}), 22.41 \mathrm{mg}$ of DMAP $(0.2 \mathrm{mmol})$ and $223 \mu \mathrm{~L}(1.5 \mathrm{mmol})$ of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-trifluorobenzothiazole (0.9 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with saturated solutions of NaHCO_{3} and NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage ${ }^{8}$ Isolera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid ($79 \mathrm{mg}, 26 \%$). P.f.: $218.5-218.5^{\circ} \mathrm{C}$. HPLC Purity: 95%. MS: m/z $408[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,160.8,153.4,149.4,131.2,128.5,124.9(\mathrm{~d}, \mathrm{~J}=32.5 \mathrm{~Hz}), 124.3,122.1(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 119.6(\mathrm{~d}$, $J=32.2 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 112.7,65.4,46.3,28.6 . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: Theoretical (\%) C, 56.01; H,3.96; $\mathrm{N}, 10.31$; S, 7.87. Found (\%) C, 56.13; H, 3.98; N, 10.38; S, 7.59.
[0117] N-(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3): 252.4 mg of 4-morpholinobenzoic acid $(1.2 \mathrm{mmol}), 303.5 \mathrm{mg}$ of EDCI (1.58 mmol$), 20.06 \mathrm{mg}$ of DMAP $(0.2 \mathrm{mmol})$ and $272 \mu \mathrm{~L}(1.9 \mathrm{mmol})$ of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-methylbenzothiazole $(1.2 \mathrm{mmol})$ were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of $\mathrm{HCl}(0.1 \mathrm{M})$, saturated NaHCO_{3} and saturated NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage $® 1 s o l e r a$ One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid ($43 \mathrm{mg}, 10 \%$). P.f.: $287.7-288.8^{\circ} \mathrm{C}$. $\mathrm{MS}\left(\mathrm{ESI}+\right.$): m/z $354[\mathrm{M}+\mathrm{H}]+.{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.56(\mathrm{~s}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.26(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.7,158.5,154.2,146.1,133.7$, 132.3, 129.4, 127.5, 121.3, 121.1, 120.3, 113.8, 66.5, 47.5, 21.4. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: Theoretical (\%) C, 64.57; H, 5.42; N, 11.89; S, 9.07. Found (\%) C, 64.33; H, 5.38; N, 11.85; S, 8.96.
[0118] N-(6-chlorobenzothiazole-2-yl)-4-morpholinobenzamide: 224.4 mg of 4 -morpholinobenzoic acid (1.1 $\mathrm{mmol}), 269.89 \mathrm{mg}$ of EDCI (1.4 mmol), 26.4 mg of DMAP (0.2 mmol) and $242 \mu \mathrm{~L}(1.7 \mathrm{mmol})$ of triethylamine were dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2-amino-6-chlorobenzothiazole (1.1 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of $\mathrm{HCl}(0.1 \mathrm{M})$, saturated NaHCO_{3} and saturated NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage ${ }^{(1)}$ Isolera One) using a mixture of eluents hexane/AcOEt to obtain a white solid ($96 \mathrm{mg}, 24 \%$). P.f.: $245.4-246.4^{\circ} \mathrm{C}$. HPLC Purity: 97%. MS: m/z $374[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.25(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,159.3,154.4,146.8$, 139.7, 133.5, 129.4, 126.7, 121.5, 121.0, 120.8, 113.7, 66.5, 47.4. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$: Theoretical (\%) C, 57.83; H. 4.31; N, 11.24; S, 8.58. Found (\%) C, 57.56; H, 4.09; N, 11.43; S, 8.40.
[0119] N-(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.6): 168.20 mg of 4-morpholinobenzoic acid $(1.2 \mathrm{mmol}), 296.3 \mathrm{mg}$ of $\mathrm{EDCl}(1.5 \mathrm{mmol}), 29.05 \mathrm{mg}$ of $\operatorname{DMAP}(0.2 \mathrm{mmol})$ and $265 \mu \mathrm{~L}(1.9 \mathrm{mmol})$ of triethylamine were

EP 3827665 A1

dissolved in dichloromethane. After stirring for 1 hour at room temperature, 200 mg of 2 -amino-6-fluorobenzothiazole (1.2 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of $\mathrm{HCl}(0.1 \mathrm{M})$, saturated NaHCO_{3} and saturated NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage ${ }^{\text {Bl }}$ Isolera One) using a mixture of eluents hexane/AcOEt to obtain a white solid ($79 \mathrm{mg}, 19 \%$). P.f.: $228.3-229.3^{\circ} \mathrm{C}$. HPLC Purity: 98%. MS: m/z $358[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.96(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,159.2,154.4,147.0$, 138.7, 133.6, 129.3, 126.8, 121.6, 121.0, 120.8, 113.8, 66.5, 47.4. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$: Theoretical (\%) C, 60.49; H, 4.51; $\mathrm{N}, 11.76$; S, 8.97. Found (\%) C, 60.68; H, 4.50; N, 11.55; S, 8.72.
[0120] N -(6-ethoxybenzothiazole-2-yl)-4-morpholinobenzamide: 213.1 mg of 4 -morpholinobenzoic acid (1.0 $\mathrm{mmol}), 256.2 \mathrm{mg}$ of $\operatorname{EDCI}(1.3 \mathrm{mmol}), 25.12 \mathrm{mg}$ of DMAP (0.2 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 200 mg of 2-amino-6-ethoxybenzothiazole (1.0 mmol) and $229 \mu \mathrm{~L}$ of triethylamine (1.9 $\mathrm{mmol})$ were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of $\mathrm{HCl}(0.1 \mathrm{M})$, saturated NaHCO_{3} and saturated NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage $® \mid$ solera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid ($20 \mathrm{mg}, 5 \%$). P.f.: $222.8-223.8^{\circ} \mathrm{C}$. HPLC Purity: 95%. MS: $\mathrm{m} / \mathrm{z} 384[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.25(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,157.1$, $156.0,154.2,142.3,133.3,129.3,121.3,121.2,119.7,115.5,114.2,113.8,106.0,104.9,99.5,66.5,64.1,64.1,47.5,14.8$.
[0121] N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24): 180.9 mg of 4-morpholinobenzoic acid (0.9 mmol), 217.6 mg of EDCI (1.1 mmol), 21.33 mg of DMAP $(0.2 \mathrm{mmol})$ were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 200 mg of 2-amino-6-bromobenzothiazole (0.9 mmol) and 195μ l of triethylamine (1.4 mmol) were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with solutions of $\mathrm{HCl}(0.1 \mathrm{M})$, saturated NaHCO_{3} and saturated NaCl , respectively. Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by automatic flash column chromatography (Biotage $® /$ solera One) using a mixture of eluents hexane/AcOEt to obtain a yellow solid ($41 \mathrm{mg}, 11 \%$). P.f.: $237.5-238.5^{\circ} \mathrm{C}$. HPLC Purity: 98%. MS: m/z $418[\mathrm{M}+\mathrm{H}]+.{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 11 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,160.4,154.8,147.1,134.1$, 130.0, 129.9, 124.3, 122.1, 121.1, 117.2, 114.1, 66.9, 47.8.
[0122] N-(6-propoxybenzothiazole-2-yl)-4-morpholinobenzamide: 248.8 mg of 4 -morpholinobenzoic acid (1.2 $\mathrm{mmol}), 299.00 \mathrm{mg}$ of $\operatorname{EDCI}(1.6 \mathrm{mmol}), 29.3 \mathrm{mg}$ of DMAP (0.2 mmol) were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 250 mg of 2-amino-6-propoxybenzothiazole (1.2 mmol) and $267.6 \mu \mathrm{~L}(1.9 \mathrm{mmol})$ of triethylamine were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with a HCl solution (0.1 M). Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50: 1)$ to obtain a yellow solid ($127 \mathrm{mg}, 27 \%$). HPLC Purity $>95 \%$. MS: $\mathrm{m} / \mathrm{z} 398[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~h}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,156.3,155.2,153.3,141.27,132.2,128.4,120.4,120.3,114.5$, 112.8, 103.9, 69.2, 65.5, 46.5, 21.6, 9.5. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: Theoretical (\%) C, 63.46; H, 5.83; N, 10.57; S, 8.07. Found (\%) C, 63.73; H, 5.74, N, 10.09; S, 7.71.
[0123] N-(6-isopropylbenzothiazole-2-yl)-4-morpholinobenzamide: 269.4 mg of 4 -morpholinobenzoic acid (1.3 $\mathrm{mmol}), 324.00 \mathrm{mg}$ of $\mathrm{EDCl}(1.7 \mathrm{mmol}), 32.00 \mathrm{mg}$ of DMAP $(0.3 \mathrm{mmol})$ were dissolved in dichloromethane. After stirring for 6 hours at room temperature, 250 mg of 2-amino-6-isopropylbenzothiazole (1.3 mmol) and $290.0 \mu \mathrm{~L}(2.1 \mathrm{mmol})$ of triethylamine were added. The reaction is left under stirring at room temperature during the night. After this time period the crude was washed with a HCl solution (0.1 M). Next, the organic phase is dried on anhydrous magnesium sulfate, the solvent is evaporated at low pressure and is purified by flash column chromatography using a mixture of eluents $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50: 1)$ to obtain a yellow solid ($218.4 \mathrm{mg}, 44 \%$). HPLC Purity $>95 \%$. MS: $\mathrm{m} / \mathrm{z} 382[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7$, 157.7, 153.2, 145.3, 143.9, 131.3, 128.4, 124.0, 120.4, 119.4, 119.1, 117.5, 112.8, $65.5,46.5,33.2,23.3 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: Theoretical (\%) C, 66.12; H, 6.08; $\mathrm{N}, 11.00 ; \mathrm{S}, 8.40$. Found (\%) C, 66.09; H, 6.13; N, 10.69; S, 8.54.
[0124] 2.6. Inhibitor of formula (E, Z)-3-(morpholinoimino)indolin-2-one (IGS4.75): is disclosed in Salado IG. et al., (Salado IG. et al., Eur J Med Chem. 2017 Sep 29;138:328-342).

```
<110> CSIC - Consejo Superior de Investigaciones Científicas
<120> Mammal kinase inhibitors for the induction of the in vitro
            embryogenesis of plants
<130> 1641.1479
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 420
<212> PRT
<213> Homo sapiens
<400> 1
Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro
1 5 10
Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys
    20 25 30
```

Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro
3540
45
Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn
50
50
Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu
$65 \quad 70 \quad 750$
Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg
Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu
100105110
Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu
Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg
130135140
His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu
145
Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly
165170175


```
Ser Asn Ser Thr
    420
```

```
<210> 2
<211>433
<212> PRT
<213> Homo sapiens
<400> 2
Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro
1 5 10
Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys
Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro
Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn
    50 55 60
Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu
```

Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg
Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu
100
105
110

Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu 115 120 125

Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg
130
His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu
145
Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly
Ile Cys His Arg Asp Ile Lys Pro Gln Asn Leu Leu Leu Asp Pro Asp 180 185 190

```
Thr Ala Val Leu Lys Leu Cys Asp Phe Gly Ser Ala Lys Gln Leu Val
```

Arg Gly Glu Pro Asn Val Ser Tyr Ile Cys Ser Arg Tyr Tyr Arg Ala 210 215 220

Pro Glu Leu Ile Phe Gly Ala Thr Asp Tyr Thr Ser Ser Ile Asp Val			
225	230	235	240

```
Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Leu Gly Gln Pro Ile
    245 250
                                    255
```

Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Val
260265 270
Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Tyr 275280 285
Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Asp 290295 300
Ser Ser Gly Thr Gly His Phe Thr Ser Gly Val Arg Val Phe Arg Pro305310315320
Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Leu Leu Glu Tyr 325 330 335
Thr Pro Thr Ala Arg Leu Thr Pro Leu Glu Ala Cys Ala His Ser Phe 345 350
Phe Asp Glu Leu Arg Asp Pro Asn Val Lys Leu Pro Asn Gly Arg Asp 355 360 365
Thr Pro Ala Leu Phe Asn Phe Thr Thr Gln Glu Leu Ser Ser Asn Pro 370 375 380
$\begin{array}{rrrr}\text { Pro Leu Ala Thr Ile Leu Ile Pro Pro His Ala Arg Ile Gln Ala Ala } \\ 385 & 390 & 395\end{array}$
Ala Ser Thr Pro Thr Asn Ala Thr Ala Ala Ser Asp Ala Asn Thr Gly
Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala Ser Asn Ser420425430
Thr

```
<210> 3
<211> 387
<212> PRT
<213> Homo sapiens
```


<400> 3

Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp glu Val Tyr Leu
115
120

Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg 130135140

His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu 145150155160 Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly
165
170 Ile Cys His Arg Asp Ile Lys Pro Gln Asn Leu Leu Leu Asp Pro Asp 180185 190

```
Thr Ala Val Leu Lys Leu Cys Asp Phe Gly Ser Ala Lys Gln Leu Val
    195 200 205
```

Arg Gly Glu Pro Asn Val Ser Tyr Ile Cys Ser Arg Tyr Tyr Arg Ala
210
215
Pro Glu Leu Ile Phe Gly Ala Thr Asp Tyr Thr Ser Ser Ile Asp Val
225230240
Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Leu Gly Gln Pro Ile

Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Val | 270 |
| ---: |
| 260 |

Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Tyr

Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Val	
290	395

Phe Arg Pro Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Leu
$305 \quad 310 \quad 315 \quad 320$
Leu Glu Tyr Thr Pro Thr Ala Arg Leu Thr Pro Leu Glu Ala Cys Ala
325
330
335
His Ser Phe Phe Asp Glu Leu Arg Asp Pro Asn Val Lys Leu Pro Asn
340345350
Gly Arg Asp Thr Pro Ala Leu Phe Asn Phe Thr Thr Gln Asp Ala Asn
355
360
Thr Gly Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala Ser
370
375
380

Asn Ser Thr

385

```
<210> 4
<211> 400
<212> PRT
<213> Homo sapiens
<400> 4
```

Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro
151015
Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys
202530
Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro
Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn
505560
Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu

Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu
Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg
130
135
His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu
$1450150 \quad 155 \quad 160$
$\begin{array}{rl}\text { Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly } \\ 165 & 170\end{array}$
Ile Cys His Arg Asp Ile Lys Pro Gln Asn Leu Leu Leu Asp Pro Asp
180185190
Thr Ala Val Leu Lys Leu Cys Asp Phe Gly Ser Ala Lys Gln Leu Val
195200205
$\begin{array}{rl}\text { Arg Gly Glu Pro Asn Val Ser Tyr Ile Cys Ser Arg Tyr Tyr Arg Ala } \\ 210 & 215 \\ 220\end{array}$
Pro Glu Leu Ile Phe Gly Ala Thr Asp Tyr Thr Ser Ser Ile Asp Val
2252302350
$\begin{array}{cc}\text { Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Leu Gly Gln Pro } \\ \begin{array}{c}\text { Gle } \\ 245\end{array} & 250\end{array}$
Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Val
Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Tyr
275
280
285
Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Asp
290
295
300

Ser Ser Gly Thr Gly His Phe Thr Ser Gly Val Arg Val Phe Arg Pro 305310315320
Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Leu Leu Glu Tyr
325

```
Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala Ser Asn Ser Thr
385 390 400
<210> 5
<211> 2527
<212> PRT
<213> Homo sapiens
<400> 5
```

Met Ala Ser Gly Ser Cys Gln Gly Cys Glu Glu Asp Glu Glu Thr Leu
$15010 \quad 15$
Lys Lys Leu Ile Val Arg Leu Asn Asn Val Gln Glu Gly $\begin{gathered}\text { Lys } \\ 20\end{gathered}$ Gln Ile
Glu Thr Leu Val Gln Ile Leu Glu Asp Leu Leu Val Phe Thr Tyr Ser
3540
45
Glu Arg Ala Ser Lys Leu Phe Gln Gly Lys Asn Ile His Val Pro Leu
505560
Leu Ile Val Leu Asp Ser Tyr Met Arg Val Ala Ser Val Gln Gln Val
65
70
Gly Trp Ser Leu Leu Cys Lys Leu Ile Glu Val Cys Pro Gly Thr Met
859095
Gln Ser Leu Met Gly Pro Gln Asp Val Gly Asn Asp Trp Glu Val Leu
100105110
$\begin{array}{rl}\text { Gly Val His Gln Leu Ile Leu Lys Met Leu Thr Val His Asn Ala Ser } \\ 115 & 120\end{array}$

Val Asn Leu Ser Val Ile Gly Leu Lys Thr Leu Asp Leu Leu Leu Thr 130 135 140

Ser Gly Lys Ile Thr Leu Leu Ile Leu Asp Glu Glu Ser Asp Ile Phe	
145	150
155	160

Met Leu Ile Phe Asp Ala Met His Ser Phe Pro Ala Asn Asp Glu Val 165170175

Gln Lys Leu Gly Cys Lys Ala Leu His Val Leu Phe Glu Arg Val Ser

Glu Glu Gln Leu Thr Glu Phe Val Glu Asn Lys Asp Tyr Met Ile Leu 195200205

Leu Ser Ala Leu Thr Asn Phe Lys Asp Glu Glu Glu Ile Val Leu His 210 215 220

Val Leu His Cys Leu His Ser Leu Ala Ile Pro Cys Asn Asn Val Glu 225230235240
Val Leu Met Ser Gly Asn Val Arg Cys Tyr Asn Ile Val Val Glu Ala
245
250

Met Lys Ala Phe Pro Met Ser Glu Arg Ile Gln Glu Val Ser Cys Cys Leu Leu His Arg Leu Thr Leu Gly Asn Phe Phe Asn Ile Leu Val Leu

Asn Glu Val His Glu Phe Val Val Lys Ala Val Gln Gln Tyr Pro Glu 290

295
300
$\begin{array}{rrrr}\text { Asn Ala Ala Leu Gln Ile Ser Ala Leu Ser Cys Leu Ala Leu Leu Thr } \\ 305 & 310 & 315 & 320\end{array}$

Glu Thr Ile Phe Leu Asn Gln Asp Leu Glu Glu Lys Asn Glu Asn Gln 325330 335

Glu Asn Asp Asp Glu Gly Glu Glu Asp Lys Leu Phe Trp Leu Glu Ala $\begin{array}{r}345 \\ 340\end{array}$

Cys Tyr Lys Ala Leu Thr Trp His Arg Lys Asn Lys His Val Gln Glu 355360365
$\begin{array}{rr}\text { Ala Ala Cys Trp Ala Leu Asn Asn Leu Leu Met Tyr Gln Asn Ser Leu } \\ 370 & 375 \\ 380\end{array}$

His Glu Lys Ile Gly Asp Glu Asp Gly His Phe Pro Ala His Arg Glu
-

Leu Glu Met Leu Ser Leu Glu Gly Ala Met Asp Ser Val Leu His Thr | 585 |
| ---: |
| 580 |

Leu Gln Met Tyr Pro Asp Asp Gln Glu Ile Gln Cys Leu Gly Leu Ser | 600 |
| :---: |
| 695 |

```
Leu Ile Gly Tyr Leu Ile Thr Lys Lys Asn Val Phe Ile Gly Thr Gly 610615620
```

His Leu Leu Ala Lys Ile Leu Val Ser Ser Leu Tyr Arg Phe Lys Asp
625
630

[^0]
Asp Asp Tyr Leu Lys Asn Val Met Leu Glu Arg Ala Cys Asp Gln Asn
705
710
Asn Ser Ile Met Val Glu Cys Leu Leu Leu Leu Gly Ala Asp Ala Asn
725730735

Ser Ser Pro Lys Leu Val Glu Leu Leu Leu Asn Ser Gly Ser Arg Glu
755760765
Gln Asp
770
700
Gln Ile Ile Ser Leu Leu Leu Arg Arg Leu Ala Leu Asp Val Ala Asn
$785 \quad 790 \quad 795 \quad 800$
Asn Ser Ile Cys Leu Gly Gly Phe Cys Ile Gly Lys Val Glu Pro Ser
805810815
Trp Leu Gly Pro Leu Phe Pro Asp Lys Thr Ser Asn Leu Arg Lys Gln
820
825
830
Thr Asn Ile Ala Ser Thr Leu Ala Arg Met Val Ile Arg Tyr Gln Met

$\begin{array}{rl}\text { Lys Ser Ala Val Glu Glu Gly Thr Ala Ser Gly Ser Asp Gly Asn Phe } \\ 850 & 855\end{array}$
Ser Glu Asp Val Leu Ser Lys Phe Asp Glu Trp Thr Phe Ile Pro Asp
865870875880
Ser Ser Met Asp Ser Val Phe Ala Gln Ser Asp Asp Leu Asp Ser Glu
885
890
895
Gly Ser Glu Gly Ser Phe Leu Val Lys Lys Lys Ser Asn Ser Ile Ser

Leu Tyr Leu Ala Val Tyr Asp Leu Ser Lys Gly Gln Ala Glu Val
Asp Ala Met Lys Pro Trp Leu Phe Asn Ile Lys Ala Arg Ala Ser
143014351440
Ser Ser
1445 Pro Val Ile Leu Val Gly Thr His Leu Asp Val Ser Asp
Glu Lys Gln Arg Lys Ala Cys Met Ser Lys Ile Thr Lys Glu Leu
146014651470
$\begin{array}{rl}\text { Leu Asn Lys Arg Gly Phe Pro Ala Ile Arg Asp Tyr } \\ 1475 & 1480\end{array} \quad$ His Phe Val
Asn Ala Thr Glu Glu Ser Asp Ala Leu Ala Lys Leu Arg Lys Thr
Ile Ile Asn Glu Ser Leu Asn Phe Lys Ile Arg Asp Gln Leu Val $\begin{array}{r}1510 \\ 1505\end{array}$
Val Gly Gln Leu Ile Pro Asp Cys Tyr Val Glu Leu Glu Lys Ile
Ile Leu Ser Glu Arg Lys Asn Val Pro Ile Glu Phe Pro Val Ile
$15351540 \quad 1545$
Asp Arg Lys Arg Leu Leu Gln Leu Val Arg Glu Asn Gln Leu Gln
$\begin{array}{rl}\text { Leu Asp Glu Asn Glu Leu Pro } \\ 1565 & 1570 \text { His Ala Val His Phe } \\ 1575\end{array}$
Ser Gly Val Leu Leu His Phe Gln Asp Pro Ala Leu Gln Leu Ser
158015851590

Gln Ile Leu Thr Val Lys Val Glu Gly Cys Pro Lys His Pro Lys 161016151620

EP 3827665 A1

Gln Ala Pro Glu Phe Leu Leu Gly Asp Gly Ser Phe Gly Ser Val
Tyr Arg Ala Ala Tyr Glu Gly $\underset{1890}{ }$ Glu Glu Val Ala Val $\underset{1905}{\text { Lys }}$ Ile Phe
Asn Lys His Thr Ser Leu Arg Leu Leu Arg Gln Glu Leu Val Val
191019151920
Leu Cys His Leu His His Pro Ser Leu Ile Ser Leu Leu Ala Ala
192519301935
Gly Ile
1940 Arg Pro Arg Met Leu Val Met Glu Leu Ala $\underset{1945}{1950} \begin{aligned} & \text { Ser Lys Gly }\end{aligned}$
Ser Leu Asp Arg Leu Leu Gln Gln Asp Lys Ala Ser Leu Thr Arg
Thr Leu Gln His Arg Ile Ala Leu His Val Ala Asp Gly Leu Arg
197019751980
Tyr Leu His Ser Ala Met Ile Ile Tyr Arg Asp Leu Lys Pro His
198519901995
Asn Val Leu Leu Phe Thr Leu Tyr Pro Asn Ala Ala Ile Ile Ala
200020052010
Lys Ile Ala Asp Tyr Gly Ile Ala Gln Tyr Cys Cys Arg Met Gly
2015
Ile Lys Thr Ser Glu Gly Thr Pro Gly Phe Arg Ala Pro Glu Val
Ala Arg Gly Asn Val Ile Tyr Asn Gln Gln Ala Asp Val Tyr Ser
2045
2050
2055
Phe Gly Leu Leu Leu Tyr Asp Ile Leu Thr Thr Gly Gly Arg Ile
Val Glu Gly Leu Lys Phe Pro Asn Glu Phe Asp Glu Leu Glu Ile

Gln	$\begin{aligned} & \text { Gly } \\ & 2090 \end{aligned}$	Lys	Leu	Pro	Asp	$\begin{aligned} & \text { Pro } \\ & 2095 \end{aligned}$	Val	Lys	Glu	Tyr	$\begin{aligned} & \text { Gly } \\ & 2100 \end{aligned}$	Cys	Ala	Pro
Trp	$\begin{aligned} & \text { Pro } \\ & 2105 \end{aligned}$	Met	Val	Glu	Lys	Leu 2110	Ile	Lys	Gln	Cys	Leu 2115	Lys	Glu	Asn
Pro	$\begin{aligned} & \text { Gln } \\ & 2120 \end{aligned}$	Glu	Arg	Pro	Thr	$\begin{aligned} & \text { Ser } \\ & 2125 \end{aligned}$	Ala	Gln	Val	Phe	Asp 2130	Ile	Leu	Asn
Ser	$\begin{aligned} & \text { Ala } \\ & 2135 \end{aligned}$	Glu	Leu	Val	Cys	Leu 2140	Thr	Arg	Arg	Ile	Leu 2145	Leu	Pro	Lys
Asn	$\begin{aligned} & \text { Val } \\ & 2150 \end{aligned}$	Ile	Val	Glu	Cys	Met 2155	Val	Ala	Thr	His	$\begin{aligned} & \text { His } \\ & 2160 \end{aligned}$	Asn	Ser	Arg
Asn	$\begin{aligned} & \text { Ala } \\ & 2165 \end{aligned}$	Ser	Ile	Trp	Leu	$\begin{aligned} & \text { Gly } \\ & 2170 \end{aligned}$	Cys	Gly	His	Thr	Asp 2175	Arg	Gly	Gln
Leu	$\begin{aligned} & \text { Ser } \\ & 2180 \end{aligned}$	Phe	Leu	Asp	Leu	Asn 2185	Thr	Glu	Gly	Tyr	$\begin{aligned} & \text { Thr } \\ & 2190 \end{aligned}$	Ser	Glu	Glu
Val	$\begin{aligned} & \text { Ala } \\ & 2195 \end{aligned}$	Asp	Ser	Arg	Ile	$\begin{aligned} & \text { Leu } \\ & 2200 \end{aligned}$	Cys	Leu	Ala	Leu	$\begin{aligned} & \text { Val } \\ & 2205 \end{aligned}$	His	Leu	Pro
Val	$\begin{aligned} & \text { Glu } \\ & 2210 \end{aligned}$	Lys	Glu	Ser	Trp	$\begin{aligned} & \text { Ile } \\ & 2215 \end{aligned}$	Val	Ser	Gly	Thr	$\begin{aligned} & \text { Gln } \\ & 2220 \end{aligned}$	Ser	Gly	Thr
Leu	Leu 2225	Val	Ile	Asn	Thr	$\begin{aligned} & \text { Glu } \\ & 2230 \end{aligned}$	Asp	Gly	Lys	Lys	Arg 2235	His	Thr	Leu
Glu	$\begin{aligned} & \text { Lys } \\ & 2240 \end{aligned}$	Met	Thr	Asp	Ser	Val 2245	Thr	Cys	Leu	Tyr	$\begin{aligned} & \text { Cys } \\ & 2250 \end{aligned}$	Asn	Ser	Phe

$$
\begin{array}{rl}
\text { Ser Lys Gln Ser Lys Gln Lys Asn Phe Leu Leu Val } \\
2255 & 2260 \\
2265
\end{array} \text { Gly Thr Ala }
$$

Asp $\begin{aligned} & \text { Gly } \\ & 2270\end{aligned}$ Lys Leu Ala Ile Phe Glu Asp Lys Thr Val Lys Leu Lys
2275

Gly Ala Ala Pro Leu Lys Ile Leu Asn Ile Gly Asn Val Ser Thr 228522902295

Pro Leu Met Cys Leu Ser Glu
2300 Ser Thr Asn Ser Thr Glu Arg Asn

Val Met Trp Gly Gly Cys Gly Thr Lys Ile Phe Ser Phe Ser Asn 231523202325

```
Asp Phe Thr Ile Gln Lys Leu Ile Glu Thr Arg Thr Ser Gln Leu
    2330 2335
        2340
Phe Ser Tyr Ala Ala Phe Ser Asp Ser Asn Ile Ile Thr Val Val
    2345 2350 2355
Val Asp Thr Ala Leu Tyr Ile Ala Lys Gln Asn Ser Pro Val Val
Glu Val Trp Asp Lys Lys Thr Glu Lys Leu Cys Gly Leu Ile Asp
    2375 2380 2385
Cys Val His Phe Leu Arg Glu Val Met Val Lys Glu Asn Lys Glu
Ser Lys His Lys Met Ser Tyr Ser Gly Arg Val Lys Thr Leu Cys
    2405 2410 2415
Leu Gln Lys Asn Thr Ala Leu Trp Ile Gly Thr Gly Gly Gly Gly His
Ile Leu Leu Leu Asp Leu Ser Thr Arg Arg Leu Ile Arg Val Ile
    2435 2440 2445
Tyr Asn Phe Cys Asn Ser Val Arg Val Met Met Thr Ala Gln Leu
Gly Ser Leu Lys Asn Val Met Leu Val Leu Gly Tyr Asn Arg Lys
    2465 2470 2475
Asn Thr Glu Gly Thr Gln Lys Gln Lys Glu Ile Gln Ser Cys Leu
Thr Val Trp Asp Ile Asn Leu Pro His Glu Val Gln Asn Leu Glu
    2495 2500 2505
Lys His Ile Glu Val Arg Lys Glu Leu Ala Glu Lys Met Arg Arg
Thr Ser Val Glu
    2525
```

```
<210> 6
```

<210> 6
<211> 2527
<211> 2527
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 6

```
<400> 6
```


Gln Lys Leu Gly Cys Lys Ala Leu His Val Leu Phe Glu Arg Val Ser		
180	185	190

Glu Glu Gln Leu Thr Glu Phe Val Glu Asn Lys Asp Tyr Met Ile Leu
Leu Ser Ala Leu Thr Asn Phe Lys Asp Glu Glu Glu Ile Val Leu His 210 215 220
$\begin{array}{lrrrrrr}\text { Val Leu His Cys Leu His Ser Leu Ala Ile Pro Cys Asn Asn Val Glu } \\ 225 & 230 & 235 & 240\end{array}$
Val Leu Met Ser Gly Asn Val Arg Cys Tyr Asn Ile Val Val Glu Ala 245250255
Met Lys Ala Phe Pro Met Ser Glu Arg Ile Gln Glu Val Ser Cys Cys
260
265
Asn Glu Val
290

Asn Ala Ala Leu Gln Ile Ser Ala Leu Ser Cys Leu Ala Leu Leu Thr		
305	310	315

Glu Thr Ile Phe Leu Asn Gln Asp Leu Glu Glu Lys Asn Glu Asn Gln 325 330 335

Glu Asn Asp Asp Glu Gly Glu Glu Asp Lys Leu Phe Trp Leu Glu Ala $\begin{array}{r}\text { Le } \\ 345\end{array}$

Cys Tyr Lys Ala Leu Thr Trp His Arg Lys Asn Lys His Val Gln Glu 355360365

Ala Ala Cys Trp Ala Leu Asn Asn Leu Leu Met Tyr Gln Asn Ser Leu

His Glu Lys Ile Gly Asp Glu Asp Gly His Phe Pro Ala His Arg Glu 3853390395400 Val Met Leu Ser Met Leu Met His Ser Ser Ser Lys Glu Val Phe Gln $\begin{array}{r}410 \\ 405\end{array}$

Ala Ser Ala Asn Ala Leu Ser Thr Leu Leu Glu Gln Asn Val Asn Phe 420425 430

Arg Lys Ile Leu Leu Ser Lys Gly Ile His Leu Asn Val Leu Glu Leu Met Gln Lys His Ile His Ser Pro Glu Val Ala Glu Ser Gly Cys Lys

Met Leu Asn His Leu Phe Glu Gly Ser Asn Thr Ser Leu Asp Ile Met			
465	470	475	480

Ala Ala Val Val Pro Lys Ile Leu Thr Val Met Lys Arg His Glu Thr 485 490 495

Ser Leu Pro Val Gln Leu Glu Ala Leu Arg Ala Ile Leu His Phe Ile

Asp Asp Tyr Leu Lys Asn Val Met Leu Glu Arg Ala Cys Asp Gln Asn 705 710
715 720
Asn Ser Ile Met Val Glu Cys Leu Leu Leu Leu Gly Ala Asp Ala Asn $\begin{array}{r}725 \\ 720\end{array}$
Gln Ala Lys Glu Gly Ser Ser Leu $\begin{array}{r}\text { Ile Cys Gln Val Cys Glu Lys Glu } \\ 745\end{array}$

Leu Gln Arg His Ser Asn Ser Leu Gly Pro Ile Phe Asp His Glu Asp
930
930
Leu Leu Lys Arg Lys Arg Lys Ile Leu Ser Ser Asp Asp Ser Leu Arg
945
950

Ser Ser Lys Leu Gln Ser His Met Arg His Ser Asp Ser Ile Ser Ser | 975 |
| ---: |
| 965 |

Leu Ala Ser Glu Arg Glu Tyr Ile Thr Ser Leu Asp Leu Ser Ala Asn | 985 |
| ---: |
| 980 |

Glu Leu Arg Asp Ile Asp Ala Leu Ser Gln Lys Cys Cys Ile Ser Val 995 1000 1005

Thr Leu Lys Gln Phe Asn Leu Ser Tyr Asn Gln Leu Ser Phe Val
Pro Glu Asn Leu Thr Asp Val Val Glu Lys Leu Glu Gln Leu Ile
1100
1105

Leu Glu Gly Asn Lys Ile Ser Gly Ile Cys Ser Pro Leu Arg Leu 111511201125

Lys Glu Leu Lys Ile Leu Asn Leu Ser Lys Asn His Ile Ser Ser

Leu Ser Glu Asn Phe Leu Glu Ala Cys Pro Lys Val Glu Ser Phe 114511501155

Ser Ala Arg Met Asn Phe Leu Ala Ala Met Pro Phe Leu Pro Pro 116011651170

Ser Met Thr Ile Leu Lys Leu Ser Gln Asn Lys Phe Ser Cys Ile 117511801185

Pro Glu Ala Ile Leu Asn Leu Pro His Leu Arg Ser Leu Asp Met 119011951200

Ser Ser Asn Asp Ile Gln Tyr Leu Pro Gly Pro Ala His Trp Lys 120512101215

Ser Leu Asn Leu Arg Glu Leu Leu Phe Ser His Asn Gln Ile Ser
1220
1225 (1230

Ile Leu Asp Leu Ser Glu Lys Ala Tyr Leu Trp Ser Arg Val Glu $12351240 \quad 1245$

Lys	Leu 1250	His	Leu	Ser	His	Asn 1255	Lys	Leu	Lys	Glu	$\begin{aligned} & \text { Ile } \\ & 1260 \end{aligned}$	Pro	Pro	Glu
Ile	$\begin{aligned} & \text { Gly } \\ & 1265 \end{aligned}$	Cys	Leu	Glu	Asn	Leu 1270	Thr	Ser	Leu	Asp	$\begin{aligned} & \text { Val } \\ & 1275 \end{aligned}$	Ser	Tyr	Asn
Leu	$\begin{aligned} & \text { Glu } \\ & 1280 \end{aligned}$	Leu	Arg	Ser	Phe	Pro 1285	Asn	Glu	Met	Gly	$\begin{aligned} & \text { Lys } \\ & 1290 \end{aligned}$	Leu	Ser	Lys
Ile	$\begin{aligned} & \text { Trp } \\ & 1295 \end{aligned}$	Asp	Leu	Pro	Leu	Asp 1300	Glu	Leu	His	Leu	$\begin{aligned} & \text { Asn } \\ & 1305 \end{aligned}$	Phe	Asp	Phe
Lys	$\begin{aligned} & \text { His } \\ & 1310 \end{aligned}$	Ile	Gly	Cys	Lys	$\begin{aligned} & \text { Ala } \\ & 1315 \end{aligned}$	Lys	Asp	Ile	Ile	$\begin{aligned} & \text { Arg } \\ & 1320 \end{aligned}$	Phe	Leu	Gln
Gln	$\begin{aligned} & \text { Arg } \\ & 1325 \end{aligned}$	Leu	Lys	Lys	Ala	$\begin{aligned} & \text { Val } \\ & 1330 \end{aligned}$	Pro	Tyr	Asn	Arg	Met 1335	Lys	Leu	Met
Ile	$\begin{aligned} & \text { Val } \\ & 1340 \end{aligned}$	Gly	Asn	Thr	Gly	$\begin{aligned} & \text { Ser } \\ & 1345 \end{aligned}$	Gl_{Y}	Lys	Thr	Thr	Leu 1350	Leu	Gln	Gln
Leu	Met 1355	Lys	Thr	Lys	Lys	$\begin{aligned} & \text { Ser } \\ & 1360 \end{aligned}$	Asp	Leu	Gly	Met	$\begin{aligned} & \text { Gln } \\ & 1365 \end{aligned}$	Ser	Ala	Thr
Val	$\begin{aligned} & \text { Gly } \\ & 1370 \end{aligned}$	Ile	Asp	Val	Lys	Asp 1375	Trp	Pro	Ile	Gln	$\begin{aligned} & \text { Ile } \\ & 1380 \end{aligned}$	Arg	Asp	Lys
Arg	$\begin{aligned} & \text { Lys } \\ & 1385 \end{aligned}$	Arg	Asp	Leu	Val	Leu 1390	Asn	Val	Trp	Asp	Phe 1395	Ala	Gly	Arg
Glu	$\begin{aligned} & \text { Glu } \\ & 1400 \end{aligned}$	Phe	Tyr		Thr	$\begin{aligned} & \text { His } \\ & 1405 \end{aligned}$	Pro	His	Phe	Met	$\begin{aligned} & \text { Thr } \\ & 1410 \end{aligned}$	Gln	Arg	Ala
Leu	$\begin{aligned} & \text { Tyr } \\ & 1415 \end{aligned}$	Leu	Ala	Val	Tyr	Asp 1420	Leu	Ser	Lys	Gly	$\begin{aligned} & \text { Gln } \\ & 1425 \end{aligned}$	Ala	Glu	Val
Asp	$\begin{aligned} & \text { Ala } \\ & 1430 \end{aligned}$	Met	Lys	Pro	Trp	Leu 1435	Phe	Asn	Ile	Lys	$\begin{aligned} & \text { Ala } \\ & 1440 \end{aligned}$	Arg	Ala	Ser
Ser	Ser 1445	Pro	Val	Ile	Leu	$\begin{aligned} & \text { Val } \\ & 1450 \end{aligned}$	Gly	Thr	His	Leu	Asp 1455	Val	Ser	Asp
Glu	Lys 1460	Gln	Arg	Lys	Ala	Cys 1465	Met	Ser	Lys	Ile	$\begin{aligned} & \text { Thr } \\ & 1470 \end{aligned}$	Lys	Glu	Leu

Leu Asn Lys Arg Gly Phe Pro Ala Ile Arg Asp Tyr His Phe Val
1475
1480
1485

Ile Ile Asn Glu Ser Leu Asn Phe Lys Ile Arg Asp Gln Leu Val
150515101515
Val Gly Gln Leu Ile Pro Asp Cys Tyr Val Glu Leu Glu Lys Ile
152015251530
Ile Leu Ser Glu Arg Lys Asn Val Pro Ile Glu Phe Pro Val Ile
1535
Asp Arg Lys Arg Leu Leu Gln Leu Val Arg Glu Asn Gln Leu Gln
155015551560
Leu Asp Glu Asn Glu Leu Pro His Ala Val His Phe Leu Asn Glu
156515701575
$\begin{aligned} & \text { Ser } \\ & \begin{array}{ll}\text { Gly } \\ 1580\end{array} \text { Val Leu Leu His Phe } \\ & 1585\end{aligned} \quad$ Gln Asp Pro Ala Leu Gln Leu Ser
Asp Leu Tyr Phe Val Glu Pro Lys Trp Leu Cys Lys Ile Met Ala
159516001605
Gln Ile Leu Thr Val Lys Val Glu Gly Cys Pro Lys His Pro Lys
161016151620
Gly Ile Ile Ser Arg Arg Asp Val Glu Lys Phe Leu Ser Lys Lys
162516301635
Arg Lys Phe Pro Lys Asn Tyr Met Thr Gln Tyr Phe Lys Leu Leu
$1640 \quad 1645 \quad 1650$
Glu Lys Phe Gln Ile Ala Leu Pro Ile Gly Glu Glu Tyr Leu Leu
165516601665
Val Pro Ser Ser Leu Ser Asp His Arg Pro Val Ile Glu Leu Pro
167016751680
$\begin{array}{rl}\text { His Cys Glu Asn Ser Glu Ile } \\ \mathbf{1 6 8 5} & 1690\end{array}$ Ile Ile Arg Leu Tyr Glu Met Pro
Tyr Phe Pro Met Gly Phe Trp Ser Arg Leu Ile Asn Arg Leu Leu
170017051710

```
Glu Ile Ser Pro Tyr Met Leu Ser Gly Arg Glu Arg Ala Leu Arg
    1715 1720 1725
Pro Asn Arg Met Tyr Trp Arg Gln Gly Ile Tyr Leu Asn Trp Ser
    1730 1735 1740
Pro Glu Ala Tyr Cys Leu Val Gly Ser Glu Val Leu Asp Asn His
    1745
    1750
Pro Glu Ser Phe Leu Lys Ile Thr Val Pro Ser Cys Arg Lys Gly
    1760 1765 1770
Cys Ile Leu Leu Gly Gln Val Val Asp His Ile Asp Ser Leu Met
Glu Glu Trp Phe Pro Gly Leu Leu Glu Ile Asp Ile Cys Gly Glu
    1790 1795 1800
Gly Glu Thr Leu Leu Lys Lys Trp Ala Leu Tyr Ser Phe Asn Asp
    1805 1810 1815
Gly Glu Glu His Gln Lys Ile Leu Leu Asp Asp Leu Met Lys Lys
    1820 1825 1830
Ala Glu Glu Gly Asp Leu Leu Val Asn Pro Asp Gln Pro Arg Leu
Thr Ile Pro Ile Ser Gln Ile Ala Pro Asp Leu Ile Leu Ala Asp
    1850 1855 1860
Leu Pro Arg Asn Ile Met Leu Asn Asn Asp Glu Leu Glu Phe Glu
    1865 1870 1875
Gln Ala Pro Glu Phe Leu Leu Gly Asp Gly Ser Phe Gly Ser Val
    1880 1885 1890
Tyr Arg Ala Ala Tyr Glu Gly Glu Glu Val Ala Val Lys Ile Phe
Asn Lys His Thr Ser Leu Arg Leu Leu Arg Gln glu Leu Val Val
    1910 1915 1920
Leu Cys His Leu His His Pro Ser Leu Ile Ser Leu Leu Ala Ala
Gly Ile Arg Pro Arg Met Leu Val Met Glu Leu Ala Ser Lys Gly
    1940 1945 1950
```

Ser Leu Asp Arg Leu Leu Gln Gln Asp Lys Ala Ser		
1955	1960	Leu Thr Arg
1965		

Thr Leu Gln His Arg Ile Ala Leu His Val Ala Asp Gly Leu Arg 197019751980

Tyr Leu
1985 His Ser Ala Met Ile Ile Tyr Arg Asp Leu Lys Pro His

Asn Val Leu Leu Phe Thr Leu Tyr Pro Asn Ala Ala Ile Ile Ala 200020052010

Lys Ile Ala Asp Tyr Gly Ile Ala Gln Tyr Cys Cys Arg Met Gly

Ile Lys Thr Ser Glu Gly Thr Pro Gly Phe Arg Ala Pro Glu Val 203020352040
$\begin{array}{rl}\text { Ala Arg Gly Asn Val Ile Tyr Asn Gln Gln Ala Asp } \\ 2045 & 2050 \\ 2055\end{array}$ Val Tyr Ser

Phe Gly Leu Leu Leu Tyr Asp Ile Leu Thr Thr Gly Gly Arg Ile 206020652070
$\begin{array}{rl}\text { Val Glu Gly Leu Lys Phe Pro Asn Glu Phe Asp Glu Leu Glu Ile } \\ 2075 & 2080\end{array}$

Gln Gly Lys Leu Pro Asp Pro Val Lys Glu Tyr Gly Cys Ala Pro 209020952100

Pro Gln Glu Arg Pro Thr Ser Ala Gln Val Phe Asp Ile Leu Asn 212021252130

Ser Ala
2135 Glu Leu Val Cys Leu Thr Arg Arg Ile Leu Leu Pro Lys $\begin{aligned} & 2145 \\ & 2140\end{aligned}$

Asn Val Ile Val Glu Cys Met Val Ala Thr His His Asn Ser Arg 215021552160

Asn Ala
2165 Ser Ile Trp Leu $\begin{aligned} \text { Gly } \\ 2170\end{aligned}$ Cys Gly His Thr Asp Arg Gly Gln

Leu Ser Phe Leu Asp Leu Asn Thr Glu Gly Tyr Thr Ser Glu Glu 218021852190

Glu
Lys
2240 Met Thr Asp Ser Val Thr Cys Leu Tyr Cys Asn Ser Phe

Ser Lys Gln Ser Lys Gln Lys Asn Phe Leu Leu Val Gly Thr Ala 225522602265

Asp $\begin{aligned} & \text { Gly } \\ & 2270\end{aligned}$ Lys Leu Ala Ile Phe Glu Asp Lys Thr Val Lys Leu Lys
2275 Gly Ala Ala Pro Leu Lys Ile Leu Asn Ile Gly Asn Val Ser Thr 228522902295

Pro Leu Met Cys Leu Ser Glu
2300 Ser Thr Asn Ser Thr Glu Arg Asn

Val Met Trp Gly Gly Cys Gly Thr Lys Ile Phe Ser | 2315 |
| ---: | :--- |\quad The Ser Asn

Asp Phe Thr Ile Gln Lys Leu Ile Glu Thr Arg Thr Ser Gln Leu 233023352340

Phe Ser Tyr Ala Ala Phe Ser Asp Ser Asn Ile Ile Thr Val Val | 2350 |
| :--- |
| 2350 | (

Val Asp Thr Ala Leu Tyr Ile Ala Lys Gln Asn Ser Pro Val Val 236023652370

Glu Val
2375 Trp Asp Lys Lys Thr Glu Lys Leu Cys Gly Leu Ile Asp

Cys Val His Phe Leu Arg Glu Val Thr Val Lys Glu Asn Lys Glu 239023952400

Ser Lys His Lys Met Ser Tyr Ser Gly Arg Val Lys Thr Leu Cys 240524102415

Leu Gln Lys Asn Thr Ala Leu Trp Ile Gly Thr Gly Gly Gly His

EP 3827665 A1

242024252430

```
Ile Leu Leu Leu Asp Leu Ser Thr Arg Arg Leu Ile Arg Val Ile
```

Tyr Asn Phe Cys Asn Ser Val Arg Val Met Met Thr Ala Gln Leu
245024552460
Gly Ser Leu Lys Asn Val Met Leu Val Leu Gly Tyr Asn Arg Lys
246524702475
Asn Thr
2480 Glu Gly Thr Gln Lys Gln Lys Glu Ile Gln $\begin{aligned} & 2490 \\ & 2485\end{aligned}$
Thr Val Trp Asp Ile Asn Leu Pro His Glu Val Gln Asn Leu Glu
249525002505
Lys His Ile Glu Val Arg Lys Glu Leu Ala Glu Lys Met Arg Arg
251025152520
Thr Ser Val Glu
2525
<210> 7
<211> 2527
<212> PRT
<213> Homo sapiens
<400> 7
Met Ala Ser Gly Ser Cys Gln Gly Cys Glu Glu Asp Glu Glu Thr Leu
1501015
Lys Lys Leu Ile Val Arg Leu Asn Asn Val Gln Glu Gly $\begin{gathered}\text { Lys } \\ 20\end{gathered}$
Glu Thr Leu Val Gln Ile Leu Glu Asp Leu Leu Val Phe Thr Tyr Ser
35
40
45
Glu His Ala Ser Lys Leu Phe Gln Gly Lys Asn Ile His Val Pro Leu
505560
Leu Ile Val Leu Asp Ser Tyr Met Arg Val Ala Ser Val Gln Gln Val
65
60
Gly Trp Ser Leu Leu Cys Lys Leu Ile Glu Val Cys Pro Gly Thr Met
85
90
Gln Ser Leu Met Gly Pro Gln Asp Val Gly Asn Asp Trp Glu Val Leu

EP 3827665 A1

			100					105					110		
Gly	Val	$\begin{aligned} & \text { His } \\ & 115 \end{aligned}$	Gln	Leu	Ile	Leu	$\begin{aligned} & \text { Lys } \\ & 120 \end{aligned}$	Met	Leu	Thr	Val	$\begin{aligned} & \text { His } \\ & 125 \end{aligned}$	Asn	Ala	Ser
Val	$\begin{aligned} & \text { Asn } \\ & 130 \end{aligned}$	Leu	Ser	Val	Ile	$\begin{aligned} & \text { Gly } \\ & 135 \end{aligned}$	Leu	Lys	Thr	Leu	Asp 140	Leu	Leu	Leu	Thr
$\begin{aligned} & \text { Ser } \\ & 145 \end{aligned}$	Gly	Lys	Ile	Thr	$\begin{aligned} & \text { Leu } \\ & 150 \end{aligned}$	Leu	Ile	Leu	Asp	$\begin{aligned} & \text { Glu } \\ & 155 \end{aligned}$	Glu	Ser	Asp	Ile	$\begin{aligned} & \text { Phe } \\ & 160 \end{aligned}$
Met	Leu	Ile	Phe	$\begin{aligned} & \text { Asp } \\ & 165 \end{aligned}$	Ala	Met	His	Ser	Phe 170	Pro	Ala	Asn	Asp	$\begin{aligned} & \text { Glu } \\ & 175 \end{aligned}$	Val
Gln	Lys	Leu	$\begin{aligned} & \text { Gly } \\ & 180 \end{aligned}$	Cys	Lys	Ala	Leu	$\begin{aligned} & \text { His } \\ & 185 \end{aligned}$	Val	Leu	Phe	Glu	$\begin{aligned} & \text { Arg } \\ & 190 \end{aligned}$	Val	Ser
Glu	Glu	$\begin{aligned} & \text { Gln } \\ & 195 \end{aligned}$	Leu	Thr	Glu	Phe	$\begin{aligned} & \text { Val } \\ & 200 \end{aligned}$	Glu	Asn	Lys	Asp	$\begin{aligned} & \text { Tyr } \\ & 205 \end{aligned}$	Met	Ile	Leu
Leu	$\begin{aligned} & \text { Ser } \\ & 210 \end{aligned}$	Ala	Ser	Thr	Asn	Phe 215	Lys	Asp	Glu	Glu	$\begin{aligned} & \text { Glu } \\ & 220 \end{aligned}$	Ile	Val	Leu	His
$\begin{aligned} & \text { Val } \\ & 225 \end{aligned}$	Leu	His	Cys	Leu	$\begin{aligned} & \text { His } \\ & 230 \end{aligned}$	Ser	Leu	Ala	Ile	$\begin{aligned} & \text { Pro } \\ & 235 \end{aligned}$	Cys	Asn	Asn	Val	$\begin{aligned} & \text { Glu } \\ & 240 \end{aligned}$
Val	Leu	Met	Ser	$\begin{aligned} & \text { Gly } \\ & 245 \end{aligned}$	Asn	Val	Arg	Cys	$\begin{aligned} & \text { Tyx } \\ & 250 \end{aligned}$	Asn	Ile	Val	Val	$\begin{aligned} & \text { Glu } \\ & 255 \end{aligned}$	Ala
Met	Lys	Ala	Phe 260	Pro	Met	Ser	Glu	$\begin{aligned} & \text { Arg } \\ & 265 \end{aligned}$	Ile	Gln	Glu	Val	$\begin{aligned} & \text { Ser } \\ & 270 \end{aligned}$	Cys	Cys

Met Leu Ile Phe Asp Ala Met His Ser Phe Pro Ala Asn Asp Glu Val $\begin{array}{r}175 \\ 165\end{array}$
Gln Lys Leu Gly Cys Lys Ala Leu His Val Leu Phe Glu Arg Val Ser
Glu Glu Gln Leu Thr Glu Phe Val Glu Asn Lys Asp Tyr Met Ile Leu
Leu Ser Ala Ser Thr Asn Phe Lys Asp Glu Glu Glu Ile Val Leu His
210
215
Val Leu His Cys Leu His Ser Leu Ala Ile Pro Cys Asn Asn Val Glu
225230235
240
Leu Leu His Arg Leu Thr Leu Gly Asn Phe Phe Asn Ile Leu Val Leu
$\begin{array}{rr}\text { Asn Glu Val His Glu Phe Val Val Lys Ala Val Gln Gln Tyr Pro Glu } \\ 290 & 295\end{array}$
Asn Ala Ala Leu Gln Ile Ser Ala Leu Ser Cys Leu Ala Leu Leu Thr
305
310
315
320
Glu Thr Ile Phe Leu Asn Gln Asp Leu Glu Glu Lys Asn Glu Asn Gln
Glu Asn Asp Asp Glu Gly Glu Glu Asp Lys Leu Phe Trp Leu Glu Ala
340345
350
Cys Tyr Lys Ala Leu Thr Trp His Arg Lys Asn Lys His Val Gln Glu

Ala Ala Cys Trp Ala Leu Asn Asn Leu Leu Met Tyr Gln Asn Ser Leu 370375380

Val Met Leu Ser Met Leu Met His Ser Ser Ser Lys Glu Val Phe Gln
405

Ala Ser Ala Asn Ala Leu Ser Thr Leu Leu Glu Gln Asn Val Asn Phe
 435440445

```
Met Gln Lys His Ile His Ser Pro Glu Val Ala Glu Ser Gly Cys Lys 450 455 460
```

Met Leu Asn His Leu Phe Glu Gly Ser Asn Thr Ser Leu Asp Ile Met 465470480

Ala Ala Val Val Pro Lys Ile Leu Thr Val Met Lys Arg His Glu Thr	
485	490

Ser Leu Pro Val Gln Leu Glu Ala Leu Arg Ala Ile Leu His Phe Ile 500505510

Val Pro Gly Met Pro Glu Glu Ser Arg Glu Asp Thr Glu Phe His His 515520525
$\begin{array}{rl}\text { Lys Leu Asn Met Val Lys Lys Gln Cys Phe Lys Asn Asp Ile His Lys } \\ 530 & 535\end{array}$

Leu Val Leu Ala Ala Leu Asn Arg Phe Ile Gly Asn Pro Gly Ile Gln
545
550

Lys Cys Gly Leu Lys Val Ile Ser Ser Ile Val His Phe Pro Asp Ala 565570575

Leu Glu Met Leu Ser Leu Glu Gly Ala Met Asp Ser Val Leu His Thr $\begin{array}{r}585 \\ 580\end{array}$

Leu Gln Met Tyr Pro Asp Asp Gln Glu Ile Gln Cys Leu Gly Leu Ser 595600605
Leu Ile Gly Tyr Leu Ile Thr Lys Lys Asn Val Phe Ile Gly Thr Gly
610
615
Asn Ser Ile Met Val Glu Cys Leu Leu Leu Leu Gly Ala Asp Ala Asn 725730735
Gln Ala Lys Glu Gly Ser Ser Leu Ile Cys Gln Val Cys Glu Lys Glu
Ser Ser Pro Lys Leu Val Glu Leu Leu Leu Asn Ser Gly Ser Arg Glu
Gln Asp Val Arg Lys Ala Leu Thr Ile Ser Ile Gly Lys Gly Asp Ser
770
Gln Ile Ile Ser Leu Leu Leu Arg Arg Leu Ala Leu Asp Val Ala Asn $785 \quad 790 \quad 795800$Asn Ser Ile Cys Leu Gly Gly Phe Cys $\begin{array}{r}\text { Ile Gly Lys Val Glu Pro Ser } \\ 805\end{array}$Trp Leu Gly Pro Leu Phe Pro Asp Lys Thr Ser Asn Leu Arg Lys Gln820825830
Thr Asn Ile Ala Ser Thr Leu Ala Arg Met Val Ile Arg Tyr Gln Met 835 840 845
Lys Ser Ala Val Glu Glu Gly Thr Ala Ser Gly Ser Asp Gly Asn Phe 850 855 860

Val Gly Glu Phe Tyr Arg Asp Ala Val Leu Gln Arg Cys Ser Pro Asn 915920925

Leu Gln Arg His Ser Asn Ser Leu Gly Pro Ile Phe Asp His Glu Asp 930935940

Leu Leu Lys Arg Lys Arg Lys Ile Leu Ser Ser Asp Asp Ser Leu Arg
945
950

Ser Ser Lys Leu Gln Ser His Met Arg His Ser Asp Ser Ile Ser Ser 965970975

Leu Ala Ser Glu Arg Glu Tyr Ile Thr Ser Leu Asp Leu Ser Ala Asn $\begin{gathered}985 \\ 980\end{gathered}$ Glu Leu Arg Asp Ile Asp Ala Leu Ser Gln Lys Cys Cys Ile Ser Val $\begin{array}{r}1000 \\ 995\end{array}$

His Leu Glu His Leu Glu Lys Leu Glu Leu His Gln Asn Ala Leu 101010151020

Thr Ser Phe Pro Gln Gln Leu Cys Glu Thr Leu Lys Ser Leu Thr 102510301035

His Leu Asp Leu His Ser Asn Lys Phe Thr Ser Phe Pro Ser Tyr 104010451050

Leu Leu Lys Met Ser Cys Ile Ala Asn Leu Asp Val Ser Arg Asn
1055
1060

Asp Ile Gly Pro Ser Val Val Leu Asp Pro Thr Val Lys Cys Pro 107010751080

Thr Leu Lys Gln Phe Asn Leu Ser Tyr Asn Gln Leu Ser Phe Val 1085

1090 1095

Pro Glu Asn Leu Thr Asp Val Val Glu Lys Leu Glu Gln Leu Ile

EP 3827665 A1


```
Ile Val Gly Asn Thr Gly Ser Gly Lys Thr Thr Leu Leu Gln Gln
Leu Met Lys Thr Lys Lys Ser Asp Leu Gly Met Gln Ser Ala Thr
    1355 1360 1365
Val Gly Ile Asp Val Lys Asp Trp Pro Ile Gln Ile Arg Asp Lys
Arg Lys Arg Asp Leu Val Leu Asn Val Trp Asp Phe Ala Gly Arg
    1385 1390 1395
Glu Glu Phe Tyr Ser Thr His Pro His Phe Met Thr Gln Arg Ala
    1400 1405 1410
Leu Tyr Leu Ala Val Tyr Asp Leu Ser Lys Gly Gln Ala Glu Val
    1415 1420 1425
Asp Ala Met Lys Pro Trp Leu Phe Asn Ile Lys Ala Arg Ala Ser
    1430 1435 1440
```

Ser Ser Pro Val Ile Leu Val Gly Thr His Leu Asp Val Ser Asp
Glu Lys Gln Arg Lys Ala Cys Met Ser Lys Ile Thr Lys Glu Leu
Leu Asn Lys Arg Gly Phe Pro Ala Ile Arg Asp Tyr His Phe Val
147514801485
Asn Ala Thr Glu Glu Ser Asp Ala Leu Ala Lys Leu Arg Lys Thr
149014951500
Ile Ile Asn Glu Ser Leu Asn Phe Lys Ile Arg Asp Gln Leu Val
150515101515
$\begin{array}{cc}\text { Val } \mathrm{Gly}_{\mathrm{y}} \text { Gln Leu Ile Pro Asp } \\ 1520 & 1525\end{array}$ Cys Tyr Val Glu Leu Glu Lys Ile
Ile Leu Ser Glu Arg Lys Asn Val Pro Ile Glu Phe Pro Val Ile
153515401545
Asp Arg Lys Arg Leu Leu Gln Leu Val Arg Glu Asn Gln Leu Gln
1550
1555
Leu Asp Glu Asn Glu Leu Pro His Ala Val His Phe Leu Asn Glu
156515701575

Ser Gly	
1580	Val Leu Leu His Phe Gln Asp Pro Ala Leu
1585	1590

Asp Leu Tyr Phe Val Glu Pro Lys Trp Leu Cys Lys $\begin{aligned} & 1695 \\ & 1600\end{aligned}$ Ile Met Ala
Gln Ile Leu Thr Val Lys Val Glu Gly Cys Pro Lys His Pro Lys

1610
Gly Ile Ile Ser Arg Arg Asp Val Glu Lys Phe Leu Ser Lys Lys
162516301635
Arg Lys Phe Pro Lys Asn Tyr
$\begin{aligned} & 1640\end{aligned}$ Met Ser Gln Tyr Phe Lys Leu Leu
1650
Glu Lys Phe Gln Ile Ala Leu Pro Ile Gly Glu Glu Tyr Leu Leu
165516601665
Val Pro Ser Ser Leu Ser Asp His Arg Pro Val Ile Glu Leu Pro
167016751680
His Cys Glu Asn Ser Glu Ile Ile Ile Arg Leu Tyr Glu Met Pro
168516901695
Tyr Phe
1700 Pro Met Gly Phe Trp $\begin{aligned} 1705\end{aligned}$ Ser Arg Leu Ile Asn Arg Leu Leu
Glu Ile Ser Pro Tyr Met Leu Ser Gly Arg Glu Arg Ala Leu Arg
171517201725
Pro Asn Arg Met Tyr Trp Arg
1730
1735 Gln Gly Ile Tyr Leu Asn Trp Ser
Pro Glu Ala Tyr Cys Leu Val Gly Ser Glu Val Leu Asp Asn His
174517501755
Pro Glu Ser Phe Leu Lys Ile Thr Val Pro Ser Cys Arg Lys Gly
$\mathbf{1 7 6 0}$
1765
Cys Ile Leu Leu Gly Gln Val Val Asp His Ile Asp Ser Leu Met
177517801785
Glu Glu
1790 Trp Phe Pro Gly Leu Leu Glu Ile Asp Ile Cys Gly Glu
Gly Glu
1805 Thr Leu Leu Lys Lys Trp Ala Leu Tyr Ser $\begin{aligned} & 1810 \\ & 1815\end{aligned}$ Phe Asn Asp

Leu Pro Arg Asn Ile Met Leu Asn Asn Asp Glu Leu Glu Phe Glu
1865
1870
Gln Ala Pro Glu Phe Leu Leu Gly Asp Gly Ser Phe Gly Ser Val 188018851890

 191019151920

Leu Cys His Leu His His Pro Ser Leu Ile Ser Leu Leu Ala Ala

Gly Ile Arg Pro Arg Met Leu	
1940	1945

Ser Leu Asp Arg Leu Leu Gln Gln Asp Lys Ala Ser Leu Thr Arg 195519601965
Thr
Leu

1970 Gln His Arg Ile Ala Leu His Val Ala Asp | 1975 |
| :---: | Gly Leu Arg

Tyr Leu His Ser Ala Met Ile Ile Tyr Arg Asp Leu Lys Pro His
Asn Val Leu Leu Phe Thr Leu Tyr Pro Asn Ala Ala Ile Ile Ala
2000
 203020352040

Ala Arg Gly Asn Val Ile Tyr Asn Gln Gln Ala Asp Val Tyr Ser

EP 3827665 A1

Asn Ala
2165 Ser Ile Trp Leu Gly Cys Gly His Thr Asp $\begin{aligned} 2170 \\ 2175\end{aligned}$ Arg Gly Gln

Leu Ser
2180 Phe Leu Asp Leu Asn Thr Glu Gly Tyr Thr $\begin{aligned} & \text { Ther Glu Glu } \\ & 2190\end{aligned}$

Val Ala Asp Ser Arg Ile Leu Cys Leu Ala Leu Val His Leu Pro 219522002205

Val Glu
2210 Lys Glu Ser Trp Ile Val Ser Gly Thr Gln $\begin{aligned} & \text { In } \\ & 2215\end{aligned}$

Leu Leu Val Ile Asn Thr Glu Asp Gly Lys Lys Arg His Thr Leu 222522302235

Glu Lys Met Thr Asp Ser Val Thr Cys Leu Tyr Cys Asn Ser Phe 224022452250

Asp Gly Lys Leu Ala Ile Phe Glu Asp Lys Thr Val Lys Leu Lys 227022752280

Gly	$\begin{aligned} & \text { Ala } \\ & 2285 \end{aligned}$	Ala P	Pro	Leu L	Lys	$\begin{aligned} & \text { Ile } \\ & 2290 \end{aligned}$	Leu	Asn	Ile	Gly	$\begin{aligned} & \text { Asn } \\ & 2295 \end{aligned}$	Val	Ser	Thr
Pro	Leu 2300	Met	Cys	Leu	Ser	$\begin{aligned} & \text { Glu } \\ & 2305 \end{aligned}$	Ser	Thr	Asn	Ser	$\begin{aligned} & \text { Thr } \\ & 2310 \end{aligned}$	Glu	Arg	Asn
Val	$\begin{aligned} & \text { Met } \\ & 2315 \end{aligned}$	Trp	Gly	Gly	Cys	$\begin{aligned} & \text { Gly } \\ & 2320 \end{aligned}$	Thr	Lys	Ile	Phe	$\begin{aligned} & \text { Ser } \\ & 2325 \end{aligned}$	Phe	Ser	Asn
Asp	Phe 2330	Thr	Ile	Gln	Lys	Leu 2335	Ile	Glu	Thr	Arg	$\begin{aligned} & \text { Thr } \\ & 2340 \end{aligned}$	Ser	Gln	Leu
Phe	$\begin{aligned} & \text { Ser } \\ & 2345 \end{aligned}$	Tyr	Ala	Ala P	Phe	$\begin{aligned} & \text { Ser } \\ & 2350 \end{aligned}$	Asp	Ser	Asn	Ile	$\begin{aligned} & \text { Ile } \\ & 2355 \end{aligned}$	Thr	Val	Val
Val	Asp 2360	Thr	Ala	Leu	Tyr	$\begin{aligned} & \text { Ile } \\ & 2365 \end{aligned}$	Ala	Lys	Gln	Asn	$\begin{aligned} & \text { Ser } \\ & 2370 \end{aligned}$	Pro	Val	Val
Glu	Val 2375	Trp	Asp	Lys L	Lys	$\begin{aligned} & \text { Thr } \\ & 2380 \end{aligned}$	Glu L	Lys I	Leu	Cys	$\begin{aligned} & \text { Gly } \\ & 2385 \end{aligned}$	Leu	Ile	Asp
Cys	$\begin{aligned} & \text { Val } \\ & 2390 \end{aligned}$	His P	Phe	Leu	Arg	$\begin{aligned} & \text { Glu } \\ & 2395 \end{aligned}$	Val	Met	Val	Lys	$\begin{aligned} & \text { Glu } \\ & 2400 \end{aligned}$	Asn	Lys	Glu
Ser	$\begin{aligned} & \text { Lys } \\ & 2405 \end{aligned}$	His	Lys	Met S	Ser	Tyr 2410	Ser	Gly	Arg	Val	Lys 2415	Thr	Leu	Cys
Leu	$\begin{aligned} & \text { Gln } \\ & 2420 \end{aligned}$	Lys	Asn	Thr	Ala	Leu 2425	Trp	Ile	Gly	Thr	$\begin{aligned} & \text { Gly } \\ & 2430 \end{aligned}$	Gly	Gly	His
Ile	Leu 2435	Leu	Leu	Asp L	Leu	$\begin{aligned} & \text { Ser } \\ & 2440 \end{aligned}$	Thr	Arg	Arg	Leu	$\begin{aligned} & \text { Ile } \\ & 2445 \end{aligned}$	Arg	Val	Ile
Tyr	$\begin{aligned} & \text { Asn } \\ & 2450 \end{aligned}$	Phe	Cys	Asn	Ser	$\begin{aligned} & \text { Val } \\ & 2455 \end{aligned}$	Arg V	Val	Met	Met	$\begin{aligned} & \text { Thr } \\ & 2460 \end{aligned}$	Ala	Gln	Leu
Gly	$\begin{aligned} & \text { Ser } \\ & 2465 \end{aligned}$	Leu L	Lys	Asn	Val	Met 2470	Leu V	Val	Leu	Gly	$\begin{aligned} & \text { Tyr } \\ & 2475 \end{aligned}$	Asn	Arg	Lys
Asn	$\begin{aligned} & \text { Thr } \\ & 2480 \end{aligned}$	Glu	Gly	Thr	Gln	Lys 2485	Gln	Lys	Glu	Ile	$\begin{aligned} & \text { Gln } \\ & 2490 \end{aligned}$	Ser	Cys	Leu
Thr	Val 2495	Trp	Asp	Ile	Asn	Leu 2500	Pro H	His	Glu	Val	$\begin{aligned} & \text { Gln } \\ & 2505 \end{aligned}$	Asn	Leu	Glu
Lys	$\begin{aligned} & \text { His } \\ & 2510 \end{aligned}$	Ile	Glu	Val	Arg	Lys 2515	Glu	Leu	Ala	Glu	$\begin{aligned} & \text { Lys } \\ & 2520 \end{aligned}$	Met	Arg	Arg

EP 3827665 AI

The Ser Val Gu 2525

Claims

1. Use of at least a mammal kinase inhibitor to improve in vitro plant embryogenesis induction.
2. Use according to claim 1 wherein the mammal kinase are human kinases, preferably the kinase GSK 3β and/or LRRK2.
3. Use according to any of claims 1 to 2 wherein the kinase GSK3 β comprises the sequence selected from the list consisting of SEQ ID NO: 1 to 4, and the kinase LRRK2 comprises the sequence selected from the list consisting of SEQ ID NO: 5 to 7 .
4. Use according to any of claims 1 to 3 wherein the embryogenesis is somatic and/or by microspores.
5. Use according to any of claims 1 to 4 wherein the plants are crops plants, preferably Brassica spp. and/or Hordeum $s p p$, or wherein the plants are forest plants, preferably Quercus spp.
6. Use according to any of claims 1 to 5 , wherein the mammal kinase inhibitor is selected from a compound of Formula (I) or a salt thereof:

Formula (I)
wherein:
A is $-C\left(R^{1}\right)_{2^{-}}$, -O - or $-N R^{1}$-; E is $-N R^{1}$ - or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and $G ; G$ is $-S-,-N R^{1}$ - or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and G; ------ may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused aryl group; R^{1} and R^{2} are independently selected from hydrogen, ($\mathrm{C}_{1}-\mathrm{C}_{8}$)alkyl, cycloakyl, haloalkyl, aryl,-(Z) $)_{n}$-aryl, heteroaryl, $-O R^{3},-C(O) R^{3},-C(O) O R^{3},-(Z)_{n}-C(O) O R^{3}$ - and $-S(O)_{t}$ or as indicated R^{2} can be such that E with G then form a fused aryl group; Z is independently selected from $-C\left(R^{3}\right)\left(R^{4}\right)$-, $-C(O)-,-O-,-C\left(=N R^{3}\right)$-, $-S(O)_{t}$ - and- $N\left(R^{3}\right)$-; n is zero, one or two; this zero, one or two; R^{3} and R^{4} are independently selected from hydrogen, $\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right)$ alkyl, aryl and heterocyclic; X and Y are independently selected from $=\mathrm{O},=\mathrm{S}, \mathrm{N}\left(\mathrm{R}^{3}\right)$ and $=\mathrm{C}\left(\mathrm{R}^{1}\right)\left(\mathrm{R}^{2}\right)$; a compound of Formula (II) or a salt thereof:

Formula (II),
wherein:
R_{1} is selected from $H, C N, N O_{2}, F, C l, B r$, I, or a group $X_{1}-R_{1}{ }^{\prime}$ wherein X_{1} is a single bond or a group selected from $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylene, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenylene, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynylene, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkylene, $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkylene,
arylene and heteroaryl; being X_{1} optionally substituted;
R_{1} ' is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{7}$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl or $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl; being R_{1} ' optionally substituted;
R_{2} is selected from $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl and $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl, CN or amino; being R_{2} optionally substituted;
R_{3} is $-\mathrm{CH}_{2}-\mathrm{R}_{3} ; \mathrm{R}_{3}$ ' is selected from heteroaryl, $-\mathrm{C}(\mathrm{O}) \mathrm{OR}_{12}$,
or R_{3} ' is selected from- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR}_{6 e}$, n being between 1 and 20 , with the condition, that R_{3} ' cannot be $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{OH}$, $R_{6 e}$ being selected from R_{4} and R_{5},
or R_{3} ' is selected from - $\left(\mathrm{CH}_{2}\right)_{n}-\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right.$ heterocycloalkyl), with n being 0 to 20 ; and R_{12} is independently selected from H and $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R_{4} and R_{5} are independently selected from: $H, C_{1}-C_{6}$ alkyl, $C_{2}-C_{6}$ alkenyl, $C_{2}-C_{6}$ alkynyl, $C_{3}-C_{7} X_{4}$-cycloalkyl, X_{4}-cyclobutyl, X_{4}-cyclopentyl, X_{4}-cyclohexyl, X_{4}-cycloheptyl, X_{4}-benzyl, X_{4}-pyridinyl, X_{4}-pirimidinyl, X_{4}-pyperidinyl, X_{4}-pyrrolidinyl, X_{4}-pyrrolyl, X_{4}-imidazolyl and X_{4}-pyranyl saturated or unsaturated; X_{4} is a single bond or a group selected from $C_{1}-C_{6}$ alkylene, $C_{2}-C_{6}$ alkenylene; being R_{4} and R_{5} optionally substituted;
a compound of Formula (III) or a salt thereof:

Formula (III)
wherein:
R_{1} is selected from H or $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl and R^{2} is selected from $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl or $\mathrm{C}_{2}-\mathrm{C}_{10}$ alkenyl; being optionally substituted by halogen;
a compound of Formula (IV) or a salt thereof:

Formula (IV)
wherein:
R_{1} is selected from H and $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted,, R_{2} is $\mathrm{C}_{5}-\mathrm{C}_{15}$ alkyl, optionally substituted, R_{3} is selected from H , halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted, and $-(\mathrm{O})-\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted, n is between 1 and $4, R_{4}, R_{5}$ y R_{6} are each independently selected from H and $C_{1}-C_{5}$ alkyl, optionally substituted; a compound of Formula (V) or a salt thereof

Formula (V),
wherein:
R_{1} is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, halogen, CF_{3}, and $-\mathrm{O}-\mathrm{C}_{1}-\mathrm{C}_{6}$.alkyl; and (E, Z)-3-(morpholinoimino)indolin-2-one or a salt thereof.
7. Use according to any of claims 1 to 6 , wherein the mammal kinase inhibitor is selecting from a list consisting of:

4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8),
5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15),
3-acetyl-4-(1-methyl-1 H-indol-3-yl)-1 H-pirrol-2,5-dione (VP3.36),
4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7),
N -(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),
N -(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6),
N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24), and
(E, Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).
8. Method to induce in vitro plant embryogenesis, comprising:
a. culturing the microspores and/or explant in a culture medium suitable for embryo development; and
b. adding mammal kinase inhibitors to the culture medium of a); and
c. culturing for a period sufficient to obtain embryos.
9. Method according to claim 8 wherein the mammal kinase are human kinases, preferably GSK3 β and/or LRRK2.
10. Method according to any of claims 8 to 9 wherein the kinase GSK3 β comprises the sequence selected from the list consisting of SEQ ID NO: 1 to 4 , and the kinase LRRK2 comprises the sequence selected from the list consisting of SEQ ID NO: 5 to 7 .
11. Method according to any of claims 8 to 10 wherein the embryogenesis is somatic and/or by microspores
12. Method according to any of claims 8 to 11 wherein the plants are crops plants, preferably Brassica spp. and/or Hordeum spp, or wherein the plants are forest plants, preferably Quercus spp.
13. Method according to any of claims 8 to 12, wherein the mammal kinase inhibitor is selecting from a compound of Formula (I) or a salt thereof:

Formula (I)
wherein:
A is $-C\left(R^{1}\right)_{2}-,-O-$ or $-N R^{1}-$ - E is $-N R^{1}-$ or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and G; G is $-S-,-N R^{1}-$ or $-C R^{1} R^{2}$ - and the substituent R^{2} is absent if ------ is a second bond between E and G;may be a second bond between E and G where the nature of E and G permits and E with G optionally then forms a fused
aryl group; R^{1} and R^{2} are independently selected from hydrogen, $\left(C_{1}-C_{8}\right)$ alkyl, cycloakyl, haloalkyl, aryl,-($\left.Z\right)_{n}$-aryl, heteroaryl, $-O R^{3},-C(O) R^{3},-C(O) O R^{3},-(Z)_{n}-C(O) O R^{3}-$ and $-S(O)_{t}$ - or as indicated R^{2} can be such that E with G then
 n is zero, one or two; t is zero, one or two; R^{3} and R^{4} are independently selected from hydrogen, ($\mathrm{C}_{1}-\mathrm{C}_{8}$)alkyl, aryl and heterocyclic; X and Y are independently selected from $=O,=S,=N\left(R^{3}\right)$ and $=C\left(R^{1}\right)\left(R^{2}\right)$; a compound of Formula (II) or a salt thereof:

Formula (II)
wherein:
R_{1} is selected from $H, C N, N O_{2}, F, C l, B r, I$, or a group $X_{1}-R_{1}{ }^{\prime}$ wherein X_{1} is a single bond or a group selected from $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylene, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenylene, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynylene, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkylene, $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkylene, arylene and heteroaryl; being X_{1} optionally substituted;
R_{1} ' is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{7}$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl or $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl; being R_{1} ' optionally substituted;
R_{2} is selected from $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl, aryl, heteroaryl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl and $\mathrm{C}_{3}-\mathrm{C}_{10}$ heterocycloalkyl, CN or amino; being R_{2} optionally substituted;
R_{3} is $-\mathrm{CH}_{2}-\mathrm{R}_{3} ; \mathrm{R}_{3}{ }^{\prime}$ is selected from heteroaryl, $-\mathrm{C}(\mathrm{O}) \mathrm{OR}_{12}$,
or R_{3} ' is selected from- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OR}_{6 e}$, n being between 1 and 20 , with the condition, that R_{3} ' cannot be $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{OH}$, $R_{6 e}$ being selected from R_{4} and R_{5},
or $R_{3}{ }^{\prime}$ is selected from- $\left(\mathrm{CH}_{2}\right)_{n}-\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right.$ heterocycloalkyl), with n being 0 to 20 ; and R_{12} is independently selected from H and $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R_{4} and R_{5} are independently selected from: $H, C_{1}-C_{6}$ alkyl, $C_{2}-C_{6}$ alkenyl, $C_{2}-C_{6}$ alkynyl, $C_{3}-C_{7} X_{4}$-cycloalkyl, X_{4}-cyclobutyl, X_{4}-cyclopentyl, X_{4}-cyclohexyl, X_{4}-cycloheptyl, X_{4}-benzyl, X_{4}-pyridinyl, X_{4}-pirimidinyl, X_{4}-pyperidinyl, X_{4}-pyrrolidinyl, X_{4}-pyrrolyl, X_{4}-imidazolyl and X_{4}-pyranyl saturated or unsaturated; X_{4} is a single bond or a group selected from $C_{1}-C_{6}$ alkylene, $C_{2}-C_{6}$ alkenylene; being R_{4} and R_{5} optionally substituted;
a compound of Formula (III) or a salt thereof:

Formula (III)
wherein:
R_{1} is selected from H or $C_{1}-C_{10}$ alkyl and R^{2} is selected from $C_{1}-C_{10}$ alkyl or $C_{2}-C_{10}$ alkenyl; being optionally substituted by halogen;
a compound of Formula (IV) or a salt thereof:

Formula (IV)
wherein:
R_{1} is selected from H and $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted,, R_{2} is $\mathrm{C}_{5}-\mathrm{C}_{15}$ alkyl, optionally substituted, R_{3} is selected from H , halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted, and $-(\mathrm{O})-\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, optionally substituted, n is between 1 and $4, R_{4}, R_{5}$ y R_{6} are each independently selected from H and $C_{1}-C_{5}$ alkyl, optionally substituted; a compound of Formula (V) or a salt thereof:

Formula (V)
wherein:
R_{1} is selected from $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, halogen, CF_{3}, and $-\mathrm{O}-\mathrm{C}_{1}-\mathrm{C}_{6}$.alkyl; and (E, Z)-3-(morpholinoimino)indolin-2-one or a salt thereof.
14. Method according to any of claims 8 to 13 , wherein the mammal kinase inhibitor is selecting from a list consisting of:

4-benzyl-2-methyl-1,2,4-thiadozilidine-3,5-dione (TDZD8),
5-(2-Morpholinethylimino)-2,3-diphenyl-2,5-dihydro-1,2,4-thiadiazole (VP3.15),
3-acetyl-4-(1-methyl-1 H-indol-3-yl)-1 H-pirrol-2,5-dione (VP3.36),
4-hydroxy-1-ethyl-N'-palmitoyl-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7),
N -(6-methylbenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.3),
N -(6-fluorobenzothiazole-2-yl)-4-morpholinobenzamide, (JZ1.6),
N -(6-bromobenzothiazole-2-yl)-4-morpholinobenzamide (JZ1.24) and
(E,Z)-3-(morpholinoimino)indolin-2-one (IGS4.75).
15. Method according to any of claims 8 to 14 wherein the mammal kinase inhibitor concentration ranges from $0.5 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$.

Fig. 1

EP 3827665 A1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

GSK3 β Inhibitor selected

LRRK2 Inhibitor selected

Fig. 7

Fig. 8

Fig. 9

H. vulgare (Embryos per plate)

Fig. 10

Fig. 11

EP 3827665 A1

Fig. 12

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report		Publication		Patent family member(s)	Publication
W0 2019075295	A1	18-04-2019	AU	2018347545 A1	16-04-2020
			W0	2019075295 A1	18-04-2019
WO 2016016894	A1	04-02-2016	CN	108064274 A	22-05-2018
			EP	3194572 A1	26-07-2017
			JP	2017525351 A	07-09-2017
			US	2017275593 A1	28-09-2017
			W0	2016016894 A1	04-02-2016
WO 03037072	A2	08-05-2003	AT	360060 T	15-05-2007
			AT	452966 T	15-01-2010
			CA	2464147 A1	08-05-2003
			CA	2821597 A1	08-05-2003
			DE	60219673 T2	16-08-2007
			EP	1451301 A2	01-09-2004
			EP	1785481 A1	16-05-2007
			ES	2286290 T3	01-12-2007
			MX	PA04004003 A	29-10-2004
			US	2003082813 A1	01-05-2003
			US	2005071898 A1	31-03-2005
			US	2010169997 A1	01-07-2010
			US	2011078823 A1	31-03-2011
			US	2011252506 A1	13-10-2011
			US	2012102594 A1	26-04-2012
			US	2013205442 Al	08-08-2013
			W0	03037072 A2	08-05-2003

-

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 2484670 A1 [0111]

Non-patent literature cited in the description

- TESTILLANO et al. Plant Cell Culture Protocols. Springer, 2018, 247-256 [0060] [0088]
- PREM et al. BMC Plant Biology, 2012, vol. 12, 127 [0080] [0093]
- RODRIGUEZ-SERRANO et al. Journal of Experimental Botany, 2012, vol. 63 (5), 2007-2024 [0082]
- TESTILLANO et al. Forestry Sciences. Springer International Publishing, 2018, vol. 84, 93-105 [0084]
- MARTINEZ A et al. J Med Chem., 2002, vol. 45 (6), 1292-9 [0110]
- PEREZ DI et al. J Med Chem., 2011, vol. 54 (12), 4042-56 [0112]
- PALOMO V et al. J Med Chem., vol. 60 (12), 4983-5001 [0113]
- SALADO IG. et al. Eur J Med Chem., 29 September 2017, vol. 138, 328-342 [0124]

[^0]: Val Ala Glu Ile Gln Thr Lys Gly Phe Gln Thr Ile Leu Ala Ile Leu 645650655

