(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
18 March 2021 (18.03.2021)
||
(51) International Patent Classification:

C12N 9/10 (2006.01) C12N 15/82 (2006.01)
(21) International Application Number:

PCT/EP2020/075525
(22) International Filing Date:

11 September 2020 (11.09.2020)
(25) Filing Language:
(26) Publication Language:

English
English
(30) Priority Data:
19382795.313 September 2019 (13.09.2019) EP
(71) Applicants: CRAG - CENTRE DE RECERCA EN AGRIGENOMICA CSIC-IRTA-UB-UAB [ES/ES]; C/ de la Vall Moronta s/n. Campus UAB., Edifici CRAG, 08193 Barcelona (ES). CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) [ES/ES]; C. Serrano 117,28006 Madrid (ES).
(72) Inventors: RODRIGUEZ-CONCEPCION, Manuel; Consejo Superior de Investigaciones Científicas, (CSIC), $\mathrm{C} /$ de la Vall Moronta s / n. Campus UAB. Edifici, CRAG., 08193 Cerdanyola del Vallés (Barcelona) (ES). LLORENTE, Briardo; CRAG - Centre de Recerca en Agrigenomica, CSIC-IRTA-UB-UAB, C/ de la Vall Moronta s/n. Campus UAB. Edifici, CRAG., 08193 Cerdanyola del Vallés (Barcelona) (ES). TORRES MONTILLA, Salvador, CRAG - Centre de Recerca en Agrigenomica, CSIC-IRTA-UB-UAB, C/ de la Vall Moronta s/n. Campus UAB. Edifici, CRAG., 08193 Cerdanyola del Vallés (Barcelona) (ES). MORELLI, Luca; CRAG - Centre de Recerca en Agrigenomica, CSIC-IRTA-UB-UAB, C/ de la Vall Moronta s/n. Campus UAB. Edifici, CRAG., 08193 Cerdanyola del Vallés (Barcelona) (ES).
(74) Agent: HOFFMANN EITLE S.L.U.; Paseo de la Castellana 140, $3^{\text {a }}$ Planta, Edificio Lima, 28046 Madrid (ES).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21 (3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: ARTIFICIAL CHROMOPLAST BIOGENESIS

(57) Abstract: In the present invention, we show for the first time that the supply of phytoene to feed the carotenoid pathway functions as a primary determinant of chromoplast biogenesis in green tissues. We provide evidence that exceeding a threshold level of phytoene, the first committed intermediate of the carotenoid pathway, is sufficient to induce chloroplast-to- chromoplast differentiation in leaves. The present invention thus reveals a novel aspect of carotenoid biology and additionally presents a powerful tool for biotechnological applications of the modulation of plastid identity, that could be used in the development of new biofortified crops, food or as a source of extracts for a variety of industries.

Artificial chromoplast biogenesis

FIELD OF THE INVENTION

The present invention generally relates to the field of plant molecular biology and synthetic biology and concerns both a method for the induction of artificial chromoplasts from chloroplasts cells, and products derived therefrom.

BACKGROUND OF THE INVENTION

Plastids comprise a group of morphologically and functionally diverse plant organelles capable of differentiating from one plastid type to another in response to developmental and environmental stimuli (Jarvis and Lopez-Juez 2013, Liebers, Grubler et al. 2017). Such plastidial conversions are essential to sustain many fundamental biological processes and largely contribute to cell specialization in the different plant tissues (Kleffmann, von Zychlinski et al. 2007, Barsan, Sanchez-Bel et al. 2010, Barsan, Zouine et al. 2012, Liebers, Grubler et al. 2017). Among the different plastid types, chromoplasts are plastids of great importance in nature and agriculture because of their capacity to accumulate high levels of carotenoids, plant pigments of isoprenoid nature that impart color in the yellow to red range (RodriguezConcepcion et al. 2018). Besides health-promoting carotenoids such as beta-carotene (provitamin A), chromoplasts accumulate other isoprenoids of nutritional interest such as tocopherols (vitamin E). Both carotenoids and tocopherols are essential nutrients that animals canno t synthesize and therefore must be taken in the diet (Fraser and Bramley 2004, Brehelin, Kessler et al. 2007, Giuliano 2017, Gramegna, Rosado et al. 2018, Rodriguez-Concepcion, Avalos et al. 2018). They are also added-value compounds widely used in several industries, including cosmetic, food, and animal feed industries (Ogbonna 2009, Rodriguez-Concepcion, Avalos et al. 2018). Therefore the ability to promote the differentiation of chromoplasts from chloroplasts (in chlorophyll containing photosynthetically active cells) has several potential biotechnological applications including but not restricted to food, feed, agriculture, cosmetic or nutraceutical, either alone or in combination with other inventions.

Chromoplasts can differentiate from preexisting plastids such as proplastids (i.e., undifferentiated plastids) and amyloplasts (i.e., starch-storing plastids), but most often they develop from chloroplasts (i.e., photosynthetic, chlorophyll containing plastids). Transformation of chloroplasts into chromoplasts occurs during the development of many flower petals and fruits but only a few plant species differentiate true chromoplasts in chlorophyll containing leaves. The yellow to red colors that some leaves acquire as they senesce (e.g. in the autumn or when they are exposed to continuous darkness) are due to carotenoids becoming visible when the chlorophylls degrade. This senescence process, however, does not involve the
transformation of chloroplasts into chromoplasts but into a completely different type of plastids named gerontoplasts (Koiwa, Ikeda et al. 1986, Hormaetxe, Hernandez et al. 2004, Egea, Barsan et al. 2010, Jarvis and Lopez-Juez 2013, Liebers, Grubler et al. 2017).

The most prominent changes during chloroplast to chromoplast differentiation are the remodeling of the internal plastid structures, together with a concurrent loss of photosynthetic competence and over-accumulation of carotenoid pigments (Egea, Barsan et al. 2010, Jarvis and Lopez-Juez 2013, Liebers, Grubler et al. 2017, Llorente, Martinez-Garcia et al. 2017, Gramegna, Rosado et al. 2018). The remodeling of the internal plastid structures generates increased metabolic sink capacity for carotenoid biosynthesis and storage, and it is, therefore, a critical developmental mechanism regulating carotenoid production in plants (Yuan, Zhang et al. 2015, Llorente, Martinez-Garcia et al. 2017). Due to its unique capacity to accumulate high amounts of carotenoids and other dietary nutrients such as tocopherols, the control of chromoplast differentiation has been proposed as a very promising strategy for improving the nutritional and health benefits of crops, and for other biotechnological endeavors (Yuan, Owsiany et al. 2015, Yuan, Zhang et al. 2015, Giuliano 2017, Llorente, Martinez-Garcia et al. 2017, Wurtzel 2019). However, the experimental manipulation of chromoplast differentiation for biotechnological applications has been hampered by our limited understanding of the mechanisms regulating this process. The only regulator of chromoplast development identified to date is ORANGE (OR), a chaperone found to localize in both plastids and nuclei. The specific molecular mechanism by which ORANGE triggers chromoplast differentiation remains unclear, as it independently promotes carotenoid biosynthesis, stability, and storage. As described below, the phytoene inductive threshold mechanism for artificial biogenesis was found to be independent of ORANGE, that is, does not require ORANGE dependent functions.

Here, we show for the first time that the supply of a sufficiently large amount of phytoene into chlorophyll containing plastids (chloroplasts) functions as a primary determinant of chromoplast artificial or synthetic biogenesis in green tissues (i.e., leaves or any other chloropyll containing, photosynthetic organs, tissues or cells). We provide evidence that exceeding a threshold level of phytoene, the first committed intermediate of the carotenoid pathway, is sufficient to induce chloroplast-to-chromoplast differentiation in green tissues. The present invention thus reveals a novel aspect of carotenoid biology and additionally presents a powerful tool for biotechnological applications of the artificial or synthetic differentiation of plastids into chromoplasts that could be used in new biofortified food and feed crops or nutraceutical and pharmaceutical compositions.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Chromoplast-like plastids develop from chloroplasts in leaves producing crtB.
A, B, C, E, TEM images of representative plastids from the indicated species and treatments.

Bars, $1 \mu \mathrm{~m}$. D, Immonoblot analysis of plastidial proteins.

Figure 2. Plant-produced crtB stays in the cytosol but can also enter chloroplats. Subcellular localization of the indicated constructs in N. benthamiana leaf cells. Bars, $20 \mu \mathrm{~m}$.

Figure 3. Bacterial crtB needs to enter the chloroplast to induce chromoplast differentiation. A, Phenotypes of N. benthamiana leaf sections expressing the indicated constructs. B, Photosynthetic pigment levels in the sections shown in B. C, Photosynthetic parameters of the sections shown in B.

Figure 4. Chromoplast differentiation in N. benthamiana leaves ressembles that in tomato fruit. Heatmap represents of GO term enrichment values (Z-scores) in calculated from log2FC values in N. benthamiana leaves (crtB vs. GFP, NbB), tomato fruit (light ripe vs. mature green, SLO, and red ripe vs. mature green, SIR) and Arabidopsis leaves (30D senescent vs. 16D controls, AtS).

Figure 5. Chromoplast differentiation induces glycolytic and oxidative energy metabolism. Heatmap represents statistically significant fold-change values of metabolite levels in N. benthamiana leaves (crtB vs. GFP). Inset represents respiration rates.

Figure 6. Phytoene levels need to reach an activation threshold to induce chloroplast-tochromoplast differentiation. A, Phytoene and downstream carotenoid contents in N. benthamiana leaves infiltrated with serial dilutions of A. tumefaciens cultures to express (p)crtB at different levels. B, Phytoene and downstream carotenoid contents at different time points after agroinfiltration of N. benthamiana leaves with constructs to express (p)crtB. In all cases, values correspond to the mean and SD values.

Figure 7. Time-course of chloroplast-to-chromoplast differentiation. A, Effective quantum yield in leaf sections at different time points after agroinfiltration with the indicated constructs. Representative images are shown. B, Non-photochemical quenching in leaf sections at different time points after agroinfiltration with (p)crtB. C, D1 protein contents at different time points after agroinfiltration with the indicated constructs. Values correspond to the mean and SD values.

Figure 8. Carotenoid overaccumulation is necessary but not sufficient to transform leaf chloroplasts into chromoplasts. Effective quantum yield in leaf sections at different time points after agroinfiltration with the indicated constructs. Samples treated with norflurazon (NF) are boxed in white. At 96 hpi, carotenoid contents were quantified. Values correspond to the mean and SD values.

Figure 9. Comparison of crtB-triggered phenotypes in different plants. A, MGDG levels in N. tabacum. B, Photosynthetic pigment levels in N. tabacum and N. benthamiana. C, SAG12 gene expression in N. tabacum. D, Representative images of crtB-infected leaves from an Arabidopsis wild-type Columbia (WT Col) plant and an OR-defective double ator ator-like mutant.

Figure 10. Plastid-targeted GFP does not affect chloroplast development. N. benthamiana leaves were agroinfiltrated with constructs to express a plastid-targeted version of GFP (P-GFP) or the untargeted GFP protein (upper left picture). At 96 hpi, agroinfiltrated tissue was examined under a confocal laser scanning microscope to confirm the localization of P-GFP in chloroplasts and GFP in the cytosol (lower left pictures). Effective quantum yield of PSII was identical in both samples (plot in the right).

Figure 11. Chromoplast differentiation in N. benthamiana leaves does not require changes in the expression of carotenoid-related genes. Heatmap represents $\log 2 F C$ values in N. benthamiana leaves (crtB vs. GFP, NbB), tomato fruit (light ripe vs. mature green, SLO, and red ripe vs. mature green, SIR) and Arabidopsis leaves (30D senescent vs. 16D controls, AtS).

Figure 12. Plant PSY enzymes do not induce chromoplast differentiation in leaves. A, Phenotypes of leaf tissue expressing AtPSY, SIPSY1, or crtB(p). B, Phytoene content in the leaf sections shown in A.

Figure 13. crtB-mediated chromoplast differentiation impairs the xanthophyll cycle. DES, de-epoxidation state calculated as $(Z x+0.5 \times A x) /(Z x+A x+V x)$, where $Z x, A x$ and $V x$ are the concentrations of zeaxanthin, antheraxanthin and violaxanthin, respectively.

DESCRIPTION OF THE INVENTION

Definitions

A "recombinant nucleic acid" designates a nucleic acid which has been engineered and is not found as such in wild type organisms. In some particular embodiments, this term may refer to a gene operably linked to a promoter that is different from its naturally occurring promoter.

The term "gene" designates any nucleic acid encoding a protein. The term gene encompasses DNA, such as cDNA or gDNA, as well as RNA. The gene may be first prepared by e.g., recombinant, enzymatic and/or chemical techniques, and subsequently replicated in a host cell
or an in vitro system. The gene typically comprises an open reading frame encoding a desired protein. The gene may contain additional sequences such as a transcription terminator or a signal peptide.

The term "operably linked" means a configuration in which a control sequence is placed at an appropriate position relative to a coding sequence, in such a way that the control sequence directs expression of the coding sequence.

The term "control sequences" means nucleic acid sequences necessary for expression of a gene. Control sequences may be native or heterologous. Well-known control sequences and currently used by the person skilled in the art will be preferred. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. Preferably, the control sequences include a promoter and a transcription terminator.

The term "expression cassette" denotes a nucleic acid construct comprising a coding region, i.e. a gene, and a regulatory region, i.e. comprising one or more control sequences, operably linked. Preferably, the control sequences are suitable for plant host cells.

As used herein, the term "signal peptide", may refer to sequences that when in translated into functional protein enhance the traffic of said protein into specific sub-cellular compartments, in the specific case of the present invention, into plastids, and more specifically into chloroplasts. Many signal peptides have been identified to date (from Rubisco i.e., Ribulose-1,5bisphosphate carboxylase/oxygenase EC 4.1.1.39 , or in US20020178467A1, or in https://doi.org/10.1016/j.tplants.2013.04.003).

As used herein, the term "expression vector" means a DNA or RNA molecule that comprises an expression cassette. Preferably, the expression vector is a linear or circular double stranded DNA molecule.

As used herein, the term "native" or "endogenous", with respect to a specific organism (e.g. bacterium or plant), refers to a genetic element or a protein naturally present in said organism. The term "heterologous", with respect to a specific organism, refers to a genetic element or a protein that is not naturally present in said organism.

As used herein, the term "sequence identity" or "identity" refers to the number (\%) of matches (identical amino acid residues) in positions from an alignment of two polypeptide sequences. The sequence identity is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical global or local alignment algorithms,
depending on the length of the two sequences. Sequences of similar lengths are preferably aligned using a global alignment algorithms (e.g. Needleman and Wunsch algorithm; Needleman and Wunsch, 1970) which aligns the sequences optimally over the entire length, while sequences of substantially different lengths are preferably aligned using a local alignment algorithm (e.g. Smith and Waterman algorithm (Smith and Waterman, 1981) or Altschul algorithm (Altschul et al., 1997; Altschul et al., 2005)). Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software available on internet web sites such as http://blast.ncbi.nlm.nih.gov/ or http://www.ebi.ac.uk/Tools/emboss/). Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, \% amino acid sequence identity values refers to values generated using the pair wise sequence alignment program EMBOSS Needle that creates an optimal global alignment of two sequences using the Needleman-Wunsch algorithm, wherein all search parameters are set to default values, i.e. Scoring matrix $=$ BLOSUM62, Gap open $=10$, Gap extend $=0.5$, End gap penalty = false, End gap open = 10 and End gap extend $=0.5$

As used in this specification, the term "about" refers to a range of values $\pm 10 \%$ of the specified value. For example, "about 20 " includes $\pm 10 \%$ of 20 , or from 18 to 22 . Preferably, the term "about" refers to a range of values $\pm 5 \%$ of the specified value.

As used herein, the term "CrtB" or "phytoene synthase" refers to a phytoene synthase enzyme (EC 2.5.1.32) encoded by a crtB gene which catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give phytoene. According to the organism, the nomenclature of the above identified enzyme and encoding gene may vary. However, for the sake of clarity, in the present specification, these terms are used independently from the origin of the enzymes or genes. Preferably, the term "CrtB" may refer to any of the sequences identified in table 1 below:

Table 1.250 crtb sequences

=xry	Entryame	cencmames	Crsarich	amensy Ie	=roiem nemes	EET gitis
P21683	CRTB PANAN	crtB	Pantoea ananas Enwinia uredovora)	553	15-cisphytoene synthase	309
D4GFK9	D4GFK9_PANAM	crtB PANA_4162	$\begin{aligned} & \text { Pantoea } \\ & \frac{\text { ananatis (strain }}{\text { LMG 20103) }} \end{aligned}$	706191	CnB	309
$\frac{A 0 A 2 P S K K}{E 2}$	A0A2P5IKE2 9GA MM	C3408. 19145	$\begin{aligned} & \text { Pantoea Sp. } \\ & \text { PSNIH6 } \end{aligned}$	2080494	Phytoene synthase	309

DSKXJO	CRTB_ENTAG	crtB	Enterobacter agqlomerans (Erwinia herbicola) Pantoea agglomerans)	549	15-cisphytoene synthase	295
$\frac{\text { AOA2PSG }}{\text { S98 }}$	A0A2P5GS98_9E NTR	CHU32_07085	Superficielbacter electus	2022662	Phytoene synthase	310
$\frac{\text { AOAOU5L }}{\frac{078}{8}}$	AOAOU5LOT8_9G AMM	crtB EM595_0217	Erwinia gerundensis	1619313	Phytoene synthase CrtB	308
$\frac{\text { AOAOUBV }}{229}$	A0AOJ8VQ29_9E NTR	ACH50_10685	$\begin{aligned} & \text { Eranconibacter } \\ & \text { pulveris } \end{aligned}$	435910	Phytoene synthase	308
$\frac{\text { AOA2N5E }}{\underline{\text { Q19 }}}$	AOA2N5EOI9_9G AMM	CYR34_06205	$\frac{\text { Yersiniaceae }}{\text { bacterium }}$ 20161 so3	2060066	Phytoene synthase	309
$\frac{\text { AOA2P8V }}{\text { GN3 }}$	AOA2P8VGN3_9E NTR	C7G83_16955	$\begin{aligned} & \text { Siccibacter } \\ & \text { turicensis } \end{aligned}$	357233	Phytoene synthase	308
$\frac{\text { AOA3R8Z }}{\text { PG5 }}$	A0A3R8ZPG5 96 AMM	EGK14_15735	Erwinia sp. 198	2022746	Phytoene/squa lene synthase family p..	318
P22872	CRTB_ESCVU	crtB	Escherichia vulneris (Pseudescherich ia vulneris)	566	Phytoene synthase	309
V5CM68	V5CM68_ENTCL	EDP2_323	$\begin{aligned} & \text { Enterobacter } \\ & \text { cloacae S61 } \end{aligned}$	1399146	Squalene/phyt oene synthase family p...	310
$\frac{A 0 A 2 S 9 B}{S 8}$	AOA2S9IBS8_9GA MM	COW29_12335	$\begin{aligned} & \text { Pantoea } \\ & \text { Coffeiphila } \end{aligned}$	1465635	Phytoene synthase	309
$\frac{\text { AOA1 } \times 1 D}{9 H 8}$	A0A1X1D9H8_96 AMM	HA48_10250	Pantoea wallisii	1076551	Phytoene synthase	309
$\frac{\text { AOA1S2D }}{\text { FG8 }}$	A0A1S2DFG8 96 AMM	BC443_00345	$\begin{aligned} & \text { Salinicola sp. } \\ & \text { M1T1003. } \end{aligned}$	1882734	Phytoene synthase	308
$\frac{\text { AOA1W6B }}{2 R 9}$	AOA1V6B2R9_9G AMM	B1H58_04565	Pantoea alhagi	1891675	Phytoene synthase	316
$\frac{\text { AOAOSOV }}{\frac{\mathrm{NH}}{}}$	AOA090VNH4_ES cvu	$\begin{aligned} & \text { crtBEV } 102420 _02 \\ & 02370 \end{aligned}$	Pseudescherich a vulneris NBRC 102420	1115515	Phytoene/squa lene synthase	309
U3TN93	U3TN93_9ENTR	E05_04190	Plautia stali symbiont	891974	Phytoene synthase	309
$\frac{\text { AOA210FS }}{50}$	AOA210FS50_9GA MM	CIG19.17290	$\begin{aligned} & \text { Enterobacterale } \\ & \hline \text { S bacterium } \\ & \text { CwR94 } \end{aligned}$	2025587	Phytoene synthase	316
$\frac{\mathrm{AOAOOSH}}{\mathrm{G} 39}$	AOAOQ5HG39_9B URK	ASF77_14330	$\begin{aligned} & \text { Massilia sp. } \\ & \hline \text { Leaf139 } \end{aligned}$	1736272	Phytoene synthase	326
$\frac{\text { AOAOJBY }}{\text { HLO }}$	AOAOJBYHLO_9G AMM	A129 03700	bacteria symbiont BFo2 of Frankliniella occidentalis	1628856	Phytoene synthase	308
$\frac{\text { AOAOLGV }}{X G G}$	AOAOL6VXG6_9B URK	AB595_23635	$\begin{aligned} & \text { Massilia sp. } \\ & \text { WF1 } \end{aligned}$	1406431	Phytoene synthase	327

$\frac{\text { A0A285N }}{5 W 6}$	A0A285N5W6 9P SED	SAMNO5660463_00 761	$\begin{aligned} & \text { Pseudomonas } \\ & \frac{\text { SD. }}{\text { URIL14HWK12.1 }} \\ & \hline \underline{9} \end{aligned}$	1261633	Phytoene synthase	313
$\frac{\text { AOA1H8P }}{\text { BA5 }}$	A0A1H8PBA5_9B URK	$\begin{aligned} & \text { SAMNO5428959_10 } \\ & 7148 \end{aligned}$	$\frac{\text { Duganella so. }}{\text { CF517 }}$	1881038	Phytoene synthase	323
H5V4V1	H5V4V1 ATLHE	$\begin{aligned} & \text { crtBEH105704_11_- } \\ & 00060 \end{aligned}$	Allantibacter hermannii NBRC 105704	1115512	Phytoene synthase	308
K9DBF5	K9DBF5_9BURK	${\underset{3}{4}}^{\text {HMPREF9710_0339 }}$	$\begin{aligned} & \text { Massilia timonae } \\ & \text { CCUG } 45783 \end{aligned}$	883126	Uncharacterize d protein	331
$\frac{\text { AOA1ETW }}{J F 5}$	AOA1ETWJF5 9 B URK	$\begin{aligned} & \text { crtB } 3 \text { DUPY_ } 2919 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Duganella } \\ & \text { phyllosphaerae } \\ & \hline \end{aligned}$	762836	All-transphytoene synthase/15-cis-.	331
$\begin{aligned} & \text { AOA1H2P } \\ & \text { NS6 } \end{aligned}$	ADA1H2PNS6_9B URK	$\begin{aligned} & \text { SAMNO5216551_10 } \\ & 4353 \end{aligned}$	$\begin{aligned} & \text { Burkholderia so. } \\ & \sqrt{S 23} \end{aligned}$	1770053	Phytoene synthase	339
$\frac{A 0 A 159 A}{K N 2}$	A0A1S9AKN2 $9 B$ URK	B0920 12090	Massilia sp. KIM	1955422	Phytoene synthase	323
$\begin{aligned} & \frac{\text { AOA2R4C }}{} \\ & \frac{H 02}{} \end{aligned}$	AOA2R4CH02_9B URK	C9128_27250	$\begin{aligned} & \text { Massilia } \\ & \text { armeniaca } \end{aligned}$	2072590	Phytoene synthase	323
$\begin{aligned} & \text { AOAOB6W } \\ & \frac{F W T}{} \end{aligned}$	A0A086WFWT.9B URK	JN27 02885	$\begin{aligned} & \text { Massilia sp. } \\ & \text { BSC265 } \end{aligned}$	1549812	Phyloene synthase	324
Q7MZE9	Q7MZE9_PHOLL	crtB plu4343	$\begin{aligned} & \text { Photorhabdus } \\ & \text { luminescens } \\ & \text { Subsp } \\ & \text { laumondii (strain } \\ & \text { DSM 15139 1 } \\ & \text { CIP 105565 } \\ & \hline \text { TO1) } \end{aligned}$	243265	Phytoene synthase	308
$\frac{\text { A0A098T }}{037}$	A0A098T037_9PS ED	LT42_06025	Pseudomonas lutea	243924	Phytoene synthase	329
F6AD53	F6AD53_PSEF1	Psefu_2397	$\frac{\text { Pseudomonas }}{\text { fulva (strain 12- }}$ $\frac{x}{x}$	743720	Phytoene synthase	332
$\frac{\text { AOAOS8U }}{818}$	A0A098U818 9BU RK	\|A69 16815	$\begin{aligned} & \text { Massilla sp. } \\ & \hline \text { JS1662 } \end{aligned}$	1519190	Phytoene synthase	315
$\frac{A O A O X 8 B}{W O 5}$	A0A0X8BWO5_9P SED	APT63_09595	Pseudomonas monteilii	76759	Phytoene synthase	330
$\frac{\text { AOA1IIIY }}{64}$	A0A1171Y64_9GA MM	$\begin{aligned} & \text { SAMN04487955_10 } \\ & 8147 \end{aligned}$	$\begin{aligned} & \text { Halomonas } \\ & \text { korlensis } \end{aligned}$	463301	Phytoene synthase	311
$\frac{\text { AOA1H1Z }}{\text { OEO }}$	AOA1H1Z0EO_9P SED	$\begin{aligned} & \text { SAMNO5216421_33 } \\ & 35 \end{aligned}$	Pseudomonas xinilangensis	487184	Phytoene synthase	307
$\frac{A 0 A 290 X}{F G 2}$	A0A290XFG2 9 G AMM	CNR27 10975	$\frac{\text { Luteimonas sp }}{100111}$	2006110	Phytoene synthase	311
$\frac{\text { A0A112Y }}{Q 18}$	AOA112YQ18_9GA MM	$\begin{aligned} & \text { SAMNO4487959_10 } \\ & 239 \end{aligned}$	Halomones xianhensis	442341	Phytoene synthase	312
N2JAK4	N2JAK4_9PSED	HMPREF $1487 _0479$ 4	$\begin{aligned} & \text { Pseudomonas } \\ & \text { SP. HPB0071 } \end{aligned}$	1203578	Uncharacterize d protein	308
$\begin{aligned} & \frac{A 0 A 1 H 2 Z}{R 06} \\ & \hline \end{aligned}$	AOA1H2ZR06_9P SED	$\begin{aligned} & \text { SAMNO5216287_24 } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Pseudomonas } \\ & \text { kuykendalii } \end{aligned}$	1007099	Phytoene synthase	308

$\frac{\text { AOAB83R }}{\text { UFO }}$	A0A383RUFO 9P SED	$\frac{\mathrm{crtB}}{36} \cos 865 \quad 029$	$\begin{aligned} & \text { Pseudomonas } \\ & \text { reidholzensis } \end{aligned}$	1785162	All-transphytoene synthase/15-cis-..	360
$\frac{\text { AOADU4WV }}{937}$	AOADU4WG37_9P SED	APT59_08110	$\begin{aligned} & \text { Pseudomonas } \\ & \text { orvzihabitans } \end{aligned}$	47885	Phytoene synthase	311
A4VR94	A4VR94 PSEU5	PST 3872	$\begin{aligned} & \text { Pseudomonas } \\ & \text { Stuzei (strain } \\ & \text { A1501) } \end{aligned}$	379731	Phytoene synthase	308
$\frac{\text { AOAOCAWV }}{\text { LCA }}$	AOAOC4WLC4_9G АММ	crtB Achr_15270	$\begin{aligned} & \text { Azotobacter } \\ & \text { chroococcum } \\ & \text { NCIMB } 8003 \end{aligned}$	1328314	Phytoene synthase crtB	321
$\frac{A 0 A 078 L}{\text { WKS }}$	A0A078LWK5 9P SED	BN1079_02002	Pseudomonas Saudiphocaensis	1499686	Phytoene synthase	308
$\frac{\text { AOA1T4L }}{878}$	A0A1T4L878_9RH IZ	$\begin{aligned} & \text { SAMNO5428963_10 } \\ & 1108 \end{aligned}$	Consotaella salsifontis	1365950	Phytoene synthase	320
$\frac{\text { AOA3L7A }}{E 21}$	AOA3LTAE21-9R $H 1 Z$ Hiz	D9R14. 11840	Xanthobacter tagetidis	60216	Phytoene/squa lene synthase family p.	311
F5XXP8	F5XXP8_RAMTT	Rta_07700		365046	Candidate phytoene synthase	310
$\frac{A O A O Q 6 C}{N \times 1}$	$\begin{aligned} & \text { AOAOQ6CNX1_9R } \\ & \text { HIZ } \end{aligned}$	ASG43 04300	$\begin{aligned} & \text { Aureimonas sp. } \\ & \text { Leaf454 } \end{aligned}$	1736381	Phytoene synthase	321
$\frac{A O A O Q 5 L}{K 63}$	AOAOQ5LK63_9B URK	ASF94_07960	$\begin{aligned} & \text { Acidovorax sp } \\ & \text { Leaf160 } \end{aligned}$	1736280	Phytoene synthase	315
$\begin{aligned} & \text { AOAOQ6E } \\ & \text { HK4 } \end{aligned}$	AOAOQ6EHK4 9R HIZ	ASG54_15465	$\begin{aligned} & \text { Aureimonas sp } \\ & \text { Leaf460 } \end{aligned}$	1736384	Phytoene synthase	317
$\frac{\text { AOABASJ }}{\text { HA4 }}$	AOA3A9JHA4_9P ROT	D6283_17175	$\frac{\text { Roseomonas }}{\text { Sp. } Z 24}$	2382222	Phytoene/squa lene synthase family p..	308
Q93Cl6	Q93Cl6_XANP2	crtB Xaut_3578	$\frac{\frac{\text { Xanthobacter }}{\frac{\text { utotrophicus }}{(\text { strain ATCC }}}}{\frac{\text { BAA-1158 /Py2) }}{}}$	78245	Phytoene synthase	311
$\frac{A O A O Q 4 G}{9 T 3}$	AOAOQ4G9T3_9B URK	ASE76_09585	$\begin{aligned} & \text { Xvlophilus sp. } \\ & \text { Leaf220 } \end{aligned}$	1735686	Phytoene synthase	317
$\frac{A 0 A O Q 5 C}{Z X 1}$	$\begin{aligned} & \text { A0A0Q5GZX1_9R } \\ & H 1 Z \end{aligned}$	ASF65 09280	$\begin{aligned} & \text { Aureimonas sp. } \\ & \text { Lear324 } \end{aligned}$	1736336	Phytoene synthase	308
$\frac{A 0 A O Q 6 F}{2 D 1}$	$\begin{aligned} & \text { AOAOQ6F2D1_9R } \\ & \mathrm{HIZ} \end{aligned}$	ASG48_00690	$\frac{\text { Aurantimonas }}{\text { sp. Leaf443 }}$	1736378	Phytoene synthase	314
X 5 MES2	X5MES2_9RHIZ	BN1012_Phect1195	Candidatus Phaeomarinoba cter ectocaroi	1458461	Phytoene synthase	317
$\begin{aligned} & A 0 A 2 D 2 A \\ & \text { WL2 } \end{aligned}$	A0A2D2AWL2_9C AUL	CSW64_08135	$\begin{aligned} & \text { Caulobacter } \\ & \text { mirabilis } \end{aligned}$	69666	Phytoene synthase	311

Q1YCX7	Q1YGX7_AURMS	SI859A1 00462	$\frac{\text { Aurantimonas }}{\text { manganoxydans }}$ $\frac{\text { (Strain ATCC }}{\text { BAA-1229I }}$ $\frac{\text { DSM 21871I }}{\text { SI85-9A1) }}$	287752	Phytoene synthase	329
$\frac{A 0 A 371 X}{1 S 1}$	AOA371X1S1_gR $H Z$ HIZ	DY137_14280	$\frac{\text { Fulvimarina sp. }}{85}$	2293836	Phytoene/squa lene synthase family p..	344
Q0G4C2	Q0G4C2_9RHIZ	FP2506_14039	$\begin{aligned} & \text { Fulvimarina } \\ & \text { pelagi } \\ & \text { HTCC2506 } \end{aligned}$	314231	Phytoene synthase	352
$\begin{aligned} & \text { AOA1K2H } \\ & \frac{417}{} \end{aligned}$	AOA1K2HUI7_9R HIZ	SAMN02983003_03 71	$\begin{aligned} & \text { Devosia } \\ & \text { enhydra } \end{aligned}$	665118	Phytoene synthase	314
$\frac{A 0 A 1 H 0 D}{Q 75}$	A0A1HODQ75_9R HIZ	$\begin{aligned} & \text { SAMNO5192530_10 } \\ & 1901 \end{aligned}$	Aureimonas iatrophae	1166073	Phytoene synthase	314
$\frac{A O A O Q 5 V}{890}$	$A 0 A 0 Q 5 V 890 _9 C$ AUL	ASG17_11235	$\begin{aligned} & \text { Brevundimonas } \\ & \text { so. Leaf363 } \end{aligned}$	1736353	Phytoene synthase	310
$\frac{A O A O F 51}{714}$	AOAOF5L714 9RHI Z	WV35 11040	Devosia soli	361041	Phytoene synthase	307
$\begin{aligned} & \text { AOAA1Y6E } \\ & \frac{884}{} \end{aligned}$	AOA1Y6ES84_9R HIZ	SAMN06295905_11 44	$\begin{aligned} & \text { Devosia } \\ & \text { Lucknowensis } \end{aligned}$	1096929	Phytoene synthase	307
A421U2	A4Z1U2_BRASO	crtB BRADO6506	Bradyrhizobium $\frac{\text { Sp. (strain ORS }}{278)}$ Aus	114615	Phytoene synthase	335
$\frac{\text { AOAA175R }}{T 03}$	AOA175RT03_9R HIZ	NS365_09075	Aureimonas ureilytica	401562	Phytoene synthase	320
$\frac{\text { AOA1XOT }}{982}$	A0A1X0T982 9R HIZ	ATO4 01980	Aurantimonas sp 2211-16-19	1317114	Phytoene synthase	341
$\begin{aligned} & \frac{A 0 A 433 X}{F 97} \end{aligned}$	A0A433XF97_9R $H Z$ HIZ	EMQ25_06370	Arsenicitalea aurantiaca	1783274	Phytoene/squa lene synthase family p..	310
$\frac{A O A 346 Y}{P K 6}$	A0A346YPK6_9R HIZ	CYG48_12265	$\begin{aligned} & \text { Neorhizobium } \\ & \text { Sp. SOG26 } \end{aligned}$	2060726	Phytoene synthase	310
$\begin{aligned} & \text { ADA.2P1N } \\ & \text { MV8 } \end{aligned}$	AOA2P1NMV8_9B URK	C7H73_12405	$\frac{\text { Melaminivora }}{\text { So.Sc2-7 }}$	2116657	Phytoene synthase	322
$\frac{\text { A0A239L3 }}{48}$	A0A239L348_9BU RK	$\begin{aligned} & \text { SAMNO6265795_11 } \\ & 924 \end{aligned}$	Noviherbaspirillu m humi	1688639	Phytoene synthase	308
D9QK03	D9QK03_BRESC	Bresu_2278		633149	Phytoene synthase	313
$\frac{\mathrm{AOA} 2 R 7 L}{\mathrm{TDG}}$	A0A2R7L7D6_9C AUL	DBR10_15595	$\begin{aligned} & \text { Caulobacter se } \\ & \text { HMWF025 } \end{aligned}$	2056860	Phytoene synthase	309
$\frac{\mathrm{AOA} 3970}{5 C 8}$	A0A397Q5C8_9R HIZ	BXY53_1361	Dichotomicrobiu $\frac{m}{\text { thermohalophilu }}$ m	933063	Phytoene synthase	322

$\frac{\text { AOAOV2F }}{4 S 2}$	AOAOV2F4S2 CA UVI	AS593 07995	Caulobacter vibrioides (Caulobacter crescentus)	155892	Phytoene synthase	318
$\frac{\text { AOAIW2E }}{\mathrm{EJg}}$	A0A1W2EFJ9_9R HIZ	SAMN06297251_12 51	Fulvimarina manganoxydans	937218	Phytoene synthase	344
$\frac{A 0 A 2 G 8 T}{1 X 4}$	A0A2G8T1X4_9B URK	CR103_09820	Massilia psychrophila	1603353	Phytoene synthase	317
$\frac{A 0 A 1 C 9 E}{Q \times 8}$	A0A1G9EQX8_9R HOB	$\begin{aligned} & \text { SAMNO4487971_10 } \\ & 396 \end{aligned}$	Paracoccus chinensis	525640	Phytoene synthase	303
$\frac{A O A 418 Z}{\text { VEO }}$	AOA418ZVEO $9 R$ HOB	D3P06 11200	$\begin{aligned} & \text { Paracoccus } \\ & \text { aestuari } \end{aligned}$	453842	Phytoene/squa lene synthase family p.	303
BOT3F4	BOT3F4_CAUSK	Caul_1711	$\frac{\text { Caulobacter so }}{(\text { strain } K 31)}$	366602	Squalene/phyt oene synthase	309
$\frac{\text { AOA2S7K }}{4 \text { N } 9}$	AOA2S7K4N9_9P ROT	CW354_11695	$\begin{aligned} & \text { Marincaulis } \\ & \text { flavus } \end{aligned}$	2058213	Phytoene synthase	325
$\frac{\text { AOAODGT }}{9 \times 0}$	AOAOD6T9XO_9R HOB	SY26_13460	$\begin{aligned} & \text { Paracoccus sp: } \\ & \frac{228}{2} \end{aligned}$	1192054	Uncharacterize d protein	304
$\frac{\text { AOAA1ITNV }}{16}$	AOA1717N16_9RH IZ	$\begin{aligned} & \text { SAMNO5216456_34 } \\ & 33 \end{aligned}$	Devosia crocina	429728	Phytoene synthase	307
$\frac{A 0 A 0 Q 5 P}{\frac{57}{}}$	AOADQ5PF57_9S PHN	ASC07_08310	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD.Leaf343 } \end{aligned}$	1736345	Phytoene synthase	315
P54975	CRTB PARSN	crtB	$\frac{\text { Paracoccus sp }}{(\text { Strain N81106 })}$ $\frac{\text { MBlC 01143) }}{\text { (Agrobacterium }}$ $\frac{\text { aurantiacum) }}{}$	81397	15-cisphytoene synthase	304
$\frac{A 0 A 1 G 5 H}{Z E 2}$	AOA1G5HZE2_9R HOB	$\begin{aligned} & \text { SAMN05660710_02 } \\ & 407 \end{aligned}$	$\begin{aligned} & \text { Paracoccus } \\ & \text { tibetensis } \end{aligned}$	336292	Phytoene synthase	303
$\frac{A O A 114 B A}{N 5}$	AOA1 14BAN5 9RH 12	SAMN05444581 11 411	$\begin{aligned} & \text { Methylocapsa } \\ & \text { palsarum } \end{aligned}$	1612308	Phytoene synthase	324
$\begin{aligned} & \text { AOAOW1 } \\ & \text { QPN2 } \end{aligned}$	AOAOW1QPN2_9S PHN	ATB93_04250	$\begin{aligned} & \text { Sphingomonas } \\ & \text { sp. WG } \end{aligned}$	1592629	Phytoene synthase	307
$\begin{aligned} & \text { AOADOQ7S } \\ & \text { EW8 } \end{aligned}$	AOA0Q7SEW8 9C AUL	ASD25_22640	$\begin{aligned} & \text { Brevundimonas } \\ & \text { Sp. Root1423 } \end{aligned}$	1736462	Phytoene synthase	314
E315T7	E315T7_RHOVT	Rvan_0150		648757	Phytoene synthase	324
$\frac{\text { A0A3S4C }}{M 38}$	A0A3S4CM38_9R HOB	crtB PARHAE 0390 0	Paracoccus so	2491866	15-cisphytoene synthase	303
$\frac{A O A 1 S 4 E}{N J 6}$	AOA1S4ENJG_DIA Cl	LOC103519589	$\begin{aligned} & \text { Diaphorina citri } \\ & \begin{array}{l} \text { (Asian citrus } \\ \text { psyllid) } \end{array} \end{aligned}$	121845	uncharacterize d protein LOC10351958.	272
$\frac{\text { AOAONOK }}{3 \mathrm{CE}}$	AOAONOK3C6_9P ROT	IP88 03220	alpha proteobacterium AAP81b	1523432	Uncharacterize d protein	310

$\frac{\text { AOA257E }}{\text { PT4 }}$	AOA257EPT4_9P ROT	CFE37_03910	Alphaproteobact eria bacterium PA4	$\underline{2015572}$	Phytoene synthase	310
$\begin{aligned} & \text { AOA1E3L } \\ & \text { V90 } \end{aligned}$	$\begin{aligned} & \text { AOA1E } 3 L V 90 \text { - } \\ & \text { PHN } \end{aligned}$	BFL28_16930	Sphingomonas turnsvirgatae	1888892	Phytoene synthase	312
$\frac{\mathrm{AOA} 1 G 5 \mathrm{U}}{\mathrm{KG4}}$	A0A1G5UKG4_9S PHN	$\begin{aligned} & \text { SAMNO3159340_03 } \\ & 048 \end{aligned}$	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD. NFR15 } \end{aligned}$	1566282	Phytoene synthase	314
$\frac{A 0 A O Q 4 K}{E T 8}$	$\begin{aligned} & \text { AOADQ4KET6_95 } \\ & \text { PHN } \end{aligned}$	ASE86 01900	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. Leaf33 } \end{aligned}$	1736215	Phytoene synthase	315
$\begin{aligned} & \text { AOA238W } \\ & \frac{F O 6}{} \end{aligned}$	AOA238WF06_9R HOB	$\begin{aligned} & \text { SAMNO6265378_10 } \\ & 4140 \end{aligned}$	$\begin{aligned} & \text { Paracoccus } \\ & \text { sediminis } \end{aligned}$	1214787	Phytoene synthase	305
$\frac{\text { AOAOS9F }}{\text { OHG }}$	AOAO99FOH6 9R HOB	IC63 12700	$\begin{aligned} & \text { Paracoccus } \\ & \text { sphaerophysae } \end{aligned}$	690417	Uncharacterize d protein	302
B8EQ05	B8EQ05_METSB	Msil_2069	Methvlocella silvestris (strain DSM 155101 CIP 1081281 LMG 278331 NCIMB 139061 BL2)	395965	Squalene/phyt oene synthase	355
$\frac{\mathrm{AOA} 2 \mathrm{~A} 2 \mathrm{~S}}{\mathrm{C} 16}$	$\begin{aligned} & \text { AOA2A2SC16_9S } \\ & \text { PHN } \end{aligned}$	CKY28_12235	$\frac{\text { Sphingomonas }}{\text { Sp. } 1 \text { PNM-20 }}$	1141887	Phytoene synthase	315
$\frac{\text { ADA2A3N }}{073}$	$\begin{aligned} & \text { A0A2A3N073_9S } \\ & \text { PHN } \end{aligned}$	SxD43FB_02845	$\begin{aligned} & \text { Sphingobium so. } \\ & \text { D43FB } \end{aligned}$	2017595	Phytoene synthase	318
$\frac{A 0 A 426 R}{U 18}$	A0A426RUJ8_9S PHN	D7D48 07035	Sohingorhabdus wooponensis	940136	Phytoene/squa lene synthase family p.	307
TOGTO4	T0GT04_98PHN	L288_15200	$\frac{\text { Sphingobium }}{\frac{\text { quisquiliarum }}{P 25}}$	1329909	Phytoene synthase	321
$\frac{\text { AOAIYIS }}{\text { SKO }}$	AOAIY1SSKO $9 R$ HOB	ATO13_10161	$\begin{aligned} & \text { Stappia sp. } 2211- \\ & \text { S9-Z10 } \end{aligned}$	1317123	Squalene/phyt oene synthase	309
$\frac{A O A O Q 4 L}{M R 4}$	$\begin{aligned} & \text { AOAOQ4LMR4_9S } \\ & \text { PHN } \end{aligned}$	ASE97_14625	$\begin{aligned} & \text { Sphingomonas } \\ & \text { sp.Leaf42 } \end{aligned}$	1736219	Phytoene synthase	308
$\frac{\text { A0A243P }}{\text { MO3 }}$	$\begin{aligned} & \text { A0A243PM03_9S } \\ & \text { PHN } \end{aligned}$	CA262. 16950	$\begin{aligned} & \text { Sphingobum sp. } \\ & \frac{\text { GW456-12-10. }}{14-\text { TSB1 }} \end{aligned}$	1987165	Phytoene synthase	318
$\frac{\text { AOA126R }}{350}$	AOA126R3SO_9S PHN	K663_01410	$\begin{aligned} & \text { Sphingobium Sp. } \\ & \text { M11205 } \end{aligned}$	407020	Phytoene synthase	319
$\begin{aligned} & \text { AOA } 430 \mathrm{D} \\ & \hline \text { UK7 } \end{aligned}$	AOA430DUKT_9S PHN	CA235-02705	$\begin{aligned} & \text { Sohingomonas } \\ & \text { Sp.ABOLF } \end{aligned}$	1985879	Phytoene/squa lene synthase family p.	317
$\frac{\text { AOA1L3. } 39}{11}$	A0A1L3J911_9SP HN	LPB140_00865	$\begin{aligned} & \text { Sphingopvxis } \\ & \text { Sp. LPBO140 } \end{aligned}$	1913578	Phytoene synthase	313
$\begin{aligned} & \overline{A O A 495 R} \\ & \overline{Y 84} \end{aligned}$	A0A495RY84 SP HMI	DFR51 1399	Sphingosinicella microcvstinivora ns	335406	Phytoene synthase	320
$\begin{aligned} & \text { ADAOPGZ } \\ & \frac{\mathrm{PY}}{} \end{aligned}$	$\begin{aligned} & \text { AOAOP6ZPY7_9S } \\ & \text { PHN } \end{aligned}$	AAJ72_13300	$\begin{aligned} & \text { Citromicrobium } \\ & \text { so. RCC1885 } \end{aligned}$	1647104	Phytoene synthase	336
$\frac{\text { AOAOSTY }}{\text { OY8 }}$	AOAOJTYOY8 9SP HN	V473_02115	$\begin{aligned} & \text { Sohingobuum } \\ & \text { czechense LL01 } \end{aligned}$	1420583	Phytoene synthase	316
$\frac{\text { AOA2R7J }}{\text { VN6 }}$	AOA2R7JVNG_9S PHN	DBR17_03295	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD.HMWFOO8 } \end{aligned}$	2056845	Phytoene synthase	319

$\frac{\text { A0A494V }}{\underline{V Z 2}}$	$\begin{aligned} & \text { A0A494VVZ2.9S } \\ & \text { PHN } \end{aligned}$	SAMIE_1000640	$\begin{aligned} & \text { Sphingobium } \\ & \text { amiense } \end{aligned}$	135719	Phytoene/squa lene synthase family p.	321
$\frac{\text { AOA430B }}{H 61}$	$\begin{aligned} & \text { ADA430BH61_9S } \\ & \text { PHN } \end{aligned}$	BRX43_10450	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD. Sm } \\ & \text { NIH.P15 } \quad 0812 \end{aligned}$	1920129	Phytoene/squa lene synthase family p..	321
$\begin{aligned} & \text { A0A167J } \\ & \text { N79 } \end{aligned}$	A0A167JN79 9SP HN	A3736 03600	$\begin{aligned} & \text { Erythrobacter } \\ & \text { so. H10063 } \end{aligned}$	1822240	Phytoene synthase	340
$\frac{\text { AOAIVOG }}{Y N 7}$	AOA1VOGYN7_9R HOB	A6J80_22060	Paracoccus yeel	147645	Phytoene/squa lene synthase family p..	308
EOTHVI	EOTHVI_PARBH	PB2503_11014	Parvularcula bermudensis (strain ATCC BAA-594 HTCC2503 KCTC 12087	314260	Phytoene synthase	321
$\frac{A 0 A 418 P}{\underline{Z T 2}}$	A0A418PZT2_9SP HN	D3M59_07935	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD.DAC4 } \end{aligned}$	2315689	Phytoene/squa lene synthase family p..	335
$\frac{A 0 A 097 E 1}{E 4}$	A0A097EIE4 9SP HN	MC45_14215	Sphingomonas taxi	1549858	Phyloene synthase	316
M2U509	M2U509_9SPHN	C725_1676	Pacificimonas flava	1234595	Phytoene synthase	340
D4YXE1	D4YXE1_SPHJU	crtB SJA_C1-01890	$\frac{\text { Sphingobum }}{\frac{\text { laponicum }}{\text { strain DSM }}}$ $\frac{16413 / C C M}{7287 / M T C C}$ $\frac{\text { (6362/UT26) }}{\text { (BRC 101211 }}$ $\frac{\text { UT26S) }}{}$	452662	Phytoene/squa lene synthetase	317
$\begin{aligned} & \text { ADA1Y2Q } \\ & \underline{R 13} \end{aligned}$	AOA1Y2QRI3_9SP HN	CAP39_08625	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD.IBVSS1 } \end{aligned}$	1985171	Uncharacterize d protein	322
$\frac{\text { A0A345W }}{\text { N99 }}$	A0A345WN99 9S PHN	DM480_06150	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SP. FARSPH } \end{aligned}$	2219696	Phytoene/squa lene synthase family p.	316
$\frac{\text { AOA1A7Q }}{\sqrt{13}}$	A0A1A7QJ13_9S PHN	A9995_08555	Ervthrobacter sp. QSSC1-22B	1860125	Phytoene synthase	340
W153H7	W1S3H7_9SPHN	C100_11835	$\begin{aligned} & \text { Sphingobium sp. } \\ & \text { C100 } \end{aligned}$	1207055	Phytoene synthase	317
$\frac{A O A 2 N 014}{B 4}$	A0A2NO14B4_9SP HN	B0100_1213	Novosphingobiu mkunmingense	1211806	Phytoene synthase	307
$\frac{A 0 A 371 R}{E Q 8}$	A0A371REQ8_9P ROT	DX908.00745	$\begin{aligned} & \text { Parvularcula Sp. } \\ & \text { SM1705. } \end{aligned}$	2292771	Phytoene/squa lene synthase family p.	326
$\frac{\text { A0A196M }}{954}$	A0A196M954_9S PHN	A7Q26_08955	$\begin{aligned} & \text { Sphingobium Sp } \\ & \text { TCM1 } \end{aligned}$	453246	Phytoene synthase	316
$\frac{\text { AOA147IY }}{03}$	A0A147IY03 9SP HN	NS355_03645	Sphingamonas yabuuchiae	172044	Phytoene synthase	316
F6EUT5	F6EUT5_SPHCR	Sphch_1941	Sphingobium chlorophenolicu m L-1	690566	Phytoene synthase	317
$\frac{\text { A0A } 371 B}{F 47}$	A0A371BF47_95P HN	DXH95 01930	$\begin{aligned} & \text { Sphingorhabdus } \\ & \text { SD.GY G } \end{aligned}$	2292257	Phytoene/squa lene synthase family p.	308

$\frac{\mathrm{AOA} 175 \mathrm{Y}}{\mathrm{~F} 2}$	AOA175Y1F2_9SP HN	AVM11_08125	Sphingomonas melonis TY	621456	Uncharacterize d protein	314
$\frac{\text { A0A285Q }}{\text { G69 }}$	A0A285Q669-9S PHN	$\begin{aligned} & \text { SAMNO6297144_11 } \\ & 01 \end{aligned}$	Sohingomonas quangdongensis	1141890	Phytoene synthase	316
$\frac{A O A D Q 4 F}{T S 3}$	AOAOQ4FTS3_9S PHN	ASE75_09645	Sphingomonas Sp. Leaf17	1735683	Phytoene synthase	320
$\begin{aligned} & \text { A0A1650 } \\ & \hline \text { P88 } \end{aligned}$	$\begin{aligned} & \text { A0A1650P88_9S } \\ & \text { PHN } \end{aligned}$	A3711-04890	$\frac{\text { Errthrobacter }}{\text { Sp. H100D59 }}$	1822215	Phytoene synthase	340
Q1NEY9	Q1NEY9_SPHSS	SKA58_15537	$\frac{\text { Sphingomonas }}{\text { SD. (Strain }}$ SKA58)	314266	Squalene/phyt oene synthase	318
$\frac{A 0 A 2 K 1 E}{B Q 1}$	A0A2K1EBQ1_9S PHN	BA950_01295	Erwhrobacter SP. SAORIC-644	1869314	Phytoene synthase	340
$\begin{aligned} & \text { ADASSOR } \\ & \frac{H F 3}{} \end{aligned}$	ADA3SORHF3_9S PHN	EJC47_-05525	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. TF3 } \end{aligned}$	2495580	Phytoene/squa lene synthase family p...	315
$\begin{aligned} & \text { AOA12A46 } \\ & \text { W5 } \end{aligned}$	A0A2A416W5 9SP HN	COA07_12690	Sphingomonas adhaesiva	28212	Phytoene/squa lene synthase family p.	303
$\frac{A O A O P G W}{G V 5}$	AOAOP6WGV5_9S PHN	SZ64_10920	$\begin{aligned} & \text { Erythrobacter } \\ & \text { So. SG61-1L } \end{aligned}$	1603897	Phytoene synthase	317
$\frac{\text { A0A173K }}{\text { VT4 }}$	$\begin{aligned} & \text { AOA173KVT4-9S } \\ & \text { PHN } \end{aligned}$	EP837-01648	$\begin{aligned} & \text { Sphingoblum sp. } \\ & \text { EP60837. } \end{aligned}$	1855519	15-cisphytoene synthase	319
$\frac{\text { AOA } 1 \text { Y FF }}{456}$	A0A1Y6F456_9SP HN	SAMN06297468_19 16	Altererythrobact er xiamenensis	1316679	Phytoene synthase	326
$\frac{\text { AOA } 1 \text { L6J7 }}{97}$	A0A1L6J797_9SP HN	BDW16 2415 BRX40_04525 DAH55 03615 DAH56 00070	$\frac{\text { Sphingomonas }}{\text { koreensis }}$	93064	Phytoene synthase	313
$\frac{\text { AOAI HON }}{187}$	A0A1H9NI87_9SP HN	$\begin{aligned} & \text { SAMNO5518866_10 } \\ & 9103 \end{aligned}$	$\begin{aligned} & \text { Sphingobium sp. } \\ & \text { YR768 } \end{aligned}$	1884365	Phytoene synthase	316
$\frac{A 0 A 1 H 7 R}{T Y 5}$	A0A1H7RTV5 95 PHN	$\begin{aligned} & \text { SAMNO5216382_23 } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp.JS21-1. } \end{aligned}$	1855283	Phytoene synthase	317
G2IMR1	G2IMR1_SPHSK	crtB SLG_31750	$\frac{\text { Sphinqobium SD. }}{\text { (strain NBRC }}$ $103272 /$ SYK-6)	627192	Phytoene/squa lene synthase	321
$\frac{\text { AOA } 1 H 8 H}{L P S}$	A0A1H8HLP5 95 PHN	$\begin{aligned} & \text { SAMNO5192583_30 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { Sohingomonas } \\ & \text { Sp. S6-262 } \end{aligned}$	1166340	Phytoene synthase	317
$\frac{\text { AOA } 345 \mathrm{Y}}{\text { CW4 }}$	A0A345YCW4_9S PHN	DVR09_04930	Enthrobacter SD. YH-07	2182384	Phytoene/squa lene synthase family p..	340
$\frac{\text { AOA220W }}{370}$	AOA220WV370-9S PHN	$\begin{aligned} & \text { crtBSPHFLASMR4 } \\ & \text { Y_00463 } \end{aligned}$	Sphingorhabdus flavimaris	266812	All-transphytoene synthase/15cis.	311
$\begin{aligned} & \text { AOAON1LI } \\ & \underline{X O} \end{aligned}$	AOAON1LIXO_9SP HN	\|P83_16905	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { msp. AAPg3 } \end{aligned}$	1523427	Phytoene synthase	321
$\frac{\text { AOAOO4G }}{\frac{E}{E} 22}$	AOAOQ4GF22 95 PHN	ASE72. 07730	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. Leat20 } \end{aligned}$	1735685	Phytoene synthase	316

$\frac{A O A 369 V}{Y Y 5}$	AOA369VMY5_9S PHN	DWW87_14475	Sphingomonas $\text { Sp. WZY } 27$	2283317	Phytoene/squa lene synthase family p..	334
$\frac{\text { AOAONOK }}{\underline{090}}$	$\begin{aligned} & \text { AOAONOKO90 } 9 \mathrm{~S} \\ & \text { PHN } \end{aligned}$	IP68 11255	$\begin{aligned} & \text { Blastomonas sp } \\ & \text { AAP25 } \end{aligned}$	1523416	Phytoene synthase	293
J8SJA3	J8SJA3_9SPHN	LH128_11738	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. LH128 } \end{aligned}$	473781	Phytoene synthase	323
$\frac{A 0 A 2 A 4 B}{9 S 7}$	$\begin{aligned} & \text { A0A2A4B9S7_9S } \\ & \text { PHN } \end{aligned}$	COC42_09205	Sphingomonas spermidinifacien s	1141889	Phytoene synthase	311
$\frac{\text { AOA115TJ }}{\text { RO }}$	AOA115TJRO_9SP HN	$\begin{aligned} & \text { SAMNO4488241_10 } \\ & 891 \end{aligned}$	Sphingomonas rubra	634430	Phytoene synthase	315
$\frac{\text { AOA1NGE }}{\text { Q33 }}$	AOA1NGEQ33_95 PHN	$\begin{aligned} & \text { SAMNO2745824_20 } \\ & 34 \end{aligned}$	$\begin{aligned} & \frac{\text { Sphingomabdus }}{\text { marinaDSM }} \frac{22363}{} \end{aligned}$	1123272	Phytoene synthase	309
$\frac{\text { A0A3D9F }}{\mathrm{H} 47}$	$\begin{aligned} & \text { AOA3D9FH47_9S } \\ & \text { PHN } \end{aligned}$	DFR46_2012	$\begin{aligned} & \text { Parasphingopyxi } \\ & \text { slamellibrachiae } \end{aligned}$	680125	Phytoene synthase	300
$\frac{A 042 P 7 Q}{G Q 2}$	$\begin{aligned} & \text { A0A2P7QGQ2_9S } \\ & \text { PHN } \end{aligned}$	C7155 23335	Sphingosinicella Sp. CL-C-18	2116704	Phytoene synthase	309
FGIJDO	F6IJDO_9SPHN	PP1Y_AT8258	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { msp.PPIY } \end{aligned}$	702113	Phytoene synthase	317
G6E9P6	G6E9P6 9SPHN	NSU_1067	Novosphingobiu $\frac{m}{m}$ pentaromativora nS US6-1	1088721	Phyloene synthase	317
$\frac{\text { AOA3ROW }}{T J 5}$	AOA3R9WTJ5_9S PHN	HMF7854_11995	Sphingomonas Sp. HMF7854	2315330	Phytoene/squa lene synthase family p...	331
$\begin{aligned} & \text { AOAOTOP } \\ & \text { YJI } \end{aligned}$	A0AOTOPYJ1_9SP HN	ASG29_01100	Sphingomonas Sp. Leaf412	1736370	Phytoene synthase	311
$\begin{aligned} & \text { AOADOOBX } \\ & E 94 \end{aligned}$	$\begin{aligned} & \text { A0ADQ8XE94_9S } \\ & \text { PHN } \end{aligned}$	ASE13_12025	Sphingomonas sp. Root241	1736501	Phytoene synthase	318
$\frac{\mathrm{A} 0 \mathrm{~A} 420 \mathrm{~W}}{\mathrm{~J}}$	A0A420WUJ4_9RH OB	DES40 0400	$\begin{aligned} & \text { Litorimonas } \\ & \text { taeanensis } \end{aligned}$	568099	Phytoene synthase	307
$\begin{aligned} & \frac{\mathrm{AOAO} 074 \mathrm{M}}{\mathrm{HB2}} \\ & \hline \end{aligned}$	AOA074MHB2_ER YLO	EH31_05910	Erythrobacter lonqus	1044	Phytoene synthase	315
$\frac{\text { AOAOT2Q }}{5 L 4}$	AOAOT2O5L4-9S PHN	ASD76_17695	Altererythrobact er Sp. Roat672	1736584	Phytoene synthase	360
$\frac{A O A O C 5 L}{B H 7}$	AOAOC5LBH7_9S PHN	TS85_20435	Sphingomonas hengshuiensis	1609977	Phytoene synthase	311
WOA662	WOA662 9SPHN	NX02_00980	$\frac{\text { Sphingomonas }}{\text { Sanxanigenens }}$ $\frac{\text { DSM } 19645=}{\text { NX02 }}$	1123269	Uncharacierize d protein	312
$\frac{\text { AOA147E }}{\text { F90 }}$	A0A147EF90_9SP HN	NS277_10930	Novosphingobiu mbarchaimii	1420591	Phytoene synthase	323
$\frac{\text { AOAOM4M }}{609}$	AOAOM4M609_9S PHN	AMC99_00377	Altererythrobact er epoxidivorans	361183	Phytoene synthase	365
$\frac{\text { AOA1WI }}{\text { MCK9 }}$	AOA1W7MCK9_9 SPHN	NMD1_03712	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { msp.MD-1 } \end{aligned}$	1630648	Phytoene synthase	334

$\frac{A 0 A 418 N}{G M 2}$	A0A418NGM2 95 PHN	D2V04_13375	$\begin{aligned} & \text { Alererythrobact } \\ & \text { er sp. Eryl } \end{aligned}$	2306995	Phytoene/squa lene synthase family p.	348
$\frac{\text { A0A1B6Z }}{B 79}$	A0A1B6ZB79_9S PHN	A8B75_00795	$\begin{aligned} & \frac{\text { Sphingomonada }}{\text { les bacterium }} \\ & \text { Ehco5 } \end{aligned}$	1849171	Phytoene synthase	313
$\frac{\text { AOA4 } 11 Z}{\text { GL9 }}$	A0A4112GL9 95 PHN	BPTFM16 02528	$\begin{aligned} & \text { Allererythrobact } \\ & \frac{\text { er sp. BPTF. }}{\text { M16. }} \end{aligned}$	2169535	$15-\mathrm{cis}-$ phytoene synthase	333
Q2N8CO	Q2N8CO_ERYLH	ELI 09895	$\begin{aligned} & \text { Erythrobacter } \\ & \text { litoralis (strain } \\ & \text { HTCC2594) } \end{aligned}$	314225	Phytoene synthase	361
$\frac{A O A 437 N}{D A Z}$	AOA437NDAT. 95 PHN	EOE18_02140	$\begin{aligned} & \text { Novosphingobiu } \\ & \mathrm{m} \text { Sp. FSY-9 } \end{aligned}$	1908524	Phytoene/squa lene synthase family p.	314
$\frac{\text { A0A1Y2O }}{\text { N53 }}$	A0A1Y2QN53_9S PHN	CAP40_02935	$\frac{\text { Sphingomonas }}{\text { SD.IBVSS2 }}$	1985172	Phytoene synthase	314
$\frac{\text { AOAO } 74 M}{\text { DMO }}$	A0A074MDM0_9S PHN	EH32_02875	Eryhrobacter litoralis	39960	Phytoene synthase	322
$\frac{\text { AOA4 } 19 \mathrm{M}}{\mathrm{YR2}}$	AOA419MYR2_98 PHN	D5155_07375	Sphingomonada ceae bacterium KCTC 52944	$\underline{2339262}$	Phytoene/squa lene synthase family p..	294
$\frac{A O A O Q 5 R}{0 A 9}$	A0AOQ5R0A9 95 PHN	ASG11 01840	Sphingomonas Sp. Leaf357	1736350	Phytoene synthase	317
$\frac{\text { AOA } 109 \mathrm{~L}}{\underline{Q H E}}$	AOA109LQH6_9S PHN	AUC45_12300	$\begin{aligned} & \text { Eruthrobacter } \\ & \text { SO. YT30 } \end{aligned}$	1735012	Phytoene synthase	322
$\frac{\text { AOAOCGK }}{\frac{192}{}}$	$\begin{aligned} & \text { AOAOQ6Kl92_9S } \\ & \text { PHN } \end{aligned}$	ASG67 10245	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. Leat339 } \end{aligned}$	1736343	Phytoene synthase	321
$\begin{aligned} & \text { AOAOHOX } \\ & \text { RZ9 } \end{aligned}$	AOAOHOXRZ9_9S PHN	AAV99_13175	Ervthrobacter marinus	874156	Phytoene synthase	353
$\frac{\text { AOA1H7A }}{\text { UWI }}$	A0A1H7AUWI_9S PHN	$\begin{aligned} & \text { SAMNO5428950_10 } \\ & 2427 . \end{aligned}$	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp. OV641 } \end{aligned}$	1881068	Phytoene synthase	315
$\frac{\text { AOA3N2Q }}{\frac{F K 9}{}}$	AOA3N2QFK9_9S PHN	EB810_12790	$\begin{aligned} & \text { Altererythrobact } \\ & \text { ersp.FM1 } \end{aligned}$	$\underline{2484537}$	Phytoene/squa lene synthase family p..	350
N1MKG3	N1MKG3_9SPHN	EBBID32_17900	Sphingobiumaponicum BiD32	1301087	Phytoene synthase	290
$\frac{\text { AOA239B }}{\underline{I L 3}}$	A0A239BTL3_9SP HN	$\begin{aligned} & \text { SAMNO6295912_10 } \\ & 1379 \end{aligned}$	Sphingomonas laterariae	861865	Phytoene synthase	309
$\frac{\text { AOA328A }}{\text { CM6 }}$	A0A328ACM6_9C AUL	DJ018 09820	Phenvlobacteriu m deserti	1914756	Phytoene/squa lene synthase family p.	311
19 C 345	19 C 345 _9SPHN	WSK_3197	$\begin{aligned} & \text { Novosphingobiu } \\ & m \text { sp. Rr } 2-17 \end{aligned}$	555793	Phytoene synthase	321
$\frac{\text { AOA2LOA }}{\text { CJI }}$	$\begin{aligned} & \text { AOA2LOACJ1_9S } \\ & \text { PHN } \end{aligned}$	C1T17_16820	$\begin{aligned} & \text { Sphingobium sp. } \\ & \text { SCG-1 } \end{aligned}$	2072936	Phytoene synthase	310
$\frac{\text { AOA1 } \mathrm{CgY}}{\mathrm{G} 98}$	A0A1X9YG98_9S PHN	KC8_11320	$\begin{aligned} & \text { Sphingomonas } \\ & \text { sp. KC8 } \end{aligned}$	1030157	Uncharacterize d protein	316
$\frac{\text { A0A1 } \times 7 \mathrm{G}}{805}$	A0A1×7G805 95 PHN	$\begin{aligned} & \text { SAMNO6295910_13 } \\ & 17 \end{aligned}$	Sphingomonas indica	941907	Phytoene synthase	310

$\frac{A O A O Q 4 C}{1 H O}$	$\begin{aligned} & \text { AOAOQAC1HO_9S } \\ & \text { PHN } \end{aligned}$	ASE49_14715	Novosphingobiu m sp. Leaf2	1735670	Phytoene synthase	333
$\frac{A O A O F 5 P}{C 85}$	$\begin{aligned} & \text { AOAOF5PC85 } 9 \mathrm{~S} \\ & \text { PHN } \end{aligned}$	WP12_10495	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SP. SRS2 } \end{aligned}$	133190	Phytoene synthase	309
$\frac{\mathrm{AOA} 437 \mathrm{~L}}{\mathrm{YGO}}$	$\begin{aligned} & \text { AOA437LYGO_9S } \\ & \text { PHN } \end{aligned}$	EOD43_19555	$\begin{aligned} & \text { Sphingomonas } \\ & \text { SD.CCP-7 } \end{aligned}$	1979270	Phytoene/squa lene synthase family p..	311
$\frac{A 0 A 2 K 2 F}{V 15}$	AOA2K2FV15.9S PHN	A8V01_08485	Novosphingobiu m guangzhouense	1850347	Phytoene synthase	317
$\frac{\text { AOA2252 }}{\text { IWO }}$	A0A2Z5Z1WO_9S PHN	AEB_P3493	$\begin{aligned} & \text { Alterervthrobact } \\ & \text { ersp. B11 } \end{aligned}$	2060312	Phytoene synthase	353
$\frac{A O A 116 L K}{X g}$	A0A116LKX9 9SP HN	$\begin{aligned} & \text { SAMNO5 } 192580.28 \\ & 79 \end{aligned}$	Sphingomonas iatrophae	1166337	Phytoene synthase	317
U2YNY3	U2YNY3_9SPHN	crtB NT2_10_00500	$\begin{aligned} & \text { Novosphingobiu } \\ & \frac{\text { m tardaugens }}{\text { NBRC } 16725} \end{aligned}$	1219035	Phytoene/squa lene synthase	327
F1ZA52	F1ZA52.9SPHN	Y88_0597	$\begin{aligned} & \text { Novosphingobiu } \\ & \frac{\text { mitrogenifigens }}{} \\ & \frac{\text { DSM 19370 }}{} \end{aligned}$	983920	Farnesyldiphosphate farnesyltransf:	314
$\frac{\text { ADA2AB10 }}{D 5}$	A0A2AB10D5_9SP HN	B2G71_02150	$\frac{\text { Novosphingobiu }}{\text { msp.PC22D }}$	1962403	Phytoene synthase	321
$\frac{\text { AOADMGY }}{\text { JLO }}$	A0AOM6YJLO $9 R$ HOB	$\begin{aligned} & \text { crtM 2JD07802. } 01 \\ & 471 \end{aligned}$	$\begin{aligned} & \text { Jannaschia } \\ & \text { donghaensis } \end{aligned}$	420998	Dehydrosquale ne synthase	313
$\frac{A O A O Q 4 J}{1 \times 3}$	$\begin{aligned} & \text { AOAOQ4.J1×3_9S } \\ & \text { PHN } \end{aligned}$	ASE85_05005	$\begin{aligned} & \text { Sphingobium sp. } \\ & \text { Leaf26 } \end{aligned}$	1735693	Phytoene synthase	289
$\frac{A O A O Q 4 L}{9 F 4}$	$\begin{aligned} & \text { AOAOQ4L9F4 } 95 \\ & \text { PHN } \end{aligned}$	ASF00_03950	$\frac{\text { Sphingomonas }}{\text { Sp. Lear34 }}$	1736216	Phytoene synthase	315
TOJ6D2	T0J6D2_98PHN	L284_00540	$\frac{\text { Novosphingobiu }}{\mathrm{m}}$Iindaniclasticum LE124	1096930	Phytoene synthase	340
$\frac{\text { AOAONOK }}{\text { E23 }}$	$\begin{aligned} & \text { AOAONOKE23_9S } \\ & \text { PHN } \end{aligned}$	IP81_12215	$\begin{aligned} & \text { Navosphingobiy } \\ & \text { msp. AAP83 } \end{aligned}$	1523425	Phytoene synthase	326
$\frac{A 0 A 1 B 2 A}{G K O}$	$\begin{aligned} & \text { AOA1B2ACKO_9S } \\ & \text { PHN } \end{aligned}$	crtB A6F68_02787	Altererythrobact erdongtanensis	692370	All-transphytoene synthase/15cis....	358
$\frac{\text { AOA1 V2E }}{\text { VIT }}$	AOA1V2EVJT_9S PHN	crtB SPHI_ 13020	Sphingomonas ieddahensis	1915074	All-transphytoene synthase/15-cis-.	309
$\frac{\text { AOA3A1P }}{F 8}$	AOA3A1PIF8_9SP HN	D2V17_00730	Erythrobacter xanthus	1784712	Phytoene/squa lene synthase family p..	348
Q267B9	Q2G7B9_NOVAD	Saro_1814	$\frac{\text { Novosphingobiu }}{\mathrm{m}}$ $\frac{\text { aromaticivorans }}{\text { (strain ATCC }}$ $\frac{700278 / \mathrm{DSM}}{\frac{12444 / \mathrm{ClP}}{105152 / \mathrm{NBRC}}}$ $\frac{16084 / \mathrm{F} 199)}{}$	279238	Farnesyldiphosphate farnesyltransf.	323

$\frac{A O A 112 S C}{57}$	A0A112SC57_9SP HN	$\begin{aligned} & \text { SAMNO5518801_13 } \\ & 26 \end{aligned}$	$\frac{\text { Novasphingobiu }}{\text { msp CF614 }}$ msp. CF614	1884364	Phytoene synthase	335
$\frac{\text { A0AOB9A }}{\text { G51 }}$	$\begin{aligned} & \text { AOAOB9AG51_9S } \\ & \text { PHN } \end{aligned}$	Nu75_00990	Novosphingobilu m subterraneum	48936	Farnesyldiphosphate farnesyltransf	321
$\frac{\text { AOAOFTK }}{X U 4}$	AOADF7KXU4_9S PHN PHN	crtB WYH_03017	Altererythrobact er atlanticus	1267766	All-transphytoene synthase/15-cis-...	353
$\frac{\mathrm{AOA} 437 \mathrm{I}}{\mathrm{CAO}}$	A0A437JCAO $9 S$ PHN	ENE74_02460	$\begin{aligned} & \text { Sphingobium sp. } \\ & \text { TLA-22 } \end{aligned}$	2008318	Phytoene/squa lene synthase family p.	321
$\frac{\text { AOA192D }}{489}$	A0A192D489_9SP HN	A9D12_07620	Porphyrobacter neustonensis	1112	Phytoene synthase	321
$\frac{\mathrm{AOA} 418 \mathrm{~W}}{\mathrm{Q} 24}$	$\begin{aligned} & \text { AOA418WQ24_9S } \\ & \text { PHN } \end{aligned}$	D3876 03070	$\begin{aligned} & \text { Sphingomonas } \\ & \text { Sp K2RO1-6 } \end{aligned}$	2320861	Phytoene/squa lene synthase family P.	321
$\frac{\text { AOAONOM }}{211}$	AOADNOM211_9S PHN	ADT71_10055	$\begin{aligned} & \text { Novosphingabiu } \\ & \mathrm{m} \text { Sp. ST904 } \end{aligned}$	1684385	Phytoene synthase	337
A3WEG9	A3WEG9_9SPHN	NAP1 10293	$\begin{aligned} & \text { Ervthrobacter } \\ & \text { sp NAP1 } \end{aligned}$	237727	Phytoene synthase	336
$\frac{\text { AOA } 420 E}{\mathrm{C17}}$	$\begin{aligned} & \text { AOA420EC17_9S } \\ & \text { PHN } \end{aligned}$	D6851_15445	$\begin{aligned} & \text { Altererythrobact } \\ & \text { ersp. } \mathrm{HN-Y73} \end{aligned}$	2320269	Phytoene/squa lene synthase family p...	337
$\frac{A 0 A 1 C 7 D}{6 Z 5}$	$\begin{aligned} & \text { A0A1C7D6Z5 } 9 \mathrm{~S} \\ & \text { PHN } \end{aligned}$	crtB A6F65 00929	Altererythrobact er namhicola	645517	All-transphytoene synthase/15-cis-	360
$\frac{\mathrm{AOA} 484 \mathrm{~T}}{\mathrm{BB} 3}$	A0A494TBB3_9S PHN	D3Y57_11030	$\frac{\text { Sphingomonas }}{\text { SD. } Y Z-8}$	$\underline{2319844}$	Phytoene/squa lene synthase family $p .$.	310
$\begin{aligned} & \text { AOAOC9M } \\ & \text { NID } \end{aligned}$	AOAOG9MNIO_9S PHN	AAW01_10680	Erythrobacier gangiinensis	502682	Phytoene synthase	340
$\frac{A O A 396 R}{S P B}$	$\begin{aligned} & \text { A0A396RSP8_9S } \\ & \text { PHN } \end{aligned}$	D1610_00335	$\frac{\text { Sphingomonas }}{\text { SD. } 2 D H 117}$	$\underline{2305907}$	Phytoene/squa lene synthase family $p .$.	287
$\frac{A 0 A 3690}{8 B 6}$	AOA369Q8B6 95 PHN	HME930201927	Alterenthrobact er sp. HME9302	2161824	15 -cisphytoene synthase	326
$\frac{\text { AOA1Z1F }}{\text { C14 }}$	$\begin{aligned} & \text { AOA1Z1FC14_9S } \\ & \text { PHN } \end{aligned}$	A9D14_09345	Croceicoccus marinus	450378	Phytoene synthase	334
$\begin{aligned} & \text { AOAOGOM } \\ & \frac{V}{V \times 5} \end{aligned}$	A0AOG9MVX5 OS PHN	AAWOO 11290	Erythrobacier luteus	1581420	Phytoene synthase	340
J3A5E2	J3A5E2_9SPHN	PM102_03066	$\frac{\text { Novosphingobiu }}{\text { msp. AP12 }}$	1144305	Phytoene/squa lene synthetase	324
$\frac{\text { AOAOB1Z }}{\text { L61 }}$	AOA0B1ZL61_9SP HN	LK12.19160	Novosphingobiu m malaysiense	1348853	Phytoene synthase	332
$\frac{\text { AOADOS9C }}{\frac{\text { MM5 }}{}}$	AOAOS9CFM5_9S PHN	ASE95_06645	$\frac{\text { Sphingomonas }}{\text { sp.Leat231 }}$	1736301	Phytoene synthase	311
$\begin{aligned} & \text { AOABN5C } \\ & \frac{Y C O}{} \end{aligned}$	$\begin{aligned} & \text { AOA3N5CYQO_9S } \\ & \text { PHN } \end{aligned}$	EG799_11545	$\frac{\text { Errthrobacter }}{\text { SD. HN-E23 }}$ Sp. HN-E23	2488860	Phytoene/squa lene synthase family p.	349
$\frac{A O A O G 3 X}{6 L 4}$	$\begin{aligned} & \text { AOAOG } 3 \times 6 \mathrm{~L} 4 _9 \mathrm{~S} \\ & \mathrm{PHN} \end{aligned}$	AM2010_155	Altererythrobact er marensis	543877	Phytoene synthase	363

$\frac{\text { AOAOG } X X}{\text { HM3 }}$	AOAOG3XHM3_98 PHN	AB433_09240	Croceicoccus naphthovorans	1348774	Phytoene synthase	328
$\frac{A O A O S 6 W}{V G 2}$	AOAOS6WNG2_9S PHN	MBENS4_2381	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { m Sp. MBESO4 } \end{aligned}$	1206458	Phytoene synthase	336
$\frac{A 0 A 419 R}{X 85}$	AOA4 19RX85-9S PHN	D620111720	Ervhrobacier aquimixticola	1958945	Phytoene/squa lene synthase family p.	340
$\frac{\text { ADA2T5C }}{385}$	AOA2T5G385_9S PHN	CLG96_04775	Sphingomonas oleivorans	1735121	Phytoene synthase	291
T0J841	T0J841 9SPHN	M529 06435	Sphingoblum ummariense RL: 3	1346791	Uncharacterize d protein	261
$\frac{A D A 2 V 5 B 1}{\underline{A} 2}$	AOA2V5BIA2_9SP HN	C7493_114111	$\begin{aligned} & \text { Novosphingobiu } \\ & \mathrm{msp.} \text { GVO10 } \end{aligned}$	2135477	Phytoene synthase	328
$\frac{\text { AOARZ5E }}{8 \mathrm{D} 2}$	$\begin{aligned} & \text { A0A2Z5E8D2.95 } \\ & \text { PHN } \end{aligned}$	TQ38 003970	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { m sp. PGW } \end{aligned}$	1609758	Phytoene/squa lene synthase family p	335
$\frac{\mathrm{AOA} 124 \mathrm{~J}}{\mathrm{YQ4}}$	AOA124JYQ4_9S PHN	AQZ50_09295	$\begin{aligned} & \frac{\text { Novosphingobiu }}{\mathrm{m} \text { sp. Fukuz- }} \\ & \frac{150-50}{1} \end{aligned}$	1739114	Phytoene synthase	304
$\frac{\text { AOAIWIY }}{718}$	AOA1WVIY718_9S PHN	$\begin{aligned} & \text { SAMNO6272759_10 } \\ & 1461 \end{aligned}$	$\begin{aligned} & \text { Novosphingobiu } \\ & \text { m so. B1 } \end{aligned}$	1938756	Phytoene synthase	327
$\frac{A O A 437 H}{299}$	ADA437H299_9SP HN	EKN06_00185	$\frac{\text { Croceicoccus }}{\text { s. OM-16 }}$	2217664	Phytoene/squa lene synthase family p.,	329
$\frac{A 0 A 418 N}{S 70}$	$\begin{aligned} & \text { AOA418NS70_9S } \\ & \text { PHN } \end{aligned}$	D2V07. 10530	Ervthrobacter sp. V18	2307003	Phytoene/squa lene synthase family o	345
$\frac{\text { AOA102D }}{\text { ES7 }}$	A0A102DFS7_9S PHN	AQZ48_01020	$\begin{aligned} & \frac{\text { Novosphingobiu }}{m \text { sp. FSWO6- }} \\ & \frac{99}{99} \end{aligned}$	1739113	Phytoene synthase	317

Preferably, the present invention refers to the following CrtB sequences corresponding to the phytoene synthase of Pantoea ananatis (acessions AXU24940; AHG94989; WP_013027995; WP_110015463; WP_105080745; WP_042676315; WP_105077524; WP_041931046 or WP_028722638), or to the phytoene synthase of Pantoea stewarti (AAN85600), or to the phytoene synthase of Pantoea conspicua (WP_094119067), or to the phytoene synthase of Pantoea agglomerans (AF289043), or to the phytoene synthase of Pantoea eucalypti (WP_140915947), or to the phytoene synthase of Pantoea vagans (WP_135910885), or to the phytoene synthase of Pantoea deleyi (WP_140916915) or more generally to the phytoene synthase of Pantoea sp. defined through the GenBank accession HAB23577.

As used herein, the term "phytoene" refers to any phytoene isomer, and preferably to 15 -cis phytoene.

The references herein are included here in its full extent.

Description

The regulation of plastids is a core process in plants that remains poorly defined. In this invention, we have shown that the supply of phytoene is a primary determinant of chloroplast-tochromoplast differentiation. Based on our results, we propose that a metabolic threshold switch mechanism promotes the loss of chloroplast identity when phytoene is supplied in excess. This result also allows explaining why previous attempts using plant PSY enzymes (Maass, Arango et al. 2009, Yuan, Owsiany et al. 2015), which presumably did not reach this activation threshold, have not resulted in chromoplast differentiation in leaves. Our results are consistent with the existence of a two-step process responsible for the transformation of leaf chloroplasts into chromoplasts. First, inducing the production of a sufficiently large amount of phytoene elicits the initial changes, and secondly, increased accumulation of carotenoids due to sustained phytoene availability but also to phytoene-triggered changes in chloroplast membranes completes the differentiation of chloroplasts into chromoplasts. While our conclusions are based on an artificial system (i.e. the expression of a bacterial gene in chloroplast containing cells), the similarity of transcriptomic profiles between this process and fruit ripening strongly points to a general mechanism for chloroplasts to become chromoplasts without the need of a developmental signal. We propose that an initial boost of phytoene production might be necessary to break chloroplast identity in primary photosynthetic tissues such as leaves. However, it might not be required in organs or/and stages in which chloroplast identity is weak (e.g. when photosynthesis is not a functional requirement as in green fruits) or non-existent (e.g. in dark-grown calli, tubers, or roots). Consistent with this conclusion, constitutive overexpression of tomato or Arabidopsis genes encoding PSY enzymes resulted in chromoplast-like structures arising in mature green fruit of tomato (Fraser et al. 2007) and non-photosynthetic tissues of Arabidopsis (Maass et al. 2009) but had no effect in the leaves of these transgenic tomato and Arabidopsis plants (Fraser et al. 2007; Maass et al. 2009). A lower competency of leaf chloroplasts to develop into chromoplasts would also explain why upregulation of ORANGE (OR) triggers carotenoid overaccumulation and chromoplast differentiation in tomato fruit, potato tubers, cauliflower curds, or Arabidopsis calli, but does not work in the leaves of any of these plants (Li et al. 2001; Lopez et al. 2008; Yuan et al. 2015; Yazdani et al. 2019).

Phytoene-induced loss of chloroplast identity might be caused by direct effects of this uncolored carotenoid on the photosynthetic pigment-protein complexes responsible for harvesting sunlight and transferring excitation energy to the photosystems (Domonkos et al. 2013; Liguori et al. 2017). Another possibility is an indirect effect derived from retrograde signals generated when phytoene levels override the threshold. These unknown signals would trigger changes in nuclear gene expression presumably causing the remodeling or pre-conditioning of chloroplast membrane structures in a first phase of the chromoplast differentiation process.

In a second phase, which likely overlaps with the first one, conversion of phytoene into downstream carotenoids in pre-conditioned chloroplasts is required to eventually generate a chromoplast. Without pre-conditioning, carotenoids levels can increase but chloroplasts stay photosynthetically active and chromoplasts do not differentiate, (Roig-Villanova et al. 2007; Bou-Torrent et al. 2015). Moreover, without carotenoids downstream of phytoene, preconditioned chloroplasts remain unchanged and chromoplasts do not differentiate. It is likely that carotenoid accumulation occurs concomitantly with the remodeling of the internal plastid structures and that both factors synergistically activate each other. The new structures created following the disassembly of the photosynthetic grana and thylakoids likely contribute to reach high carotenoid levels by accommodating increasing amounts of carotenoids and by preventing their degradation (Sadali et al. 2019; Jarvis and Lopez-Juez 2013; Sun et al. 2018; Egea et al. 2010). They might additionally enhance carotenoid production by stimulating the activity of endogenous carotenoid biosynthetic enzymes (including PSY), many of which are membraneassociated (Ruiz-Sola and Rodriguez-Concepcion 2012).

The structural changes associated with the crtB-mediated chloroplast to chromoplast transformation involve reorganization of the plastidial proteome but also require global reprogramming of nuclear gene expression and primary metabolism. We also show that shut down of photosynthesis relies on enhanced respiration for an enhanced supply of energy and carbon precursors to synthesize carotenoids. It is likely that implementing these changes relies on retrograde signals produced by transforming plastids. Carotenoids can function as precursors for the biosynthesis of signaling molecules that regulate many developmental processes in plants, including plastid development (Avendano-Vazquez et al. 2014; Van Norman et al. 2014; Hou et al. 2016; Wang et al. 2019). The observation that Arabidopsis mutants defective in carotenoid cleavage dioxygenase activity in the cytosol and the plastids are not affected in the crtB-dependent leaf chromoplast differentiation process suggests that signals independent of these enzymes or of carotenoids are responsible for eliciting the changes in nuclear gene expression and cell metabolism supporting chromoplast biogenesis.

Other studies have shown that increasing the supply of phytoene and/or promoting the metabolic activity of the carotenoid pathway can induce the differentiation of leucoplasts (i.e., plastids devoid of pigments) to chromoplasts in non-colored tissues such as calli, tubers, and roots (Lopez, Van Eck et al. 2008, Maass, Arango et al. 2009, Bai, Rivera et al. 2014, Yuan, Owsiany et al. 2015, Schaub, Rodriguez-Franco et al. 2018). We discovered that producing high enough phytoene levels is a necessary first step towards transforming leaf chloroplasts into carotenoid-overaccumulating chromoplasts.

Recent work also showed that transplastomic plants with a synthetic metabolic pathway for producing the algae carotenoid astaxanthin differentiated leaf plastids that lost most of their
endogenous carotenoids and chlorophylls and hence their chloroplast identity (Lu, Stegemann et al. 2017). No information was reported on the levels of phytoene in these lines. However, it is possible that the substitution of endogenous carotenoids by asthaxanthin might interfere with the activity of photosynthetic pigment-protein complexes similarly to phytoene overaccumulation. Chromoplast biogenesis has long been thought to be differently regulated by tissue-specific mechanisms subjected to a tight developmental control (Egea, Barsan et al. 2010). However, these emerging descriptions, together with results reported here, clearly point toward a common regulatory mechanism linking the activity of the carotenoid pathway (i.e. metabolic rather than developmental cues) to the regulation of chromoplast biogenesis.

In summary, we reveal a tool that, for the first time, allows the differentiation of chromoplasts from leaf chloroplasts. This very simple tool that we describe here to induce chromoplast biogenesis on demand can be applied to improve the nutritional quality of crops or other biotechnological applications. For example, our system could be used to increase carotenoid and tocopherol contents in leaf vegetables and/or forage crops for animal feed and/or cell cultures by placing crtB expression under the control of a specific agrochemical such as Routine (Okada, Nemoto et al. 2017), or other induction systems known in the prior-art AlcR/AlcA (ethanol inducible); GR fusions, GVG, and pOp/LhGR (dexamethasone inducible); XVE/OlexA (beta-estradiol inducible); or heat shock induction (Borghi, 2010). These and other agrochemicals or methods could be applied before harvest to induce chloroplast-to-chromoplast differentiation once reaching maximum crop biomass. Furthermore, we foresee that future synthetic biology approaches could be used to couple the activity of new biosynthetic pathways with controlled chromoplast biogenesis to enhance the production capacity of chromoplast located added-value chemicals in plants.

Therefore, a first aspect of the invention refers to a method of inducing chloroplast-tochromoplast differentiation biogenesis in cell cultures, leaf vegetables, green fruits and/or forage crops that comprises the delivery, by preferably, but not limited to, agroinfiltration or any alternative method such as microbombardment or the use of viral vectors, of a recombinant plasmid or expression cassette in the leaf vegetables, green fruits or forage crops, wherein said construct is characterized in that it comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity and/or may overexpress an endogenous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal in its N -terminus, and wherein said construct is capable of delivering an amount of phytoene in the chloroplasts of the plant tissue sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably said construct is capable of delivering at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the chloroplasts of the plant tissue.

In the context of the present invention, the stament "an amount of phytoene in the chloroplasts of the plant tissue sufficient to induce chloroplast to chromoplast differentiation in said plant tissue" can be the amount that results in the reduction of at least 50% of chlorophyll content in leaves (w / w), or 50% reduciton of photosynthesis-related parameters such as effective quantum yield at PSII (ϕ PSII) or non-photochemical quenching (NPQ) when measured against the time where no phytoene is applied on the green tissues or cells of interest. Depending on the plant, tissue or cell of interest, as illustrated below with the examples of spinach, brussel sprouts, forage crops or avocado, the construct can be modified using adecuate promoters and phytoene synthases able to achieve the above mentioned reduction in the above enumerated measures of chloroplast photosynthetic capacity (including but not restricted to, chlorophyll content, effective quantum yield or non-photochemical quenching).

The skilled person will be able to determine the concentration of chlorophyll in leaves using methods as the one published by Schertz in 1928 (F.M. Schertz (1928) The quantitative deteermination of chlorophyll. Plant Physiology 1928 Jul;3 (3):323-334), or more inmediate methods as new as the one described by Cortazar (Cortazar, 2015 Cortazar B., et al. Quantification of plant chlorophyll content using google glass. Lab on Chip 2015; (15) 1708). Likewise, effective quantum yield measurement and non-photochemical quenching (NPQ) can be executed with currently available instruments (as described herein using a MAXI-PAM fluorometer) or alternatively following the teachings of Murchie et al. (2013), Murchie et. AI. Chlorophyll fluoreescene analysis: a guide to good proactice and understanding some neew applications. Journal of experimental Botany: 64 (13) 3983).

A second aspect of the invention refers to a method to increase carotenoid and tocopherol contents in cell cultures, leaf vegetables, green fruits and/or forage crops that comprises the delivery, by preferably, but not limited to, agroinfiltration or any alternative method such as microbombardment or the use of viral vectors, of a recombinant plasmid or expression cassette in the leaf vegetables, green fruits and/or forage crops, wherein said construct is characterized in that it comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity and/or may overexpress an endogenous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal and wherein said construct is capable of delivering an amount of phytoene in the chloroplasts of the plant tissue sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably said construct is capable of delivering at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the chloroplasts of the plant tissue.

A third aspect of the invention refers to a method to enhance the production capacity of lipophilic chemicals in plants, the method comprising the delivery, by preferably, but not limited
to, agroinfiltration or any alternative method such as microbombardment or the use of viral vectors, of a recombinant plasmid or expression cassette in cell cultures, leaf vegetables, green fruits and forage crops, wherein said construct is characterized in that it comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity and/or may overexpress an endogenous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal and wherein said construct is capable of delivering an amount of phytoene in the chloroplasts of the plant tissue sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably said construct is capable of delivering at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the chloroplasts of the plant tissue.

A fourth aspect of the invention refers to a modified cell culture, leaf vegetable, green fruit and/or forage crop, or to a composition comprising said modified cell culture, leaf vegetable, green fruit and/or forage crop, wherein the modified cell culture, leaf vegetable, green fruit and/or forage crop comprises a recombinant plasmid or expression cassette (construct) that results in a enhanced phytoene synthase activity and accummulation within chloroplasts either by constitutive or inducible expression, that is, either inserted in the plant genome or through a transient method of expression, wherein said recombinant plasmid or expression cassette is characterized in that it comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity and/or may overexpress an endogenous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal in its N -terminus, and wherein said construct is capable of delivering an amount of phytoene in the chloroplasts of the plant tissue sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably said construct is capable of delivering at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the chloroplasts of the plant tissue.

In the context of the present invention, plasmid construct is preferably understood as (p)crtB or crtbB or any plasmid encoding a phytoene synthase included in the list above and which is able to translocate the phytoene generating enzyme to the plant plastids of interest.

In the context of the present invention, (p)crtB is understood as 35S:(p)crtB-pGWB605 (SEQ ID NO 1) or as 35S:(p)crtB-pGWB405 (SEQ ID NO 2) two constructs driving Pantoea ananatis phytoene synthase expression with a functionally linked plastid-targeting signal of hydroxymethylbutenyl 4-diphosphate synthase from Arabidopsis thaliana able to translocate crtB to plastids and difering only in the selection marker/antibiotic and further identified as SEQ No ID 1 and 2.
>(p)crtB_stop_pGWB605
CTTTTCACGCCCTTTTAAATATCCGATTATTCTAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTC AAACACTGATAGTTTAAACTGAAGGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTC AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATG TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA GCTTGCATGCCTGCAGGTCCCCAGATTAGCCTITTCAATTTCAGAAAGAATGCTAACCCACAGATGGTTAGAGAGG CTTACGCAGCAGGTCTCATCAAGACGATCTACCCGAGCAATAATCTCCAGGAAATCAAATACCTTCCCAAGAAGGT TAAAGATGCAGTCAAAAGATTCAGGACTAACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAGAAG TACTATTCCAGTATGGACGATTCAAGGCTTGCTTCACAAACCAAGGCAAGTAATAGAGATTGGAGTCTCTAAAAAG GTAGTTCCCACTGAATCAAAGGCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACT GGCGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCACGAC ACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGG TAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGG TGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAA AGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTG ATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAA GTTCATTCATTTGGAGAGAACACGGGGGACTCTAGAGTTATCAACAAGTTTGTACAAAAAAGCAGGCTATGGCG
ACTGGAGTATTGCCAGCTCCGGTTTCTGGGATCAAGATACCGGATTCGAAAGTCGGGTTTGGTAAAAGCATGAA TCTTGTGAGAATTTGTGATGTTAGGAGTCTAAGATCTGCTAGGAGAAGAGTTTCGGTTATCCGGAATATGAATA ATCCGTCGTTACTCAATCATGCGGTCGAAACGATGGCAGTTGGCTCGAAAAGTTTTGCGACAGCCTCAAAGTTATT TGATGCAAAAACCCGGCGCAGCGTACTGATGCTCTACGCCTGGTGCCGCCATTGTGACGATGTTATTGACGATCAG ACGCTGGGCTTTCAGGCCCGGCAGCCTGCCTTACAAACGCCCGAACAACGTCTGATGCAACTTGAGATGAAAACGC GCCAGGCCTATGCAGGATCGCAGATGCACGAACCGGCGTTTGCGGCTITTCAGGAAGTGGCTATGGCTCATGATA TCGCCCCGGCTTACGCGTTTGATCATCTGGAAGGCTTCGCCATGGATGTACGCGAAGCGCAATACAGCCAACTGGA TGATACGCTGCGCTATTGCTATCACGTTGCAGGCGTTGTCGGCTTGATGATGGCGCAAATCATGGGCGTGCGGGAT AACGCCACGCTGGACCGCGCCTGTGACCTTGGGCTGGCATTTCAGTTGACCAATATTGCTCGCGATATTGTGGACG ATGCGCATGCGGGCCGCTGTTATCTGCCGGCAAGCTGGCTGGAGCATGAAGGTCTGAACAAAGAGAATTATGCGG CACCTGAAAACCGTCAGGCGCTGAGCCGTATCGCCCGTCGTTTGGTGCAGGAAGCAGAACCTTACTATTTGTCTGC CACAGCCGGCCTGGCAGGGTTGCCCCTGCGTTCCGCCTGGGCAATCGCTACGGCGAAGCAGGTTTACCGGAAAAT AGGTGTCAAAGTTGAACAGGCCGGTCAGCAAGCCTGGGATCAGCGGCAGTCAACGACCACGCCCGAAAAATTAAC GCTGCTGCTGGCCGCCTCTGGTCAGGCCCTTACTTCCCGGATGCGGGCTCATCCTCCCCGCCCTGCGCATCTCTGGC AGCGCCCGCTCTAGACCCAGCTTTCTTGTACAAAGTGGTTCGATCTAGAGGATCCATGGTGAGCAAGGGCGAGGA GCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGTCCG GCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG CCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTA CAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCA AGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGAC AAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGA CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCC GCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACT CACGGCATGGACGAGCTGTACAAGTAAAGCGGCCCGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAA AGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTGGAATTACGTTAAGCATGTA ATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATA CGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCG GGAATTGGTTCCGGAACCAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCC ACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAGGCTG AATTAGGCGCGCCTATTTCTATTAATTCCCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCTAGTTT GCGCGCTATATTTTGTTTTCTATCGCGTATTAAATGTATAATTGCGGGACTCTAATCATAAAAACCCATCTCATAAAT AACGTCATGCATTACATGTTAATTATTACATGCTTAACGTAATTCAACAGAAATTATATGATAATCATCGCAAGACC GGCAACAGGATTCAATCTTAAGAAACTTTATTGCCAAATGTTTGAACGATCGGGGAAATTCGAGCTGGGGACGTC CCCAGCTCGGTACCCCCTCCTGGGCACGGTCGTACGCGATCCGCCGCGGTTCCACCTCACCATTGCGGGTATGCCA GTTGAGTTCGATGAGTTCCCGTACCAGCTCCAACTCGGGCGATGCCACGCGCACTCCGTTCAGATCTCGGTGACGG

GCAGGACCGGACGGGGCGGTACCGGCAGGCTGAAGTCCAGCTGCCAGAAACCCACGTCATGCCAGTTCCCGTGC TTGAAGCCGGCCGCCCGCAGCATGCCGCGGGGGGCATATCCGAGCGCCTCGTGCATGCGCACGCTCGGGTCGTT GGGCAGCCCGATGACAGCGACCACGCTCTTGAAGCCCTGTGCCTCCAGGGACTTCAGCAGGTGGGTGTAGAGCG TGGAGCCCAGTCCCGTCCGCTGGTGGCGGGGGGAGACGTACACGGTCGACTCGGCCGTCCAGTCGTAGGCGTTG CGTGCCTTCCAGGGGCCCGCGTAGGCGATGCCGGCGACCTCGCCGTCCACCTCGGCGACGAGCCAGGGATAGCG CTCCCGCAGACGGACGAGGTCGTCCGTCCACTCCTGCGGTTCCTGCGGCTCGGTACGGAAGTTGACCGTGCTTGTC TCGATGTAGTGGTTGACGATGGTGCAGACCGCCGGCATGTCCGCCTCGGTGGCACGGCGGATGTCGGCCGGGCG TCGTTCTGGGCTCATATCTTATTGCCCCCCGGGATCAGATCTGGATTGAGAGTGAATATGAGACTCTAATTGGATA CCGAGGGGAATTTATGGAACGTCAGTGGAGCATTTTTGACAAGAAATATTTGCTAGCTGATAGTGACCTTAGGCG ACTTTTGAACGCGCAATAATGGTTTCTGACGTATGTGCTTAGCTCATTAAACTCCAGAAACCCGCGGCTGAGTGGC TCCTTCAACGTTGCGGTTCTGTCAGTTCCAAACGTAAAACGGCTTGTCCCGCGTCATCGGCGGGGGTCATAACGTG ACTCCCTTAATTCTCCGCTCATGATCTTGATCCCCTGCGCCATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTA CTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGC CCAGTCTAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTCCCTTGTCCAGAT AGCCCAGTAGCTGACATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGTTCCGCTTCCTTTAGC AGCCCTTGCGCCCTGAGTGCTTGCGGCAGCGTGAAGCTGATCCGTCGAGATTAATAGAAATAAATTCAGCCTAATT CGGCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTACACCACAA TATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCC CATCAGTCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCG GAAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGAT GACAGAGCGTTGCTGCCTGTGATCAATTCGGGCACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCTGTA ATGCAAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGTGG CGGTTTTCATGGCTTGTTATGACTGTTTTTTTGGGGTACAGTCTATGCCTCGGGCATCCAAGCAGCAAGCGCGTTAC GCCGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTA AACATCATGGGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCAT CTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATT GATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTT CGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTG GCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCC AGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGC GGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAA CTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAAC CGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCAT ACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATT TGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCTAGCTAGAAATTCGTTCAAGCCGAC GCCGCTTCGCGGCGCGGCTTAACTCAAGCGTTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTC AAGTCTGCTTTATTATTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGCATGACCAAAAT CCCTTAACGTGAGTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTT TCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCT ACCAACTCTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAG TTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGC CAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG CTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAG GAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGAC TTGAGCGTCGATTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTA CCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCG GAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTAC AATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCC GACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGAC CGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGGGTGCCTTGATGTG GGCGCCGGGCGGTCGAGTGGCGACGGCGCGGCTTGTCCGCGCCCTGGTAGATTGCCTGGCCGTAGGCCAGCCATT

TTTGAGCGGCCAGCGGCCGCGATAGGCCGACGCGAAGCGGCGGGGCGTAGGGAGCGCAGCGACCGAAGGGTA GGCGCTITTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGAGTTTTAA TAAGTTTTAAAGAGTTTTAGGCGGAAAAATCGCCTTTITCTCTTTTATATCAGTCACTTACATGTGTGACCGGTTCC CAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGTGCT ATCCACAGGAAAGAGACCTTTTCGACCTTTTTCCCCTGCTAGGGCAATTTGCCCTAGCATCTGCTCCGTACATTAGG AACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCATGACTAGGATCGGGCCAGCCTGCCCCGCCTCCT CCTTCAAATCGTACTCCGGCAGGTCATTTGACCCGATCAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCC GGCGCTGCCACTGCGTTCGTAGATCGTCTTGAACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGGCGTGCCAGG CGGTAGAGAAAACGGCCGATGCCGGGATCGATCAAAAAGTAATCGGGGTGAACCGTCAGCACGTCCGGGTTCTT GCCTTCTGTGATCTCGCGGTACATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTA CGATCTTGTAGCGGCTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACG CTGCATGGCAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTC GCCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCTTCCCTTCCCGGT ATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGGCCATGCCGG CCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGCTCGTCGGTCACGCTT CGACAGACGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACGTCATAGAGCATCGGAACGA AAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCTTCCTAATCGACGGCGCACCGGCTGCCGGCGGTTGCCGGGATT CTTGGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCGTGCTTCTGCCTCGATGCGTTGCCGCTGGGC GGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCCAGCGCCGCGCCGATTTGTACCGGGCCGGGATGGTTTG CGACCGCTCACGCCGATTCCTCGGGCTTGGGGGTTCCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTA CGCCTGGCCAACCGCCCGTTCCTCCACACATGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTGATTTTCCATG CCGCCTCCTTTAGCCGCTAAAATTCATCTACTCATTTATTCATTGGCTCATTTACTCTGGTAGCTGCGCGATGTATTC AGATAGCAGCTCGGTAATGGTCTTGCCTTGGCGTACCGCGTACATCTTCAGCTTGGTGTGATCCTCCGCCGGCAAC TGAAAGTTGACCCGCTTCATGGCTGGCGTGTCTGCCAGGCTGGCCAACGTTGCAGCCTTGCTGCTGCGTGCGCTCG GACGGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTACCTCATTAACTCAAATGAGTTTTGATTTAAT TCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTGTGCCGGCGGC GGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTACCCGGCCAGCGCCT CGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCCGCTTGTAGCCTTCCATCCGT GACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATATGTCGTAAGGGCTTGGCTGCACCGG AATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTCCGCCGCCTGGGGCGCTCCGTCGATCACTAC GAAGTCGCGCCGGCCGATGGCCTTCACGTCGCGGTCAATCGTCGGGCGGTCGATGCCGACAACGGTTAGCGGTT GATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGCCCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGG CGAGTTGCAGGGCGCGGGCTAGATGGGTTGCGATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGA TAACCTTCATGCGTTCCCCTTGCGTATTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCT GTTTTACTCAAATACACATCACCTTTTTAGACGGCGGCGCTCGGTTTCTTCAGCGGCCAAGCTGGCCGGCCAGGCC GCCAGCTTGGCATCAGACAAACCGGCCAGGATTTCATGCAGCCGCACGGTTGAGACGTGCGCGGGCGGCTCGAA CACGTACCCGGCCGCGATCATCTCCGCCTCGATCTCTTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGC GGTTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCTCACG GAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAGGGTCGAGC GATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCGCGGGCGTGCGCGA TCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGGCCTCGCGCCCGCTCCGG GTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCAATGCCGGCGAACACGGTCAACACCATGCGGCCGGCCGG CGTGGTGGTGTCGGCCCACGGCTCTGCCAGGCTACGCAGGCCCGCGCCGGCCTCCTGGATGCGCTCGGCAATGTC CAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCACTGTCACAACGTCGCCAGGGCGTAGGTGGT CAAGCATCCTGGCCAGCTCCGGGCGGTCGCGCCTGGTGCCGGTGATCTTCTCGGAAAACAGCTTGGTGCAGCCGG CCGCGTGCAGTTCGGCCCGTTGGTTGGTCAAGTCCTGGTCGTCGGTGCTGACGCGGGCATAGCCCAGCAGGCCAG CGGCGGCGCTCTTGTTCATGGCGTAATGTCTCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGC GACAAGAAAACGCCAGGAAAAGGGCAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTT CAGAAGACGGCTGCACTGAACGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGTTGGATCAAAGTACTTTGA TCCCGAGGGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAAC
>(p)crtB_stop_pGWB405
CTTTTCACGCCCTTTTAAATATCCGATTATTCTAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTC AAACACTGATAGTTTAAACTGAAGGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTC AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATG TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA GCTTGCATGCCTGCAGGTCCCCAGATTAGCCTTTTCAATTTCAGAAAGAATGCTAACCCACAGATGGTTAGAGAGG CTTACGCAGCAGGTCTCATCAAGACGATCTACCCGAGCAATAATCTCCAGGAAATCAAATACCTTCCCAAGAAGGT TAAAGATGCAGTCAAAAGATTCAGGACTAACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAGAAG TACTATTCCAGTATGGACGATTCAAGGCTTGCTTCACAAACCAAGGCAAGTAATAGAGATTGGAGTCTCTAAAAAG GTAGTTCCCACTGAATCAAAGGCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACT GGCGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCACGAC ACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGG TAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGG TGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAA AGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTG ATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAA GTTCATTCATTTGGAGAGAACACGGGGGACTCTAGAGTTATCAACAAGTTTGTACAAAAAAGCAGGCTATGGCG
ACTGGAGTATTGCCAGCTCCGGTTTCTGGGATCAAGATACCGGATTCGAAAGTCGGGTTTGGTAAAAGCATGAA TCTTGTGAGAATTTGTGATGTTAGGAGTCTAAGATCTGCTAGGAGAAGAGTTTCGGTTATCCGGAATATGAATA ATCCGTCGTTACTCAATCATGCGGTCGAAACGATGGCAGTTGGCTCGAAAAGTTTTGCGACAGCCTCAAAGTTATT TGATGCAAAAACCCGGCGCAGCGTACTGATGCTCTACGCCTGGTGCCGCCATTGTGACGATGTTATTGACGATCAG ACGCTGGGCTTTCAGGCCCGGCAGCCTGCCTTACAAACGCCCGAACAACGTCTGATGCAACTTGAGATGAAAACGC GCCAGGCCTATGCAGGATCGCAGATGCACGAACCGGCGTITGCGGCTITTCAGGAAGTGGCTATGGCTCATGATA TCGCCCCGGCTTACGCGTTTGATCATCTGGAAGGCTTCGCCATGGATGTACGCGAAGCGCAATACAGCCAACTGGA TGATACGCTGCGCTATTGCTATCACGTTGCAGGCGITGTCGGCTTGATGATGGCGCAAATCATGGGCGTGCGGGAT AACGCCACGCTGGACCGCGCCTGTGACCTTGGGCTGGCATTTCAGTTGACCAATATTGCTCGCGATATTGTGGACG ATGCGCATGCGGGCCGCTGTTATCTGCCGGCAAGCTGGCTGGAGCATGAAGGTCTGAACAAAGAGAATTATGCGG CACCTGAAAACCGTCAGGCGCTGAGCCGTATCGCCCGTCGTTTGGTGCAGGAAGCAGAACCTTACTATTTGTCTGC CACAGCCGGCCTGGCAGGGTTGCCCCTGCGTTCCGCCTGGGCAATCGCTACGGCGAAGCAGGTTTACCGGAAAAT AGGTGTCAAAGTTGAACAGGCCGGTCAGCAAGCCTGGGATCAGCGGCAGTCAACGACCACGCCCGAAAAATTAAC GCTGCTGCTGGCCGCCTCTGGTCAGGCCCTTACTTCCCGGATGCGGGCTCATCCTCCCCGCCCTGCGCATCTCTGGC AGCGCCCGCTCTAGACCCAGCTTTCTTGTACAAAGTGGTTCGATCTAGAGGATCCATGGTGAGCAAGGGCGAGGA GCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGTCCG GCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG CCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTA CAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCA AGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGAC AAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGA CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCC GCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGGATCACT CACGGCATGGACGAGCTGTACAAGTAAAGCGGCCCGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAA AGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTA ATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTAATA CGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCG GGAATTGGTTCCGGAACCAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCC ACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAGGCTG AATTAGGCGCGCCTATTTCTGAATTCCCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCTAGTTTGC GCGCTATATTTTGTTTTCTATCGCGTATTAAATGTATAATTGCGGGACTCTAATCATAAAAACCCATCTCATAAATAA CGTCATGCATTACATGTTAATTATTACATGCTTAACGTAATTCAACAGAAATTATATGATAATCATCGCAAGACCGG CAACAGGATTCAATCTTAAGAAACTTTATTGCCAAATGTTTGAACGATCGGGGATCATCCGGGTCTGTGGCGGGA ACTCCACGAAAATATCCGAACGCAGCAAGATATCGCGGTGCATCTCGGTCTTGCCTGGGCAGTCGCCGCCGACGC CGTTGATGTGGACGCCGGGCCCGATCATATTGTCGCTCAGGATCGTGGCGTTGTGCTTGTCGGCCGTTGCTGTCGT

AATGATATCGGCACCTTCGACCGCCTGTTCCGCAGAGATCCCGTGGGCGAAGAACTCCAGCATGAGATCCCCGCG CTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGGCGGCGGTGGAATC GAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCG TCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAG CCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAG CCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGT CACGACGAGATCATCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGAT GCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCT TGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTC TCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCT TCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCC TGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAA CACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGG AGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCAGATCCGGTGCAGATTATTTGGATTGAGAGT GAATATGAGACTCTAATTGGATACCGAGGGGAATTTATGGAACGTCAGTGGAGCATTTTTGACAAGAAATATTTG CTAGCTGATAGTGACCTTAGGCGACTTTTGAACGCGCAATAATGGTTTCTGACGTATGTGCTTAGCTCATTAAACTC CAGAAACCCGCGGCTGAGTGGCTCCTTCAACGTTGCGGTTCTGTCAGTTCCAAACGTAAAACGGCTTGTCCCGCGT CATCGGCGGGGGTCATAACGTGACTCCCTTAATTCTCCGCTCATGATGAATTCAGAAATAAATTCAGCCTAATTCG GCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTGTCTAAGCGTCAATTTGTTTACACCACAATA TATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCA TCAGTCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACITTGCTCATGTTACCGATGCTATTCGGA AGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGATGA CAGAGCGTTGCTGCCTGTGATCAATTCGGGCACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCTGTAAT GCAAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGTGGCG GTTTCATGGCTTGTTATGACTGTTTTTTGGGGTACAGTCTATGCCTCGGGCATCCAAGCAGCAAGCGCGTTACGC CGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAAA CATCATGGGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCATCT CGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGA TTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCG GCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGC GTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAG CCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGG CGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTC GCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGG CAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACT TGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGT CCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCTAGCTAGAAATTCGTTCAAGCCGACGCC GCTTCGCGGCGCGGCTTAACTCAAGCGTTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAG TCTGCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGCATGACCAAAATCCC TTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTC TGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTGTTTGCCGGATCAAGAGCTACC AACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTA GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAG TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAA CGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTAT GAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGA GCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGA GCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTT CCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGC CTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG AGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATC TGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACA CCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTC

TCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCG CCGGCGGTCGAGTGGCGACGGCGCGGCTTGTCCGCGCCCTGGTAGATTGCCTGGCCGTAGGCCAGCCATITTGA GCGGCCAGCGGCCGCGATAGGCCGACGCGAAGCGGCGGGGCGTAGGGAGCGCAGCGACCGAAGGGTAGGCGC TTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTITAAGAGTTTTAATAAGT TTTAAAGAGTTTAGGCGGAAAAATCGCCTTITTCTCTTTTATATCAGTCACTTACATGTGTGACCGGTTCCCAATG TACGGCTTTGGGTTCCCAATGTACGGGTTCCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGTGCTATCCAC AGGAAAGAGACCTTTTCGACCTTTTTCCCCTGCTAGGGCAATTTGCCCTAGCATCTGCTCCGTACATTAGGAACCG GCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCATGACTAGGATCGGGCCAGCCTGCCCCGCCTCCTCCTTCA AATCGTACTCCGGCAGGTCATTTGACCCGATCAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCT GCCACTGCGTTCGTAGATCGTCTTGAACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGGCGTGCCAGGCGGTAG AGAAAACGGCCGATGCCGGGATCGATCAAAAAGTAATCGGGGTGAACCGTCAGCACGTCCGGGTTCTTGCCTTCT GTGATCTCGCGGTACATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTT GTAGCGGCTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATG GCAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCGCCGGC AGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCTTCCCTTCCCGGTATCGGTT CATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGGCCATGCCGGCCGGCCC TGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGCTCGTCGGTCACGCTTCGACAG ACGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACGTCATAGAGCATCGGAACGAAAAAATC TGGTTGCTCGTCGCCCTTGGGCGGCTTCCTAATCGACGGCGCACCGGCTGCCGGCGGTTGCCGGGATTCTTTGCG GATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCGTGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTG CGCGGCCTTCAACTTCTCCACCAGGTCATCACCCAGCGCCGCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCG CTCACGCCGATTCCTCGGGCTTGGGGGTTCCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTG GCCAACCGCCCGTTCCTCCACACATGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCT CCTTTAGCCGCTAAAATTCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAG CAGCTCGGTAATGGTCTTGCCTTGGCGTACCGCGTACATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAG TTGACCCGCTTCATGGCTGGCGTGTCTGCCAGGCTGGCCAACGTTGCAGCCTTGCTGCTGCGTGCGCTCGGACGG CCGGCACTTAGCGTGTTTGTGCTITGCTCATTTCTCTTTACCTCATTAACTCAAATGAGTTTGATTAATTTCAGC GGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTGTGCCGGCGGCGGCAG TGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTACCCGGCCAGCGCCTCGGCAA CCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCCGCTTGTAGCCTTCCATCCGTGACCTC AATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATATGTCGTAAGGGCTTGGCTGCACCGGAATCAG CACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTCCGCCGCCTGGGGCGCTCCGTCGATCACTACGAAGTC GCGCCGGCCGATGGCCTTCACGTCGCGGTCAATCGTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTTC CCGCACGGCCGCCCAATCGCGGGCACTGCCCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTT GCAGGGCGCGGGCTAGATGGGTTGCGATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCT TCATGCGTTCCCCTTGCGTATTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTTTA CTCAAATACACATCACCTITTAGACGGCGGCGCTCGGTTTCTTCAGCGGCCAAGCTGGCCGGCCAGGCCGCCAGC TTGGCATCAGACAAACCGGCCAGGATTTCATGCAGCCGCACGGTTGAGACGTGCGCGGGCGGCTCGAACACGTA CCCGGCCGCGATCATCTCCGCCTCGATCTCTTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGGTTTC ATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCTCACGGAAGGC ACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAGGGTCGAGCGATGCAC GCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCGCGGGCGTGCGCGATCTGTGC CGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGGCCTCGCGCCCGCTCCGGGTGCGGT CGATGATTAGGGAACGCTCGAACTCGGCAATGCCGGCGAACACGGTCAACACCATGCGGCCGGCCGGCGTGGTG GTGTCGGCCCACGGCTCTGCCAGGCTACGCAGGCCCGCGCCGGCCTCCTGGATGCGCTCGGCAATGTCCAGTAGG TCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCACTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGCAT CCTGGCCAGCTCCGGGCGGTCGCGCCTGGTGCCGGTGATCTTCTCGGAAAACAGCTTGGTGCAGCCGGCCGCGTG CAGTTCGGCCCGTTGGTTGGTCAAGTCCTGGTCGTCGGTGCTGACGCGGGCATAGCCCAGCAGGCCAGCGGCGG CGCTCTTGTTCATGGCGTAATGTCTCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACAAGA AAACGCCAGGAAAAGGGCAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAAGA CGGCTGCACTGAACGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGTTGGATCAAAGTACTTTGATCCCGAG GGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAAC

In the context of the present invention, crtbB is understood as 35S:crtB-pGWB605 (SEQ ID NO 4) or as 35S:crtB-pGWB405 (SEQ ID NO 3) two constructs driving Pantoea ananatis phytoene synthase expression without a functionally linked plastid-targeting signal, but where internal crtB protein localization signals are still able to translocate sufficient phytoene synthase activity to plastids and further identified as SEQ No ID 3 and 4.
>crtB_stop_pGWB405
CTTTTCACGCCCTTTTAAATATCCGATTATTCTAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTC AAACACTGATAGTTTAAACTGAAGGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTC AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATG TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA GCTTGCATGCCTGCAGGTCCCCAGATTAGCCTITCAATTTCAGAAAGAATGCTAACCCACAGATGGTTAGAGAGG CTTACGCAGCAGGTCTCATCAAGACGATCTACCCGAGCAATAATCTCCAGGAAATCAAATACCTTCCCAAGAAGGT TAAAGATGCAGTCAAAAGATTCAGGACTAACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAGAAG TACTATTCCAGTATGGACGATTCAAGGCTTGCTTCACAAACCAAGGCAAGTAATAGAGATTGGAGTCTCTAAAAAG GTAGTTCCCACTGAATCAAAGGCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACT GGCGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCACGAC ACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGG TAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGG TGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAA AGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTG ATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAA GTTCATTTCATTTGGAGAGAACACGGGGGACTCTAGAGTTATCAACAAGTTTGTACAAAAAAGCAGGCTTCATGA ATAATCCGTCGTTACTCAATCATGCGGTCGAAACGATGGCAGTTGGCTCGAAAAGTTTTGCGACAGCCTCAAAGTT ATTTGATGCAAAAACCCGGCGCAGCGTACTGATGCTCTACGCCTGGTGCCGCCATTGTGACGATGTTATTGACGAT CAGACGCTGGGCTTTCAGGCCCGGCAGCCTGCCTTACAAACGCCCGAACAACGTCTGATGCAACTTGAGATGAAAA CGCGCCAGGCCTATGCAGGATCGCAGATGCACGAACCGGCGTTTGCGGCTTTTCAGGAAGTGGCTATGGCTCATG ATATCGCCCCGGCTTACGCGTTTGATCATCTGGAAGGCTTCGCCATGGATGTACGCGAAGCGCAATACAGCCAACT GGATGATACGCTGCGCTATTGCTATCACGTTGCAGGCGTTGTCGGCTTGATGATGGCGCAAATCATGGGCGTGCG GGATAACGCCACGCTGGACCGCGCCTGTGACCTTGGGCTGGCATTTCAGTTGACCAATATTGCTCGCGATATTGTG GACGATGCGCATGCGGGCCGCTGTTATCTGCCGGCAAGCTGGCTGGAGCATGAAGGTCTGAACAAAGAGAATTAT GCGGCACCTGAAAACCGTCAGGCGCTGAGCCGTATCGCCCGTCGTTTGGTGCAGGAAGCAGAACCTTACTATTTGT CTGCCACAGCCGGCCTGGCAGGGTTGCCCCTGCGTTCCGCCTGGGCAATCGCTACGGCGAAGCAGGTTTACCGGA AAATAGGTGTCAAAGTTGAACAGGCCGGTCAGCAAGCCTGGGATCAGCGGCAGTCAACGACCACGCCCGAAAAAT TAACGCTGCTGCTGGCCGCCTCTGGTCAGGCCCTTACTTCCCGGATGCGGGCTCATCCTCCCCGCCCTGCGCATCTC TGGCAGCGCCCGCTCTAGACCCAGCTITCTTGTACAAAGTGGTTCGATCTAGAGGATCCATGGTGAGCAAGGGCG AGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTG TCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCC GTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGC AGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCA ACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGAC TTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCC GACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGC CGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT CACTCACGGCATGGACGAGCTGTACAAGTAAAGCGGCCCGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCA ATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGC ATGTAATAATTAACATGTAATGCATGACGTTATTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATT TAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTA GATCGGGAATTGGTTCCGGAACCAATTCGTAATCATGGTCATAGCTGTTCCTGTGTGAAATTGTTATCCGCTCACA ATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA

GGCTGAATTAGGCGCGCCTATTTCTGAATTCCCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCTA GTTTGCGCGCTATATTTTGTTTCTATCGCGTATTAAATGTATAATTGCGGGACTCTAATCATAAAAACCCATCTCAT AAATAACGTCATGCATTACATGTTAATTATTACATGCTTAACGTAATTCAACAGAAATTATATGATAATCATCGCAA GACCGGCAACAGGATTCAATCTTAAGAAACTTTATTGCCAAATGTTTGAACGATCGGGGATCATCCGGGTCTGTGG CGGGAACTCCACGAAAATATCCGAACGCAGCAAGATATCGCGGTGCATCTCGGTCTTGCCTGGGCAGTCGCCGCC GACGCCGTTGATGTGGACGCCGGGCCCGATCATATTGTCGCTCAGGATCGTGGCGTTGTGCTTGTCGGCCGTTGC TGTCGTAATGATATCGGCACCTTCGACCGCCTGTTCCGCAGAGATCCCGTGGGCGAAGAACTCCAGCATGAGATCC CCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGGCGGCGGTG GAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCAGAAGA ACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCG GTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACA CCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCA TGGGTCACGACGAGATCATCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCC CTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTT TCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATA CTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTC CCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCT CGTCCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCC GGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGG CCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCAGATCCGGTGCAGATTATTTGGATTGA GAGTGAATATGAGACTCTAATTGGATACCGAGGGGAATTTATGGAACGTCAGTGGAGCATTTTGGACAAGAAATA TTGGCTAGCTGATAGTGACCTTAGGCGACTTTTGAACGCGCAATAATGGTTTCTGACGTATGTGCTTAGCTCATTAA ACTCCAGAAACCCGCGGCTGAGTGGCTCCTTCAACGTTGCGGTTCTGTCAGTTCCAAACGTAAAACGGCTTGTCCC GCGTCATCGGCGGGGGTCATAACGTGACTCCCTTAATTCTCCGCTCATGATGAATTCAGAAATAAATTCAGCCTAA TCGGCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTACACCAC AATATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCA GCCCATCAGTCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTAT TCGGAAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCAATTCGGGCACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCT GTAATGCAAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGT GGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGGGGTACAGTCTATGCCTCGGGCATCCAAGCAGCAAGCGCGT TACGCCGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAG TTAAACATCATGGGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGC CATCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGAT ATTGATTGGTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAA ACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTC CGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCG AGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTC CAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATG GAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTGTCCCGCATTTGGTACAGCGCAGT AACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCG TCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAG AATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCTAGCTAGAAATTCGTTCAAGCC GACGCCGCTTCGCGGCGCGGCTTAACTCAAGCGTTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAG GTCAAGTCTGCTTTTATTATTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGCATGACCAA AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTT TTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGA GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGT AGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCT GCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGG CTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTG AGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAAC AGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG

ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTT ACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTAT TACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG CGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGT ACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCC CCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTG ACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGGGTGCCTTGATG TGGGCGCCGGCGGTCGAGTGGCGACGGCGCGGCTTGTCCGCGCCCTGGTAGATTGCCTGGCCGTAGGCCAGCCA TTTTGAGCGGCCAGCGGCCGCGATAGGCCGACGCGAAGCGGCGGGGCGTAGGGAGCGCAGCGACCGAAGGGT AGGCGCTTTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGAGTTTTA ATAAGTTTAAAGAGTTTTAGGCGGAAAAATCGCCTTTTTTCTCTITATATCAGTCACTTACATGTGTGACCGGTTC CCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGTGC TATCCACAGGAAAGAGACCTTTTCGACCTTTTTCCCCTGCTAGGGCAATTTGCCCTAGCATCTGCTCCGTACATTAG GAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCATGACTAGGATCGGGCCAGCCTGCCCCGCCTCC TCCTTCAAATCGTACTCCGGCAGGTCATTTGACCCGATCAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCC GGCGCTGCCACTGCGTTCGTAGATCGTCTTGAACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGGCGTGCCAGG CGGTAGAGAAAACGGCCGATGCCGGGATCGATCAAAAAGTAATCGGGGTGAACCGTCAGCACGTCCGGGTTCTT GCCTTCTGTGATCTCGCGGTACATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTA CGATCTTGTAGCGGCTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACG CTGCATGGCAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTC GCCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCTTCCCTTCCCGGT ATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGGCCATGCCGG CCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGCTCGTCGGTCACGCTT CGACAGACGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACGTCATAGAGCATCGGAACGA AAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCTTCCTAATCGACGGCGCACCGGCTGCCGGCGGTTGCCGGGATT CTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCGTGCTTCTGCCTCGATGCGTTGCCGCTGGGC GGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCCAGCGCCGCGCCGATTTGTACCGGGCCGGATGGTTTG CGACCGCTCACGCCGATTCCTCGGGCTTGGGGGTTCCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTA CGCCTGGCCAACCGCCCGTTCCTCCACACATGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATG CCGCCTCCTTTAGCCGCTAAAATTCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTC AGATAGCAGCTCGGTAATGGTCTTGCCTTGGCGTACCGCGTACATCTTCAGCTTGGTGTGATCCTCCGCCGGCAAC TGAAAGTTGACCCGCTTCATGGCTGGCGTGTCTGCCAGGCTGGCCAACGTTGCAGCCTTGCTGCTGCGTGCGCTCG GACGGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTCTCTTTACCTCATTAACTCAAATGAGTTTTGATTTAAT TCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTGTGCCGGCGGC GGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTACCCGGCCAGCGCCT CGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCCGCTTGTAGCCTTCCATCCGT GACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATATGTCGTAAGGGCTTGGCTGCACCGG AATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTCCGCCGCCTGGGGCGCTCCGTCGATCACTAC GAAGTCGCGCCGGCCGATGGCCTTCACGTCGCGGTCAATCGTCGGGCGGTCGATGCCGACAACGGTTAGCGGTT GATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGCCCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGG CGAGTTGCAGGGCGCGGGCTAGATGGGTTGCGATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGA TAACCTTCATGCGTTCCCCTTGCGTATTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCT GTTTACTCAAATACACATCACCTTTTTAGACGGCGGCGCTCGGTTTCTTCAGCGGCCAAGCTGGCCGGCCAGGCC GCCAGCTTGGCATCAGACAAACCGGCCAGGATTTCATGCAGCCGCACGGTTGAGACGTGCGCGGGCGGCTCGAA CACGTACCCGGCCGCGATCATCTCCGCCTCGATCTCTTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGC GGTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCTCACG GAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAGGGTCGAGC GATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCGCGGGCGTGCGCGA TCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGGCCTCGCGCCCGCTCCGG GTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCAATGCCGGCGAACACGGTCAACACCATGCGGCCGGCCGG CGTGGTGGTGTCGGCCCACGGCTCTGCCAGGCTACGCAGGCCCGCGCCGGCCTCCTGGATGCGCTCGGCAATGTC CAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCACTGTCACAACGTCGCCAGGGCGTAGGTGGT CAAGCATCCTGGCCAGCTCCGGGCGGTCGCGCCTGGTGCCGGTGATCTTCTCGGAAAACAGCTTGGTGCAGCCGG

CCGCGTGCAGTTCGGCCCGTTGGTTGGTCAAGTCCTGGTCGTCGGTGCTGACGCGGGCATAGCCCAGCAGGCCAG CGGCGGCGCTCTTGTTCATGGCGTAATGTCTCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGC GACAAGAAAACGCCAGGAAAAGGGCAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTT CAGAAGACGGCTGCACTGAACGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGTTGGATCAAAGTACTTTGA TCCCGAGGGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAAC
>crtB_stop_pGWB605
CTTTTCACGCCCTTTTAAATATCCGATTATTCTAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTC AAACACTGATAGTTTAAACTGAAGGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTC AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATG TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA GCTTGCATGCCTGCAGGTCCCCAGATTAGCCTTTTCAATTTCAGAAAGAATGCTAACCCACAGATGGTTAGAGAGG CTTACGCAGCAGGTCTCATCAAGACGATCTACCCGAGCAATAATCTCCAGGAAATCAAATACCTTCCCAAGAAGGT TAAAGATGCAGTCAAAAGATTCAGGACTAACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAGAAG TACTATTCCAGTATGGACGATTCAAGGCTTGCTTCACAAACCAAGGCAAGTAATAGAGATTGGAGTCTCTAAAAAG GTAGTTCCCACTGAATCAAAGGCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACT GGCGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCACGAC ACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGG TAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGG TGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAA AGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTG ATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAA GTTCATTTCATTTGGAGAGAACACGGGGGACTCTAGAGTTATCAACAAGTTTGTACAAAAAAGCAGGCTTCATGA ATAATCCGTCGTTACTCAATCATGCGGTCGAAACGATGGCAGTTGGCTCGAAAAGTTTTGCGACAGCCTCAAAGTT ATTTGATGCAAAAACCCGGCGCAGCGTACTGATGCTCTACGCCTGGTGCCGCCATTGTGACGATGTTATTGACGAT CAGACGCTGGGCTTTCAGGCCCGGCAGCCTGCCTTACAAACGCCCGAACAACGTCTGATGCAACTTGAGATGAAAA CGCGCCAGGCCTATGCAGGATCGCAGATGCACGAACCGGCGTTTGCGGCTTTTCAGGAAGTGGCTATGGCTCATG ATATCGCCCCGGCTTACGCGTTTGATCATCTGGAAGGCTTCGCCATGGATGTACGCGAAGCGCAATACAGCCAACT GGATGATACGCTGCGCTATTGCTATCACGTTGCAGGCGTTGTCGGCTTGATGATGGCGCAAATCATGGGCGTGCG GGATAACGCCACGCTGGACCGCGCCTGTGACCTTGGGCTGGCATTTCAGTTGACCAATATTGCTCGCGATATTGTG GACGATGCGCATGCGGGCCGCTGTTATCTGCCGGCAAGCTGGCTGGAGCATGAAGGTCTGAACAAAGAGAATTAT GCGGCACCTGAAAACCGTCAGGCGCTGAGCCGTATCGCCCGTCGTTTGGTGCAGGAAGCAGAACCTTACTATTTGT CTGCCACAGCCGGCCTGGCAGGGTTGCCCCTGCGTTCCGCCTGGGCAATCGCTACGGCGAAGCAGGTTTACCGGA AAATAGGTGTCAAAGTTGAACAGGCCGGTCAGCAAGCCTGGGATCAGCGGCAGTCAACGACCACGCCCGAAAAAT TAACGCTGCTGCTGGCCGCCTCTGGTCAGGCCCTTACTTCCCGGATGCGGGCTCATCCTCCCCGCCCTGCGCATCTC TGGCAGCGCCCGCTCTAGACCCAGCTTTCTTGTACAAAGTGGTTCGATCTAGAGGATCCATGGTGAGCAAGGGCG AGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTG TCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCC GTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGC AGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCA ACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGAC TTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCC GACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGC CGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT CACTCACGGCATGGACGAGCTGTACAAGTAAAGCGGCCCGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCA ATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGC ATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTITTATGATTAGAGTCCCGCAATTATACATT TAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTA GATCGGGAATTGGTTCCGGAACCAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACA ATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA GGCTGAATTAGGCGCGCCTATTTCTATTAATTCCCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCT

AGTTTGCGCGCTATATTTGTTTTCTATCGCGTATTAAATGTATAATTGCGGGACTCTAATCATAAAAACCCATCTCA TAAATAACGTCATGCATTACATGTTAATTATTACATGCTTAACGTAATTCAACAGAAATTATATGATAATCATCGCA AGACCGGCAACAGGATTCAATCTTAAGAAACTTTATTGCCAAATGTTTGAACGATCGGGGAAATTCGAGCTGGGG ACGTCCCCAGCTCGGTACCCCCTCCTGGGCACGGTCGTACGCGATCCGCCGCGGTTCCACCTCACCATTGCGGGTA TGCCAGTTGAGTTCGATGAGTTCCCGTACCAGCTCCAACTCGGGCGATGCCACGCGCACTCCGTTCAGATCTCGGT GACGGGCAGGACCGGACGGGGCGGTACCGGCAGGCTGAAGTCCAGCTGCCAGAAACCCACGTCATGCCAGTTCC CGTGCTTGAAGCCGGCCGCCCGCAGCATGCCGCGGGGGGCATATCCGAGCGCCTCGTGCATGCGCACGCTCGGG TCGTTGGGCAGCCCGATGACAGCGACCACGCTCTTGAAGCCCTGTGCCTCCAGGGACTTCAGCAGGTGGGTGTAG AGCGTGGAGCCCAGTCCCGTCCGCTGGTGGCGGGGGGAGACGTACACGGTCGACTCGGCCGTCCAGTCGTAGGC GTTGCGTGCCTTCCAGGGGCCCGCGTAGGCGATGCCGGCGACCTCGCCGTCCACCTCGGCGACGAGCCAGGGAT AGCGCTCCCGCAGACGGACGAGGTCGTCCGTCCACTCCTGCGGTTCCTGCGGCTCGGTACGGAAGTTGACCGTGC TGTCTCGATGTAGTGGTTGACGATGGTGCAGACCGCCGGCATGTCCGCCTCGGTGGCACGGCGGATGTCGGCCG GGCGTCGTTCTGGGCTCATATCTTATTGCCCCCCGGGATCAGATCTGGATTGAGAGTGAATATGAGACTCTAATTG GATACCGAGGGGAATTTATGGAACGTCAGTGGAGCATTTTGACAAGAAATATTTGCTAGCTGATAGTGACCTTA GGCGACTTTTGAACGCGCAATAATGGTTTCTGACGTATGTGCTTAGCTCATTAAACTCCAGAAACCCGCGGCTGAG TGGCTCCTTCAACGTTGCGGTTCTGTCAGTTCCAAACGTAAAACGGCTTGTCCCGCGTCATCGGCGGGGGTCATAA CGTGACTCCCTTAATTCTCCGCTCATGATCTTGATCCCCTGCGCCATCAGATCCTTGGCGGCAAGAAAGCCATCCAG TTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAAC CGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTGGCGCTTGCGTTTTCCCTTGTCCA GATAGCCCAGTAGCTGACATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGTTCCGCTTCCTTT AGCAGCCCTTGCGCCCTGAGTGCTTGCGGCAGCGTGAAGCTGATCCGTCGAGATTAATAGAAATAAATTCAGCCT AATTCGGCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTACACC ACAATATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGC AGCCCATCAGTCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTA TTCGGAAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCAATTCGGGCACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCT GTAATGCAAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGT GGCGGTTTTCATGGCTTGTTATGACTGTTTTTTGGGGGTACAGTCTATGCCTCGGGCATCCAAGCAGCAAGCGCGT TACGCCGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAG TTAAACATCATGGGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGC CATCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGAT ATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAA ACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTC CGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATCTTGCAGGTATCTTCG AGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTC CAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTGGAGGCGCTAAATGAAACCTTAACGCTATG GAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGT AACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCG TCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAG AATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCTAGCTAGAAATTCGTTCAAGCC GACGCCGCTTCGCGGCGCGGCTTAACTCAAGCGTTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAG GTCAAGTCTGCTTTATTATTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGCATGACCAA AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTT TTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGA GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGT AGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCT GCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGG CTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTG AGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAAC AGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT ACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTAT TACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG

CGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGT ACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCC CCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTG ACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTITCACCGTCATCACCGAAACGCGCGAGGCAGGGTGCCTTGATG TGGGCGCCGGCGGTCGAGTGGCGACGGCGCGGCTTGTCCGCGCCCTGGTAGATTGCCTGGCCGTAGGCCAGCCA TTTTGAGCGGCCAGCGGCCGCGATAGGCCGACGCGAAGCGGCGGGGCGTAGGGAGCGCAGCGACCGAAGGGT AGGCGCTTITTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGAGTTTA ATAAGTTTTAAAGAGTTTAGGCGGAAAAATCGCCTTTTTCTCTITTATATCAGTCACTTACATGTGTGACCGGTTC CCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGTGC TATCCACAGGAAAGAGACCTTTTCGACCTTTTCCCCTGCTAGGGCAATTTGCCCTAGCATCTGCTCCGTACATTAG GAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCATGACTAGGATCGGGCCAGCCTGCCCCGCCTCC TCCTTCAAATCGTACTCCGGCAGGTCATTTGACCCGATCAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCC GGCGCTGCCACTGCGTTCGTAGATCGTCTTGAACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGGCGTGCCAGG CGGTAGAGAAAACGGCCGATGCCGGGATCGATCAAAAAGTAATCGGGGTGAACCGTCAGCACGTCCGGGTTCTT GCCTTCTGTGATCTCGCGGTACATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTA CGATCTTGTAGCGGCTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACG CTGCATGGCAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTC GCCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCTTCCCTTCCCGGT ATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGGCCATGCCGG CCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGCTCGTCGGTCACGCTT CGACAGACGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACGTCATAGAGCATCGGAACGA AAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCTTCCTAATCGACGGCGCACCGGCTGCCGGCGGTTGCCGGGATT CTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCGTGCTTCTGCCTCGATGCGTTGCCGCTGGGC GGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCCAGCGCCGCGCCGATTTGTACCGGGCCGGATGGTTTG CGACCGCTCACGCCGATTCCTCGGGCTTGGGGGTTCCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTA CGCCTGGCCAACCGCCCGTTCCTCCACACATGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTCCATG CCGCCTCCTTTAGCCGCTAAAATTCATCTACTCATTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTC AGATAGCAGCTCGGTAATGGTCTTGCCTTGGCGTACCGCGTACATCTTCAGCTTGGTGTGATCCTCCGCCGGCAAC TGAAAGTTGACCCGCTTCATGGCTGGCGTGTCTGCCAGGCTGGCCAACGTTGCAGCCTTGCTGCTGCGTGCGCTCG GACGGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTACCTCATTAACTCAAATGAGTTTGATTTAAT TTCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTGTGCCGGCGGC GGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTACCCGGCCAGCGCCT CGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCCGCTTGTAGCCTTCCATCCGT GACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATATGTCGTAAGGGCTTGGCTGCACCGG AATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTCCGCCGCCTGGGGCGCTCCGTCGATCACTAC GAAGTCGCGCCGGCCGATGGCCTTCACGTCGCGGTCAATCGTCGGGCGGTCGATGCCGACAACGGTTAGCGGTT GATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGCCCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGG CGAGTTGCAGGGCGCGGGCTAGATGGGTTGCGATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGA TAACCTTCATGCGTTCCCCTTGCGTATTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCT GTTTTACTCAAATACACATCACCTTITTAGACGGCGGCGCTCGGTTTCTTCAGCGGCCAAGCTGGCCGGCCAGGCC GCCAGCTTGGCATCAGACAAACCGGCCAGGATTTCATGCAGCCGCACGGTTGAGACGTGCGCGGGCGGCTCGAA CACGTACCCGGCCGCGATCATCTCCGCCTCGATCTCTTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGC GGTTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCTCACG GAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAGGGTCGAGC GATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCGCGGGCGTGCGCGA TCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGGCCTCGCGCCCGCTCCGG GTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCAATGCCGGCGAACACGGTCAACACCATGCGGCCGGCCGG CGTGGTGGTGTCGGCCCACGGCTCTGCCAGGCTACGCAGGCCCGCGCCGGCCTCCTGGATGCGCTCGGCAATGTC CAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCACTGTCACAACGTCGCCAGGGCGTAGGTGGT CAAGCATCCTGGCCAGCTCCGGGCGGTCGCGCCTGGTGCCGGTGATCTTCTCGGAAAACAGCTTGGTGCAGCCGG CCGCGTGCAGTTCGGCCCGTTGGTTGGTCAAGTCCTGGTCGTCGGTGCTGACGCGGGCATAGCCCAGCAGGCCAG CGGCGGCGCTCTTGTTCATGGCGTAATGTCTCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGC GACAAGAAAACGCCAGGAAAAGGGCAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTT

CAGAAGACGGCTGCACTGAACGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGTTGGATCAAAGTACTTTGA TCCCGAGGGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAAC

HDS signal peptide is shown in bold in the above sequences crtB is shown in italics in the above sequences. STOP codon is shown undeline in the above sequences.

In the context of the present invention, plastid-targeting signal in its N -terminus is preferably understood as the sequence of the hydroxymethylbutenyl 4-diphosphate synthase gene from A. thaliana cDNA, of which cloning procedures are detailed in Table 6 and in the Methods section below.

In the context of the present invention, a plasmid construct or an expression vector capable of accumulating at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the leaf vegetables and forage crops between 36 and 48 hpi , is understood as (p)crtB or crtbB, or any other plasmid encoding a phytoene synthase which is able to direct its translocation to the plant plastids of interest.

In a preferred embodiment of any of the above aspects, the polypeptide exhibiting phytoene synthase activity may be any known phytoene synthase capable of reaching the chloroplast, such as selected from known bacterial, algal or plant phytoene synthases. Preferably, the polypeptide exhibiting phytoene synthase activity is a CrtB, more preferably from Pantoea ananatis (GenBank accession number: P21683) also preferably any CrtB selected from any of the sequence identified in table 1). Also preferably, the CrtB gene expressed or overexpressed in the modified plant tissue of the invention may encode an endogenous phytoene synthase, a heterologous phytoene synthase or an improved variant of the endogenous phytoene synthase.

The polypeptide exhibiting phytoene synthase activity may also be any polypeptide exhibiting phytoene synthase activity and having at least 60%, preferably $65,70,75,80,85,90,95,96$, 97,98 or 99%, identity to any phytoene synthase listed in table 1.

The CrtB gene used in the present invention may also encode an improved phytoene synthase, i.e. an enzyme that possesses at least one mutation in its sequence, in comparison with the amino acid sequence of the wild-type enzyme, said mutation leading to an increase of its activity, an increased specific catalytic activity, an increased specificity for the substrate, an increased protein or RNA stability and/or an increased intracellular concentration of the enzyme, or leading to a feedback inhibition resistant mutant.

In another preferred embodiment of any of the above aspects, examples of expression
cassettes useful in the present invention comprise at least a CrtB gene operably linked to a plastid-targeting signal in its N -terminus and optionally one or more control sequences, typically comprising a transcriptional promoter and a transcription terminator, that direct the expression of said gene. A control sequence may include a promoter that is recognized by the host cell. The promoter may contain transcriptional control sequences that mediate the expression of the enzyme. The promoter may be any polynucleotide that shows transcriptional activity in the leaf vegetables or forage crops. The promoter may be a native or heterologous promoter.

Thus, in a preferred embodiment of any of the above aspects of the invention, the plasmid construct or expression vector further comprises a promoter inducing a high level of expression of the gene, i.e. a strong promoter, using elements stabilizing the corresponding messenger RNA or modifying Ribosome Binding Site (RBS) sequences and sequences surrounding them. The promoters suitable to be used in the present invention are known by the skilled person and can be constitutive or inducible, and native or heterologous.

In another embodiment of any of the above aspects, the plasmid construct or expression vector further comprises a specific promoter, i.e., one that can drive the expression of crtB and increase phytoene production in the tissue of interest, such as shown in the following nonlimiting examples:

1. if one intends to drive the accumulation of carotenoids in the early leaves of spinach, one would use spinach specific promoters PsaF (Wöstemeyer A., J. Plant Physiol. 160. 503-508 (2003)) or PetH (Mohanty A., Indian Journal of Biochemistry and Biophysics (37); 447); or
2. if one intends to drive the accumulation of vitamin A in a forage crop such as rye grass, one could use the $\angle p R b c S$ or $L p C A B$ promoters (Panter et al, Agronomy 2017, 7(2), 36; https://doi.org/10.3390/agronomy7020036) using the teachings of Panter 2017 (Agronomy 7 (2) 36); or
3. if one intends to drive the appearance of yellowishyelowish, redish colours naturally occuring from the accummulation carotenoids in the mesocarp of avocado fruit one could use the type 3 metallothionein-like gene promoter, MT3-A and the teachings of patent US7732669, or
4. if one intends to promote the antioxidant properties properties or flavours and organoleptic characteristics of brussel sprouts by introducing new carotenoids on them, one can use the teachings of patent US20180195081 and the plastocyanin promoter of Pisum sativum to drive phytoene production on the tissue of interest.

Examples of suitable promoters able to drive expression in chlorophyll containing tissues further include but are not restricted to; pea rbc-3A (Gilmarin and Chua, 1990), arabidopsis CAB2
(Carre and Kay. 1995), ST-LS1 of Solanum Tuberosum (Dupre 1991, Plant J. 1,115) or alfalfa RAc (Potenza, 2004), or derivatives of such promoters.

Preferably, the promoter is a specific and strong constitutive promoter.

Preferably, the expression vector may be present in the leaves in 1 to $5,20,100$ or 500 copies.

A control sequence may also comprise a transcription terminator, which is recognized by the cells of the leaf vegetables or forage crops to terminate transcription. The terminator is operably linked to the 3 -terminus of the gene. Any terminator that is functional in the cells of the leaf vegetables or forage crops may be used in the present invention.

The host cells of the leaf vegetables, green fruits or forage crops of the fourth aspect, may be transformed, transfected or transduced in a transient or stable manner. The recombinant plants of the invention may be obtained by any method known by the skilled person, such as electroporation, conjugation, transduction, competent cell transformation, protoplast transformation, protoplast fusion, biolistic "gene gun" transformation, PEG-mediated transformation, lipid-assisted transformation or transfection, chemically mediated transfection, lithium acetate -mediated transformation or liposome-mediated transformation.

The term "recombinant or modified plant" as used herein encompasses the modified leaf vegetables, green fruits or forage crops as well as any progeny that is not identical to the parent leaf vegetables or forage crops, in particular due to mutations that occur during replication.

To enhance the production of phytoene, the modified plant of the fourth aspect of the invention or of the methods of any of aspects one to three, may also be genetically modified in order to increase the production of geranylgeranyl diphosphate (GGPP). In particular, the modified leaf vegetables or forage crops of the invention may be genetically modified to increase the carbon flux to isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) and/or to increase the conversion of IPP and DMAPP to geranylgeranyl diphosphate (GGPP). The carbon flux to IPP and DMAPP may be increased by enhancing the 2-C- methyl-D-erythritol 4-phosphate/l-deoxy-D-xylulose 5-phosphate (MEP/DXP) pathway. As used herein, the term "MEP pathway" or "MEP/DXP pathway" refers to the biosynthetic pathway leading to the formation of IPP and DMAPP from the condensation of pyruvate and D-glyceraldehyde 3phosphate to 1 -deoxy-D-xylulose 5 - phosphate (DXP). This pathway involves the following enzymes: 1 -deoxy-D-xylulose 5- phosphate synthase (EC 2.2.1.7), 1-deoxy-D-xylulose 5phosphate reductoisomerase (EC 1.1.1.267), 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC 2.7.7.60), 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC 2.7.1.148), 2-C-methyl-D- erythritol 2,4-cyclodiphosphate synthase (EC 4.6.1.12), 4-hydroxy-3-
methylbut-2-en-I- yl diphosphate synthase (EC 1.17.7.1), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC 1.17.1.2), and isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2).

This pathway may be enhanced by any method known by the skilled person, for example by a method described in the patent application WO 2015/189428. In particular, this pathway may be enhanced by increasing at least one enzymatic activity selected from the group consisting of DXP synthase (DXS), DXP reductoisomerase (DXR), IspD, IspE, IspF, IspG, IspH and IPP isomerase activities (IDI), preferably by increasing at least DXP synthase and IPP isomerase activities.

An enzymatic activity (e.g. DXS, DXR, IspD, IspE, IspF, IspG, IspH, IDI or FPPS activity) may be increased as detailed above for the phytoene synthase activity, i.e. by overexpression of an endogenous gene or expression of a heterologous gene, and/or expression of an improved variant of the endogenous enzyme.

The term "DXS" or "DXP synthase" refers to the enzyme 1-deoxy-D-xylulose 5- phosphate synthase (EC 2.2.1.7) encoded by the dxs gene which catalyzes the condensation of pyruvate and D-glyceraldehyde 3-phosphate to 1-deoxy-D-xylulose 5-phosphate (DXP). The names of gene product, "DXP synthase", "DXS" or "DXPS", are used interchangeably in this application. The DXP synthase activity can be determined by using a radiolabeled substrate as described by Lois et al. (1998) or any other method known by the skilled person. The term "DXP reductoisomerase" or "DXR" refers to the enzyme 1-deoxy-D-xylulose 5 -phosphate reductoisomerase (EC 1.1.1.267) encoded by the dxr gene. The term "IspD" refers to the enzyme 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC 2.7.7.60) encoded by the ispD gene. The term "IspE" refers to the enzyme 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, (EC 2.7.1.148) encoded by the ispE gene. The term "IspF" refers to the enzyme 2-C-methyl-D-erythritol 2,4- cyclodiphosphate synthase (EC 4.6.1.12) encoded by the ispF gene. The term "IspG" refers to the enzyme 4-hydroxy-3-methylbut-2-en-l-yl diphosphate synthase (EC 1.17.7.1) encoded by the ispG gene. The term "IspH" refers to the enzyme 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, also named hydroxymethylbutenyl pyrophosphate reductase, (EC 1.17.1.2) encoded by the ispH gene. The term "IDI", "IPP isomerase" or "isopentenyl pyrophosphate isomerase" refers to the enzyme isopentenyl- diphosphate deltaisomerase (EC 5.3.3.2) encoded by the idi gene that catalyzes the 1,3- allylic rearrangement of the homoallylic substrate isopentenyl (IPP) to its allylic isomer, dimethylallyl diphosphate (DMAPP). According to the organism, the nomenclature of the above identified enzymes and encoding genes may vary. However, for the sake of clarity, in the present specification, these terms are used independently from the origin of the enzymes or genes.

Preferably, at least one gene selected from the group consisting of $d x s, d x r$, ispD, ispE, ispF, ispG, ispH and idi genes, is overexpressed, more preferably at least dxs and/or idi genes, and even more preferably at least dxs and idi genes are overexpressed.

In an embodiment, said composition of the fourth aspect of the invention or of any of its preferred embodiments, is a cosmetic or pharmaceutical composition. In another embodiment, said composition is a nutraceutical or nutricosmetic composition, or a food or feed additive.

As used herein, the term "nutraceutical composition" refers to a composition comprising nutrients isolated or purified from food and having a beneficial effect on the health of the consumer. As used herein, the term "nutricosmetic composition" refers to a composition comprising nutritional oral ingredients and which is formulated and marketed specifically for beauty purposes.

In a particular embodiment, the cosmetic or pharmaceutical composition is a skin whitening, lightening or bleaching composition or a composition to prevent aging, oxidative or photooxidative damages.

Phytoene was also known to show anticarcinogenic and anti-inflammatory properties. Thus, in an embodiment, the composition is a pharmaceutical composition to be used in the treatment of cancer or in the treatment of inflammatory disorders.

Preferably, the composition of the invention is to be administered by topical or oral route.

The composition of the of the fourth aspect of the invention or of any of its preferred embodiments may obviously, depending on its use, comprise also other ingredients, such as cosmetic or pharmaceutical acceptable carriers, preservatives, antioxidants such as carotenoids, as well as pharmaceutically or cosmetically active ingredients. In a preferred embodiment, the composition further comprises a hydrophobic carrier, which may be selected from oils typically used in the cosmetic, pharmaceutical or food industry, such as vegetable, mineral or synthetic oils.

Further aspects and advantages of the present invention will be described in the following examples, which should be regarded as illustrative and not limiting.

EXAMPLES

Plant material and growth conditions

N. tabacum (Xanthi nc) (Li and Carrington 1995), N. benthamiana (RDR6i) (Schwach et al. 2005), and A. thaliana (Columbia-0 and Landsberg erecta) plants were grown under standard conditions as described previously (Llorente et al. 2016; Majer et al. 2017). For generating darkinduced leaf senescence, detached leaves were maintained inside dark, humid chambers until visible yellowing occurred. Collected plant material was frozen in liquid nitrogen, lyophilized, and then homogenized to a fine powder using a TissueLyser system (Qiagen) for further analyses.

Gene constructs and transient expression assays

The viral vectors used in this study have been described (Majer et al. 2017), except for a plasmid with recombinant clone TEV-GFP, which was also constructed from plasmid pGTEVa (Bedoya et al. 2012). To generate the different crtB versions, we amplified by PCR the Pantoea ananatis crtB gene from plasmid pACCRT-EIB (Cunningham et al. 1993) and the plastidtargeting sequence of the hydroxymethylbutenyl 4-diphosphate synthase gene from A. thaliana cDNA (Gas et al. 2009). We also amplified the cDNA sequences encoding AtPSY from A. thaliana and SIPSY2 from S. Iycopersicum. All primers used for cloning procedures are detailed in Table 2.

Table 2. Primers used for cloning procedures

Name	Sequence $5^{\prime}-$
PacrtB_N-tag_attB1-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGAATAATCCG TCGTTACTCAATC-3'
PacrtB_C-tag_attB2-R	5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGAGCGGGCGC TGCCAGAGATG-3
PacrtB_STOP_at tB2-R	5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGAGCGGGCGC TGCCAGAGATG-3' 5'-
AtHDS_N-tag_attB1-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGACTGGA GTATTGCCAGCTC-3' 5'-
crtB-5'-AtHDS-3'R	GATtGAGTAACGACGGATTATTCATATTCCGGATAACCGAAACT CTTCTC-3' 5'-
AtPSY_N-tag_attB1-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCAAGCTTA GTAGCAAGTCCTTC-3'
AtPSY_STOP_at	5'-
tB2-R	GGGGACCACTTTGTACAAGAAAGCTGGGTTCATATCGATAGTC

TTGAACTTGAAG-3' 5'-
SIPSY2_N- GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTCTGTTGCTTT tag_attB1-F GTTGTGGGTTG-3'
5'-
SIPSY2_STOP_ attB2-R

PacrtE_N-
GGGGACCACTTTGTACAAGAAAGCTGGGTTCATGTCTTTGCTA GTGGGGAAGAAG-3' 5'-
GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGACGGTCTGC tag_attB1-F PacrtE_STOP_at tB2-R

GCAAAAAAACAC-3'
5'-
GGGGACCACTTTGTACAAGAAAGCTGGGTTTATACTGACGGCA GCGAGTTTTTTGTC-3'

PCR products were cloned using the Gateway system first into plasmid pDONR-207 and then into plasmid pGWB405 (Nakagawa et al. 2007) to generate 35S:crtB-pGWB405, 35S:(p)crtBpGWB405, 35S:(p)crtB-GFP-pGWB405, 35S:AtPSY-pGWB405, and 35S:SIPSY2-pGWB405 or into plasmid pGWB506 (Nakagawa et al. 2007) to generate 35S:GFP-crtB-pGWB506.

For transient expression studies using viral vectors, leaves of 4 to 6 week-old N. tabacum and A. thaliana were mechanically inoculated with crude extracts from frozen-stored infected plant tissue and collected upon the appearance of the yellowing phenotype as described previously (Majer et al. 2017). For agroinfiltration experiments, leaves of 4 to 6 week-old N. benthamiana plants were infiltrated with A. tumefaciens strain GV3101 carrying plasmids of interest following the procedure described previously (Sparkes et al. 2006). Infiltration cultures were grown on LB medium at $28^{\circ} \mathrm{C}$ and used at an OD600 of 0.5 , except for experiments performed with serial culture dilutions to express (p)crtB at different levels. For pharmacological inhibition of phytoene conversion, leaves were infiltrated with a $2 \mu \mathrm{M}$ solution of norflurazon (NF) in water and 0.05% Tween 20. The infiltration was performed next to leaf areas that had been agroinfiltrated with different constructs 24 h earlier. Infiltrated plants were returned to the same growth conditions after infiltration.

Transmission electron microscopy

Transmission electron microscopy of plant leaves was performed as previously described (D'Andrea et al. 2018).

Metabolite analyses

Carotenoids were analyzed as previously described (Llorente et al. 2016). Phytoene was quantified using a concentration curve with a commercial standard (Sigma). Lipids were extracted, separated by Thin Layer Chromatography (TLC), and methylated as described
(Wang and Benning 2011). Primary metabolites were extracted as described previously (Lisec et al. 2006) using approximately 20 mg of lyophilized leaf tissue. Derivatization and gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) analyses were carried out as described previously (Lisec et al. 2006). Metabolites were identified manually by TagFinder software using the reference library mass spectra and retention indices from the Golm Metabolome Database, http://gmd.mpimp-golm.mpg.de. The parameters used for the peak annotation of the 52 metabolites can be found in Table 3.

8	342530	342424	-0.04	M000114_A133002-10__NETB_342530_TOF_Butyric scid. 4 -amino (2TAS)	Butyricacd, 4 -smino-	$\begin{aligned} & \text { Acd } \\ & \text { (Amino) } \end{aligned}$	$\begin{aligned} & \text { CHE9NO } \\ & 2 \end{aligned}$	232	Atabidopsis, tomato, potato and others	A
9	354060	354337	0.05		Alanine	Acid (Amino)	$\begin{array}{\|l\|} \hline \text { CHTMO } \\ \hline \end{array}$	135	Arabidopsis, tomatos potato andothers	A
10	357523	35754	0.0.	$\begin{aligned} & \text { M00001S_A13801~101_NETB } 35752 \text { TOF Sering } \\ & \text { DL-(STMS) } \end{aligned}$	Sarine	$\begin{aligned} & \text { Acid } \\ & \text { Amino) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CBHTNO } \\ \hline \end{array}$	204	Arabidopsis, tomato potato and othars	A
11	365427	365376	-0.06	MO00074_A134001-101_NETB_365427 TOF Succinic acid (2TMS)	Suctinioncid	Acid (Disarboxylis)	C4REO4	247	Arabidopsin, tomato, potato andothers	A
12	368365	36\%39	. 6.21	MODOU16_A14001 101 METB 36806 TOF Mreoniwe DL-(3TMS)	Threontur	$\begin{aligned} & \text { Avid } \\ & \text { (Amino) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CHH9NO } \\ 3 \\ \hline \end{array}$	218	Axabidopsiis, toranto, potato and others	A
13	371255	371251	-0.0.	M000067_A137001-101_METB_371255 TOF Fumaric acela (2TMS)	Fumaticacid	Acid (Dicarboxylic)	CH404	245	Arabidopsis, temato potato sam sturn	A
14	373395	372576	0.15	M000076 A133002-101_CONTT. METB 373395 TOF Malsicacid (2TMS)	Malaic atid	Acid Dicarboxylic)	CHH4O4	170	Arabidopsis, tomato potato and others	A
15	386210	386104	-0.03	M0004S7_A13304 101 METB 386210 TOR Nicotinic acte (ITMS)	Ninoturic acie	Acid M haterocycla)	$\begin{array}{\|l\|} \hline \text { CRHSNO } \\ 2 \\ \hline \end{array}$	180	Arabidopsis, tomato potato andothers	K
16	394250	394364	0.08	M000027,A14001-10, METB_394250_TOF Alaxinie beta-(3TMS	Aluntue betar	$\begin{aligned} & \text { Actu } \\ & \text { (Amino) } \end{aligned}$	$\begin{aligned} & \hline \text { C3HTVO } \\ & 2 \end{aligned}$	174	Arabidopsis, tomato potato and others	A
17	408455	408938	0.19	M000054_A130002 101 METB 408455 TOF Eythritol (4TMS)	Erytartol	Bolyou (Tutrath	$\begin{aligned} & \text { CUHIDO } \\ & 4 \end{aligned}$	217	Arabidopris tomato potato and others	A
18	425325	423219	-0.04	MOOOO66 A148001-10_NETB_42325_TOF Malie actd. 2 -methyl- DL (3TMSS)	Malie actd, 2-methyl-	$\begin{aligned} & \text { Acid } \\ & \text { (Hydrony) } \\ & \hline \end{aligned}$	CSH8O5	247	Arabidowisis, torasto, potato andothest	A
19	457283	457546	0.08	M000033 A $52002 \cdot 101$ _IETB_ 45728 _IOF_Aspatic scid, L_(3TMS)	Aspartio acid	Acid (Axwiwe)	$\begin{array}{\|l\|} \hline \text { CIBTMO } \\ 4 \end{array}$	232	Arabidopris, torato; potato and others	A
20	474.25	474338	. 0.02	MO00018_A12001* 101 METB 47423 TOF Methiomina, DL (2TMS)	Mathicrane	Acid (Amino)	$\begin{aligned} & \text { CSHIIN } \\ & \text { O2S } \end{aligned}$	176	Arabidopsis, tomato, potato and others	A
21	490485	490804	0.02	M000028_A16201-101_METS METB 490485 TOF Ornittine DL- (3TMS)	Ormithine (Arginine: Catulline)a	$\begin{aligned} & \text { And } \\ & \text { (Aming) } \end{aligned}$	$\begin{aligned} & \hline \operatorname{CSHI2N} \\ & 202 \\ & \hline \end{aligned}$	142	Arabidopsis, tomato potato and others	A
22	492650	492781	0.04	$\begin{aligned} & \text { M060032_A14408 } \\ & 101 \text { MST_49280_TOF Gtamine DL-(4TMS) } \end{aligned}$	Clutamin	Acid (Amino)	$\begin{array}{\|c\|} \hline \text { CHIVN } \\ 203 \\ \hline \end{array}$	227	Arabidopsis tomato, yotato zund others	A
23	498150	498741	0.1	M000579_A166001-101_METB_498150_TOE_Xyon D. (1MEOX) (4TMS)	Aylosx	Sugar (Pentege nicotes	$\frac{\operatorname{csth} 00}{5}$	160	Arabidopsis, tomato. potato andothers	A
24	507780	507842	0		Clutamic acid	Ackd (Amento)	$\begin{aligned} & \text { CsB9NO } \\ & 4 \end{aligned}$	246	Axabidopsis, tomator potato andothers	A
25	515530	515522	0.0.	M000590_A12002. 101_METB_515530_TOF_Rhamosa,DL (1MEOX) (4TMS)	Rhamasat	daxy)	$\cos 120$	117	Arabidopsis, tomatos potato and others	A
26	517180	51715	0.14	M000186_A175002-101_METB- METB 517180 TOF Putrectine (4TMS)	Putrascine (Ammatina)a	Amins (Fsly)	CHHI2N	174	Arabidopsis tomatos potato andothers	A

27	52384*	52398	. 0.21	Mo00571_A1S8004-101_METB_S2384_TOE_Glutanie acid. 2-oxo-(MEOX) (2TMS)	Glutatie acid, 2-oxt-	Acia (Oxo)	CSH6OS	198	Axabidopsis, tomato, potato snd othats	A
28	525270	528521	0.06	M000391_A175001-101_METB_528270_TOF_Fucosan DL-(MEOX) (4TMS)	Fucose	Suzay (Huxos复, datwy)	$\operatorname{com} 20$	117	Arabidopsis, tonaza potato and othars	A
29	331145	530790	0.08	MOUCO11_A16401 101_METB_S3145 TOF phenyalanim, DL- 2TMS)	Reamixanize	$\begin{aligned} & \text { Asid } \\ & \text { (Amino) } \end{aligned}$	$\begin{aligned} & \text { C9HIN } \\ & 02 \\ & \hline \end{aligned}$	218	Arabidopssis, tomato, potato and othars	A
30	550100	349804	. 0.64	MOOOU13_A16801- 101 METB 550100 TOF Asparatine, DL. (3TMS)	Asparagina	Acid (Amino)	$\begin{aligned} & \text { CIW8K2 } \\ & 08 \end{aligned}$	116	Arabidopsis, tomato potato and others	A
31	558110	557694	+0.1	M000472_A17604 101_MS_ 55110 TOF_Gucoson, 3 -gtary RMEOW (TMS)	3-dinoxy-Chuessone	$\begin{aligned} & \text { Suzar } \\ & \text { (Hexosa) } \end{aligned}$		231	Arabidopsis, tomato, potato and others	A
32	574230	574005	0.06	M000328_A177002 101. METB_ 374230 TOF Glycerol-3-phosphata, DL(4TMS)	Glycerol-3phosphata	Alcohol (Phosphate)	$\frac{\mathrm{ClHPOS}}{\mathrm{p}}$	298	Arbidopsis, tomato, potato andothers	A
33	615467	615798	0.05	MOD0014_A192003-101_METB 615467 TOF Lysina	Lysime	Awd (Amino)	$\begin{aligned} & \hline \operatorname{CRHI4N} \\ & 208 \end{aligned}$	156	Arabidopsis, tomato potato and others	A
34	624990	625161	0.04	M000082_A185002-101_METB. METB_624990_TOF Dehydroatcobioncid dimas (TMS)	Duhydroazcorbic acid dimer	$\begin{aligned} & \text { Acid } \\ & \text { (Hyadroxy) } \end{aligned}$	c6\% 606	173	Arabidopsis, tomato, potato and others	A
35	635360	638763	0.11	MOD0081_A191004 101 METB 638360 TOF Tyramina (3TMS)	Tyxamine	Ataite (Aromatic)	$\frac{\mathrm{CSHIN}}{0}$	174	Arabidopuis, tomato, potato andothars	A
36	651990	650990	.0.18	M00000 A195002-101 METB $651990_{\text {TOF Asconbie }}$ acid, L(+) (4TMS)	Ascoreticacid	$\begin{aligned} & \text { Acld } \\ & \text { (Hydroxy) } \end{aligned}$	crisos	117	Arabidopsis, tomato, potato and others	A
37	653910	654366	0.2	MOOO06_AWOW2101_METB_6S3910_TOF_Inositol, myo-(6TMS)	Inoritol myo-	$\begin{aligned} & \text { Polyol } \\ & \text { (mositol) } \end{aligned}$	$\begin{aligned} & \hline 6 \mathrm{CH} 2 \mathrm{O} \\ & 6 \\ & \hline \end{aligned}$	305	Axabidopsis, tomato potato andothars	A
38	65333?	658164	0.02	$\begin{aligned} & \text { M000035_A194002 } \\ & 101 \text { METB } 65833 \text { TOF Tyrosim, DL-(3TMS) } \end{aligned}$	Tyrosine	Acid (Amino)	$\begin{aligned} & \text { C9HINN } \\ & 03 \\ & \hline \end{aligned}$	218	Arebidopsis, tomato potato and othars	A
39	744935	344730	0.03	M000649 A214001-101_METB 744935 TOF Caffaic acid, trams-(3TMS)	Catfers acid, trans-	Acid (Phenylprops noic)	CFH8O4	219	Arabidopsis, tomato, potato and others	A
40	716505	772923	-0.46		Guacese-6-phesphat	Sugar (Phosphate)	$\begin{aligned} & \text { convio } \\ & 98 \end{aligned}$	387	Arabidop:is, tamato, potato andothers	A
41	7907\%	790178	. 0.06	M000012 A223002 101 METB 99070 Tor Tryptophan, L- (aTMS)	Tryptophan	Acid (Amino	Cl1H12 N2O2	202	Axubidopsis, tomato potato and othars	A
42	870555	870035	-0.04	MOOOO48_A274001-101_NETE 870355 TOR_Maltos ${ }_{3}$ D. (MEOX) (STMS)	Mattose	$\begin{aligned} & \text { Suzar } \\ & \text { Disacharida } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Cl2H2} \\ & \mathrm{O} 11 \\ & \hline \end{aligned}$	204	Arebidopsis, tomsto, potato and othetw	A
43	876240	87578	0.004	```M000671_A24002* 101.METE_876240 TOF_Trahalow, alpha,apha*", D- (8TMS)```	Trehalose alpha, alpha".	$\begin{aligned} & \text { Sugar } \\ & \text { Disacharida } \\ & \hline \end{aligned}$	Cl2W2 014	191	Arabidopsin tonato potzto and othert	A
44	345050	344940	. 0.03		Glytariactid	$\begin{aligned} & \text { Actd } \\ & \text { (Fydrosy) } \end{aligned}$	C3H6O4	189	Arabidopais, tomato, potato and others	A
45	440095	441530	0.12	M000065_A149001-101_METB_44093_TOF_Male acid. DL- (3TMS	Mallo acie	Acid (Hydroxy)	C4H605	233	Axabidopsis tomato potato and others	A

46	458330	458308	-0.01	MO0007S_A156001-101_METB_45830_TOF_Threonic acid (4TMS)	Threonicacid	Acid (Hydroxy)	C4H8O5	292	Arabidopysis, tomato, potato and others	A
47	840783	840145	-0.00	MOOOU44_A264001-101_METB_840783_TOF_Sucrowa D. (STMS)	Sucrose	Sugar (Disaccharid e)	C 12 H 22 011	361	Arabidognis, tomato, potato and others	A
48	998820	995821	0.1	M000644_A299001-101_METB 996820 _TOF Ounic scid. 3-caffeoyl- cis- (6TMS)	Quinisacid. 3-caffeyol- cis-	Conjugaty (Fhenylpropa noyl, Qumic)	Cl6mis 09	255	Arabidopsis, tomato potato and others	A
49	1025000	$\begin{array}{r} 102485 \\ 3 \\ \hline \end{array}$	-0.07	MO00003_A311001-101_METB_1025600_TOF_Quinio acid, 3-caffeoyl- trans-(6TMS)	Qumicacid, 3-caffeoyl- trans-	Conjugata (Phanylpropa noyl, Quimic)	$\begin{aligned} & \mathrm{Cl} 6 \mathrm{HI} 18 \\ & \mathrm{O} \end{aligned}$	346	Arabidopsis, fomato potato and others	A
50	579380	579380	0	```M000606 A187002. 101_METE_579300_TOF_fructose, D (MEOX) (5TMS)```	Fructose	Sugar (Hexose. ketose)	$\frac{\operatorname{cen}}{6}$	217	Arabidopsis, tomator potato and othars	A
51	508080	508680	0	MO00040 A181001-101 METB. METB 598880 TOF GIUCOSE 0 (MEOX (5TMS)	Glucose	Sugar (Hexose, aidose)	$\begin{array}{\|c\|} \hline 6 \\ 6 \\ \hline \end{array}$	160	Arabidopsis, tomatos potato and others	A
52	592883	592803	-0.14	M000069_A182004-101 METB- NETB 592883 TOF Citric acid (4TMS)	Citric acd	Acid Tricarboxy粦 \Leftrightarrow	C6H5O7	273	Arwbidopsis, tomato potato and othart	$\frac{3}{3}$
53	501603	501650	0	W000155 A173001-101 is OUAN 601603 TOF Ribitol. D. ETMS	Rubital	Polyol (Pentitol)	$\begin{aligned} & \mathrm{C} 4 \mathrm{H} 120 \\ & \hline \end{aligned}$	205	Internhi standard	h

Data were normalized to the mean value of the GFP control samples (i.e. the value of all metabolites for GFP control samples was set to 1). The means and standard errors of five to six replicates at 96 hpi are presented in Table 4.

Table 4. Relative metabolite levels in N. benthamiana leaf sections infiltrated with control GFP and (p)crtB constructs (for details see $\mathrm{M} \& \mathrm{M}$ section). Data is presented as means $\pm \mathrm{SE}$ of five to six biological replicates normalized to the mean level of the control GFP samples. Asterisks denote significant differences ($\mathrm{P}<0.05$) to the GFP samples.

Metabolite	GFP	crtB
Pyruvate	1 ± 0.09	1.05 ± 0.04
Valine	1 ± 0.08	1.33 ± 0.03
Glycerol	1 ± 0.10	0.8 ± 0.12
Isoleucine	1 ± 0.11	1.38 ± 0.1
Glycine	1 ± 0.34	0.88 ± 0.2
Phosporic acid	1 ± 0.08	1.2 ± 0.08
Proline	1 ± 0.18	1.04 ± 0.26
GABA	1 ± 0.16	0.68 ± 0.1
Alanine	1 ± 0.15	1.41 ± 0.49
Serine	1 ± 0.14	1.01 ± 0.11
Succinate	1 ± 0.10	1.1 ± 0.11
Threonine	1 ± 0.06	1.24 ± 0.11
Fumarate	1 ± 0.11	0.85 ± 0.07
Maleate	1 ± 0.12	1.28 ± 0.12
Nicotinate	1 ± 0.07	1.08 ± 0.1
beta-alanine	1 ± 0.07	1.22 ± 0.08
Erythritol	1 ± 0.02	1.24 ± 0.03
2-methyl-Malate	1 ± 0.04	1.09 ± 0.04
Aspartate	1 ± 0.03	1.35 ± 0.02
Methionine	1 ± 0.14	1.03 ± 0.12
Ornithine	1 ± 0.18	0.91 ± 0.06
Glutamine	1 ± 0.21	1.66 ± 0.7
Xylose	1 ± 0.09	1.13 ± 0.04
Glutamate	1 ± 0.15	1.55 ± 0.17
Rhamnose	1 ± 0.07	1.17 ± 0.05
Putrescine	1 ± 0.11	1.81 ± 0.12
2-oxo-Glutarate	1 ± 0.13	1.42 ± 0.11
Fucose	1 ± 0.08	1.19 ± 0.06
Phenyalanine	1 ± 0.10	1.03 ± 0.08
Asparagine	1 ± 0.16	1.43 ± 0.18
3-deoxy-Glucosone	1 ± 0.08	0.87 ± 0.04
Glycerol-3-P	1 ± 0.10	0.89 ± 0.08
Lysine	1 ± 0.15	0.99 ± 0.05
Dehydroascorbate	1 ± 0.11	0.7 ± 0.08
Tyramine	1 ± 0.08	1.02 ± 0.05
Ascorbate	1 ± 0.02	0.77 ± 0.07
myo-Inositol	1 ± 0.07	0.83 ± 0.1

Tyrosine	1 ± 0.13	1.53 ± 0.15
trans-Caffeate	1 ± 0.32	1.44 ± 0.06
Glucose-6-P	1 ± 0.06	1.1 ± 0.04
Tryptophan	1 ± 0.28	2.1 ± 0.51
Maltose	1 ± 0.10	0.92 ± 0.09
Trehalose	1 ± 0.09	0.95 ± 0.07
Glycerate	1 ± 0.16	0.72 ± 0.11
Malate	1 ± 0.09	1.33 ± 0.1
Threonate	1 ± 0.11	1.24 ± 0.09
Sucrose	1 ± 0.11	1.14 ± 0.06
Quinic acid, 3-caffeoyl-, cis-	1 ± 0.07	1.07 ± 0.07
Quinic acid, 3-caffeoyl-, trans-	1 ± 0.08	1.02 ± 0.06
Fructose	1 ± 0.10	0.56 ± 0.04
Glucose	1 ± 0.06	0.74 ± 0.07
Citrate	1 ± 0.09	2.28 ± 0.31

Transcript analyses

Total RNA was extracted from leaves with the Maxwell 16 LEV Plant RNA Kit (Promega) and quantified with a NanoDrop (Thermo Scientific) as described (Majer et al. 2017). For reverse transcription-quantitative PCR (RT-qPCR) analyses, the First Strand cDNA Synthesis Kit (Roche) was used to generate cDNA according to the manufacturer's instructions, with anchored oligo(dT) ${ }_{18}$ primers and $1 \mu \mathrm{~g}$ of total RNA. Relative mRNA abundance was evaluated via quantitative PCR using LightCycler 480 SYBR Green I Master Mix (Roche) on a LightCycler 480 real-time PCR system (Roche). Gene expression analysis of N. tabacum SAG12 gene was conducted using primers NtSAG12_qPCR-F (5'-A T T C A T G G G G C A G T A A A T G G-3') (SEQ ID NO 5) and NtSAG12_qPCR-R (5'-G A A G C G T C C A T A G C A A G T C C-3') (SEQ ID NO 6) and the L25 ribosomal protein gene for normalization (Schmidt and Delaney 2010) using primers NtRPL25_qPCR-F (5'-C A A G G C A C A G G C A G C T A A G G-3') (SEQ ID NO 7) and NtRPL25_qPCR-R (5'-A G G T C G G T G G A A T G T A A C T T T T G-3') (SEQ ID NO 8).

RNAseq service was performed by Sequentia Biotech SL (Barcelona, Spain). RNA concentration in each sample was assayed with a ND-1000 spectrophotometer (NanoDrop) and its quality assessed with the TapeStation 4200 (Agilent Technologies). Indexed libraries were prepared from $1 \mu \mathrm{~g} /$ ea purified RNA with TruSeq Stranded mRNA Sample Prep Kit (Illumina) according to the manufacturer's instructions. Libraries were quantified using the TapeStation 4200 and pooled such that each index-tagged sample was present in equimolar amounts, with final concentration of the pooled samples of 2 nM . The pooled samples were subject to cluster generation and sequencing using an Illumina NextSeq 500 System (Illumina) in a 2×75 paired end format at a final concentration of 1.8 pmol. The raw sequence files generated (.fastq files)
underwent quality analysis using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastgc/). Data analysis was performed with the online platform AIR (www.transcriptomics.cloud) (Vara et al. 2019) using the SolGenomics Network (https://solgenomics.net/) N. benthamiana 1.01 (Niben v101) reference genome.

Protein extraction and immunoblot analyses

Protein extraction, quantification, and immunoblot analyses were performed as described (Pulido et al. 2016) using anti-fibrillin (Simkin et al. 2007) or anti-PsbA serum (Agrisera). Thylakoid membrane isolation was performed as described (Russell et al. 1995).

Photosynthetic measurements

Photosynthetic efficiencies were assessed by measuring chlorophyll a fluorescence with a MAXI-PAM fluorometer (Heinz Walz GmbH). Leaves previously agroinfiltrated were placed under the camera and effective quantum yield ($\Delta \mathrm{F} / \mathrm{Fm}$ ') was measured as (Fm ' -Fs)/ Fm ', where Fm' and Fs are, respectively, the maximum and the minimum fluorescence of light exposed plants. The actinic light (AL) chosen was 21 PAR as the last value of light able to generate a response in the $p(c r t B)$ infiltrated part before having a null photosynthetic activity. Each value is the average result of three biological replicates and three different AOI for each replicate.

NPQ was also measured using the MAXI-PAM unit. All recordings were performed every day at the same time slot, but the order of the samples was randomized in order to reduce the bias related to the length of the NPQ protocol. Plants were dark-adapted for 30 min before measurement and then submitted to a continuous AL of 801 PAR for 10 min . After this period leaves were left recovering in darkness for 40 min . During the whole protocol, Fs and Fm' values were registered every 60 seconds. NPQ and its relative components $q E$, $q Z$ and q l were calculated as described (Coate et al. 2013) with some modifications. Briefly: NPQ was calculated as (Fm-Fm0)/Fm, The relative contributions of $q E, q Z$ and q lo NPQmax were estimated by monitoring NPQ relaxation kinetics in the dark: following the 10 min exposure to saturating light used to measure NPQ, leaves were left in darkness, and Fm0 was measured again after 10 and 40 min when the Ft value was appearing stable and not recovering anymore. The qE component of NPQ relaxes within 10 min of a leaf being placed in darkness such that NPQ persisting after 10 min in the dark consists of $q Z+q l$. The $q Z$ component of NPQ relaxes within tens of minutes so that NPQ persisting after 40 min in the dark consists of ql , which is either irreversible in the dark or requires several hours to relax. Consequently, (ql+qZ) was calculated as (Fm-Fm1)/Fm1, where Fm1 is the value of Fm measured after 10 min in the dark following NPQmax measurement. qZ was calculated as (Fm-Fm2)/Fm2, where Fm2 is the value of Fm measured after 40 min in the dark following measurement of NPQmax. qE was calculated
as NPQmax-(ql+qZ) and ql was calculated as (ql+qZ)-qZ.

For the calculation of the de-epoxidation state (DES), agroinfiltrated leaf areas were exposed for 10 min to a continuous AL of 801 PAR in the MAXI-PAM unit, sampled under the same light and immediately frozen before pigment extraction and quantification. The operation of the xanthophyll cycle, comprising the sequential de-epoxidation of the pigments violaxanthin (Vx) to antheraxanthin (Ax) and zeaxanthin $(Z x)$ was followed by calculating DES as $(Z x+0.5 \times A x) /(Z x+A x+V x)$, where $Z x, A x$ and $V x$ are the concentrations of the corresponding xanthophylls.

Respiration measurements

Before respiration measurements, N. benthamiana plants were placed in the dark for about 30 \min to avoid light-enhanced dark respiration. Four leaf discs of $3.8 \mathrm{~cm}^{2}$ each were harvested from leaf sections of two different plants infiltrated with the (p)crtB construct, weighted and placed into the respiration cuvette containing the respiration buffer (30 mM MES $\mathrm{pH} 6.2,0.2 \mathrm{mM}$ CaCl_{2}). Oxygen uptake rates were measured in darkness using a liquid-phase Clark-type oxygen electrode (Rank Brothers) at a constant temperature of $25^{\circ} \mathrm{C}$. Dry weights from leaf discs were determined after drying for 2 days at $60^{\circ} \mathrm{C}$.

Statistical analyses

Differentially expressed genes (DEGs) were identified by comparing crtB and GFP RNAseq datasets with the DESeq2 statistical method in the AIR platform. The resulting crtB/GFP list was filtered using cut-offs of FDR <0.05 and log2-transformed fold change, $\log 2(F C),>0.585$ for upregulated genes and <-0.599 for downregulated genes. Gene ontology enrichments were identified by the Parametric Analysis of Gene Set Enrichment (PAGE) function of the AgriGO v2.0 web-based tool (http://bioinfo.cau.edu.cn/agriGO/) after transforming the gene IDs to the Niben v04.4 annotation. For the comparison of different biological systems, we selected the significantly enriched gene ontologies from our N. benthamiana RNAseq experiment (p and q values <0.05) and compared their Z-score values with those obtained from the analysis of published RNAseq data of tomato fruit ripening and Arabidopsis leaf senescence. In particular, we used the RPM values of the Total Pericarp MG, LR and RR ripening stages (Shinozaki et al. 2018) and the FPKM values of the 16D and 30D senescence stages (Woo et al. 2016). DEGs resulting from LR/MG, RR/MG and 30D/16D comparisons were filtered as described above for N. benthamiana crtB/GFP.

Student's t-tests were used for statistical analyses in metabolite profiling and respiration analyses. All other statistical analyses were performed using GraphPad Prism 5.0a (GraphPad

Software).

Example 1. The bacterial crtB enzyme induces the transformation of chloroplasts into chromoplasts when delivered to leaf cells (chlorophyll containing cells).

The first step specific of the carotenoid pathway is the conversion of geranylgeranyl diphosphate (GGPP) to phytoene, catalyzed by phytoene synthase (referred to as PSY in plants and crtB in bacteria). Desaturation and isomerization reactions then transform the non-colored phytoene molecule into lycopene, a red carotenoid that is later metabolized to orange-colored beta-carotene (pro-vitamin A) and derived yellowish xanthophylls such as violaxanthin and neoxanthin in one branch of the pathway. A second branch converts lycopene into lutein, a different xanthophyll. In plants, these reactions take place only in plastids (RodriguezConcepcion et al. 2018). We previously found that the virus-mediated expression of a bacterial crtB gene in tobacco (Nicotiana tabacum), tomato (Solanum lycopersicum), Arabidopsis thaliana and many other plants caused leaf yellowing (Majer et al. 2017). This phenotype was deduced to result from a combination of virus-induced chlorosis and increased accumulation of colored carotenoids downstream of phytoene. Besides typical chloroplast carotenoids such as lutein, beta-carotene, violaxanthin and neoxanthin, leaves expressing crtB accumulated lycopene (Majer et al. 2017). Lycopene is abundant in chromoplasts-containing organs such as the ripe fruits of tomato, but it is not normally found in leaf chloroplasts, where it is readily converted into downstream carotenoids. To test whether plastid ultrastructure was changing to accommodate a new carotenoid profile, we performed transmission electron microscopy (TEM) analysis of tobacco leaves infected with crtB-producing viruses. TEM revealed plastids with remodeled internal structures of distinctive chromoplast morphology (Fig. 1A). These plastids were devoid of organized photosynthetic thylakoid membranes and grana but contained tightly packed membrane stacks and a proliferation of small electron-dense (i.e. lipid-containing) plastoglobules typically observed in chromoplasts, where they contribute to carotenoid storage and stability (Fraser et al. 2007; Egea et al. 2010; Jeffery et al. 2012; Lado et al. 2015). Very similar structures were observed in the chromoplast-like plastids that developed when the crtB gene was expressed in virus-infected Arabidopsis leaves (Fig. 1B) but also when transiently expressed in agroinfiltrated Nicotiana benthamiana leaves (Fig. 1C).

To further substantiate the identity of the plastids that developed in crtB-producing leaves, we analyzed the level of chloroplast and chromoplast marker proteins by immunoblot analysis. Virus-infected or Agrobacterium-mediated expression of crtB in N. tabacum or N. benthamiana leaves, respectively, resulted in increased levels of fibrillin (Fig. 1D), a protein associated to carotenoid accumulation and chromoplast development (Deruere et al. 1994; Singh and McNellis 2011). In contrast, the levels of D1 (also known as PsbA), a core component of photosystem II (PSII) crucial for the photosynthetic electron transport chain that is highly
downregulated during chloroplast to chromoplast differentiation (Barsan et al. 2012; Kahlau and Bock 2008), decreased in crtB-producing leaves (Fig. 1D). The main photosynthetic membrane lipid of chloroplasts, monogalactosyl diacylglycerol (MGDG), was also decreased in leaves containing chromoplast-like plastids (Fig. 9A).

Unlike that observed with viral vectors in N. tabacum (Majer et al. 2017), Agrobacteriummediated expression of crtB in N. benthamiana did not reduce chlorophyll levels compared to control leaf tissues agroinfiltrated with GFP (Fig. 9B). This result indicates that the chlorosis associated with virus infection is not necessary for chloroplasts to be transformed into chromoplasts-like plastids and supports the conclusion that the crtB-triggered leaf yellowing phenotype is not a senescence process, which typically leads to chlorophyll loss. TEM examination of dark-induced senescent N. benthamiana leaves confirmed that the plastids found in crtB-producing cells were completely different from the gerontoplasts with very large and electron-lucent plastoglobules that develop in senescent leaf cells (Fig. 1E). Low expression of the senescence marker gene SAG12 (Gan and Amasino 1995) in virus-infected crtB-expressing tobacco leaves further argued against the possibility of a senescence process (Fig. 9C). These results together suggest that expressing the bacterial crtB gene in leaf cells is sufficient to differentiate chloroplasts into plastids of chromoplast phenotype. Arabidopsis double mutants defective in OR chaperones (AtOR and AtOR-like) (Zhou et al. 2015) showed the characteristic yellow phenotype associated with carotenoid overaccumulation after infection with crtB-containing viral vectors (Fig. 9D). This result suggests that OR activity is not required for the crtB-mediated differentiation of leaf chloroplasts into chromoplasts.

Example 2. The crtB enzyme only triggers chloroplast-to-chromoplast differentiation when localized in plastids

Consistent with the lack of natural or predicted plastid-targeting signals in crtB, a C-terminal fusion to the green fluorescent protein (GFP) resulted in the localization of the crtB-GFP protein to the cytosol in N. benthamiana leaf cells (Majer et al. 2017). It could not be excluded, however, that part of the crtB-GFP protein could localize to chloroplasts. By using N. benthamiana line RDR6i, in which gene silencing is impaired (Schwach et al. 2005), we could confirm that the crtB-GFP protein was present in both cytosol and chloroplasts of agroinfiltrated cells (Fig. 2). When GFP was fused to the N -terminus of crtB, the resulting protein (GFP-crtB) was completely excluded from chloroplasts (Fig. 2). It is therefore likely that the bacterial crtB enzyme harbors a cryptic plastid-targeting signal in its N -terminus that becomes blocked and hence inactivated in the GFP-crtB protein. To unambiguously target crtB to the chloroplast, we next added the plastid-targeting sequence of the Arabidopsis MEP pathway enzyme HDS (Gas et al. 2009) to the crtB-GFP reporter. As expected, the resulting (p)crtB-GFP protein was only found in chloroplasts (Fig. 2). Agroinfiltrated leaf tissues either expressing crtB-GFP or the
plastidic (p)crtB-GFP version developed the characteristic yellow phenotype, whereas tissues expressing the cytosolic GFP-crtB version (renamed as (c)crtB) remained as green as the control expressing GFP (Fig. 3A) or a plastid-targeted version of GFP (Fig. 10). Analysis of carotenoid and chlorophyll contents showed identical profiles for leaf sections agroinfiltrated with GFP and (c)crtB and confirmed that, similary to crtB, (p)crtB was able to trigger carotenoid overaccumulation without changing chlorophyll levels (Fig. 3B). Despite unchanged chlorophyll contents, estimation of photosynthesis-related parameters such as effective quantum yield at PSII ($\phi P S I I$) and non-photochemical quenching (NPQ) showed that both crtB and (p)crtB, but not (c)crtB, had a dramatic impact on chloroplast function (Fig. 3C). The fact that plastid targeting of GFP did not cause any ϕ PSII defect (Fig. 10) confirms that disturbance of chloroplast photosynthesis is not caused by the accumulation of a foreign protein but specifically by crtB. TEM analyses confirmed that (p)crtB induced the differentiation of chromoplast-like plastids very similar to those found in leaf tissues expressing the untargeted crtB enzyme, whereas only chloroplasts were present in leaves producing either (c)crtB or GFP (Fig. 1D). These results confirm that crtB activity inside chloroplasts elicits a non-natural (i.e. artificial) differentiation of chromoplasts.

Example 3. Artificial chromoplast biogenesis induces profound changes in nuclear gene expression and primary cell metabolism

The vast majority of plastidial proteins are encoded by chromosomal genes (Jarvis and LopezJuez 2013). We therefore reasoned that the dramatic remodeling of plastidial ultrastructure associated with crtB-triggered chromoplast differentiation would require changes in nuclear gene expression. Transcriptomic (i.e., RNA-seq) analyses of N. benthamiana leaf sections at 5 days post-infiltration (dpi) with Agrobacterium cultures to produce (p)crtB or GFP showed that about 5.000 genes were differentially expressed in the two samples.

Such a massive reprogramming of gene expression included the upregulation of 3.183 genes as well as the downregulation of 1,803 genes. Gene Ontology (GO) term enrichment analyses (Table 7) showed overrepresentation of genes involved in protein folding and binding to RNA and ribosomes among those induced by (p)crtB (Fig. 5).

Table 5. Parametric Analysis of Gene Set Enrichment (PAGE) by AgriGO. p value $\leq 0,05$; q value $\leq 0,05$

Cellular Component

Nicotiana benthamiana						Tomato Fruit Ripening*		Senesc ence* *
crtB vs GFP						$\begin{gathered} \text { OR } \\ \text { vs } \\ \text { MG } \end{gathered}$	RR vs MG	$\begin{aligned} & \text { 30D vs } \\ & \text { 16D } \end{aligned}$
GO Accession	Description	number of genes	Z. score	p value	q value	Z. score	Zscore	Zscore
$\begin{aligned} & \text { GO:00056 } \\ & 23 \end{aligned}$	cell	349	3.5	0.00054	0.0013	-1.2	-0.25	0.22
$\begin{aligned} & \text { GO:00444 } \\ & 64 \end{aligned}$	cell part	349	3.5	0.00054	0.0013	-1.2	-0.25	0.22
$\begin{aligned} & \text { GO:00057 } \\ & 37 \\ & \hline \end{aligned}$	cytoplasm	138	5.9	4.7E-09	$\begin{array}{r} \hline 0.00000 \\ 015 \\ \hline \end{array}$	1.3	2.2	-1
$\begin{aligned} & \text { GO:00444 } \\ & 44 \end{aligned}$	cytoplasmic part	110	5.3	0.0000001	$\begin{array}{r} 0.00000 \\ 17 \\ \hline \end{array}$	1.8	3.1	-1.9
$\begin{array}{\|l\|} \hline \text { GO:00198 } \\ 98 \\ \hline \end{array}$	extrinsic to membrane	13	3.2	0.0012	0.0027	\#N/A	\#N/A	-0.41
$\begin{array}{\|l} \hline \text { GO:00056 } \\ 22 \\ \hline \end{array}$	intracellular	222	4.4	0.00001	$\begin{array}{r} \hline 0.00004 \\ 8 \end{array}$	-0.18	0.66	-0.19
$\begin{aligned} & \text { GO:00432 } \\ & 32 \end{aligned}$	intracellular non-membranebounded organelle	86	4.8	0.0000013	$\begin{array}{r} 0.00000 \\ 7 \end{array}$	0.72	1.1	-1.5
$\begin{aligned} & \text { GO:00432 } \\ & 29 \end{aligned}$	intracellular organelle	150	3.6	0.00033	0.00095	0.93	2.2	-0.7
$\begin{aligned} & \text { GO:00444 } \\ & 24 \\ & \hline \end{aligned}$	intracellular part	191	4.1	0.000045	0.00016	0.13	1.3	-0.19
$\begin{aligned} & \text { GO:00329 } \\ & 91 \\ & \hline \end{aligned}$	macromolecular complex	106	4.2	0.000026	0.0001	1	1.6	-0.74
$\begin{aligned} & \text { GO:00432 } \\ & 28 \end{aligned}$	non-membranebounded organelle	86	4.8	0.0000013	$\begin{array}{r} 0.00000 \\ 7 \end{array}$	0.72	1.1	-1.5
$\begin{aligned} & \text { GO:00432 } \\ & 26 \end{aligned}$	organelle	150	3.6	0.00033	0.00095	0.93	2.2	-0.7
$\begin{array}{\|l\|} \hline \text { GO:00305 } \\ 29 \\ \hline \end{array}$	ribonucleoprote in complex	81	5.2	$\begin{array}{r} \hline 0.0000002 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.00000 \\ 28 \\ \hline \end{array}$	2.1	2.3	-2.2
$\begin{aligned} & \text { GO:00058 } \\ & 40 \\ & \hline \end{aligned}$	ribosome	76	5.1	$\begin{array}{r} \hline 0.0000003 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.00000 \\ 32 \\ \hline \end{array}$	2.1	2.2	-3.6

An enrichment of genes with roles in transmembrane transport, cell signaling (protein phosphorylation, calcium binding), and nuclear gene expression (transcription factors) was observed among those repressed when chromoplast biogenesis was artificially induced in N. benthamiana leaves (Fig. 4). Consistent with our previous conclusions, this profile was strikingly similar to that of ripening tomato fruits (where chromoplasts naturally differentiate from
chloroplasts) but very different from that of senescent Arabidopsis leaves (Fig. 4). An important difference, however, is that crtB-triggered chromoplastogenesis hardly involved changes in the expression of genes with roles in carotenoid biosynthesis, degradation, or storage (Fig. 11 and Table 8).

5 Table 6. Expression values (log2FC) of carotenoid-related genes.

Nicotiana benthamiana			Tomato Fruit Ripening*			Senescence**	
Annotation	Gene ID	crtB vs GFP	Gene ID	OR vs MG	$\begin{aligned} & \text { RR vs } \\ & \text { MG } \end{aligned}$	Gene ID	$\begin{aligned} & \text { 30D vs } \\ & \text { 16D } \end{aligned}$
DXS1-1	$\begin{aligned} & \text { Niben101Scf00246g } \\ & 04005 \end{aligned}$	$\begin{array}{r} 0.23021 \\ 538 \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 67890 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.145145 \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 2.453047 \\ 71 \\ \hline \end{array}$	AT4G155 60.1	$\begin{array}{r} 3.9419 \\ 0625 \end{array}$
DXS1-2	Niben101Scf01386g 02004	$\begin{array}{r} 0.30635 \\ 574 \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 67890 \end{aligned}$	$\begin{array}{r} 2.145145 \\ 06 \end{array}$	$\begin{array}{r} 2.453047 \\ 71 \end{array}$	AT4G155 60.1	$\begin{array}{r} 3.9419 \\ 0625 \end{array}$
DXS2-2	$\begin{aligned} & \text { Niben101Scf02399g } \\ & 01011 \end{aligned}$	$\begin{array}{r} 0.41958 \\ 65 \end{array}$	$\begin{aligned} & \text { Solyc11g0 } \\ & 10850 \end{aligned}$	$\begin{array}{r} 5.810214 \\ 58 \end{array}$	$\begin{array}{r} 6.225252 \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G155 } \\ & 60.1 \end{aligned}$	$\begin{array}{r} 3.9419 \\ 0625 \end{array}$
DXS3-1	$\begin{aligned} & \text { Niben101Scf09310g } \\ & 02012 \end{aligned}$	$\begin{array}{r} 0.02524 \\ 454 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 28900 \end{aligned}$	$\begin{array}{r} 0.265316 \\ 17 \\ \hline \end{array}$	$\begin{array}{r} 0.575228 \\ 91 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G155 } \\ & 60.1 \end{aligned}$	$\begin{array}{r} 3.9419 \\ 0625 \\ \hline \end{array}$
DXS3-2	$\begin{aligned} & \text { Niben101Scf00155g } \\ & 00008 \end{aligned}$	$\begin{array}{r} 0.03477 \\ 633 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 28900 \end{aligned}$	$\begin{array}{r} 0.265316 \\ 17 \end{array}$	$\begin{array}{r} 0.575228 \\ 91 \end{array}$	AT4G155 60.1	$\begin{array}{r} 3.9419 \\ 0625 \\ \hline \end{array}$
DXS4-1	$\begin{aligned} & \text { Niben101Scf01396g } \\ & 03001 \end{aligned}$	$\begin{array}{r} 0.33727 \\ 492 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 66950 \\ & \hline \end{aligned}$	\#N/A	\#N/A	$\begin{aligned} & \text { AT4G155 } \\ & 60.1 \end{aligned}$	$\begin{array}{r} 3.9419 \\ 0625 \end{array}$
DXS4-2	$\begin{aligned} & \text { Niben101Scf06579g } \\ & 01017 \end{aligned}$	$\begin{array}{r} 0.40550 \\ 005 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc08go } \\ & 66950 \end{aligned}$	\#N/A	\#N/A	AT4G155 60.1	$\begin{array}{r} 3.9419 \\ 0625 \\ \hline \end{array}$
DXR1	Niben101Scf10366g 00014	$\begin{array}{r} 0.08890 \\ 313 \end{array}$	$\begin{aligned} & \text { Solyc03g1 } \\ & 14340 \end{aligned}$	$\begin{array}{r} 1.033117 \\ 23 \end{array}$	$\begin{array}{r} 1.265970 \\ 76 \end{array}$	$\begin{aligned} & \text { AT5G627 } \\ & 90.2 \end{aligned}$	$\begin{array}{r} 0.2768 \\ 1825 \end{array}$
DXR2	$\begin{aligned} & \text { Niben101Scf01764g } \\ & 03022 \end{aligned}$	$\begin{array}{r} 0.17568 \\ 333 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc03g1 } \\ & 14340 \end{aligned}$	$\begin{array}{r} 1.033117 \\ 23 \end{array}$	$\begin{array}{r} 1.265970 \\ 76 \end{array}$	$\begin{aligned} & \text { AT5G627 } \\ & 90.2 \end{aligned}$	$\begin{array}{r} 0.2768 \\ 1825 \end{array}$
MCT1	$\begin{aligned} & \text { Niben101Scf06862g } \\ & 01003 \end{aligned}$	$\begin{array}{r} 0.50133 \\ 999 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g1 } \\ & 02820 \end{aligned}$	$\begin{array}{r} 0.615013 \\ 56 \\ \hline \end{array}$	$\begin{array}{r} 0.177442 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G025 } \\ & 00.1 \end{aligned}$	$\begin{array}{r} 2.9254 \\ 3533 \end{array}$
MCT2	$\begin{aligned} & \text { Niben101Scf00705g } \\ & 01003 \end{aligned}$	$\begin{array}{r} 1.17192 \\ 242 \end{array}$	$\begin{aligned} & \text { Solyc01g1 } \\ & 02820 \end{aligned}$	$\begin{array}{r} 0.615013 \\ 56 \\ \hline \end{array}$	$\begin{array}{r} 0.177442 \\ 45 \end{array}$	$\begin{aligned} & \text { AT2G025 } \\ & 00.1 \end{aligned}$	$\begin{array}{r} 2.9254 \\ 3533 \\ \hline \end{array}$
CMK	$\begin{aligned} & \text { Niben101Scf04558g } \\ & 02010 \end{aligned}$	$\begin{array}{r} 0.94156 \\ 008 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 09010 \end{aligned}$	$\begin{array}{r} 2.464270 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 2.507223 \\ 81 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G269 } \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.7855 \\ 631 \\ \hline \end{array}$
MDS1	$\begin{aligned} & \text { Niben101Scf06180g } \\ & 00014 \end{aligned}$	$\begin{array}{r} 0.17336 \\ 602 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 81570 \end{aligned}$	$\begin{array}{r} 0.516297 \\ 98 \end{array}$	$\begin{array}{r} 0.637622 \\ 52 \end{array}$	$\begin{aligned} & \text { AT1G639 } \\ & 70.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.0858 \\ 9359 \end{array}$
MDS2	$\begin{aligned} & \text { Niben101Scf02334g } \\ & 01022 \end{aligned}$	$\begin{array}{r} 0.70644 \\ 162 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 81570 \end{aligned}$	$\begin{array}{r} 0.516297 \\ 98 \end{array}$	$\begin{array}{r} 0.637622 \\ 52 \end{array}$	$\begin{aligned} & \text { AT1G639 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} 1.0858 \\ 9359 \end{array}$
HDS1	Niben101Scf0926 $4 \mathrm{~g} 00009$	$\begin{array}{r} 0.20534 \\ 44 \end{array}$	$\begin{aligned} & \text { Solyc11g0 } \\ & 69380 \end{aligned}$	$\begin{array}{r} 0.64105 \\ 656 \\ \hline \end{array}$	$\begin{array}{r} 0.76915 \\ 373 \\ \hline \end{array}$	AT5G606 00.1	$\begin{array}{r} 1.0296 \\ 8391 \end{array}$

HDS2	$\begin{aligned} & \text { Niben101Scf03422g } \\ & 02008 \end{aligned}$	0.28982 467	$\begin{aligned} & \text { Solyc11g0 } \\ & 69380 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.641056 \\ 56 \\ \hline \end{array}$	$\begin{array}{r} 0.769153 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G606 } \\ & 00.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.0296 \\ 8391 \\ \hline \end{array}$
HDS3	$\begin{aligned} & \text { Niben101Scf11366g } \\ & 02020 \end{aligned}$	$\begin{array}{r} 0.09747 \\ 509 \end{array}$	$\begin{aligned} & \text { Solyc11g0 } \\ & 69380 \end{aligned}$	$\begin{array}{r} 0.641056 \\ 56 \end{array}$	$\begin{array}{r} 0.769153 \\ 73 \end{array}$	AT5G606 00.1	$\begin{array}{r} 1.0296 \\ 8391 \end{array}$
HDS4	$\begin{aligned} & \text { Niben101Scf00555g } \\ & 00015 \end{aligned}$	$\begin{array}{r} 0.13430 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc11g0 } \\ & 69380 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.641056 \\ 56 \\ \hline \end{array}$	$\begin{array}{r} 0.769153 \\ 73 \\ \hline \end{array}$	AT5G606 00.1	$\begin{array}{r} 1.0296 \\ 8391 \\ \hline \end{array}$
HDR1	$\begin{aligned} & \text { Niben101Scf33689g } \\ & 00006 \end{aligned}$	$\begin{array}{r} 0.19495 \\ 312 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g1 } \\ & 09300 \end{aligned}$	$\begin{array}{r} 1.094314 \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 1.580330 \\ 83 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G343 } \\ & 50.1 \end{aligned}$	$\begin{array}{r} 0.0017 \\ 7132 \\ \hline \end{array}$
HDR2	$\begin{aligned} & \text { Niben101Scf10575g } \\ & 00008 \end{aligned}$	$\begin{array}{r} 0.06462 \\ 816 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g1 } \\ & 09300 \end{aligned}$	$\begin{array}{r} 1.094314 \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 1.580330 \\ 83 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G343 } \\ & 50.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.0017 \\ 7132 \\ \hline \end{array}$
IDI1	$\begin{aligned} & \text { Niben101Scf01688g } \\ & 02006 \end{aligned}$	$\begin{array}{r} 0.29559 \\ 168 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 75390 \end{aligned}$	$\begin{array}{r} 0.340817 \\ 97 \end{array}$	$\begin{array}{r} 0.342335 \\ 85 \end{array}$	$\begin{aligned} & \text { AT1G796 } \\ & 90.2 \end{aligned}$	\#N/A
IDI2-1	$\begin{aligned} & \text { Niben101Scf05848g } \\ & 05012 \end{aligned}$	$\begin{array}{r} 0.01053 \\ 487 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 55760 \end{aligned}$	$\begin{array}{r} 2.744816 \\ 04 \end{array}$	$\begin{array}{r} 3.116986 \\ 89 \end{array}$	$\begin{aligned} & \text { AT5G164 } \\ & 40.1 \end{aligned}$	$\begin{array}{r} 0.6959 \\ 7184 \\ \hline \end{array}$
1D12-2	$\begin{aligned} & \text { Niben101Scf02499g } \\ & 03007 \end{aligned}$	$\begin{array}{r} 0.08025 \\ 426 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 55760 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.744816 \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 3.116986 \\ 89 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G164 } \\ & 40.1 \end{aligned}$	$\begin{array}{r} 0.6959 \\ 7184 \\ \hline \end{array}$
IDI2-3	$\begin{aligned} & \text { Niben101Scf17839g } \\ & 02005 \end{aligned}$	$\begin{array}{r} 0.05378 \\ 046 \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 55760 \end{aligned}$	$\begin{array}{r} 2.744816 \\ 04 \\ \hline \end{array}$	$\begin{array}{r} 3.116986 \\ 89 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G164 } \\ & 40.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.6959 \\ 7184 \\ \hline \end{array}$
IDI3	$\begin{aligned} & \text { Niben101Scf01514g } \\ & 04018 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.42803 \\ 591 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 56390 \\ & \hline \end{aligned}$	1.64634	$\begin{array}{r} \hline 1.813203 \\ 73 \end{array}$	$\begin{aligned} & \text { AT3G027 } \\ & 80.1 \end{aligned}$	$\begin{array}{r} \hline 0.0718 \\ 326 \\ \hline \end{array}$
GGDS1	$\begin{aligned} & \text { Niben101Scf10468g } \\ & 00010 \end{aligned}$	$\begin{array}{r} 1.15307 \\ 836 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc11g0 } \\ & 11240 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.488286 \\ 48 \end{array}$	$\begin{array}{r} 1.903323 \\ 98 \end{array}$	$\begin{aligned} & \text { AT1G4953 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1.7565 \\ 33 \\ \hline \end{array}$
GGDS2-1	$\begin{aligned} & \text { Niben101Scf00929g } \\ & 03016 \end{aligned}$	$\begin{array}{r} 0.90603 \\ 743 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 79960 \end{aligned}$	5.640405 41	5.335891 99	$\begin{aligned} & \text { AT2G1862 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1.2826 \\ 5092 \end{array}$
GGDS2-2	$\begin{aligned} & \text { Niben101Scf03110g } \\ & 02006 \end{aligned}$	$\begin{array}{r} 0.42144 \\ 244 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 79960 \end{aligned}$	$\begin{array}{r} 5.640405 \\ 41 \end{array}$	$\begin{array}{r} 5.335891 \\ 99 \end{array}$	AT2G1862 0.1	$\begin{array}{r} 1.2826 \\ 5092 \end{array}$
GGDS3-1	$\begin{aligned} & \text { Niben101Scf13710g } \\ & 03002 \end{aligned}$	$\begin{array}{r} 0.04545 \\ 295 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 85700 \end{aligned}$	$\begin{array}{r} 1.885708 \\ 5 \end{array}$	$\begin{array}{r} 1.964558 \\ 37 \\ \hline \end{array}$	AT2G1864 0.1	0
GGDS3-2	$\begin{aligned} & \text { Niben101Scf02772g } \\ & 01013 \end{aligned}$	$\begin{array}{r} 0.31942 \\ 066 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 85700 \end{aligned}$	$\begin{array}{r} 1.885708 \\ 5 \end{array}$	$\begin{array}{r} 1.964558 \\ 37 \end{array}$	AT2G1864 0.1	0
GGDS4	$\begin{aligned} & \text { Niben101Scf1371 } \\ & \text { Og03011 } \end{aligned}$	$\begin{array}{r} 0.10963 \\ 643 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 85710 \end{aligned}$	$\begin{array}{r} 1.191362 \\ 17 \end{array}$	$\begin{array}{r} 1.317082 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G1864 } \\ & 0.1 \end{aligned}$	0
GGDS6-1	$\begin{aligned} & \text { Niben101Scf02814g } \\ & 03006 \end{aligned}$	$\begin{array}{r} 0.12431 \\ 639 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc09g0 } \\ & 08920 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 0.118946 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.111288 \\ 46 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { AT3G1453 } \\ & 0.1 \end{aligned}$	0
GGDS6-2	$\begin{aligned} & \text { Niben101Scf13146g } \\ & 00006 \end{aligned}$	$\begin{array}{r} 0.06426 \\ 651 \end{array}$	$\begin{aligned} & \text { Solyc09g0 } \\ & 08920 \end{aligned}$	$\begin{array}{r} \hline 0.118946 \\ 8 \end{array}$	$\begin{array}{r} 0.111288 \\ 46 \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \end{aligned}$	0
GGDS7	$\begin{aligned} & \text { Niben101Scf04945g } \\ & 00007 \end{aligned}$	$\begin{array}{r} 0.37429 \\ 326 \end{array}$	$\begin{aligned} & \text { Solyc07g0 } \\ & 61990 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.633917 \\ 01 \end{array}$	$\begin{array}{r} 1.683199 \\ 75 \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \end{aligned}$	0
GGDS8-1	$\begin{aligned} & \text { Niben101Scf02387g } \\ & 03017 \end{aligned}$	$\begin{array}{r} 0.69205 \\ 585 \end{array}$	$\begin{aligned} & \text { Solyc07g0 } \\ & 64660 \end{aligned}$	5	$\begin{array}{r} 4.772589 \\ 5 \end{array}$	AT3G1453 0.1	0
GGDS8-2	$\begin{aligned} & \text { Niben101Scf02387g } \\ & 03005 \end{aligned}$	0.01732	$\begin{aligned} & \text { Solyc07g0 } \\ & 64660 \end{aligned}$	5	$\begin{array}{r} 4.772589 \\ 5 \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \end{aligned}$	0

		011					
GGDS8-3	$\begin{aligned} & \text { Niben101Scf01269g } \\ & 12011 \end{aligned}$	$\begin{array}{r} 1.34150 \\ 869 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc07g0 } \\ & 64660 \\ & \hline \end{aligned}$	5	$\begin{array}{r} 4.772589 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \\ & \hline \end{aligned}$	0
GGDS9-1	$\begin{aligned} & \text { Niben101Scf17922g } \\ & 01005 \end{aligned}$	$\begin{array}{r} 0.11277 \\ 801 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 23470 \end{aligned}$	$\begin{array}{r} 0.488288 \\ 5 \end{array}$	$\begin{array}{r} \hline 0.638263 \\ 47 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \end{aligned}$	0
GGDS9-2	$\begin{aligned} & \text { Niben101Scf00885g } \\ & 19001 \end{aligned}$	$\begin{array}{r} 0.04867 \\ 6 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 23470 \end{aligned}$	$\begin{array}{r} 0.488288 \\ 5 \end{array}$	$\begin{array}{r} 0.638263 \\ 47 \end{array}$	$\begin{aligned} & \text { AT3G1453 } \\ & 0.1 \\ & \hline \end{aligned}$	0
GGDS9-3	$\begin{aligned} & \text { Niben101Scf04212g } \\ & 00013 \end{aligned}$	$\begin{array}{r} 0.00425 \\ 366 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Solyc08g0 } \\ & 23470 \end{aligned}$	$\begin{array}{r} \hline 0.488288 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.638263 \\ 47 \\ \hline \end{array}$	AT3G1453 0.1	0
Or1-1	$\begin{aligned} & \text { Niben101Scf00163g } \\ & 13002 \end{aligned}$	$\begin{array}{r} 0.18243 \\ 089 \end{array}$	$\begin{aligned} & \text { Solyc03g0 } \\ & 93830 \end{aligned}$	$\begin{array}{r} \hline 0.952778 \\ 44 \end{array}$	$\begin{array}{r} 1.307886 \\ 17 \end{array}$	$\begin{aligned} & \text { AT5G616 } \\ & 70.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.6573 \\ 3593 \end{array}$
Or1-2	Niben101Scf09760g 01005	$\begin{array}{r} 0.04253 \\ 42 \end{array}$	$\begin{aligned} & \text { Solyc03g0 } \\ & 93830 \end{aligned}$	$\begin{array}{r} 0.952778 \\ 44 \\ \hline \end{array}$	$\begin{array}{r} 1.307886 \\ 17 \end{array}$	AT5G616 70.1	$\begin{array}{r} 0.6573 \\ 3593 \end{array}$
Or2	$\begin{aligned} & \text { Niben101Scf09089g } \\ & 01027 \end{aligned}$	$\begin{array}{r} 1.04580 \\ 03 \end{array}$	$\begin{aligned} & \hline \text { Solyc09g0 } \\ & 10110 \end{aligned}$	$\begin{array}{r} 1.862116 \\ 31 \end{array}$	$\begin{array}{r} \hline 2.114621 \\ 83 \end{array}$	$\begin{aligned} & \text { AT5G061 } \\ & 30.2 \end{aligned}$	$\begin{array}{r} \hline 0.1796 \\ 6523 \end{array}$
PSY1-1	$\begin{aligned} & \text { Niben101Scf01959g } \\ & 00004 \end{aligned}$	$\begin{array}{r} 0.30620 \\ 938 \end{array}$	$\begin{aligned} & \text { Solyc03g0 } \\ & 31860 \end{aligned}$	$\begin{array}{r} 6.648712 \\ 92 \\ \hline \end{array}$	$\begin{array}{r} 6.778434 \\ 36 \end{array}$	$\begin{aligned} & \text { AT5G172 } \\ & 30.3 \end{aligned}$	$\begin{array}{r} 0.7016 \\ 2282 \end{array}$
PSY1-2	$\begin{aligned} & \text { Niben101Scf04020g } \\ & 00002 \end{aligned}$	$\begin{array}{r} 0.00153 \\ 691 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc03g0 } \\ & 31860 \end{aligned}$	$\begin{array}{r} 6.648712 \\ 92 \\ \hline \end{array}$	$\begin{array}{r} 6.778434 \\ 36 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G172 } \\ & 30.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.7016 \\ 2282 \\ \hline \end{array}$
PSY2	$\begin{aligned} & \text { Niben101Scf07253g } \\ & 01008 \end{aligned}$	$\begin{array}{r} 0.04575 \\ 261 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 81330 \end{aligned}$	$\begin{array}{r} 0.262218 \\ 62 \end{array}$	$\begin{array}{r} 0.767265 \\ 95 \end{array}$	$\begin{aligned} & \text { AT5G172 } \\ & 30.3 \end{aligned}$	$\begin{array}{r} 0.7016 \\ 2282 \end{array}$
PDS 1	$\begin{aligned} & \text { Niben101Scf01283g } \\ & 02002 \end{aligned}$	$\begin{array}{r} 0.62511 \\ 822 \end{array}$	$\begin{aligned} & \text { Solyc03g1 } \\ & 23760 \end{aligned}$	$\begin{array}{r} 1.443454 \\ 64 \end{array}$	$\begin{array}{r} 1.615380 \\ 33 \end{array}$	$\begin{aligned} & \text { AT4G142 } \\ & 10.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.5704 \\ 2869 \end{array}$
PDS2	$\begin{aligned} & \text { Niben101Scf1470 } \\ & 8 \mathrm{~g} 00023 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.97221 \\ 568 \end{array}$	$\begin{aligned} & \text { Solyc03g1 } \\ & 23760 \end{aligned}$	$\begin{array}{r} 1.443454 \\ 64 \end{array}$	$\begin{array}{r} 1.615380 \\ 33 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G142 } \\ & 10.1 \end{aligned}$	$\begin{array}{r} 0.5704 \\ 2869 \end{array}$
ZDS1	$\begin{aligned} & \text { Niben101Scf02804g } \\ & 00014 \end{aligned}$	$\begin{array}{r} 0.65362 \\ 041 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 97810 \end{aligned}$	$\begin{array}{r} \hline 1.669196 \\ 61 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.921258 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G048 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} \hline 0.4033 \\ 6004 \\ \hline \end{array}$
ZDS2	$\begin{aligned} & \text { Niben101Scf11383g } \\ & 02015 \end{aligned}$	$\begin{array}{r} 0.62928 \\ 87 \end{array}$	$\begin{aligned} & \hline \text { Solyc01g0 } \\ & 97810 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.669196 \\ 61 \end{array}$	$\begin{array}{r} \hline 1.921258 \\ 43 \end{array}$	$\begin{aligned} & \text { AT3G048 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} \hline 0.4033 \\ 6004 \end{array}$
ZDS3	$\begin{aligned} & \text { Niben101Ctg11118g } \\ & 00001 \end{aligned}$	$\begin{array}{r} 1.38562 \\ 855 \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 97810 \end{aligned}$	$\begin{array}{r} 1.669196 \\ 61 \end{array}$	$\begin{array}{r} 1.921258 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G048 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} 0.4033 \\ 6004 \end{array}$
Z-ISO1	$\begin{aligned} & \text { Niben101Scf12372g } \\ & 00005 \end{aligned}$	$\begin{array}{r} 0.66317 \\ 765 \end{array}$	$\begin{aligned} & \text { Solyc12g0 } \\ & 98710 \end{aligned}$	$\begin{array}{r} 7.487724 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 7.458206 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G108 } \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.1789 \\ 2053 \\ \hline \end{array}$
Z-ISO2	$\begin{aligned} & \text { Niben101Scf05548g } \\ & 02009 \end{aligned}$	$\begin{array}{r} 0.59849 \\ 54 \end{array}$	$\begin{aligned} & \text { Solyc12g0 } \\ & 98710 \end{aligned}$	$\begin{array}{r} 7.487724 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 7.458206 \\ 58 \\ \hline \end{array}$	AT1G108 30.1	$\begin{array}{r} 0.1789 \\ 2053 \end{array}$
CRTISO1-1	$\begin{aligned} & \text { Niben101Scf12589g } \\ & 00002 \end{aligned}$	$\begin{array}{r} 0.42545 \\ 455 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 81650 \end{aligned}$	$\begin{array}{r} 2.280310 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 2.444004 \\ 88 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G068 } \\ & 20.1 \end{aligned}$	$\begin{array}{r} 0.5888 \\ 728 \end{array}$
CRTISO1-2	$\begin{aligned} & \text { Niben101Scf00911g } \\ & 02014 \end{aligned}$	$\begin{array}{r} 0.39973 \\ 573 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 81650 \end{aligned}$	$\begin{array}{r} 2.280310 \\ 15 \end{array}$	2.444004 88	AT1G068 20.1	$\begin{array}{r} 0.5888 \\ 728 \end{array}$
CRTISO1-3	$\begin{aligned} & \text { Niben101Scf02268g } \\ & 02003 \end{aligned}$	$\begin{array}{r} 0.08126 \\ 83 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 81650 \end{aligned}$	$\begin{array}{r} 2.280310 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 2.444004 \\ 88 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G068 } \\ & 20.1 \end{aligned}$	$\begin{array}{r} 0.5888 \\ 728 \\ \hline \end{array}$
CRTISO2-1	$\begin{aligned} & \text { Niben101Scf07508g } \\ & 08001 \end{aligned}$	$\begin{array}{r} 1.38828 \\ 085 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Solyc05g0 } \\ & 10180 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 0.009502 \\ 57 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.077932 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G577 } \\ & 70.1 \\ & \hline \end{aligned}$	2.7667

							3334
CRTISO2-2	$\begin{aligned} & \text { Niben101Scf07231g } \\ & 07005 \end{aligned}$	$\begin{array}{r} 1.11313 \\ 276 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 10180 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.009502 \\ 57 \\ \hline \end{array}$	$\begin{array}{r} 0.077932 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G577 } \\ & 70.1 \end{aligned}$	$\begin{array}{r}2.7667 \\ 3334 \\ \hline\end{array}$
CRTISO2-3	$\begin{aligned} & \text { Niben101Scf07231g } \\ & 07006 \end{aligned}$	$\begin{array}{r} 0.91286 \\ 08 \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 10180 \end{aligned}$	$\begin{array}{r} 0.009502 \\ 57 \end{array}$	$\begin{array}{r} 0.077932 \\ 55 \end{array}$	$\begin{aligned} & \text { AT1G577 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} 2.7667 \\ 3334 \end{array}$
LCYB-B1-1	$\begin{aligned} & \text { Niben101Scf06266g } \\ & 00002 \end{aligned}$	$\begin{array}{r} 0.60626 \\ 776 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 40190 \end{aligned}$	$\begin{array}{r} 1.235013 \\ 59 \\ \hline \end{array}$	$\begin{array}{r} 0.669656 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G102 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 1.3174 \\ 6519 \\ \hline \end{array}$
LCYB-B1-2	$\begin{aligned} & \text { Niben101Scf01750g } \\ & 14007 \end{aligned}$	$\begin{array}{r} 0.20927 \\ 216 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 40190 \end{aligned}$	$\begin{array}{r} 1.235013 \\ 59 \end{array}$	$\begin{array}{r} 0.669656 \\ 26 \end{array}$	$\begin{aligned} & \text { AT3G102 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 1.3174 \\ 6519 \\ \hline \end{array}$
LCYB-B1-3	$\begin{aligned} & \text { Niben101Scf08515g } \\ & 00010 \end{aligned}$	$\begin{array}{r} 0.45273 \\ 986 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 40190 \end{aligned}$	$\begin{array}{r} 1.235013 \\ 59 \end{array}$	$\begin{array}{r} 0.669656 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G102 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 1.3174 \\ 6519 \end{array}$
LCYB-B1-4	$\begin{aligned} & \text { Niben101Scf00980g } \\ & 07019 \end{aligned}$	$\begin{array}{r} 0.52525 \\ 296 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 40190 \end{aligned}$	$\begin{array}{r} 1.235013 \\ 59 \\ \hline \end{array}$	$\begin{array}{r} 0.669656 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G102 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 1.3174 \\ 6519 \\ \hline \end{array}$
LCYB-B1-5	$\begin{aligned} & \text { Niben101Scf00980g } \\ & 07018 \end{aligned}$	$\begin{array}{r} 0.64179 \\ 701 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 40190 \end{aligned}$	$\begin{array}{r} 1.235013 \\ 59 \\ \hline \end{array}$	$\begin{array}{r} 0.669656 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G102 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 1.3174 \\ 6519 \\ \hline \end{array}$
$\begin{aligned} & \text { LCY-B2-1 } \\ & \text { (CYC-B) } \end{aligned}$	$\begin{aligned} & \text { Niben101Scf06266g } \\ & 00002 \end{aligned}$	$\begin{array}{r} 0.60626 \\ 776 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 79480 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.118737 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2.746768 \\ 77 \end{array}$	$\begin{aligned} & \text { AT2G3264 } \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.1633 \\ 6401 \end{array}$
$\begin{aligned} & \text { LCY-B2- } \\ & \text { 2(CYC-B) } \end{aligned}$	Niben101Scf00980g 07019	$\begin{array}{r} 0.52525 \\ 296 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 79480 \end{aligned}$	$\begin{array}{r} 3.118737 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2.746768 \\ 77 \end{array}$	$\begin{aligned} & \text { AT2G3264 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 5.1633 \\ 6401 \end{array}$
$\begin{aligned} & \text { LCY-B2-3 } \\ & \text { (CYC-B) } \end{aligned}$	$\begin{aligned} & \text { Niben101Scf01750g } \\ & 14007 \end{aligned}$	$\begin{array}{r} 0.20927 \\ 216 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 79480 \end{aligned}$	$\begin{array}{r} 3.118737 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2.746768 \\ 77 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G3264 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 5.1633 \\ 6401 \end{array}$
LCY-B2-4 (CYC-B)	$\begin{aligned} & \text { Niben101Scf08515g } \\ & 00010 \end{aligned}$	$\begin{array}{r} 0.45273 \\ 986 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 79480 \end{aligned}$	$\begin{array}{r} 3.118737 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2.746768 \\ 77 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G3264 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 5.1633 \\ 6401 \end{array}$
LCY-B2-5 (CYC-B)	$\begin{aligned} & \text { Niben101Scf00980g } \\ & 07018 \end{aligned}$	$\begin{array}{r} 0.64179 \\ 701 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 79480 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.118737 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2.746768 \\ 77 \\ \hline \end{array}$	$\begin{aligned} & \text { AT2G3264 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 5.1633 \\ 6401 \end{array}$
LCYE1	$\begin{aligned} & \text { Niben101Scf18343g } \\ & 00013 \end{aligned}$	$\begin{array}{r} 0.22559 \\ 43 \end{array}$	$\begin{aligned} & \text { Solyc12g0 } \\ & 08980 \end{aligned}$	4.427789	$\begin{array}{r} 4.917594 \\ 27 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G570 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 3.3297 \\ 743 \end{array}$
LCYE2	$\begin{aligned} & \text { Niben101Ctg15093g } \\ & 00004 \end{aligned}$	$\begin{array}{r} 0.50004 \\ 656 \end{array}$	$\begin{aligned} & \text { Solyc12g0 } \\ & 08980 \end{aligned}$	4.427789	$\begin{array}{r} 4.917594 \\ 27 \end{array}$	$\begin{aligned} & \text { AT5G570 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 3.3297 \\ 743 \\ \hline \end{array}$
BCH1	$\begin{aligned} & \text { Niben101Scf01232g } \\ & 03010 \end{aligned}$	$\begin{array}{r} 0.94805 \\ 179 \end{array}$	$\begin{aligned} & \hline \text { Solyc06g0 } \\ & 36260 \end{aligned}$	$\begin{array}{r} \hline 0.580004 \\ 08 \end{array}$	$\begin{array}{r} \hline 1.150531 \\ 56 \end{array}$	$\begin{aligned} & \text { AT4G257 } \\ & 00.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.2624 \\ 7837 \end{array}$
BCH2-1	$\begin{aligned} & \text { Niben101Scf02285g } \\ & 01028 \end{aligned}$	0.97701 909	$\begin{aligned} & \text { Solyc03g0 } \\ & 07960 \end{aligned}$	$\begin{array}{r} 2.047894 \\ 46 \end{array}$	$\begin{array}{r} 2.366297 \\ 48 \end{array}$	$\begin{aligned} & \text { AT5G525 } \\ & 70.1 \end{aligned}$	$\begin{array}{r} 1.1460 \\ 5592 \end{array}$
BCH2-2	$\begin{aligned} & \text { Niben101Scf03114g } \\ & 06003 \end{aligned}$	$\begin{array}{r} 0.47216 \\ 736 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc03g0 } \\ & 07960 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.047894 \\ 46 \\ \hline \end{array}$	$\begin{array}{r} 2.366297 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G525 } \\ & 70.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.1460 \\ 5592 \\ \hline \end{array}$
CYP97A3- 1	$\begin{aligned} & \text { Niben101Scf05316g } \\ & 03010 \end{aligned}$	$\begin{array}{r} 0.57663 \\ 486 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 51190 \end{aligned}$	$\begin{array}{r} 0.348978 \\ 53 \end{array}$	$\begin{array}{r} 0.533185 \\ 52 \end{array}$	$\begin{aligned} & \text { AT1G318 } \\ & 00.1 \end{aligned}$	$\begin{array}{r} 3.0695 \\ 1393 \end{array}$
CYP97A3- 2	$\begin{aligned} & \text { Niben101Scf00177g } \\ & 11013 \end{aligned}$	$\begin{array}{r} 0.72349 \\ 265 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 51190 \end{aligned}$	$\begin{array}{r} 0.348978 \\ 53 \end{array}$	$\begin{array}{r} 0.533185 \\ 52 \end{array}$	AT1G318 00.1	$\begin{array}{r} 3.0695 \\ 1393 \end{array}$

CYP97B3- 1	$\begin{aligned} & \text { Niben101Scf05191g } \\ & 00014 \end{aligned}$	$\begin{array}{r} 0.95949 \\ 142 \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 16330 \end{aligned}$	0.462875 06	$\begin{array}{r} 0.668665 \\ 2 \end{array}$	$\begin{aligned} & \text { AT4G151 } \\ & 10.1 \end{aligned}$	$\begin{array}{r} 2.0173 \\ 8187 \end{array}$
$\begin{array}{\|l} \hline \text { CYP97B3- } \\ 2 \end{array}$	$\begin{aligned} & \text { Niben101Scf01559g } \\ & 03018 \end{aligned}$	$\begin{array}{r} 0.79789 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc05g0 } \\ & 16330 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.462875 \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 0.668665 \\ 2 \end{array}$	$\begin{aligned} & \text { AT4G151 } \\ & 10.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0173 \\ 8187 \\ \hline \end{array}$
CYP97C1	$\begin{aligned} & \text { Niben101Scf02502g } \\ & 11005 \end{aligned}$	$\begin{array}{r} 1.23297 \\ 677 \end{array}$	$\begin{aligned} & \text { Solyc10g0 } \\ & 83790 \end{aligned}$	$\begin{array}{r} 0.704544 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 1.036798 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G531 } \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.8868 \\ 8293 \\ \hline \end{array}$
ZEP1-1	$\begin{aligned} & \text { Niben101Scf09456g } \\ & 00020 \end{aligned}$	$\begin{array}{r} 1.11206 \\ 701 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc06g0 } \\ & 60880 \end{aligned}$	$\begin{array}{r} 3.003752 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 3.566346 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.2919 \\ 3 \\ \hline \end{array}$
ZEP1-2	Niben101Scf09317g 00001	$\begin{array}{r} 0.98085 \\ 946 \end{array}$	$\begin{aligned} & \text { Solyc06g0 } \\ & 60880 \end{aligned}$	$\begin{array}{r} 3.003752 \\ 14 \end{array}$	$\begin{array}{r} 3.566346 \\ 82 \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \end{aligned}$	- 0.2919 3
ZEP1-3	$\begin{aligned} & \text { Niben101Scf00428g } \\ & 12019 \end{aligned}$	$\begin{array}{r} 0.52628 \\ 279 \end{array}$	$\begin{aligned} & \text { Solyc06g0 } \\ & 60880 \end{aligned}$	$\begin{array}{r} 3.003752 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 3.566346 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \\ & \hline \end{aligned}$	0.2919 3
ZEP1-4	$\begin{aligned} & \text { Niben101Scf11484g } \\ & 00007 \end{aligned}$	$\begin{array}{r} 0.54747 \\ 099 \end{array}$	$\begin{aligned} & \text { Solyc06g0 } \\ & 60880 \end{aligned}$	$\begin{array}{r} 3.003752 \\ 14 \end{array}$	$\begin{array}{r} 3.566346 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 0.2919 \\ 3 \\ \hline \end{array}$
ZEP1-5	```Niben101Scf10336g```	$\begin{array}{r} 1.58207 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc06g0 } \\ & 60880 \end{aligned}$	$\begin{array}{r} 3.003752 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 3.566346 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.2919 \\ 3 \end{array}$
ZEP2-1	$\begin{aligned} & \text { Niben101Scf01553g } \\ & 01001 \end{aligned}$	0.30385	$\begin{aligned} & \text { Solyc02g0 } \\ & 90890 \end{aligned}$	$\begin{array}{r} 1.401595 \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 0.113982 \\ 18 \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \end{aligned}$	0.2919
ZEP2-2	$\begin{aligned} & \text { Niben101Scf16082g } \\ & 00007 \end{aligned}$	$\begin{array}{r} 0.58673 \\ 598 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 90890 \end{aligned}$	$\begin{array}{r} 1.401595 \\ 06 \\ \hline \end{array}$	$\begin{array}{r} 0.113982 \\ 18 \end{array}$	$\begin{aligned} & \text { AT5G670 } \\ & 30.1 \end{aligned}$	$\begin{array}{r} 0.2919 \\ 3 \end{array}$
VDE1	$\begin{aligned} & \text { Niben101Scf07893g } \\ & 00003 \end{aligned}$	$\begin{array}{r} 1.21913 \\ 015 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 50930 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.123530 \\ 46 \\ \hline \end{array}$	$\begin{array}{r} 0.075241 \\ 87 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G085 } \\ & 50.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.9157 \\ 7978 \\ \hline \end{array}$
VDE2	$\begin{aligned} & \text { Niben101Scf00177g } \\ & 07008 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.34776 \\ 205 \end{array}$	$\begin{aligned} & \text { Solyc04g0 } \\ & 50930 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.123530 \\ 46 \end{array}$	$\begin{array}{r} 0.075241 \\ 87 \\ \hline \end{array}$	AT1G085 50.1	$\begin{array}{r} 2.9157 \\ 7978 \\ \hline \end{array}$
NSY1-1	$\begin{aligned} & \text { Niben101Scf00757g } \\ & 05003 \end{aligned}$	$\begin{array}{r} 0.53788 \\ 271 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 89050 \end{aligned}$	0	$\begin{array}{r} 2.807354 \\ 92 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY1-2	$\begin{aligned} & \text { Niben101Scf05761g } \\ & 01007 \end{aligned}$	0.45767 738	$\begin{aligned} & \text { Solyc02g0 } \\ & 89050 \end{aligned}$	0	$\begin{array}{r} 2.807354 \\ 92 \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY1-3	$\begin{aligned} & \text { Niben101Scf12735g } \\ & 00009 \end{aligned}$	$\begin{array}{r} 1.66129 \\ 276 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 89050 \end{aligned}$	0	$\begin{array}{r} 2.807354 \\ 92 \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY1-6	$\begin{aligned} & \text { Niben101Scf06008g } \\ & 01017 \end{aligned}$	0.07363 715	$\begin{aligned} & \text { Solyc02g0 } \\ & 89050 \end{aligned}$	0	$\begin{array}{r} 2.807354 \\ 92 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY2-1	$\begin{aligned} & \text { Niben101Scf10375g } \\ & 01002 \end{aligned}$	$\begin{array}{r} 0.27144 \\ 807 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 63170 \end{aligned}$	$\begin{array}{r} 0.587723 \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 0.597707 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY2-2	$\begin{aligned} & \text { Niben101Scf00894g } \\ & 03001 \end{aligned}$	$\begin{array}{r} 0.17338 \\ 294 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 63170 \end{aligned}$	$\begin{array}{r} 0.587723 \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 0.597707 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
NSY2-3	$\begin{aligned} & \text { Niben101Scf02381g } \\ & 04020 \end{aligned}$	$\begin{array}{r} 0.47495 \\ 217 \end{array}$	$\begin{aligned} & \text { Solyc02g0 } \\ & 63170 \end{aligned}$	$\begin{array}{r} 0.587723 \\ 64 \end{array}$	$\begin{array}{r} 0.597707 \\ 73 \end{array}$	$\begin{aligned} & \text { AT1G670 } \\ & 80.1 \end{aligned}$	$\begin{array}{r} 1.8546 \\ 9373 \end{array}$

NSY2-4	$\begin{aligned} & \text { Niben101Scf01991g } \\ & 03009 \end{aligned}$	0.47944 282	$\begin{aligned} & \text { Solyc02g0 } \\ & 63170 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.587723 \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 0.597707 \\ 73 \\ \hline \end{array}$	AT1G670 80.1	$\begin{array}{r} 1.8546 \\ 9373 \\ \hline \end{array}$
CCD1-1	$\begin{aligned} & \text { Niben101Scf03264g } \\ & 05010 \end{aligned}$	$\begin{array}{r} 0.62325 \\ 817 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 87250 \\ & \hline \end{aligned}$	1.537539	$\begin{array}{r} 1.269642 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G6352 } \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.7964 \\ 3162 \\ \hline \end{array}$
CCD1-2	$\begin{aligned} & \text { Niben101Scf10058g } \\ & 00024 \end{aligned}$	$\begin{array}{r} 0.36730 \\ 614 \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 87250 \end{aligned}$	1.537539	$\begin{array}{r} 1.269642 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G6352 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 0.7964 \\ 3162 \\ \hline \end{array}$
CCD1-3	$\begin{aligned} & \text { Niben101Scf10058g } \\ & 00019 \end{aligned}$	$\begin{array}{r} 0.08776 \\ 269 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc01g0 } \\ & 87250 \\ & \hline \end{aligned}$	1.537539	$\begin{array}{r} 1.269642 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \text { AT3G6352 } \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.7964 \\ 3162 \\ \hline \end{array}$
CCD4-1	$\begin{aligned} & \text { Niben101Scf08613g } \\ & 02006 \end{aligned}$	$\begin{array}{r} 0.66617 \\ 881 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 75490 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.624475 \\ 85 \\ \hline \end{array}$	$\begin{array}{r} 6.423518 \\ 69 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G1917 } \\ & 0.1 \end{aligned}$	$\begin{array}{r} 3.1836 \\ 7838 \\ \hline \end{array}$
CCD4-2	$\begin{aligned} & \text { Niben101Scf18822g } \\ & 02016 \end{aligned}$	$\begin{array}{r} 1.29014 \\ 22 \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 75480 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.289506 \\ 62 \\ \hline \end{array}$	$\begin{array}{r} 1.289506 \\ 62 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G1917 } \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.1836 \\ 7838 \\ \hline \end{array}$
CCD4-3	$\begin{aligned} & \text { Niben101Scf18822g } \\ & 02009 \end{aligned}$	$\begin{array}{r} 1.07864 \\ 674 \\ \hline \end{array}$	$\begin{aligned} & \text { Solyc08g0 } \\ & 75480 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.289506 \\ 67 \end{array}$	$\begin{array}{r} 1.289506 \\ 62 \\ \hline \end{array}$	$\begin{aligned} & \text { AT4G1917 } \\ & 0.1 \end{aligned}$	$\begin{array}{r}3.1836 \\ 7838 \\ \hline\end{array}$

Energy and carbon required for carotenoid biosynthesis rely on photosynthesis (i.e. CalvinBenson cycle) in chloroplasts. Because chromoplast differentiation in crtB-producing N. benthamiana leaves was associated with impairment of photosynthesis (Fig. 3C) and changes in the expression of genes potentially controlling the activity of many enzymes (Fig. 4), we asked whether primary cell metabolism might also be reprogrammed. To test this possibility, we conducted a GC-TOF-MS analyses of primary metabolites, including sugars, amino acids, and organic acids (Fig. 5). A total of 52 metabolites were annotated and their relative levels in (p)crtB leaf sections were normalized to the mean levels of GFP control sections. From these, 13 showed statistically significant changes: 3 were decreased and 10 were increased in (p)crtB samples (Fig. 5). We observed reductions in the levels of ascorbate but also of glucose and fructose, which are the main soluble carbohydrate stores and transport sugars as well as the main substrates for respiration. This, together with the increments in several intermediates of the tricarboxylic acid (TCA) cycle (citrate, 2-oxoglutarate and malate) and amino acids such as valine, isoleucine, aspartate and glutamate derived metabolites (Fig. 5), suggested that sugars were used to produce ATP through the TCA cycle to sustain amino acid synthesis and likely other cellular functions. Indeed, respiration rate determined as total oxygen consumption in the dark was found to be upregulated in chromoplast-containing leaf tissues (Fig. 5). We concluded that (p)crtB induced glycolytic and oxidative energy metabolism likely to compensate for photosynthesis shut down and subsequent reduction in the production of ATP and carotenoid substrates by the Calvin-Benson cycle.

Example 4. Reaching a phytoene threshold is required to promote carotenoid overaccumulation in leaves.

In contrast with our results using a bacterial phytoene synthase (crtB), it has been previously shown that overproducing plant PSY enzymes does not increase carotenoid contents of leaves (Fraser et al. 2007; Maass et al. 2009; Busch et al. 2002). Consistent with these reports, when we transiently expressed PSY-encoding genes from Arabidopsis and tomato in N. benthamiana leaves, none of them induced the chromoplast-associated yellow phenotype (Fig. 12). Interestingly, the plant enzymes yielded significantly lower levels of phytoene than the plastidtargeted (p)crtB protein (Fig. 12).

The described results led us to hypothesize that a certain threshold level of phytoene or a downstream derivative might be needed to elicit chloroplast to chromoplast transformation. To test this hypothesis, we performed two experiments. In the first one, leaves of N. benthamiana plants were agroinfiltrated with serial dilutions of Agrobacterium cultures to express the (p)crtB construct at different levels. Samples infiltrated with low Agrobacterium densities showed no changes in total leaf carotenoid contents despite progressive increases in phytoene levels (Fig. 6 A). When phytoene accumulated at levels higher than $20 \mathrm{ng} / \mathrm{mg}$ DW, however, a concomitant increase in total carotenoids was observed (Fig. 6A). The second experiment followed the time course of chromoplast differentiation after agroinfiltration of N. benthamiana leaves with the construct to express (p)crtB. Several leaves were agroinfiltrated with the construct and then pigment contents were measured at different time points. Phytoene became detectable at 36 hours post-infiltration (hpi), suddenly increased at 48 hpi , and then kept accumulating until 84 hpi (Fig. 5B). Downstream carotenoids started to increase at 48 dpi (Fig. 5B), again supporting the conclusion that carotenoid contents only increase once phytoene supply exceeds a certain threshold.

Example 5. The supply of phytoene in plastids functions as a metabolic threshold switch that regulates chloroplast-to-chromoplast differentiation

Based on the described results, two mechanisms could be envisioned to explain how phytoene overproduction eventually led to chromoplast differentiation in leaves: (1) phytoene might readily feed the carotenoid pathway and promote carotenoid biosynthesis to reach levels so high that eventually changed plastid ultrastructure to accommodate these lipophilic compounds, or (2) phytoene per se might trigger the plastidial membrane remodeling process either directly (in the plastid) or indirectly (via signaling to the nucleus). Membrane reorganization would influence carotenoid biosynthesis, storage and/or degradation to achieve high carotenoid levels.

As a proxy of membrane remodeling dynamics, we monitored $\phi P S I I$, NPQ and D1 protein levels
during the crtB-mediated chloroplast to chromoplast transition (Fig. 7). These parameters are estimators of photosynthesis, photoprotection, and photodamage and hence of chloroplast membrane system (thylakoids and grana) functionality. In leaves agroinfiltrated with (p)crtB, both ϕ PSII (Fig. 7A) and NPQ (Fig. 7B) remained unchanged up to 36 hpi, and then started to decrease as the levels of both phytoene and carotenoids increased (Fig. 6B). In the case of NPQ, the drop was mainly due to a decrease in $q E$, consistent with impairment of fast photoprotective responses such as the carotenoid-dependent xanthophyll cycle (Fig. S5). The levels of D1 started to decrease later, between 48 and 60 hpi (Fig. 7C), likely as a result of photodamage. These results together indicate that crtB-mediated upregulation of the carotenoid pathway rapidly disrupts the chloroplast photosynthetic membrane functionality.

To next test whether phytoene accumulation by itself could trigger the initial remodeling of plastidial membranes, we used norflurazon (NF) to block phytoene conversion into downstream carotenoids (Ortiz-Alcaide et al. 2019). N. benthamiana leaves were agroinfiltrated with different constructs and at 24 hpi some of them were also infiltrated with NF. The presence of NF led to the accumulation of some phytoene and slightly reduced carotenoid levels in GFP-producing leaves at 96 hpi (Fig. 8). NF-treated (p)crtB samples accumulated much more phytoene than GFP controls but showed similar levels of downstream carotenoids. Analysis of ϕ PSII at different time points after agroinfiltration and NF treatment of these samples showed a negative correlation with phytoene rather than downstream or total carotenoid levels (Fig. 8). When the levels of total carotenoids (but not phytoene) were increased in leaves transiently expressing the Arabidopsis gene encoding PAR1, a transcription cofactor that promotes total carotenoid biosynthesis in photosynthetic tissues (Roig-Villanova et al. 2007; Bou-Torrent et al. 2015), no changes in \$PSII were observed compared to GFP-producing controls (Fig. 8). We therefore conclude that phytoene accumulation by itself can disrupt the functionality (i.e. the identity) of the chloroplast. The observation that ϕ PSII shows a much stronger and progressive reduction in untreated (p)crtB samples as carotenoids accumulate (Fig. 8) further suggests that exceeding a phytoene threshold might start the initial steps of the chromoplast differentiation program but production of downstream carotenoids is required to complete it.

In summary, our results are consistent with the existence of a two-step process responsible for the transformation of crtB-producing chloroplasts into chromoplasts. First, a metabolic switch mechanism elicits the initial changes of the process when the supply of phytoene exceeds a threshold, and second, increased accumulation of carotenoids due to enhanced phytoene availability but also to phytoene-triggered changes in plastid membranes completes the differentiation of chloroplasts into chromoplasts.

References

Avendano-Vazquez, A. O., et al. (2014). "An Uncharacterized Apocarotenoid-Derived Signal Generated in zeta-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis." Plant Cell 26(6): 2524-2537.

Bai, C., et al. (2014). "An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation." Plant J 77(3): 464-475.

Barsan, C., et al. (2010). "Characteristics of the tomato chromoplast revealed by proteomic analysis." J Exp Bot 61(9): 2413-2431.

Barsan, C., et al. (2012). "Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components." Plant Physiol 160(2): 708-725.

Bedoya, L. C., et al. (2012). "Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis." Plant Physiology 158(3): 1130-1138.

Besumbes, O., et al. (2004). "Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol." Biotechnol Bioeng 88(2): 168-175.

Brehelin, C., et al. (2007). "Plastoglobules: versatile lipoprotein particles in plastids." Trends Plant Sci 12(6): 260-266.

Cazzonelli, C. I., et al. (2019). "A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development." bioRxiv.

Cunningham, F. X., Jr., et al. (1993). "Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of betacarotene." FEBS Lett 328(1-2): 130-138.

D'Andrea, L., et al. (2018). "Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening." J Exp Bot 69(7): 1557-1568.

DellaPenna, D. and B. J. Pogson (2006). "Vitamin synthesis in plants: tocopherols and carotenoids." Annu Rev Plant Biol 57: 711-738.

Deruere, J., et al. (1994). "Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures." Plant Cell 6(1): 119-133.

Egea, I., et al. (2010). "Chromoplast differentiation: current status and perspectives." Plant Cell Physiol 51(10): 1601-1611.

Flores-Perez, U., et al. (2008). "A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids." Plant Cell 20(5): 1303-1315.

Fraser, P. D. and P. M. Bramley (2004). "The biosynthesis and nutritional uses of carotenoids." Prog Lipid Res 43(3): 228-265.

Gan, S. and R. M. Amasino (1995). "Inhibition of leaf senescence by autoregulated production of cytokinin." Science 270(5244): 1986-1988.

Giuliano, G. (2017). "Provitamin A biofortification of crop plants: a gold rush with many miners." Curr Opin Biotechnol 44: 169-180.

Gramegna, G., et al. (2018). "PHYTOCHROME-INTERACTING FACTOR 3 mediates lightdependent induction of tocopherol biosynthesis during tomato fruit ripening." Plant Cell Environ.

Hormaetxe, K., et al. (2004). "Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves." Plant Biol (Stuttg) 6(3): 325-332.

Hou, X., et al. (2016). "Synthesis and Function of Apocarotenoid Signals in Plants." Trends Plant Sci 21(9): 792-803.

Hughes, N. M. (2011). "Winter leaf reddening in 'evergreen' species." New Phytol 190(3): 573581.

Jarvis, P. and E. Lopez-Juez (2013). "Biogenesis and homeostasis of chloroplasts and other plastids." Nat Rev Mol Cell Biol 14(12): 787-802.

Kahlau, S. and R. Bock (2008). "Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein." Plant Cell 20(4): 856-874.

Kleffmann, T., et al. (2007). "Proteome dynamics during plastid differentiation in rice." Plant Physiol 143(2): 912-923.

Koiwa, H., et al. (1986). "Reversal of chromoplasts to chloroplasts in Buxus leaves." Botanical Magazine, Tokyo 99: 233-240.

Li, X. H. and J. C. Carrington (1995). "Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells." Proc Natl Acad Sci U S A 92(2): 457461.

Li-Beisson, Y., et al. (2013). "Acyl-lipid metabolism." Arabidopsis Book 11: e0161.

Liebers, M., et al. (2017). "Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development." Front Plant Sci 8: 23.

Llorente, B., et al. (2016). "Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism." Plant J 85(1): 107-119.

Llorente, B., et al. (2017). "Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light." Curr Opin Plant Biol 37: 49-55.

Lopez, A. B., et al. (2008). "Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers." J Exp Bot 59(2): 213-223.

Lu, Y., et al. (2017). "Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species." Curr Biol 27(19): 3034-3041 e3033.

Maass, D., et al. (2009). "Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels." PLoS One 4(7): e6373.

Majer, E., et al. (2017). "Rewiring carotenoid biosynthesis in plants using a viral vector." Sci Rep 7: 41645.

Nakagawa, T., et al. (2007). "Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants." Biosci Biotechnol Biochem 71(8): 2095-2100.

Ogbonna, J. C. (2009). "Microbiological production of tocopherols: current state and prospects." Appl Microbiol Biotechnol 84(2): 217-225.

Okada, R., et al. (2017). "Synthetic control of flowering in rice independent of the cultivation environment." Nat Plants 3: 17039.

Pulido, P., et al. (2016). "Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis." PLoS Genet 12(1): e1005824.

Rodriguez-Concepcion, M., et al. (2018). "A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health." Prog Lipid Res 70: 62-93.

Rodriguez-Concepcion, M. and A. Boronat (2002). "Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics." Plant Physiol 130(3): 1079-1089.

Ruiz-Sola, M. A., et al. (2016). "A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms." Plant Physiol 172(3): 1393-1402.

Schaub, P., et al. (2018). "Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids." PLoS One 13(2): e0192158.

Schmidt, G. W. and S. K. Delaney (2010). "Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress." Mol Genet Genomics 283(3): 233-241.

Schwach, F., et al. (2005). "An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal." Plant Physiol 138(4): 1842-1852.

Simkin, A. J., et al. (2007). "Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit." Phytochemistry 68(11): 1545-1556.

Singh, D. K. and T. W. McNellis (2011). "Fibrillin protein function: the tip of the iceberg?" Trends Plant Sci 16(8): 432-441.

Sparkes, I. A., et al. (2006). "Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants." Nat Protoc 1(4): 2019-2025.

Tholl, D. and S. Lee (2011). "Terpene Specialized Metabolism in Arabidopsis thaliana." Arabidopsis Book 9: e0143.

Van Norman, J. M., et al. (2014). "Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative." Proc Natl Acad Sci U SA 111(13): E1300-1309.

Wang, J. Y., et al. (2019). "The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice." Nat Commun 10(1): 810.

Wang, Z. and C. Benning (2011). "Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC)." $\underline{\mathrm{J} \text { Vis Exp(49). }}$

Wurtzel, E. T. (2019). "Changing Form and Function through Carotenoids and Synthetic Biology." Plant Physiol 179(3): 830-843.

Yuan, H., et al. (2015). "A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis." Plant Physiol 169(1): 421-431.

Yuan, H., et al. (2015). "Carotenoid metabolism and regulation in horticultural crops." Hortic Res 2: 15036.

CLAIMS

1. A method of inducing chloroplast-to-chromoplast differentiation biogenesis in leaf vegetables and/or forage crops that comprises the induction of a constitutive, inducible or transient expression of a plasmid construct or expression vector in the leaf vegetables and/or forage crops, wherein said plasmid construct is characterized in that the plasmid construct comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal in its N -terminus, and wherein said plasmid construct or expression vector is capable of accumulating in the chloroplasts of the plant tissue an amount of phtyoene sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the leaf vegetables or forage crops between 36 and 48 hpi.
2. A method to increase carotenoid and tocopherol contents in leaf vegetables and forage crops that comprises the induction of a constitutive, inducible or transient expression of a plasmid construct or expression vector in the leaf vegetables and forage crops, wherein said plasmid construct is characterized in that the plasmid construct comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal in its N-terminus, and wherein said plasmid construct or expression vector is capable of accumulating in the chloroplasts of the plant tissue an amount of phtyoene sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the leaf vegetables or forage crops between 36 and 48 hpi.
3. A method to enhance the production and storage capacity of lipophilic chemicals in plants, the method comprising the the induction of a constitutive, inducible or transient expression of a plasmid construct or expression vector in the leaf vegetables and forage crops, wherein said plasmid construct is characterized in that the plasmid construct comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity and/or may overexpress an endogenous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal in its N -terminus, and wherein said plasmid construct or expression vector is capable of accumulating in the chloroplasts of the plant tissue an amount of phtyoene sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the leaf vegetables or forage crops between 36 and 48 hpi.
4. A modified leaf vegetable or forage crop comprising the constitutive, inducible or transient expression of a plasmid construct or expression vector, wherein said plasmid construct is characterized in that the plasmid construct comprises a heterologous nucleic acid encoding a polypeptide exhibiting phytoene synthase activity, wherein said polypeptide exhibiting phytoene synthase activity further comprises a plastid-targeting signal, and wherein said plasmid construct or expression vector is capable of accumulating in the chloroplasts of the plant tissue an amount of phtyoene sufficient to induce chloroplast to chromoplast differentiation in said plant tissue, preferably at least about $0.01 \mu \mathrm{~g} / \mathrm{mg}$ DW of phytoene in the leaf vegetables or forage crops between 36 and 48 hpi .
5. The method of any of claims 1 to 3 or the modified leaf vegetable or forage crop of claim 4, wherein the polypeptide exhibiting phytoene synthase activity is CrtB.
6. The method of any of claims 1 to 3 or the modified leaf vegetable or forage crop of claim 4, wherein the polypeptide exhibiting phytoene synthase activity Pantoea ananatis crtB (GenBank accession number: P21683).
7. The method of claim 5 or 6 or the modified leaf vegetable or forage crop of claim 5 or 6 , wherein plastid-targeting signal is the sequence of the hydroxymethylbutenyl 4-diphosphate synthase gene from A. thaliana cDNA.
8. The method or the modified leaf vegetable or forage crop of any of the precedent claims, wherein the expression cassette comprise at least a CrtB gene operably linked to a plastidtargeting signal, preferably in its N -terminus and optionally one or more control sequences, typically comprising a transcriptional promoter and a transcription terminator, that direct the expression of said phytoene synthase in the species and tissue/organ of interest.
9. The method or the modified leaf vegetable or forage crop of claim 8, wherein the control sequence includes a promoter that is recognized by the host cell.
10. The method or the modified leaf vegetable or forage crop of any of the precedent claims, wherein the production of phytoene is enhanced by genetically modified the leaf vegetables and forage crops to increase the carbon flux to isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) and/or to increase the conversion of IPP and DMAPP to geranylgeranyl diphosphate (GGPP).
11. A cosmetic or pharmaceutical composition comprising the leaf vegetable or forage crop of any of the precedent claims, or an extract therefrom.
12. A nutraceutical or nutricosmetic composition, or a food or feed additive comprising the leaf vegetable or forage crop of any of the precedent claims.
13. The cosmetic or pharmaceutical composition of claim 11, wherein the cosmetic or pharmaceutical composition is a skin whitening, lightening or bleaching composition or a composition to prevent aging, oxidative or photo-oxidative damages.
14. The pharmaceutical composition of claim 11, for use in the treatment of cancer or in the treatment of inflammatory disorders. (cardiovascular disease)

Figures

C Nicotiana benthamiana

Fig. 1

Figure 2.

Figure 3.

Figures

Molecular Function

structural constituent of ribosome single-stranded RNA binding nucleotide binding
RNA binding purine nucleotide binding adenyl nucleotide binding nucleoside binding purine nucleoside binding protein homodimerization activity acyltransferase activity UDP-glycosyltransferase activity UDP-glucosyltransferase activity endonuclease activity

- W!III unfolded protein binding

oxidoreductase activity
transferase activity, transferring alkyl or ary glutathione transferase activity translation factor activity, nucleic acid binding purine abonucleotide binding ribonucleotide binding adenyl ribonucleotide binding ATP binding

Molecular Function

$\frac{0}{2} \frac{0}{\infty} \frac{\alpha}{6} \frac{9}{8}$

hydrolase activity, acting on glycosyl bonds
receptor signaling protein activity
receptor signaling protein serine threonine kinase activity
transmembrane receptor activity
transmembrane receptor protein serinethreonine kinase activity receptor activity
transmembrane receptor protein kinase activity
signal transclucer activily
molecular transducer activity protein serinethreonine kinase activity
protein kinase activity
Kinase activity
phosphotransferase activity, alcohol group as acceptor transferase activity, transferring phosphorus-containing groups
transcription factor activity
DNA binding
transcription regulator activity
pectinesterase activity
calcium ion binding
cytoskeletal protein binding
calmodulin binding
secondary active transmembrane transporter activity
cation transmembrane transporter activity active transmembrane transporter activity
solute:solute antiporter activity
antiporter activity
carbohydrate transmembrane transporter activity
sugar transmembrane transporter activity
phosphate transmembrane transporter activity
solute:cation symporter activity
metal ion binding
cation binding
ion binding
carboxylesterase activity
lipase activity
transmembrane transporter activity
ion transmembrane transporter activity
phospholipase activity
substrate-specific transmembrane transporter activity transporter activity

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Sampling

dark \min	HL	30 min
decovery		

Figure 13.

\qquad			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) C12N			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, BIOSIS, Sequence Search, EMBASE, WPI Data			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of th	levant passages	Relevant to claim No.
X	WO 2004/085656 A2 (SYNGENTA L DRAKE CAROLINE RACHEL [GB] ET 7 October 2004 (2004-10-07) see the whole document; page 19, line 14 - line 23	$\begin{aligned} & {[\mathrm{GB}] ;} \\ & -.) \end{aligned}$	$2-14$
x	```WO 96/13149 A1 (AMOCO CORP [US 9 May 1996 (1996-05-09) see the whole document; claim 3```		$2-14$
X	WO 98/06862 A1 (CALGENE INC [SHEWMAKER CHRISTINE K [US]) 19 February 1998 (1998-02-19) see the whole document; claim 80	-/--	2-14
X Further documents are listed in the continuation of Box C . X See patent family annex.			
$\begin{array}{ll}\text { * Special categories of cited documents: } & \text { "T" later document published after the international filing date or priority } \\ \text { date and not in conflict with the application but cited to understand } \\ \text { the principle or theory underlying the invention }\end{array}$			
Date of the actual completion of the international search Date of mailing of the international search report 15 October 2020 $30 / 10 / 2020$			
Name and	ailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. $(+31-70)$ 340-2040, Fax: ($+31-70$) $340-3016$	Authorized Kan	

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/88169 A2 (MONSANTO TECHNOLOGY LLC [US]) 22 November 2001 (2001-11-22) the whole document	2-14
A	DIRK MAASS ET AL: "Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels", PLOS ONE, vol. 4, no. 7, 28 July 2009 (2009-07-28), page e6373, XP055669962, DOI: 10.1371/journal.pone. 0006373 cited in the application	1-14
A	PAUL D. FRASER ET AL: "Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism", THE PLANT CELL, vol. 19, no. 10, 1 October 2007 (2007-10-01), pages 3194-3211, XP055669960, US ISSN: 1040-4651, DOI: 10.1105/tpc.106.049817 cited in the application	1-14
A	ESZTER MAJER ET AL: "Rewiring carotenoid biosynthesis in plants using a viral vector", SCIENTIFIC REPORTS, vol. 7, no. 1, 31 January 2017 (2017-01-31), XP055669910, DOI: 10.1038/srep41645	1-14
A	XIANGJUN ZHOU ET AL: "Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 112, no. 11, 9 February 2015 (2015-02-09), pages 3558-3563, XP055669966, US ISSN: 0027-8424, DOI: 10.1073/pnas. 1420831112	1-14
A	DEAN DELLAPENNA ET AL: "VITAMIN SYNTHESIS IN PLANTS: Tocopherols and Carotenoids", ANNUAL REVIEW OF PLANT BIOLOGY, vol. 57, no. 1, 1 June 2006 (2006-06-01), pages 711-738, XP055096329, ISSN: 1543-5008, DOI: 10.1146/annurev.arplant.56.032604.144301	1-14

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	$\begin{aligned} & \text { LI LI ET AL: "Chromoplast biogenesis and } \\ & \text { carotenoid accumulation", } \\ & \text { ARCHIVES OF BIOCHEMISTRY'AND BIOPHYSICS, } \\ & \text { ACADEMIC PRESS, US, } \\ & \text { vol. } 539, \text { no. } 2,12 \text { July } 2013 \text { (2013-07-12) } \\ & \text { isSes 102-109, XP028761600, } \\ & \text { ISSN: 0003-9861, DOI: } \\ & 10.1016 / J . A B B .2013 .07 .002 \end{aligned}$	1-14
A	GIULIANO GIOVANNI ED - JIN YONG-SU ET AL: "Provitamin A biofortification of crop plants: a gold rush with many miners", CURRENT OPINION IN BIOTECHNOLOGY, LONDON, GB, vol. 44, 3 March 2017 (2017-03-03), pages 169-180, XP029970634, ISSN: 0958-1669, DOI: 10.1016/J.COPBIO.2017.02.001	1-14
A	RODRIGUEZ-CONCEPCION MANUEL ET AL: "A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health", PROGRESS IN LIPID RESEARCH, PERGAMON PRESS, PARIS, FR, vol. 70, 19 April 2018 (2018-04-19), pages 62-93, XP085397462, ISSN: 0163-7827, DOI: 10.1016/J.PLIPRES.2018.04.004	1-14

INTERNATIONAL SEARCH REPORT
Information on patent family members
International application No
PCT/EP2020/075525

Patent document cited in search report		Publication date		Patent family member(s)	$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
WO 2004085656	A2	07-10-2004	AT	382702 T	15-01-2008
			AU	2004223634 A1	07-10-2004
			CA	2520021 A1	07-10-2004
			DE	602004011035 T2	18-12-2008
			EP	1608759 A2	28-12-2005
			ES	2298733 T3	16-05-2008
			JP	2006521107 A	21-09-2006
			US	2008109919 A1	08-05-2008
			US	2012042417 A1	16-02-2012
			US	2015322444 A1	12-11-2015
			W0	2004085656 A2	07-10-2004
W0 9613149	A1	09-05-1996	AT	291079 T	15-04-2005
			AU	697358 B2	01-10-1998
			CN	1172416 A	04-02-1998
			DE	69534082 T2	09-02-2006
			EP	0792352 A1	03-09-1997
			JP	3881012 B2	14-02-2007
			JP	H10509309 A	14-09-1998
			NO	326137 B1	06-10-2008
			NZ	296012 A	28-05-1999
			PL	319788 A1	01-09-1997
			US	5618988 A	08-04-1997
			W0	9613149 A1	09-05-1996
WO 9806862	A1	19-02-1998	AU	4058497 A	06-03-1998
			BR	9713462 A	28-03-2000
			CA	2261577 A1	19-02-1998
			CN	1227609 A	01-09-1999
			EP	0925366 A1	30-06-1999
			JP	2001505409 A	24-04-2001
			W0	9806862 A1	19-02-1998
W0 0188169	A2	22-11-2001	AR	028450 A1	07-05-2003
			AU	6144701 A	26-11-2001
			W0	0188169 A2	22-11-2001

