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ABSTRACT: A proper description of ocean–atmosphere interactions is key for a correct understanding of climate evo-

lution. The interplay among the different variables acting over the climate is complex, often leading to correlations across

long spatial distances (teleconnections). On some occasions, those teleconnections occur with quite significant temporal

shifts that are fundamental for the understanding of the underlying phenomena but that are poorly captured by standard

methods. Applying orthogonal decomposition such as maximum covariance analysis (MCA) to geophysical datasets allows

us to extract common dominant patterns between two different variables, but generally suffers from (i) the nonphysical

orthogonal constraint as well as (ii) the consideration of simple correlations, whereby temporally offset signals are not

detected. Here we propose an extension, complex rotatedMCA, to address both limitations.We transform our signals using

the Hilbert transform and perform the orthogonal decomposition in complex space, allowing us to correctly correlate out-

of-phase signals. Subsequent varimax rotation removes the orthogonal constraints, leading to more physically meaningful

modes of geophysical variability. As an example, we have employed thismethod on sea surface temperature and continental

precipitation; our method successfully captures the temporal and spatial interactions between these two variables for (i) the

seasonal cycle, (ii) canonical ENSO, (iii) the global warming trend, (iv) the Pacific decadal oscillation, (v) ENSOModoki,

and finally (vi) the Atlantic meridional mode. The complex rotated modes of MCA provide information on the regional

amplitude and, under certain conditions, the regional time lag between changes on ocean temperature and land

precipitation.

SIGNIFICANCE STATEMENT: Correlations between time series of different climate variables are often time-lagged

and can appear over long spatial distances. Our goal was to develop amethod that allows the simultaneous identification

of the dominant spatial patterns and their time lags between two different climate variables. Using sea surface tem-

peratures and continental rainfalls as an example, our method extracts the different dynamics of the seasonal cycle as

well as five other well-known climate phenomena. Especially for cyclic time series like the seasonal cycle, the relative

time lags at different locations can be determined precisely, whereas for acyclic time series only qualitative statements

about time lags can bemade. In future studies, we expect new insights into the dynamical structure of theMadden–Julian

oscillation thanks to this method, which is readily available as a Python package.

KEYWORDS: Atmosphere-ocean interaction; Teleconnections; Precipitation; Sea surface temperature; Empirical

orthogonal functions; Pattern detection; Principal components analysis; Dimensionality reduction

1. Introduction

Earth’s climate system is extremely complicated and deci-

phering the web of interdependencies and influences of dif-

ferent climate subsystems is an involved challenge. As the

quantity and quality of Earth observations increase thanks to

the advances in remote sensing, so too does the amount of data

that needs to be processed. Data-driven dimensionality re-

duction methods are therefore crucial for climate studies, as

they allow high-dimensional spatiotemporally resolved signals

to be disaggregated into the dominant patterns, while still

capturing the subtle details of higher-resolution data. As such,

principal component analysis (PCA), or empirical orthogonal

function (EOF) analysis as it is often referred to in climate

science, allows us to identify the dominant internal structure

of the variability as expressed by the variance, with a variety of

different available versions of PCA proving the popularity of

such methods in climate science (e.g., Hannachi et al. 2007;

Hannachi 2021).

Climate phenomena with different expression in oceanic and

atmospheric variables, such as El Niño–Southern Oscillation

(ENSO), however, require the simultaneous analysis of several

variables for a more comprehensive description. In principle,

multivariate PCA (Kutzbach 1967) makes it possible to ex-

tract the patterns of covariability of more than one variable.

However, multivariate PCA accumulates the variance and

the covariance of variables with very different variability in

the same quantities. In consequence this may mask covarying

patterns as low-variability patterns of one variable can be

erroneously accumulated in very dominant structures of one of

the other, large-variability variables (Bretherton et al. 1992).Corresponding author: Niclas Rieger, nrieger@crm.cat
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Maximum covariance analysis (MCA)1 avoids this masking

by taking into account only the covariance between two sets of

variables. As such, it bears similarity to canonical correlation

analysis (CCA; Hotelling 1936), which aims at maximizing the

temporal correlation between both variables. When the num-

ber of grid points (i.e., number of time series) is higher than the

number of observations (i.e., number of time steps) and the

data exhibit multicollinearity, as is often the case for climate

data, CCA fails as it requires the individual variance matrices

to be nonsingular unless regularized (Vinod 1976; Cruz-Cano

and Lee 2014; Hannachi 2016). If the two fields of variables are

identical, MCA reduces to PCA, the former thus being a nat-

ural generalization of PCA.

Yet the methods discussed above maximize instantaneous

correlation and do not consider time-delayed signals. To gain a

deeper understanding of the dynamics of climate phenomena,

however, it is necessary to systematically investigate time lags.

A typical approach to tackle this problem is to consider one

variable set with a time lag defined a priori followed by an

MCA (e.g., Li et al. 2016). However, this requires knowledge of

the time lag, which may vary from one location to another

(Ballabrera-Poy et al. 2002).

In this paper, we propose complex rotated MCA to system-

atically investigate the phase shift of two variables. We gen-

erate complex time series known as the analytical signal, where

the real and imaginary parts are related to each other by the

Hilbert transform, and decompose the covariance matrix in

complex space, in analogy to complex PCA (Horel 1984;

Bloomfield and Davis 1994). We also effectively reduce spec-

tral leakage inherent in the Hilbert transform of noncyclic

signals by using an extrapolation method of the signal beyond

its boundaries. Finally, to relax the orthogonality constraint of

the obtained solutions, we apply varimax rotation to the spatial

patterns, which leads to more localized solutions and thus fa-

cilitates their physical interpretation (Richman 1986; Cheng

and Dunkerton 1995).

To make the method readily accessible as a tool, we provide

it as a Python package, called xmca (Rieger 2021). Due to the

power and popularity of NumPy (van der Walt et al. 2011) and

xarray (Hoyer and Hamman 2017), both packages form the

basis of xmca, so that their typical data format can be used

directly as input for analysis. The package is modularized in a

way that provides the user free choice whether standard,

complex, rotated, or complex rotatedMCA is to be performed.

The user can also choose between varimax orthogonal rotation

as well as promax oblique rotation. Further, if desired, stan-

dardization of the input data is computed on the fly. The dif-

ferent flavors work in the same way for PCA, if one instead of

two fields is provided as input.

The remainder of the article is structured as follows.

Section 2 introduces the methodology, where we briefly discuss

MCA (section 2a), complex MCA (section 2b), and rotated

MCA (section 2c). Section 3 describes the data used to test the

method, using first synthetic data (section 3a) and then climatic

variables (section 3b). Section 4 presents the results of both the

synthetic (section 4a) and real-world analysis (section 4b). We

conclude our study and provide directions for future research

in section 5.

2. Methods

a. Maximum covariance analysis

Let us consider two spatiotemporal data fields XA 2 Rm3nA

and XB 2 Rm3nB representing two different geophysical fields

s 2 {A, B}, both having temporal dimension m and spatial di-

mensions nA and nB, respectively. Throughout the text, the

index s is used implicitly without further definition to represent

one of the two fields. In the following, we will refer to the

temporal dimensions as the number of observations while we

denote the spatial dimensions by the number of grid points.

Assuming each time series to have zero mean, MCA then aims

at maximizing

vTACvB, s:t. vTAvA 5 vTBvB 5 1, (1)

whereC denotes the temporal covariancematrix and vA, vB the

spatial patterns, of both fields, respectively. Mathematically,

this can be achieved by applying the singular value decompo-

sition (SVD) to the covariance matrix,

C5
1

m2 1
XT
AXB

5V
A
SVT

B , (2)

with the columns of the obtained singular vector matrices (Vs)

representing pairs of spatial patterns describing the maximum

amount of temporal covariance between both variables. The

entries of S 2 RnA3nB along the main diagonal, the singular

values sk, represent the covariance of each spatial pattern pair

k, providing a mean of estimating the relative importance of

each pair via the covariance fraction2 gk:

g
k
5s

k

 
�

min(nA ,nB)

j51

s
j

!21

. (3)

By projecting the data fields on their respective singular vec-

tors, we obtain the corresponding temporal evolution for each

spatial pattern given by the columns of Ps 5XsVs. Since the

singular vectors are orthonormal (i.e., VT
s Vs 5 1ns, with 1ns be-

ing the identity matrix of rank ns), the projections of the left

and right field are uncorrelated [i.e., PT
APB 5S/(m 2 1)] while

1 Sometimes referred to as singular value decomposition (SVD)

analysis. This name is unfortunate and should not be confused with

the actual factorization technique of a real/complex matrix.

2 Typically the squared covariance fraction defined as g*k 5

s2
k =
�
�minðnA ;nBÞ

j51 s2
j

�
is considered for the relative importance of each

mode for MCA. However, we opt for the nonsquared covariance

fraction since the total explained covariance is conserved under ro-

tation, i.e., for r rotated modes �r

isi 5 �r

is
*
i , where s

*
i refers to

the covariance associated to mode i after rotation. Furthermore,

this measure is comparable to the solutions obtained by PCA, and

in fact it is equivalent when XA 5 XB, for which MCA reduces to

PCA and the singular values equal the eigenvalues in PCA.
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the projections of the same field are correlated in general

(i.e., PT
s Ps is not a diagonal matrix). In this paper, we will

refer to the spatial patterns and their corresponding time

projections as empirical orthogonal functions (EOFs) and

principal components (PCs), respectively, according to the

usual convention in climate science. The EOFs and the PCs

associated with a specific singular value sk are denoted as

mode k.

b. Complex MCA

Propagating features or lagged signals could be detected by

using a complex representation of the input fields. In analogy

to complex PCA (Wallace and Dickinson 1972; Rasmusson

et al. 1981; Horel 1984; Bloomfield and Davis 1994), we com-

plexify the real input fields via the Hilbert transform to con-

struct the analytical signal X̂s defined as

X̂
s
5X

s
1 iH (X

s
) , (4)

where H ( � ) denotes the column-wise applied Hilbert trans-

form. The analytical signal constructed in that way is a unique

complex representation of the real signal, but whether it also

represents a physical reality depends on the frequency spec-

trum of the analyzed signal. By construction, the frequency

components of theHilbert transform are phase shifted by2p/2

with respect to those of the original signal. Therefore, for

narrow-bandwidth signals, the Hilbert transform has a simple

physical interpretation (i.e., it represents a signal that arrives

with a lag of one-fourth of the typical period). If the signal

consists of multiple dominating frequencies, however, the in-

terpretation of the phase is more elusive, as it cannot be simply

associated with a single frequency. Thus, the more narrow the

signal bandwidth, the more directly we can relate the phase to

specific timings of its Hilbert transform (Boashash 1992).

A fundamental issue in the computation of the Hilbert

transform arises when nonstationary or drifting signals are

processed. Such signals are noncyclic; therefore, when the

Fourier coefficients are calculated, strong boundary effects can

occur due to spectral leakage (Boashash 1992) (Fig. 1). This

problem can be circumvented by detrending the time series

and considering only integer cycles as well as by applying

window functions to the time series (e.g., Hanning, Hamming).

However, this comes at the cost of information loss. Additionally,

such mitigation techniques are particularly ill suited to deal

with nonstationarities associated with climate change (which

include not only noticeable trends on the mean level, but also

increases in the amplitude of some periodic phenomena).

Therefore, it seems important to introduce techniques capable

to dealing with nonstationary signals.

To mitigate spectral leakage across the boundaries of the

time series, we extrapolate the time series at both boundaries,

to the past and to the future, using the optimized theta model

(Assimakopoulos and Nikolopoulos 2000; Fiorucci et al. 2016),

a special case of an autoregressive integrated moving average

FIG. 1. Example illustrating the Hilbert transform using the theta extension. (a) Input signal s(t) 5 sin(t) 1 ct 1 «(t) using an

arbitrary constant c and Gaussian white noise « with zero mean and unit variance (blue) as well as the extended time series via

forecasting/hindcasting using the optimized theta model (Fiorucci et al. 2016). (b) Hilbert transformH (�) of the original and extended

signal, respectively. (c) Comparison of both Hilbert transforms over the domain of the original series.
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model with drift, ARIMA(0, 1, 1) (Hyndman and Billah 2003).

The theta model is a relatively simple yet well-performing

extrapolation method. While the forecast in itself actually

works with noncyclic signals, seasonal features are considered

via multiplicative classical decomposition, thus allowing cyclic

and noncyclic signals to be extrapolated. This approach of

handling the seasonal structure of a time series requires the

user to specify the dominant period of the signal Ts before-

hand. For discrete time series Ts represents the number of time

steps needed to complete one cycle—for example, 365 for daily

data considering an annual cycle, or 24 for hourly data with a

daily cycle [for more details we refer the reader to Fiorucci

et al. (2016)]. We then apply the Hilbert transform to the ex-

tended series, so the spectral leakage is only important on the

backward and forward extensions of it. Finally, we extract the

central part (removing the parts corresponding to the exten-

sion) that correctly corresponds to the Hilbert transform of the

original series. Using this approach, we effectively reduce the

edge effects of theHilbert transform compared to a nonprocessed

time series (Fig. 1). Notice that it is not necessary that the ex-

trapolation faithfully reproduces the characteristics of the orig-

inal series; it just suffices for our purpose that the extrapolated

time series approximately continues the cyclic structure at the

original time series boundaries in order to reduce spectral

leakage. Apart from tracking trends, the exact extrapolation

beyond the boundaries is not essential since its effects on the

central part of the Hilbert transform are very marginal at most.

After the described complexification of the original time

series, we follow the steps of standard MCA, with the differ-

ence that the transpose (�)T incorporates the complex conju-

gate
�
( � ) and the obtained EOFs and projections PCs are

complex and unitary. This allows us to calculate the spatial

amplitude As and phase function Qs for both fields:

A
s
5 (V

s
1V

s
)11/2 , (5)

Q
s
5 arctan2[Im(V

s
), Re (V

s
)], (6)

where1 denotes the element-wisemultiplication/exponentiation,

and arctan2 refers to the two-argument arctangent that is cal-

culated element-wise (see appendix A). Although this matrix

notation seems somewhat cumbersome compared to the more

direct expression through scalar fields, it allows us to be co-

herent with the rest of the paper. The phase function can be

interpreted directly as a time lag if the corresponding (real) PC

has a narrowband spectrum with just one dominant frequency.

If the spectrum is rather broadband or has several dominant

frequencies, an interpretation of the phase function is usually

not straightforward. We note that the complex EOFs derived

from the SVD are only defined up to a phase shift of exp(iu)

with u2 [0, 2p]. However, if complex EOFs are obtained with a

different phase shift u (e.g., due to another SVD algorithm),

the change will also be reflected in the projected PCs, so that

taking into account both, PC and phase function, the results are

unambiguous.

c. Rotated MCA

While orthogonality is often a mathematically desirable prop-

erty, it does not make a lot of sense from a purely geophysical

standpoint. Therefore, standard EOFs are difficult to interpret

in the case of geophysical data. The major drawbacks of EOFs

due to orthogonality are twofold: First, EOFs are sensitive to

the selected spatial domain; that is, including or removing some

regions may change large parts of the EOFs. Second, EOFs

tend to split certain geophysically meaningful patterns across

several consecutive modes (Richman 1986). To relax the or-

thogonality constraint to better accommodate the geophysical

reality, the EOFs can be rotated, which implies a linear trans-

formation of the first r loaded3 EOFs Ls,r. This concept, which

was originally developed in the context of PCA, can also

be applied to MCA (Cheng and Dunkerton 1995). For this,

we apply the rotation matrix R 2 Cr3r to the loading matrix

Lr 2 Cn3r :

n5n
A
1 n

B
,

L
r
5

0
@L

A,r

L
B,r

1
A5

0
@V

A,r

V
B,r

1
AS

1/2
r , (7)

where r reflects the respective submatrices containing only the

first r columns. In addition, Sr is the diagonal submatrix con-

taining only the first r columns and rows.

There are a number of different criteria for defining the

rotation matrix R (e.g., Richman 1986), including the varimax

orthogonal rotation (Kaiser 1958) and the promax oblique

rotation (Hendrickson and White 1964), whose general aim is

to regroup the obtained patterns by approximating simple

structures (Thurstone 1947). Mathematically, varimax rotation

seeks to maximize the summed variances of squared loadings

which is achieved by (i) restricting rotated EOFs to be com-

posed by only a few numbers of grid points with high loadings

while the remaining grid points exhibit near-zero loadings and

by (ii) limiting each grid point to contribute to only one rotated

EOF while having near-zero loadings for the other EOFs.

Since nonrotated EOFs are typically dense (i.e., consisting of

mostly nonzero values), varimax rotation produces more

sparse EOFs containing mostly zero or close-to-zero values,

leading to spatially compact structures, which allow a clearer

interpretation. Promax oblique rotation builds upon the vari-

max solution by raising the rotated, normalized EOFs to the

power p $ 1 while retaining the original sign, thus further re-

ducing low loading compared to high loading of the EOFs.

Promax can be understood as an oblique generalization, with

p5 1 yielding a varimax orthogonal solution. Hendrickson and

White (1964) provides a value for p, which the authors consider

appropriate for most applications (p 5 4). In an extensive re-

view Richman (1986) points out, however, that the promax

rotation using p5 2 consistently performs better, which is what

we will use in this paper. To keep the paper self-contained, we

provide a brief summary of both rotation criteria in appendix B.

The main difference between both rotation types is that

promax allows rotated PCs to be correlated with each other,

with higher values of p typically leading to stronger correlations.

3 Loaded EOFs are weighted by the square root of the corre-

sponding singular value.
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In contrast, varimax solutions yield always uncorrelated PCs.

For both varimax orthogonal and promax oblique rotation, the

obtained EOFs are no longer orthogonal. The question of

which rotation method is the most suitable for a given analysis

remains unsettled in the literature. In reality, we do not expect

geophysical signals to be perfectly uncorrelated, which gener-

ally argues for applying an oblique rotation. Nevertheless,

Finch (2006) showed that varimax orthogonal and promax

oblique solutions perform similarly, in particular when the PCs

obtained by the oblique solution exhibit low linear Pearson

correlation coefficients. In the presence of simple structures,

however, promax oblique rotation performs better by effec-

tively reducing the number of grid points that contribute to

each mode, hence further simplifying the EOFs and increasing

correlations among the PCs (Finch 2006). Therefore, the de-

cision on how many EOFs to rotate and which rotation type to

perform is a choice to be taken case by case; we will explore this

in section 4b.

3. Data

To test our method, we apply it to artificial and real climate

data. For the artificial datasets, we consider complex MCA

without rotation, as studies already exist that demonstrate the

better interpretability and lower sensitivity to sampling errors

of the varimax-rotated solutions compared to the unrotated

EOFs. (Lian and Chen 2012; Richman 1986; Cheng et al. 1995).

By means of two synthetic experiments we seek to illustrate the

advantages and caveats of complex MCA. In a first experiment

(experiment I), we test the performance of complex MCA com-

pared to standard MCA considering time-lagged signals. In a

second experiment (experiment II), we investigate how the theta

extension can improve the result of complex MCA to nonsta-

tionary processes. Finally, we apply complex MCA with rotation

to climatic data that we expect to have intrinsic geophysical cycles

but are also affected by the nonstationarity of climate change.

a. Synthetic data

We create two 2D spatiotemporal data fields XA, XB with

coordinates representing longitude l 2 [0, 359] and time t 2 [0,

364] days. The data generation model follows

X
s
(t,l)5 c

s
(l)z

s
(t,l)1 «(t,l), (8)

where zs(t, l) depends on the individual experiment design,

cs(l) 5 cos2asl represents a ‘‘zonal’’ modulation factor with

scale factor as, and «(t, l) denotes Gaussian white noise with

zero mean and variance of 1.

The idea of experiment I is to highlight the advantage of

using complexified fields compared to standard MCA in the

presence of moving patterns and phase-shifted, stationary

fields. Therefore, we define both signals as traveling waves

zs(t, l) 5 cos(vt 1 ksl 1 fs). Our parameter choices are mo-

tivated by the Madden–Julian oscillation (MJO), which is an

eastward propagating mode of deep convection and associated

zonal wind circulation in the tropical atmosphere (Madden

and Julian 1971; Zhang 2005). As such, the MJO is one of the

dominant drivers of intraseasonal variability in the tropics

characterized by a zonal propagation period of about 30–90

days. In general, MJO events tend to dominate over the Indian

Ocean and the western Pacific before they decay toward the

eastern part of the Pacific. Furthermore, when observing the

MJO through different variables, the spatial scale of MJO

events can vary. While the zonal wind circulation typically

exhibits a wavenumber of about 1, the convective precipitation

patterns may have zonal wavenumbers of 1–3. With this in

mind, we fix the model parameter to v 5 2p/56 days21 (rep-

resenting a period of 56 days), kA 5 22p/360, kB 5 26p/360

(representing wavenumbers 1 and 3, respectively) and phase

shifts fA5 0 andfB5p/2. Finally, the modulation factor cs(l)

can be thought of describing regions of enhanced and sup-

pressed MJO activity in the tropics. We therefore choose the

scale factor aA 5 p/360 and aB 5 2p/360 representing 1 and 2

regions of enhanced activity, respectively. (Fig. 2a).

In experiment II we investigate the response of complex

MCA to noncyclical, nonstationary signals. Since MCA seeks

to maximize covariance through a new set of linear combina-

tions, we restrict ourselves here to linear trends (Table 1).

To keep the experiment as simple as possible, we also consider

static fields only. Then, the signal may be simply defined as

zs(t, l) 5 zs(t) 5 hst, where hA 5 3/365 day21 and hB 5
5/365 day21 describe linear trends. In this case, the modulation

factor cs(l) may describe, for instance, differential heating of

the continents and the oceans due to global warming. The ac-

tual values of the scale factors remain unchanged compared to

experiment I (Fig. 3a). For a better overview, the parameters of

both experiments are summarized in Table 1.

b. Climate data

We analyze monthly means of global sea surface tempera-

ture (SST) and continental precipitation using the extended

ERA5 dataset from 1950 to 2019 (Hersbach et al. 2019; Bell

et al. 2020) provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF) as a state-of-the-art re-

placement of the ERA-Interim reanalysis (Dee et al. 2011).

In general, trends and low-frequency variability of surface

temperature and humidity are represented well for the period

1979–2019 (Hersbach et al. 2019; Simmons et al. 2021).

However, Simmons et al. (2021) noticed strong biases in tem-

perature and humidity records for central and East Africa in

the 1950s. Via inspection, we found that East African precip-

itation records in particular are strongly biased during that

period toward much higher values. To avoid providing our

theta model extension with an incorrect starting point of the

time series, we remove the first 10 years, providing us data from

1960 to 2019. Furthermore, the SVDof the covariancematrix is

a rather memory intensive numerical operation, which is why

we limit the domain of interest from 408S to 608Nwith a 18 3 18
spatial resolution, guaranteeing that most of the continents will

be included into the analysis. In total, the fields of SST and

continental precipitation cover nA 5 21 816 and nB 5 14 184

grid points, respectively. To align the different temporal scales

of highly variable precipitation and slow-varying SST and to

filter out the high-frequency signals, we smooth both datasets

with a 6-month moving average, for each month taking into

account the three preceding and the two following months.
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We choose this particular time window to effectively filter out

the semiannual cycles present in the geophysical observations.

We then normalize both data fields by dividing each grid point

by its temporal standard deviation to ensure equal spatial im-

portance. In a nonstandardized MCA analysis, regions of high

rainfall, like the tropics, would dominate the covariance pat-

terns, since annual rainfall in the midlatitudes and subtropics is

typically much lower. After normalization, we weight the data

points located on the regular 18 3 18 grid according to their

associated area on a sphere (North et al. 1982) by multiplying

each grid point with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðujÞ

q
, uj being the latitude at grid

point j.

Climate indices of monthly means, used in this study for the

sake of comparison, are downloaded from the websites of the

National Oceanic and Atmospheric Administration (NOAA;

https://psl.noaa.gov/data/climateindices/list/), namely the oce-

anic Niño index (ONI) provided by the NOAA Climate

Prediction Center, the Pacific decadal oscillation (PDO;

Mantua and Hare 2002), and the Atlantic meridional mode

(AMM; Chiang and Vimont 2004). We calculate the ENSO

Modoki index (EMI; Ashok et al. 2007) according to EMI5
RA 2 (1/2)RB 2 (1/2)RC, where R denotes the area-averaged

ERA5 SST anomalies over the regions A (1658E–1408W, 108S–
108N), B (1108–708W, 158S–58N), andC (1258–1458E, 108S–208N),

respectively. Furthermore, we define an oceanic warming index

(OWI) as the area average of ERA5 SST anomalies (408S–608N)

using the same latitude area weighting as for the MCA data

preparation. Finally, all indices are smoothed using a 6-month

moving average in alignment with our data preprocessing. We

FIG. 2. Results of experiment I. (a) Illustration of synthetic data fields (left)A and (right)B showing (top) the temporal evolutionXs(t, l) for

some selected longitudes l smoothed via a weighted running average using a Gaussian kernel with a standard deviation of 7 days and (bottom)

the associated modulation patterns cs(l)for both fields, respectively. (b) Standard MCA solution showing mode 1 (explaining 10% of the total

covariance) and mode 2 (9%) with (top) the associated PCs and (bottom). (c) Complex MCA solution showing mode 1 (16%) with (top) the

associated real (Re) and imaginary (Im) parts of the first PC, (center) the spatial amplitude functions, and (bottom) the phase functions. For

comparison the denoised signal Xs(t, ls,0 5 0) (gray line; l0), the spatial modulation pattern cs(l)(gray line; cs), and the theoretical phase shift

Fs5 ksl2fs (gray line;Fs) are shown for both fields, respectively. The phase functions indicate the phase shift that has to be applied to the time

series at a specific longitude l in order to obtain the real part of the nonshifted PC (shown in top panel). Percentages in parentheses represent the

covariance fraction gk. All EOFs and spatial amplitude functions are max-normalized for the sake of readability.

TABLE 1. Models for synthetic data generation of Xs for exper-

iments I and II (section 3a). For our final model, we consider the

coordinate ranges t 5 0, 1, . . . , 364 days and l 5 0, 1, . . . , 359
(without unit).

Experiment I Experiment II

Field as v (day21) ks fs hs (day
21)

A p/360 2p/56 22p/360 0 3/365

B 2p/360 2p/56 26p/360 p/2 5/365
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further center and max-normalize all indices for better com-

parison with our obtained PCs.

4. Results

In the following, we discuss the results from the synthetic

experiments before investigating the results of the analysis of

SST and continental precipitation.

a. Synthetic data

Before we start the investigation of the synthetic data, we

apply standard and complex MCA as a baseline study on

Gaussian white noise. By comparing the individual singular

values as well as their sum obtained for each method (Table 2),

we observe that complex MCA consistently yields higher co-

variance both for each mode individually and overall, as a

result of the additional time-lagged cross-covariance between

fields A and B. Therefore, when comparing standard and

complex MCA in the following, we will make use of the sin-

gular values directly instead of the covariance fraction gk in

order to assess the explained covariance by each mode.

1) EXPERIMENT I: LAGGED SIGNALS

Applying standard MCA (denoted by subscript std), the

traveling wave is split into two modes the first explaining 10%

of the shared covariance, and the second 9% (Fig. 2b). This is

not surprising since the singular vectors are orthogonal and the

associated PCs are uncorrelated, forcing the signals into two

distinct modes following a sine and a cosine, which are per-

fectly uncorrelated for a full number of cycles and thus or-

thogonal. While the first two PCs correctly indicate the

temporal evolution of the field following a sine/cosine, the

FIG. 3. Results of experiment II. (a) Illustration of synthetic data fields (left) A and (right) B showing (top) the temporal evolution

Xs(t, l) for some selected longitudes l smoothed via a weighted running average using a Gaussian kernel with a standard deviation of

7 days and (bottom) the associated modulation patterns cs(l) for both fields, respectively. (b) Complex MCA solution showing mode 1

(explaining 28% of the total covariance) with (top) the associated real and imaginary parts of the first PC, (center) the spatial amplitude

functions, and (bottom) the phase functions. (c) As in (b), but showing mode 1 (17%) for the theta extended complex MCA. For

comparison theoretical real and imaginary part of a infinite linear trend (gray lines; Re‘ and Im‘), the spatial modulation pattern cs(l)

(gray line; cs) and the theoretical phase shift Fs 5 0 (gray line; Fs) are shown for both fields, respectively. Percentages in parentheses

represent the covariance fraction gk. All spatial amplitude functions are max-normalized for the sake of readability.
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EOFs fail to provide a clear and easy interpretation of the

associated spatial structures. In particular, without further

a priori knowledge of the expected covarying structures, it

seems a trying exercise to deduce the traveling wave from

the obtained PCs and EOFs. Apart from that the remaining

modes do not show any more distinct patterns, basically rep-

resenting noise.

In comparison, complex MCA (denoted by subscript com)

allows us to represent the traveling wave by a single mode

(Fig. 2c). Additionally, the varying strength of the signal at

different longitudes is clearly captured by the spatial amplitude

for both fields. Another advantage in the interpretation com-

pared to standard MCA is the spatial phase, which shows the

migration of the signal to higher longitudes. Identical phase

values at different longitudes indicate correlation while a phase

shift of p represents anticorrelation. We note that we have not

used the theta model extension here, since the signals in this

experiment are stationary and spectral leakage due to non-

integer number of periods can be assumed to be marginal.

Furthermore, comparing the singular values scom,1 . sstd,1 1
sstd,2 (Table 2) indicates that the complex mode 1 accounts for

more covariance and thus captures more of the traveling wave

than the combined mode 1 and 2 of the standard solution. This

makes sense, since the contributions of longitudes to the in-

dividual EOFs 1 and 2 of the standard solution will decrease for

phase shifts which are not equal to 0 (i.e., sine) or p/2 (i.e.,

cosine). As a pitfall of complex MCA, however, it should be

noted that longitudes whose spatial amplitude function is very

low tend to have noisy phase function values. In our experiment,

this is obvious for longitudes of both fields where cs(l) ’ 0 and

the associated phase function does no longer follow the positive

linear trend. At these longitudes, the max-normalized spatial

amplitude function falls below 0.2 for both fields, serving as a

general orientation for the consideration of phase function

values in the following analysis. In general, it is therefore ad-

visable not to consider regions with low amplitudes.

2) EXPERIMENT 2: TRENDS AND NONCYCLIC SIGNALS

As discussed in section 2b, nonperiodic behavior usually

leads to undesired boundary effects caused by spectral leakage

in the frequency domain. In our experiment, this effect is

clearly evident for both PCs of the complex MCA (denoted by

subscript com) (Fig. 3b). Note that although the boundary ef-

fects seem to occur only in the imaginary parts of the PCs, this

may not be the case in general. The theta extended complex

MCA (denoted by subscript thc), on the other hand, success-

fully mitigates the boundary effects of the PCs (Fig. 3c), where

we have set the theta period Ts 5 1 as the time series have no

seasonality. Nevertheless, the spatial patterns are similar for

both methods and can hardly be distinguished visually.

Considering only spatially static fields in this experiment, the

phase function is constant for both fields, with exceptions at

longitudes of low-amplitude values as already mentioned for

experiment I. Examining the singular values, we notice that

scom,1 � sthc,1 ’ sstd,1 (Table 2), indicating the increased co-

variance of the standard Hilbert transform due to boundary

effects compared to the theta model extended Hilbert trans-

form. This implies that boundary effects created by the Hilbert

transforms can strongly affect correlations and, depending on

their magnitude, lead to a severe ‘‘inflation’’ of the singular

values. As a consequence, the boundary effects can appear as

parts of the first modes, thus completely misleading the inter-

pretation of the results.

More generally, the frequency spectrum of a linear trend on

a given interval is typically broadband and thus the analytical

signal constructed by the Hilbert transform has not a physical

interpretation in terms of characteristic frequencies. Therefore,

the phase function cannot be interpreted in terms of a physical

phase shift. The only exception is for a phase shift of u 5 0;

6p since these relative phase shifts represent correlating and

anticorrelating signals disregarding themathematical nature of

the phase. A fundamental consequence of this is that for modes

whose PC is broadband (e.g., a trend), only correlating (u’ 0)

as well as anticorrelating (u ’ 6p) patterns should be

considered.

b. Climate data: SST and continental precipitation

We apply theta extended, complex MCA to SST and con-

tinental precipitation using a theta period Ts 5 12 to account

for the seasonal cycle. The dimensionality of the problem can

be greatly reducedwith the first 72modes explainingmore than

99% of the lagged covariance (Fig. 4a). To simplify the ob-

tained patterns and to increase the physical meaning of the

results (section 2c), we rotate the first 150 modes explaining

99.82%of the lagged covariance. Our decision to rotate 150modes

is motivated by the idea of retaining as much information as

possible without including the noise that dominates the higher

modes. Since we observe a marked drop in singular values at

TABLE 2. Singular values ofMCA(standard), complexMCA (complex), and theta extended complexMCA (complex1 theta) obtained

for purely white noise random fields (noise) and the synthetic experiments described in section 4a (experiments I and II). Covariance

fraction gk for mode k (in % shown within parenthesis) is calculated according to Eq. (3). Some exemplary modes (in boldface) are

depicted in Figs. 2 and 3. Total cumulated covariance is shown in the last row.

Noise Experiment I Experiment II

Mode Standard Complex Standard Complex Standard Complex Complex 1 theta

s1 2.58 (1.0) 8.37 (1.3) 27.43 (9.8) 102.77 (16.1) 89.1 (31.4) 179.82 (28.2) 93.69 (17.0)

s2 2.53 (0.9) 8.11 (1.3) 24.05 (8.6) 6.97 (1.1) 1.95 (0.7) 6.19 (1.0) 6.18 (1.1)

s3 2.50 (0.9) 7.84 (1.2) 2.21 (0.8) 6.82 (1.1) 1.92 (0.7) 5.96 (0.9) 5.97 (1.1)
..
. ..

. ..
. ..

. ..
. ..

. ..
.

�jsj 269.91 629.95 279.96 640.02 284.1 637.97 551.16
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about the mode number 100 followed by an exponential de-

crease in singular values (Fig. 4b), we guess that there is a

negligible information content in higher modes. Moreover, the

quality of the reconstructed signal is rather independent of the

exact number of rotated modes, with 150 6 50 yielding basi-

cally identical results for the first six modes for both varimax

orthogonal and promax p 5 2 oblique rotation. Therefore, we

will restrict our discussion in the following to the first six

modes. To address the question of the rotation method to be

chosen, we note that promax oblique rotation performs better

when simple structures are present and correlations among

PCs are high (Finch 2006). We expect our first mode to be

dominated by the shared dynamics of the seasonal cycle of

both SST and continental precipitation, which is indeed what

we find for both promax (not shown here) and varimax solution

(Fig. 5). This mode, however, is fairly global and as such does

not represent a simple structure. Furthermore, we observe that

the correlations among the first six promax-rotated PCs

range from 20.15 to 0.13 only, underlining that the promax

oblique solution is close to orthogonal and differences from the

FIG. 4. Described covariance of the first 300 modes of complex MCA applied to SST and continental precipitation showing the

(a) accumulated and (b) individual share. Dashed line estimates the boundary of suspected ‘‘noisy’’ modes.

FIG. 5. Complex varimax-rotated MCA of (left) SST and (right) continental precipitation showing mode 1 and its relative importance

indicated by the covariance fraction. (top) The amplitude functions show the regions predominantly contributing to the mode. (middle)

The phase functions depict the relative phase shifts with respect to (bottom) the corresponding real part of the PC, where 0 (blue) means

correlation and6p (red) shows anticorrelation. For each grid point, the corresponding PC can be computed from the given phase value by

applying the negative phase shift to the PC of phase 0 (bottom). The amplitude functions, PCs and indices shown are all max-normalized

for the sake of comparability. In both amplitude and phase function regions with a max-normalized amplitude below 0.25 are masked out.

Red circles mark North Pacific (158N, 1708E), Indian Ocean (08, 708W), and South Pacific (208S, 1608E) for SST and Poyang Lake, China

(29.18N, 116.38W), Phnom Penh, Cambodia (11.68N, 104.98W), and Darwin, Australia (12.58S, 130.88W) for precipitation. The phase

shifted PCs of these locations are examined in Fig. 6.
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varimax solutions only marginal, at least for the first six modes.

Since the promax oblique solution seemingly does not provide

a better result, we opt for the somewhat simpler varimax or-

thogonal rotation. In the following, we will discuss the varimax-

rotated modes by investigating the real part of the PCs, the

spatial amplitude and phase functions for both fields, SST and

continental precipitation, respectively.

In our representations of the modes, we remove nonsignifi-

cant, ‘‘noisy’’ phase values (see section 4a) by masking out

regions in the spatial amplitude and phase function exhibiting a

max-normalized amplitude of ,0.25.

Mode 1 describes 62.7% of the covariance between SST

and continental precipitation, clearly showing the annual cycle

(Figs. 5 and 12a). As expected, the annual cycle shows itself

in both variables on a global scale, with the exception of the

equatorial ocean, where the seasonal SST variations are only

weak. The phase function correctly identifies the anticorrelation

between the northern and southern oceans. It also suggests that

the eastern equatorial Pacific and the equatorial Indian Ocean

nevertheless show a weak seasonal signal, which is, however,

positively phase shifted relative to the rest of the southern

ocean. On the continents, precipitation dominates mainly in

monsoon areas and the tropics. The phase function illustrates

the division into June–August (white) and December–February

(black) dominated rainfall systems and identifies corresponding

transition zones, as for example over the South American rain

forest and central North America. It also highlights some in-

teresting dynamical regions that stand out from their respec-

tive environments, namely, the west and east coasts of North

America, theMediterranean region, and, to a lesser degree, the

East Asian monsoon region in China.

The obtained mode provides an instructive example to

highlight the benefits of the complexified approach due to the

mode’s correspondingnarrowband frequency spectrum(Fig. 12a).

Using the dominant periodicity of mode 1, T15 12 months, the

interpretation of a phase shift u, given by the spatial phase

function, as time lag t is straightforward and can be computed

via t 5 T1u/(2p). Doing this for some exemplary locations

(denoted by red circles in Fig. 5), we observe that the seasonal

SSTmaximum of the North Pacific follows the one in the South

Pacific by 196 days, that is, being almost perfectly anti-

correlated (Fig. 6). The relative time shifts of the SST and

precipitation maximum of 81 days in the Indian Ocean and 86

days at Poyang Lake, China, is close to 3 months and as such

translates to a phase shift of about2p/2, something that cannot

be picked up as feature within one mode when using standard

MCA. It should also be noted that although the sampling fre-

quency of SST and precipitation is monthly, the phase function

is continuous and thus allows us to infer time lags on shorter

time scales. This is, for instance, the case for the seasonal

precipitation maximum in Darwin, Australia, which precedes

the seasonal SST maximum of the South Pacific by 27 days.

Mode 2 (7.0%) can be clearly associated with the ocean–

atmosphere phenomenon of ENSO (Figs. 7 and 12b). During

El Niño, higher SST in the central and eastern Pacific and lower

SST in the western Pacific positively correlate with heavier

rainfall within a narrow band along the west coast and the

southeastern coast of SouthAmerica (Tedeschi et al. 2013), the

east and west coasts of North America (Ropelewski and

Halpert 1986), the East Asian monsoon region (Wen et al.

2019), and the Horn of Africa (Indeje et al. 2000). At the same

time, precipitation decreases in northern South America

(Tedeschi et al. 2013), Oceania (Dai and Wigley 2000), South

Africa (Gaughan et al. 2016), and the Indian monsoon region

(Cherchi and Navarra 2013). During La Niña (the counter-

phase of El Niño), these correlations are reversed. Recently,

similar teleconnections have been identified via event coinci-

dence analysis (Wiedermann et al. 2021). For a current sum-

mary of established ENSO-related rainfall patterns during El

Niño and La Niña see Lenssen et al. (2020).

Our result also shows the dynamical link between ENSO in

the Pacific Ocean and the Indian Ocean (Krishnamurthy and

Kirtman 2003), the South China Sea (Klein et al. 1999), and the

tropical North Atlantic (Enfield and Mayer 1997; Saravanan

and Chang 2000; Alexander and Scott 2002; Chiang and Sobel

2002) in accordance with previous studies. Interestingly, it was

found that the ENSO-related SST teleconnections in the re-

mote oceans often occur with some delays, with the Indian

FIG. 6. Comparison between 6-month moving average of ERA5 SST and continental precipitation (dotted lines) and the re-

constructed time series based on mode 1 only (thick lines) for the exemplary locations defined in Fig. 5 covering the years 1980–85.

Days in legend refer to the time shift t of the individual locations with respect to the SST of the South Pacific derived from the spatial

phase functions (Fig. 5).
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Ocean typically peaking ;3 months and the South China Sea

and tropical North Atlantic ;5 months after the SST peak in

the Pacific ENSO region (Enfield and Mayer 1997; Klein et al.

1999; Saravanan and Chang 2000). The mechanism behind

these lagged responses, known as the atmospheric bridge, is

based on the characteristic atmospheric circulation during El

Niño, which causes changes in cloud cover and evaporation

over the remote oceans, leading to increased net heat flux and

SSTs (Lau and Nath 1996; Klein et al. 1999). However, due to

the broadband frequency spectrum of the SST PC (Fig. 12b),

with most of the energy contained at four different peaks

around 2.5, 3.5, 5, and 11 years, the phase cannot simply be

translated into a time shift. Nevertheless, the tropical North

Atlantic clearly exhibits more positive phase values compared

to the Pacific El Niño region, therefore indicating to be posi-

tively time shifted relative to the Pacific.

Mode 3 (6.9%) represents global warming and the associ-

ated changes in precipitation patterns (Fig. 8). The warming

SST patterns clearly emerge in all major ocean basins, although

more pronounced in the Northern Hemisphere due to the

asymmetric response of the northern and southern trade winds

to global warming (Xie et al. 2010).We also note a pronounced

warming of the western part of both the Pacific and the

Atlantic basins, both regions of enhanced ocean heat transport

(Xie et al. 2010; Hannachi and Trendafilov 2017). Similar to

these oceanic trends, we also observe global trends in the precipi-

tation patterns, with decreasing rainfall over the Mediterranean,

South Africa, Australia, South America, and parts of western

North America. There seems to be also a decrease of rainfall

over the west Asian monsoon region. In contrast to that, the

results suggest increased precipitation over the Indian mon-

soon region as well as some localized regions in Europe and in

South and North America. These results are largely in agreement

with studies based on observational data (Gu and Adler 2015)

and, more recently, on CMIP5 climate simulations (Giorgi

et al. 2019). Finally, it should be stressed that both PCs, SST

and precipitation, only provide a meaningful interpretation for

phases u ’ 0; 6p (correlation, anticorrelation), due to their

broadband frequency spectra (Fig. 12c). For phase shifts dif-

ferent from that, no clear conclusions can be drawn, as for

example is the case for equatorial Africa where the phase shift

is approximately 1p/2.

Mode 4 (1.6%) shows a slow-oscillating pattern of SST in

the northeastern Pacific correlating with localized precipitation

patterns distributed over all continents (Fig. 9). The typical

spatial SST pattern is known as the Pacific decadal oscillation

(PDO) (Mantua et al. 1997) and a well-established climate

index. A combination of various processes originating in the

tropics and extratropics has been proposed as the physical

source of the PDO (Newman et al. 2016), with ENSO and PDO

likely responding to the same forcing function (Pierce 2002).

Our analysis, however, provides a means to disentangle ENSO-

and PDO-related precipitation patterns, which are often similar

for western North America (Hu and Huang 2009), although

it also reveals important differences (e.g., for Australia, the

Indian subcontinent, or the African Sahel region). Yet care must

be taken when interpreting regions that have a phase shift

different from 0, 6p. Although the PDO exhibits a strong

spectral energy at about 35 years, the mode contains also im-

portant features at about 1–4 years (Fig. 12d), making the

phase interpretation physically less clear.

Mode 5 (1.6%) describes an oscillating SST anomaly mainly

limited to the central Pacific (Figs. 10 and 12e) describing

El Niño Modoki (Ashok et al. 2007) and represented by the

EMI. Higher SST in the central Pacific and lower SST in the

eastern Pacific correlate with reduced precipitation in the East

FIG. 7. As in Fig. 5, but showing mode 2 corresponding to the oceanic Niño index (ONI) provided by the NOAA Climate Prediction

Center as described in section 3b. The Spearman correlation betweenONI and the real part of SST PC2 is r5 0.941 with p value, 0.001.
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Asian monsoon region (Feng et al. 2011), Australia (Taschetto

and England 2009), parts of South America (Tedeschi et al.

2013), and South Africa (Ratnam et al. 2014) and vice versa.

Some of these teleconnections have recently been revealed by

event coincidence analysis (Wiedermann et al. 2021) although

important links to the East Asian monsoon region, for example,

were missing. Although our result suggests that continental

rainfall in certain regions of Africa, Arabia, and the Americas

are phase-shifted El NiñoModoki expressions, future work has

to show if these weak amplitudes are significant.

Mode 6 (1.1%) is characterized by an SST pattern con-

centrated in the tropical and subarctic North Atlantic (Figs. 11

and 12f). The SST pattern, representing the Atlantic meridio-

nal mode (AMM), is the dominant coupled ocean–atmospheric

FIG. 8. As in Fig. 5, but showing mode 3 corresponding to the oceanic warming index (OWI) as described in section 3b. The Spearman

correlation between the OWI and the real part of SST PC3 is r 5 0.781 with a p value , 0.001.

FIG. 9. As in Fig. 5, but showing mode 4 corresponding to the Pacific decadal oscillation (PDO; Mantua and Hare 2002) as described in

section 3b. The Spearman correlation between the PDO and the real part of SST PC4 is r 5 0.565 with a p value , 0.001.

9872 JOURNAL OF CL IMATE VOLUME 34

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 11/20/21 07:13 PM UTC



phenomenon in the tropical Atlantic (Servain et al. 1999) and

its impacts on precipitation of the African Sahel zone, Central

America, and northern South American continent are well

known (Lamb et al. 1986; Martin et al. 2014). Only very re-

cently, Vittal et al. (2020) found a link between the AMM and

Indian summer monsoon rainfall, which they used to improve

precipitation forecast. In addition, our result suggests more

teleconnections between the AMM and precipitation vari-

ability over the Mediterranean, East Africa, the Congo basin,

North America, and the East Asian monsoon region, pro-

viding much potential for advancing local rainfall predic-

tions in those areas. Due to the missing intrinsic time scale

with no clear periodicity (Fig. 12f), only correlating and anti-

correlating patterns should be interpreted. However, most of

FIG. 10. As in Fig. 5, but showing mode 5 corresponding to the ENSOModoki index (EMI; Ashok et al. 2007) as described in section 3b.

The Spearman correlation between the EMI and the real part of SST PC5 is r 5 0.506 with a p value , 0.001.

FIG. 11. As in Fig. 5, but showingmode 6 corresponding to theAtlanticmeridionalmode (AMM;Chiang andVimont 2004) as described in

section 3b. The Spearman correlation between the AMM and the real part of SST PC6 is r 5 0.741 with a p value , 0.001.
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the regions identified by this mode satisfy being correlated or

anticorrelated.

5. Conclusions

Understanding the intricate climate system is a challenging

task that requires advanced statistical methods. Finding cor-

relations among a set of different climate variables is compli-

cated by the frequently present lagged responses of different

variables to the same forcing. We show that complex rotated

MCA provides a practical tool to single out such modes from a

high-dimensional data space, even when the narrowband as-

sumption of the input signals is only partially satisfied.

By taking into account the spatial amplitude and phase

function of the obtained complex modes, we obtain a simple

approach to examine otherwise complicated spatial and

temporal structures. Our synthetic experiments highlight

that, in the case of phase-shifted signals, complex MCA can

capture a more comprehensive and complete picture of the

correlations present. However, they also show the sensitiv-

ity of the Hilbert transform to spectral leakage caused by

boundary conditions of the given time series, such as when

the time series clearly consists of a noninteger number of

cycles and/or in the presence of trends. Since the stationarity

assumption does often not hold (due to climate change),

time series should generally be preprocessed when applying

complex MCA.

Extending the time series via the optimized theta model

mitigates the effect of spectral leakage and produces physically

reasonable PCs. This procedure allows us to resolve trends and

noncyclic signals, although for trends the obtained spatial

phase function has a simple physical interpretation only for

correlating and anticorrelating patterns. Nevertheless, this

approach provides a means of applying complex MCAwithout

the need to detrend the time series of interest. Moreover, ex-

cluding the first mode, the original fields can be reconstructed

without the seasonal cycle, providing an advanced tool to

preprocess time series containing nonstationary and nonlinear

seasonal features.

A general caveat in complex MCA is the fact that the phase

function loses its interpretation for PCs with a broadband

frequency spectrum. But although the spatial phase function

does not always have a simple physical interpretation for most

of the modes due to their broadband frequency spectrum,

complex MCA nevertheless can always be interpreted for the

correlating and anticorrelating patterns.

Applying complex rotated MCA to SST and continental

precipitation, we clearly identify the main shared dynamics in

both variables, namely (i) the seasonal cycle, (ii) the canonical

ENSO, (iii) the trends associated with global warming, (iv) the

PDO, (v) ENSOModoki, and (vi) the AMM. We also retrieve

phase shifted signals between the two climate variables. While

for the seasonal cycle these phase shifts can directly be trans-

lated into a time shift, the remaining modes generally do not

lend themselves to such a simple interpretation due to their

broadband frequency spectra. But even without a precise

equivalent as time lag, the phase function provides a means to

identify regions of lagged correlations, for instance between

the SST of the Pacific and the tropical North Atlantic during El

Niño events. In addition, by focusing on narrow frequency

FIG. 12. Magnitude spectrum of the first six PCs considering only the real part and using a Hanning window.
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bands only, one may detect frequency ranges over which the

phase is not random, thus potentially uncovering more of the

dynamic structure of the individual modes.

Many of the obtained correlation patterns in SST and con-

tinental precipitation had already been evidenced by a multi-

plicity of different, partly regional studies. The great advantage

of complex rotated MCA is that it allows us to obtain all those

patterns by a single analysis of the correlation of two geo-

physical variables at global scale in a more compact and easy-

to-interpret way. Besides, our results also point out to new

ocean–atmospheric teleconnections that, to our knowledge,

have not been reported, most notably for the PDO and

the AMM.

Regarding future applications of complex rotatedMCA, this

method has the potential for shedding light in the investigation

of seasonal and subseasonal phenomena, as well as for spatially

propagating patterns. As future work, we plan to analyze the

Madden–Julian oscillation. Additionally, complex rotated

MCA could be used to evidence other connections between

less studied variables (e.g., sea surface salinity, sea surface

height, soil moisture, winds, etc.), which has the potential to

reveal new phenomena and novel aspects of existing or new

teleconnections.
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APPENDIX A

Definition of Arctan2

Every nonzero complex number in Cartesian coordinates,

z5 x1 iy, can be transformed into polar complex coordinates,

z5 aeiu, where a5 (x21 y2)1/2 is the amplitude, and u the phase

of z. For each z 6¼ 0, the phase is only defined up to an integer

multiple of 2p, resulting in an infinite number of possible

values. To construct a well-defined function u(x, y), one typi-

cally limits the phase u to (2p, p]. Then, the two-argument

arctangent function arctan2(y, x) converts the values of y and x

to the polar phase via

u5 arctan2(y, x)5

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

arctan
�y
x

�
, if x. 0

arctan
�y
x

�
1p , if x, 0 and y$ 0

arctan
�y
x

�
2p , if x, 0 and y, 0

1
p

2
, if x5 0 and y. 0

2
p

2
, if x5 0 and y, 0

undefined, if x5 0 and y5 0

.

APPENDIX B

Finding the Rotation Matrix R

Let us assume a complex loading matrix Lr 2 Cn3r contain-

ing only the first r columns (modes) that are to be rotated and n

denoting the number of grid points. The number of grid points

may be the sum of the grid points of two different fields n 5
nA1 nB as is the case forMCA and described byEq. (7) or simply

the total number of grid points if only one field is considered as it is

for PCA. In the following, we will drop the subscript r in order to

keep the notation simple and let ~� denote the rotated solutions.

Furthermore, * refers to the conjugate transpose of amatrix and j�j
denotes the absolute value of a complex number.

a. Varimax orthogonal rotation

The goal of varimax rotation is to approximate simple

structures (Thurstone 1947) of the EOFs, which is achieved by

simplifying the columns of L via an orthogonal rotation R. For

this purpose, Kaiser (1958) defines the simplicity Sk:

S
k
5

1

n
�
n

j51

(j~l
jk
j2)2 2 1

n2

�
�
n

j51

j~l
jk
j2
�2

, k5 1, . . . , r , (B1)

which measures the variance of the squared amplitude of

the rotated loadings ~l jk. With increasing variance, the

squared rotated amplitudes j~l jk j2 either become low or

large, thus increasing simplicity. The normalized simplicity

S then reads

S5 �
r

k51

2
641
n
�
n

j51

0
B@j~l

jk
j2

h2
j

1
CA

2

2
1

n2

0
B@�n

j51

j~l
jk
j2

h2
j

1
CA

23
75 , (B2)

where hj ¼
�
�r

k¼1 jljk j2
�1=2

represents the communality of

grid point j, which is the amount of variance of the jth grid point

accounted for by the r retained modes. Subsequently, the

normalized varimax-rotated EOFs, ~L V;norm, are the solution to

the varimax criterion
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~L
V,norm

5H21LR s.t. argmax
l

(S) andR*R5 1, (B3)

with the communality matrix H 2 Rn3n, whose elements are

given by diag(h1, . . . , hn). Equation (B3) can be solved by

an iterative process, in which the EOFs are rotated in pairs

in order to maximize S. Finally, the denormalized varimax-

rotated EOFs can be computed via ~L V 5H~L V;norm.

b. Promax oblique rotation

Achieving simple structures with promax is done via an

oblique Procrustes transformation (Hurley and Cattell 1962).

Every target matrix of rotated EOFs T can always be ap-

proximated from a base matrix B via a linear transforma-

tion R,

T5BR1E , (B4)

where E is an error matrix. Minimizing trace(E*E) yields the

complex Procrustes equation

R5 (B*B)21B*T . (B5)

The basic assumption of promax is that a varimax orthogonal

rotation is a reasonable approximation to an optimal obli-

que solution. Therefore, the base matrix is chosen to be B 5
~H21~L V whose entries are normalized by the varimax commu-

nalities ~h j 5 �r

k¼1 j~l jk j2. Then, the promax equation defines

the elements of the target matrix T,

t
jk
5 jb1

jkjp11
/b1

jk , (B6)

where 1 denotes the max-normalized entries given by bjk
1 5

bjk /maxjjbjk j. The power parameter p thus defines the strength

of the promax operation, while the sign remains unchanged.

Using Eq. (B5), the denormalized promax-rotated EOFs are

given by

~L
P
5 ~L

V
RD5 ~H21~L

V
[(~L*V

~H22~L
V
)
21~L*V

~H21T]D , (B7)

where the normalization matrix is given by D2 5 diag(R*R)21.
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