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Abstract 

Background:  Analysis and prediction of complex traits using microbiome data combined with host genomic 
information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the 
microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological 
links between the host’s genome, microbiome, and phenome be recovered?

Methods:  Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome 
and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert 
Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance 
explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between 
the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data.

Results:  Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that 
microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some 
microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on 
the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance compo‑
nents estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive 
performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with 
Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype.

Conclusions:  While we conclude that, overall, genome-microbiome-links can be characterized using variance 
component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that 
affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-
microbiome-phenome studies. The R code to replicate the analyses is in https://​github.​com/​migue​lpere​zenci​so/​
simub​iome.
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Background
The relevance of microbial ecosystems associated with 
humans and animals for health and production is now 
widely recognized, e.g., [1–6]. The fraction of pheno-
typic variance for a given trait that is explained by the 

microbiome has been estimated to quantify its influence 
and has been named ‘microbiability’ ( b2 ) [7], in symme-
try with the classical ‘heritability’ ( h2 ) concept [8]. Previ-
ously, the term "hologenome" was coined to describe the 
joint action of the genome and the microbiome on a phe-
notype [9].

Numerous microbes are responsible for diseases, e.g. 
sepsis in humans, and they have been used for diag-
noses for many years [10]. Yet, a consequence of the 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  miguel.perez@uab.es
1 ICREA, Passeig de Lluís Companys 23, 08010 Barcelona, Spain
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3524-995X
https://github.com/miguelperezenciso/simubiome
https://github.com/miguelperezenciso/simubiome
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-021-00658-7&domain=pdf


Page 2 of 20Pérez‑Enciso et al. Genet Sel Evol           (2021) 53:65 

microbiability being larger than zero is that the whole 
microbiome can be used to predict complex pheno-
types, regardless of whether it is a disease or a produc-
tion trait. This is an important issue since the use of 
microbiome data has the potential to alter how medi-
cal diagnoses in humans or management and breeding 
decisions in agricultural species are performed.

Several studies have demonstrated the potential value 
of microbiome data for the prediction of complex-
traits. For example, Rothschild et  al. [11] showed that 
microbiome data can be used to improve accuracy in 
the prediction of obesity and many other phenotypes in 
humans. Likewise, Lloyd-Price et  al. [12] showed that 
microbiome data can predict future outbursts of bowel 
disease in humans. Various studies have shown the 
power of microbiome data to predict methane emission 
and feed efficiency in cattle [4, 13–15], feed efficiency 
and carcass traits in pigs [16, 17] and in poultry [18]. 
In addition, microbiota data from the rhizosphere has 
been used to predict various plant phenotypes (e.g., 
crop yield and diseases) [19]. Simultaneously, since the 
groundbreaking study of Meuwissen et al. [20], predic-
tion of complex traits using genomic information has 
been embraced in both plant [21] and animal breed-
ing [22], as well as in human genetics [23]. Therefore, 
combining the host’s genome and microbiome informa-
tion is a natural next step to improve the prediction of 
complex traits, a topic that is currently receiving much 
attention [16, 24].

It is also important to realize that the composition of 
the microbiome can be affected by the host’s genome. 
Wang et  al. [25] argued that it is evolutionarily justi-
fied for the microbiome to be under partial host genetic 
control since a non-negligible fraction of the cells in 
an adult body is made up of microbes, especially in the 
gut. Beginning with the seminal work by Pomp’s team 
[26], several studies have confirmed the relationship 
between the host’s genotype and microbiome composi-
tion, e.g., [25, 27, 28]. These microbiome genome-wide 
association studies (MWAS) suggest that microbiome 
abundances can be treated as any other complex trait in 
humans or livestock [27]. For example, Crespo-Piazuelo 
et  al. [29] and Ramayo-Caldas et  al. [30, 31] identified 
several quantitative trait loci (QTL) that modulate bacte-
rial and eukaryotic communities in the gut of pigs and in 
rumen. Although the ‘heritability’ of individual amplicon 
sequence variants (ASV) or operational taxonomic units 
(OTU) is typically low, considering the whole microbi-
ome simultaneously should increase power of MWAS 
[32]. In addition, although microbiome heritabilities 
vary according to the taxa level considered, they usually 
increase as we move up from quasi-species to genus or 
family levels, e.g., [33]

Large-scale studies in humans suggest a predominant 
role of the environment in shaping the gut microbiome 
[11]. However, regardless of the relative importance of 
genetic and environmental factors in shaping the micro-
biota, microbiome composition per se can have a predic-
tive value. Yet, the use of microbiota for the prediction 
of future phenotypes or disease outcomes requires some 
level of stability of the microbiome over time. In the case 
of the gastrointestinal tract, microbiota colonization 
starts at birth, when vertical transmission occurs through 
the mother’s birth canal. Then, microbiota diversity and 
richness tend to increase as the host ages, to stabilize at 
adulthood [34, 35]. In ruminants, the microbial popula-
tions that inhabit the rumen appear progressively after 
birth and partially persist throughout life [36].

As noted, the genome-microbiome-phenome is a com-
plex system but quantifying the relationships between 
host-genome, microbiota, and phenotypes is important 
for the effective use of microbiome data for prediction 
of complex traits. Overall, although there are many pub-
lished reports, we still lack detailed guidelines on the 
joint use of microbiome and genome information for 
the prediction of complex traits and on the reliability of 
parameter inferences. The number of genes that affect 
microorganism abundance and that can be confidently 
identified, and the number of microorganism taxa that 
can influence a given phenotype remain unknown. With 
this work, our aim was to contribute to this important 
topic by focusing on three inter-related questions:

1.	 How useful can the microbiome be for prediction of 
complex traits?

2.	 Are microbiability estimates reliable?
3.	 Can the underlying biological genome-microbi-

ome-links be inferred at a system’s level? On a more 
refined level, the question that we aimed to address 
is whether microbiome groups (e.g., OTU or gen-
era) with sizable causal effects on phenotypes can be 
identified with the typical size of current microbiome 
data sets?

We address these questions via a novel simulation 
strategy that uses real microbiome and genotype data as 
inputs and by proposing a variance-component approach 
that, in the spirit of mediation analyses, quantifies the 
proportion of phenotypic variance explained by the 
genome and the microbiome. Importantly, the approach 
allows simulation of a partial control of the host’s genome 
on the microbiome. This is accomplished using a partial 
permutation approach that preserves the distribution of 
the genome and the microbiome. For the analyses, we 
used Bayesian Reproducing Kernel Hilbert Space (RKHS 
[37]) and Bayes C [20] approaches. RKHS is similar to 
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genomic best linear unbiased prediction (GBLUP) [38], 
while Bayes C is a variable selection approach that can 
account for the possibility that some or all the features 
available in the genome or the microbiome have no effect 
on the trait of interest. We investigated the three above-
mentioned questions across diverse causal scenarios that 
examined the links between host genomes and microbi-
omes, and their relations with phenotype for a complex 
trait.

Methods
Causative scenarios considered
Because the exact nature of the links between the 
genome (G), microbiome (B), and phenotype (y) is largely 
unknown and will likely vary from case to case, we used 
the six generic causal models (‘scenarios’) illustrated in 
Fig. 1 to shed light on the nature of the genome-micro-
biome-phenome links. In the ‘Null’ scenario, there is no 
link between any of the data-layers; while this scenario is 
unlikely, it serves as an ‘overall null hypothesis’ and it is 
useful to assess potential biases in parameter estimates. 
The ‘Genome’ scenario assumes that only the genome 
affects the phenotype. In turn, only the microbiome has 
a direct effect on the phenotype in the ‘Microbiome’ and 
‘Indirect’ scenarios. In contrast to the ‘Microbiome’ sce-
nario, the ‘Indirect’ scenario allows for some of the causa-
tive abundances to be controlled genetically, which is 
similar to a scenario in which a phenotype is directly con-
trolled by gene expression levels, and where gene expres-
sion is in turn genetically controlled [39, 40]. The ‘Joint’ 
scenario is the simplest configuration for a trait that is 
under the influence of both the genome and the micro-
biome. It assumes that the microbiome and the genome 
are independent and that their effects on the phenotype 
are also independent. This is the most widely assumed 
scenario, implicitly, or explicitly, in the literature, e.g., [4, 
11, 16]. The ‘Recursive’ scenario is similar to the ‘Joint’ 
scenario but it accounts for the possibility that some 
causative OTU may be under partial genetic control by 
the host. Therefore, in this scenario, the genome has both 
direct and indirect (microbiome-mediated) effects on the 
phenotypes. It should be noted that the ‘Recursive’ model 
does not assume that the same SNPs have both direct and 
indirect effects, or that all OTU abundances are under 
genetic control.

The causal models depicted in Fig. 1 were used to simu-
late genome-microbiome-phenotype data under differ-
ent configurations regarding the number of causative loci 
(QTN) and the number of OTU with effects on the phe-
notypes, as well as the number of OTU that are affected 
by the host’s genome. Tables 1 and 2 summarize the sim-
ulation models and parameter values chosen.

A novel data‑driven strategy to simulate 
microbiome‑genome‑phenotype experiments
Ample literature and software are available on the simu-
lation of ‘standard’ complex phenotypes, e.g., [41–44]. 
However, these algorithms are not suited for some of 
the scenarios presented in Fig.  1. Two issues make the 
simulation of the scenarios shown in Fig.  1 challenging: 
(i) microbiome data follow zero-inflated highly leptokur-
tic multivariate distributions [45, 46] and it is not obvi-
ous how to sample from these distributions conditional 
on genome data, as is required in the ‘Recursive’ and 
‘Indirect’ scenarios; and (ii) in the absence of large-scale 
published—and public—datasets, it is difficult to obtain 
accurate estimates of key parameters, such as microbia-
bility, to use in the simulations. To circumvent, or at least 
to alleviate, these constraints, we used publicly available 
real data [4, 13] for both G and B.

Simulation under the ‘Joint’ scenario is straightforward 
since it assumes that G and B act independently (see 
below). Simulation under the ‘Recursive’ and ‘Indirect’ 
scenarios is not that obvious because causative abun-
dances are under genetic control and a link must exist 
between G and B. We solved this by rearranging abun-
dances within individuals such that the desired correla-
tion between abundance and individual’s genotypes was 
attained (see the Algorithm in Box  1 and the R-code at 
https://​github.​com/​migue​lpere​zenci​so/​Simub​iome/​
blob/​master/​sortC​or.R). This strategy has the impor-
tant advantage that the distribution of abundances is not 
changed compared to the observed one. Figure  2 reca-
pitulates the simulation strategy. The R code to replicate 
the analyses is available at https://​github.​com/​migue​lpere​
zenci​so/​simub​iome).

Simulation details
We simulated the joint influence of the genome and the 
microbiome on a quantitative trait by adding their contri-
butions plus random noise:

where yi is the i-th individual record, αj is the genetic 
effect of j-th causal SNP (QTN), with j = 1 to NQTN , 
which is the number of QTN; zij is the genotype of the 
i-th individual for the j-th SNP coded as -1, 0 and 1 
(strict additivity was assumed for all QTN); ωk is the lin-
ear effect of the log-transformed abundance of the k-th 
OTU ( xik ), with k = 1 to NOTU , which is the number of 
abundances that influence the phenotype; and εi is a nor-
mally distributed residual. The effect of an OTU can be 
interpreted as the expected change in phenotype per unit 

(1)yi =

NQTN
∑

j=1

αjzij +

NOTU
∑

k=1

ωkxik + εi,

https://github.com/miguelperezenciso/Simubiome/blob/master/sortCor.R
https://github.com/miguelperezenciso/Simubiome/blob/master/sortCor.R
https://github.com/miguelperezenciso/simubiome
https://github.com/miguelperezenciso/simubiome
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Fig. 1  Representation of the scenarios evaluated. G: genome, typically comprises SNP genotype data; B: microbiome; y: phenotype of interest; 
arrows indicate causality. An arrow from G to y indicates that there is a subset of elements of G (causative SNPs) that influence y; an arrow from G to 
B indicates that there is a subset of G that influences a subset of abundances in B, which, in turn, may also influence y. An arrow departing from B 
indicates there is a subset of microbial abundances (the causative abundances) that influence y. The SNPs that affect B need not necessarily be the 
same as SNPs that affect y directly in the Recursive scenario. Note that B can contain one or more sets of abundances such as archaea and bacteria 
communities, or different time or site sampling points. Without loss in generality, we assume B is a single community
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increase in the log-transformed abundance of the OTU. 
Since abundances are on the log scale, this is equivalent 
to multiplicative effects of abundance on phenotype. 
Equation (1) is valid for all scenarios in Fig. 1, except that 
the term involving markers 

∑NQTN

j=1 αjzij is removed in 
the ‘Microbiome’ and ‘Indirect’ scenarios, while the term 
∑NOTU

k=1 ωkxik is removed in the ‘Genome’ scenario.
For the ‘Indirect’ and ‘Recursive’ scenarios, variation in 

abundances ( x ) that is explained by the genome must also 
be modeled (Fig. 1). Again, we can resort to a linear model 
in which the log-transformed abundance is treated as a 
standard complex phenotype:

where xik is the log-transformed abundance level of the 
k-th OTU that is under partial genetic control for the i
-th individual, βjk is the genetic effect of the j-th QTN 
on k-th abundance, and zij is the genotype of the i-th 
individual for the j-th SNP. The sum is across the QTN 
that affect abundance of the k-th OTU, j = 1 to NQTN (k) . 

(2)xik =

NQTN (k)
∑

j=1

βjk zij + ǫi,

Table 1  Definition of the evaluated scenarios and of the chosen parameters

NQTN : number of SNPs with a direct causal effect on the phenotype y; NOTU : number of OTU with a direct effect on y; NOTU(g) : number of OTU with a direct effect on y 
that are genetically determined, i.e., they are a subset of NOTU ; h2 is heritability, b2 is microbiability, and r2 = h2 + b2 . For r2 , values of 0.50 and 0.25 were considered. 
Causative OTU and SNPs were randomly sampled

Scenario Abbreviation NQTN NOTU NOTU(g) h2 b2

Null 0 – – – 0 0

Genome G 100 0 0 r
2 0

G500 500 0 0 r
2 0

Microbiome M 0 25 0 0 r
2

Indirect I 0 25 25 0 r
2

Joint J 100 25 0 r
2/2 r

2/2

J500 500 25 0 r
2/2 r

2/2

Recursive R 100 25 25 r
2/2 r

2/2

R500 500 25 25 r
2/2 r

2/2

Table 2  Scenarios used to evaluate sensitivity of predictive accuracy to the number of causative OTU

Symbols are the same as in Table 1

Causative OTU and SNPs were randomly sampled

Scenario Abbreviation NQTN NOTU NOTU(g) r2 h2 b2

Joint J10 100 10 0 0.50 0.25 0.25

J100 100 100 0 0.50 0.25 0.25

J250 100 250 0 0.50 0.25 0.25

Recursive R10 100 10 5 0.50 0.25 0.25

R100 100 100 50 0.50 0.25 0.25

R250 100 250 125 0.50 0.25 0.25

G B

y

G B

y

G B

y

G B

y

Joint

Genome Microbiome

G B

y
Indirect Recursive

G B

y
Null

Fig. 2  Simulation scheme for the Recursive scenario (Fig. 1). a Real 
input data comprises p genotypes ( G matrix) and k taxa abundances 
( B matrix). SNPs in grey are neutral, those in red act directly on the 
phenotype y, and those in yellow/orange influence some OTU 
abundances (marked in magenta color in B matrix); abundances 
in blue are not genetically controlled. b Given simulated effects, 
a genotypic value for abundance is obtained via Eq. (2). To obtain 
the required heritability, abundances in magenta are reordered; to 
simplify visualization, high abundances (represented by a darker 
color) are associated with genotype ‘1’. A single SNP is shown 
as causative for both OTU but there is no limit in practice. c The 
phenotype is simulated by adding the genome and the microbiome 
contributions plus a residual. d The general causal diagram
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Note that abundances xik in Eq. (2) are a subset of those 
in Eq.  (1). Other non-causative abundances may also be 
under genetic control but that is irrelevant for our pur-
pose. Based on this model, phenotype under the ‘Recur-
sive’ scenario was simulated via a two-step procedure by 
first simulating abundances ( x ) using Eq. (2), followed by 
simulating phenotype using Eq. (1) given the abundances 
obtained.

We used real genome and microbiome data as input 
for the simulation procedure. We downloaded the abun-
dance of 4018 OTU from dairy cattle rumen (N = 750 
[4]). A pseudo-count equal to one was added to zero 
abundances and all abundances were then total-sum 
scaled and log-transformed, which resulted in much less 
leptokurtic and asymmetric distributions than original 
raw abundances. In Eqs. (1) and (2), xik represents log-
transformed abundances.

High-density array genotypes for 750 Holstein cows 
were downloaded from [13]. To prune SNPs and facilitate 
computation, 35% of all SNPs (i.e. 32,204) were retained 
based on a minimum allele frequency of 0.01 and a maxi-
mum missing genotypes percentage of 1%. The few miss-
ing values were simply imputed with the mean.

Causative OTU and SNPs were randomly sampled, irre-
spective of their frequency. Thirty simulation replicates 
per scenario were simulated. Under the ‘Joint’ scenario, 
which assumes independence between G and B, we can 
simply sample the list of causative SNPs and abundances, 
simulate their effects, and apply Eq.  1 to generate phe-
notype values given the observed genotypes and abun-
dances. In the case of ‘Recursive’ and ‘Indirect’ scenarios, 
it is not so obvious because we need to sample abun-
dances that are under genetic control and a link must 
exist between G and B (Eq.  2). We solved this issue by 
rearranging abundances of a given OTU between individ-
uals such that the desired correlation between abundance 
and individual’s genotypes is attained. This strategy has 
the important advantage that the distribution of abun-
dances is not changed. Suppose γik =

∑NQTNO

j=1 βjk zij 
is the simulated genetic effect of the i-th individual for 
log-transformed abundance of the k-th OTU (Eq.  (2)) 
and that the desired heritability for that abundance is h2k . 
The algorithm (see Box 1) is based on the simple observa-
tion that, given any two vectors x and y , the correlation 
is maximum ( ρ ~ 1) when observations in both vectors 
are sorted and ρ is ~ zero when they are shuffled. There-
fore, there must be some order ysort that fulfills, approxi-
mately, the constraint cor(x, ysort) = ρ . For our purpose, 
we need to rearrange the observed abundances xk such 
that the correlation between the rearranged xk and γk is 
hk , i.e. the square root of heritability for abundance of the 
k-th OTU. The detailed algorithm is provided in Box  1. 
As a result, with this algorithm a covariance between 

genome and microbiome is generated in the ‘Recursive’ 
and ‘Indirect ‘scenarios, mediated by Eqs. (1) and (2).

A drawback of this algorithm is that it locally breaks 
the covariance between abundances of different OTU. 
To alleviate this, we permuted all abundances that fell 
within the same OTU cluster. We clustered abundances 
using the R function hclust(dist(.), method = "ward.D2") 
and cut the tree in K = 500 clusters. We chose K = 500 
because the first quartile of the intra-cluster average cor-
relation was above the third quartile of the average cor-
relation between random abundances, i.e., clusters were 
made up of highly correlated abundances compared to 
average. We also explored K = 200 but we found no dif-
ference in predictive accuracy. To verify that the shuf-
fling algorithm did not alter the structure of the data, we 
show the results of the principal component analysis of 
the original microbiome set and a few shuffled microbi-
ome sets in Additional file 1: Figure S2. Causative OTU 
were sampled from different clusters.

Box 1 Finding a permutation of vectors x and y such 
that the correlation between permuted vectors 
is a predetermined value ρ.
Take x , y, and ρ , where x and y are arbitrary uncorre-
lated vectors in Rn and 0 ≤ ρ ≤ 1 is the desired corre-
lation. The aim is to find a permutation of y such that 
the correlation cor(x, ysort) = ρ , approximately. The 
algorithm can be equally applied when x and/or y con-
sist of integer numbers and normality is not required 
either. The performance of the algorithm improves as 
n increases and when normality does hold.

1.Sort the values of x and y in increasing or decreasing 
order. The correlation cor

(

xsort , ysort
)

∼= 1.

2.Generate a dummy variable z = ysort + e where e  
values are sampled from e ∼ N

(

0, S2y
1−ρ2

ρ2

)

, with S2y 
being the sample variance of y . The correlation 
cor(xsort , z) ∼ ρ.

3.Create an index vector iy , which indicates how ysort 
should be reordered according to the order of z . This 
dummy index iy = order

(

y
)

[order(z)] contains the 
order of y when values are back-sorted according to 
the order of z.

4.Reorder iy = iy[rank(x)] to match the index with 
positions ysort in the original vector x . This is needed 
since x remains unchanged and only y is permuted.

5.The correlation cor
(

x, y
[

iy
])

∼= ρ.

Parameter fitting
Little is known on the number of OTU that influence a 
given phenotype and on how many of those are partly 
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inherited. For that reason, we chose some extreme but 
‘educated’ values for each of the five scenarios depicted in 
Fig. 1. We considered r2 = h2g + h2b , where h2g and h2b are 
the heritability and microbiability, respectively; r2 = 0.25 
is grossly the value reported by Difford [4] with N = 750, 
whereas values closer to r2 = 0.50 were reported by Wal-
lace et  al. [13] for some farms. In general, increasing r2 
attempts to mimic the effect of increasing sample size. 
We assumed h2g = h2b for the ‘Joint’ and ‘Recursive’ sce-
narios, as approximately reported by Difford et  al. [4] 
and Camarinha-Silva et  al. [16]. The number of QTN 
was somewhat arbitrary and set to either 100 or 500, but 
the specific number of loci should not affect the results 
much. Barton et  al. [47] showed theoretically that most 
properties of the infinitesimal model hold as the number 
of QTN increases even modestly (N > 20).

Numerous empirical and theoretical works have shown 
that genetic effects of QTN on phenotype are not uni-
formly distributed and can be approximated by a gamma-
like distribution [48, 49]. Thus, here we sampled direct 
genetic effects α ∼ Ŵ (shape = 0.2, scale = 5), as suggested 
by Caballero et  al. [50] and also used by us previously 
[51].

Much less is known on the number of causative OTU 
( NOTU ), although we can presume that NOTU should be 
smaller than the number of QTN. For instance, Duvallet 
et al. [36] found in a large meta-analysis that the human 
diseases studied were affected by, on average, 10 to 15 
changes in abundances at the genus level. Here, we con-
sidered NOTU = 25 (0.6% of all OTU), although we also 
evaluated NOTU = 10, 100, and 250 (Table  2). Similarly, 
for the ‘Recursive’ and ‘Indirect’ scenarios, we took the 
extreme scenario where all causative OTU are geneti-
cally determined, i.e., NOTU = NOTU(g) . The genetic 
effects β on abundances (Eq. (2)) were sampled from the 
same distribution β ∼ Ŵ(shape = 0.2, scale = 5) as the 
direct genetic effects α . Much less is known about the 
distribution of the effects of abundances, ω , on pheno-
type (Eq. (1)). We took as proxy the distribution of esti-
mates of regression coefficients of methane emission on 
abundances reported by Difford et  al. [4] in their sup-
plementary information S4, which can be approximated 
by ~ Ŵ(shape = 1.4, scale = 3.8). Additional file  1: Figure 
S3 compares the distributions of QTN and OTU effects 
and their fit to the empirical data of Difford et al. [4]. This 
model predicts that the variance of the effects of OTU 
on phenotype is on average wider and larger than that of 
QTN. Although, at this point, this is speculative, it is sen-
sible to assume that only a few taxa have a sizeable influ-
ence on a phenotype such as methane emission.

Data analysis
It was not evident which predictive algorithm would work 
best for the complex scenarios simulated here, although 
results from the literature show that no approach is opti-
mal for all cases. Here, we compared the Bayes C algorithm 
[20] and Bayesian RKHS regression, which is equivalent 
to GBLUP [38], to assess prediction performance and reli-
ability of parameter estimates. Both approaches represent 
extreme parameterizations in terms of priors applied and 
were implemented in the BGLR R package [52]. To assess 
predictive accuracy, 75 (10%) phenotypes were randomly 
removed and predicted with the fitted model using the 
remaining data. The correlation between observed and 
predicted phenotypes was used as a measure of predictive 
accuracy.

The generic linear model used was:

where y is the vector of the simulated phenotypes, g is 
the vector of SNP effects, Z is a matrix of the observed 
genotypes for the 33 k SNPs, b is the vector of the effects 
of log-transformed abundance of OTU, W is a matrix 
with all nb = 4018 log-transformed abundances for the 
n = 750 individuals, i contains the interaction between g 
and b , and e is a vector of residuals. Prior to the analy-
ses, phenotypes, abundances and genotypic values were 
standardized to a mean of zero and a SD of 1. For Bayes-
ian RKHS, variance–covariance structures were specified 
to be Var

(

g
)

= G , Var(b) = B , and Var(i) = G ◦ B , with 
G = ZZ′/n , B = WW′/nb , and ◦ denotes the direct prod-
uct between matrices. The term i is intended to capture 
any variance due to the interaction between genome and 
microbiome, similar to the additive x additive epistatic 
variance–covariance structure usually being obtained 
from G ◦G [53, 54]. For priors, we used the default values 
in the BGLR software.

In Bayes C, we did not include an interaction explic-
itly but, instead, computed a covariance between esti-
mates b and g, as detailed below in Eq. 3. As priors π for 
the probability of SNPs or abundances to enter the Bayes 
C model, we used π ∼ Beta

(

p0 = 5,π0 = 0.001
)

 , which 
has expectation π0 and variance π0(1− π0)/p0 + 1) . 
We also considered a much more liberal flat prior for 
π ∼ Beta

(

p0 = 2,π0 = 0.01
)

 , but we did not observe 
strong differences (see Additional file 1: Figure S1). Unlike 
GBLUP, ‘heritability’ is not explicitly defined in a Bayes C 
framework but, here, we used the proposal by [52] (https://​
github.​com/​gdlc/​BGLR-R/​blob/​master/​inst/​md/​herit​abili​
ty.​md) to estimate heritability and microbiability. In short, 

(3)y = Zg +Wb+ i + e,

https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
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at each iteration i of the MCMC, the algorithm samples the 
effects of the SNPs and OTU:

 where u(i) and v(i) are genome and microbiome effects 
at the i-th iteration for the set of individuals, respec-
tively, and ĝ(i) and b̂(i) are the sampled effects of the SNPs 
and OTU abundances; therefore, Var(u(i))/Var

(

y
)

 and 
Var(v(i))/Var

(

y
)

 are the sampled heritability and micro-
biability in the i-th iterate, from which posterior means 
were estimated by averaging over iterations. For Bayes 
Cgb, we also computed the sampled absolute covariance 
between u and v for each iteration i , i.e.:

To assess how likely it is to identify causative OTU in 
Bayes C, we computed the probability of a given OTU to 
enter the model over MCMC iterations. We ran a GWAS 
of abundances ( xk , k = 1 , NOTU ) on SNP genotypes ( zj , 
j = 1 , NSNP ) using the R function lm(xk ∼ zj ) and com-
puted the association P-value of both causative QTN, i.e., 
those that were simulated to affect abundances, and of 
neutral SNPs. This was done in the ‘Recursive’ scenario 
only, in which we also computed the heritabilities of all 
abundance levels using the RKHS model. Weakly inform-
ative priors for variances were used in this case to mimic 
a REML-like estimator.

We ran RKHS and Bayes C with complete models, i.e., 
including genome, microbiome and their interaction, 
and with partial models that considered only microbi-
ome or genome information (Table  3). This was done 
to study confounding and to determine whether part of 
the variance in microbiome abundances was captured by 
the genome when the microbiome was partly heritable 

u(i) = Zĝ(i),

v(i) = Wb̂(i),

(4)
∣

∣Cov
(

u, y
)∣

∣ =

∑Niter
i=1

∣

∣cov
(

ui, vi
)
∣

∣

Var(y)Niter

(‘Indirect’ and ‘Recursive’ scenarios). In total, 50k itera-
tions, including 500 burn-in iterations and thinning every 
5, were run for both the RKHS or Bayes C chains; a plot 
of the variances against iteration number indicated that 
convergence was attained with this number of iterations 
(see Additional file 1: Figure S2).

Results
How useful can the microbiome be for prediction 
of complex traits?
This logically depends on how much phenotypic variance 
is jointly explained by the genome ( h2 ) and the micro-
biome ( b2 ), but also on how efficiently methods capture 
the relationship between the microbiome and the phe-
notype, and on how stable the microbiome is. It should 
be noted that prediction accuracy is conditionally inde-
pendent of heritability of the microbiome itself, i.e., given 
the observed abundances B and observed genotypes G, 
it does not matter whether the biological processes that 
generate B are affected by G. In other words, for a con-
stant r2 = h2 + b2 , prediction should not be affected by 
whether the ‘Joint’ or ‘Recursive’ scenarios hold. Impli-
cations for genetic improvement, however, could be 
dramatically different. Breeding schemes that target the 
microbiome could be designed provided the ‘Recur-
sive’ scenario holds but make no sense under the ‘Joint’ 
scenario.

We compared the predictive performance of the Bayes-
ian RKHS (GBLUP-like approach) and Bayes C [20] 
approaches when both genome and microbiome data 
were included in the model (Rgb and Cgb), including an 
interaction term between g and b (Rgbx), or only genome 
data (Rg, Cg), or only microbiome data (Rb, Cb). For 
details of all models, see Table  3. First, we verified that 
the null model, i.e., when phenotypes were permuted 
relative to genotypes and abundances, did not result in 
false predictive accuracies (see Additional file  1: Figure 
S3A). Figures 3 and 4 show the predictive accuracies for 
the two r2 values considered, 0.50 and 0.25, respectively. 
In the case of r2 = 0.50, we also explored the influence of 
varying the number of causative OTU (Table 2).

Overall, Bayes C showed better performance than 
RKHS, but it was more sensitive to an increase in the 
number of QTN or of causative OTU (Fig. 3c). Impor-
tantly, adding a term for the interaction between g  and 
b did not improve the predictive performance of RKHS, 
even in the ‘Recursive’ scenario (R). The full models Rgb 
and Cgb were much better than the partial models (Rg, 
Rb, Cg, Cb) when both h2 and b2 were larger than zero, 
as expected, i.e., for the ‘Joint’ and ‘Recursive’ scenarios 
(compare Fig.  3a vs. b and Fig.  4a vs. b). In these sce-
narios, using both sources of variation improved pre-
diction compared to using only genome or microbiome 

Table 3  Statistical models used to analyze the data

Effects included can be g (SNP genotypes), b (OTU abundances) and their 
interaction g× b

Method Abbreviation Effects fitted

g b g× b

Bayesian RKHS 
(GBLUP)

Rgbx x x x

Rgb x x -

Rg x - -

Rb - x -

Bayes C Cgb x x -

Cg x - -

Cb - x -
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data, especially when using Bayes C. Importantly, the 
predictive accuracy was slightly lower for the ‘Joint’ 
and ‘Recursive’ scenarios than for the ‘Microbiome’ 
or ‘Genome’ scenarios. This indicates that the predic-
tive accuracy does not only depend on total r2 , but 

also on how this variance is split between genome and 
microbiome. Although this likely occurs because of the 
larger noise in the ‘Recursive’ or ‘Joint’ scenarios than 
in the ‘Microbiome’ or ‘Genome’ scenarios, it also sug-
gests that our strategy of analysis may not be optimal 

Fig. 3  Predictive accuracy with r2 = 0.50, computed as correlation between predicted and observed phenotypes across causal scenarios (Fig. 1), 
for each of the RKHS (Bayes C) models. Rgb (Cgb) considers microbiome and genome data; Rgbx includes genome and microbiome data and their 
interaction; Rg (Cg) includes genome data only; Rb (Cb) includes microbiome data only. a Complete models; b Partial models, c Effect of varying 
the number of causative OTU. Details of scenarios are in Tables 1 and 2: G: Genome; M: Microbiome; I: Indirect; J: Joint; R: Recursive. G500, J500 and 
R500 means 500 causative SNPs; J10 and R10, 10 causative OTU; J100 and R100, 100 causative OTU; J250 and R250, 250 causative OTU. Results are an 
average of 30 replicates per case
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and that there is room to develop more efficient tools, 
especially for the ‘Recursive’ scenario. It should be 
noted that the variance of prediction was larger for the 
‘Recursive’ than for the ‘Joint’ scenario for r2 = 0.25, 
i.e., heritability of abundances may be an additional 

source of noise. This effect was less pronounced as r2 
increased.

We observed that the predictions were better when 
only the microbiome influenced the phenotype than 
when the genome was the only source of variation, a 

Fig. 4  Predictive accuracy with r2 = 0.25, computed as correlation between predicted and observed phenotypes across causal scenarios (Fig. 1), 
for each of the RKHS (Bayes C) models. Rgb (Cgb) considers microbiome and genome data; Rgbx includes genome and microbiome data and their 
interaction; Rg (Cg) includes genome data only; Rb (Cb) includes microbiome data only. a Complete models; b Partial models. Details of scenarios 
are in Tables 1 and 2: G: Genome scenario; M: Microbiome; I: Indirect; J: Joint; R: Recursive. G500, J500 and R500 means 500 causative SNPs. Results 
are an average of 30 replicates per case
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phenomenon also observed with real data [13, 16, 24]. In 
this simulation, this likely occurred because the number 
of causative effects and of input variables (SNPs vs. OTU) 
was smaller for the ‘Microbiome’ or ‘Indirect’ scenarios 
than for the ‘Genome’ scenario. In fact, we observed a 
consistent negative correlation between the number of 
causative OTU and the predictive accuracy for both the 
‘Joint’ and ‘Recursive’ scenarios (Fig.  3c). The number 
of QTN also adversely affected prediction performance 
but mainly with Bayes C, whereas RKHS was not largely 
affected (see especially scenario G vs. G500 for h2 = 0.5 in 
Fig. 3a).

Taken together, our results suggest that predictive 
accuracy could be increased by ~ 50% when consider-
ing microbiome in addition to genome data, provided 
the microbiability is of the same order as the heritability 
(Fig. 3). This is probably an upper, optimistic limit, since 
it will be difficult to have microbiome data collected 
homogeneously over time and in different locations. 
While individuals can be genotyped at birth, the microbi-
ome during early life stages may not be representative of 
that at adult or later stages. For instance, Maltecca et al. 
[55] showed that early life microbiota is not a good proxy 
for carcass composition in pigs, whereas later life micro-
biota is more strongly associated.

We observed a roughly two-fold increase in predictive 
accuracy when heritability was doubled for the ‘Genome’, 
‘Joint’ and ‘Recursive’ scenarios, and a 50% increase for 
the ‘Microbiome’ and ‘Indirect’ scenarios (Fig.  3 vs. 
Fig. 4).

Are microbiability estimates reliable?
Reliable parameter estimates are needed to optimize the 
design of breeding schemes, management practices or 
microbiome-wide association studies (MWAS [56]). They 
are also needed to understand the biology that underlies 
the interaction between microbiome and complex phe-
notypes. To date, microbiability has usually been esti-
mated using ‘standard’ linear methods, e.g., [4, 11, 32], 
much as we have done here. Thus, it is of interest to know 
how accurate these estimates are.

Figures 5 ( r2 = 0.50) and 6 ( r2 = 0.25) show estimates of 
the variance components for each of the scenarios and 
model analyses from Tables 1, 2, 3. Bayes Cgb allows us to 
assess whether h2 and/or b2 differ from zero: the microbi-
ability estimate was on average near zero when the data 
were simulated according to the ‘Genome’ scenario and 
the heritability estimate was zero when the ‘Indirect’ or 
‘Microbiome’ scenarios hold, as expected (Figs.  5b and 
6b). Similarly, estimates of both h2 and b2 were near 
zero when the null scenario held (see Additional file  1: 

Figure S3B). However, the behavior of estimates obtained 
with RKHS was different, as variance ratios are a priori 
bound between 0 and 1: average estimates of h2 and b2 
were small yet non-zero when simulated values were 
zero. Comparing Fig.  5a vs. Fig.  5b for estimates of h2 
(b2 ) in the ‘Microbiome’ (‘Genome’) scenarios, estimates 
are clearly zero with Bayes C, as expected, but not with 
RKHS. The effect of prior information is much stronger 
for low r2 , resulting in RKHS estimates that should be 
zero to be more biased (Fig. 6a). 

It is interesting to observe that the heritability and 
microbiability estimates obtained with RKHS were less 
biased than those obtained with the Bayes C algorithm, 
except when the true parameter is zero. This was more 
apparent for the ‘Joint’ and ‘Recursive’ scenarios and 
r2 = 0.5, as observed in the comparison between Fig. 5a 
and Fig.  5b. With Bayes C, an overestimation of b2 is 
evident, regardless of the simulated value of r2 . For the 
‘Joint’ and ‘Recursive’ scenarios, the upward bias in the 
estimate of b2 was accompanied by an underestima-
tion of h2 , which indicates that variance estimates were 
confounded when using the Bayes Cgb model (Fig. 5b). 
However, this bias decreased when the number of 
causative OTU increased. For instance, the bias in the 
b2 estimate was ~ 40% when NOTU = 10 but reduced 
to ~ 10% with NOTU = 250 (Fig.  5c). In contrast, esti-
mates obtained with RKHS were remarkably robust to 
varying NOTU (Fig. 5d vs. e). Therefore, it is likely that 
the presence of a few causative OTU, but of large effect, 
combined with the presence of highly leptokurtic abun-
dance distributions, may result in biased parameter 
estimates when using Bayes C. It should be noted, in 
turn, that estimates obtained with RKHS were inflated 
when they were actually zero, i.e., when the model 
was overparameterized. This should be considered 
when interpreting microbiability estimates from real 
data. For instance, Difford et al. [4] report estimates of 
h2 = 0.21 and b2 = 0.13 (N = 750) and found that G and 
B are independent. Assuming the number of causative 
OTU is small compared to the number of SNPs with 
an effect on abundances (QTN), our simulation results 
suggest that the estimate of b2 reported by Difford et al. 
[2] might be inflated. If this is true, the actual contribu-
tion by the microbiome might be too small to improve 
prediction over that obtained from using only genome 
data. Although Difford et  al. [4] focused on inference 
rather than on prediction, they reported that no bac-
teria genera were significantly associated with meth-
ane emissions. Other authors have reported multiple 
microbial associations with methane emissions, includ-
ing members of bacterial, archaeal, fungal, and proto-
zoan communities, e.g., [13, 30, 57–59].
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For comparison, panels c and d in Figs. 5 and 6 show 
estimates that were obtained when only genome or 
microbiome information was used. The most noticeable 
outcome is that bias in estimates of b2 was somewhat 
reduced relative to that found with Bayes Cgb, which 

again indicates that some confounding between b2 and 
h2 occurred . In general, bias was lower when r2 was 
greater but did not vanish.

Fig. 5  Parameter estimates for r2 = 0.50. Estimates of heritability ( h2 ), microbiability ( b2 ), and the correlation between the genome and microbiome 
( gb ) for each of the RKHS (Bayes C) analysis models: model Rgbx includes microbiome and genome data and their interaction; Cgb includes genome 
and microbiome data; Rg (Cg) includes genome data only, and Rb (Cb) includes microbiome data only. Details of simulation scenarios are in Tables 1 
and 2: G, Genome scenario; M, Microbiome; I, Indirect; J, Joint; R, Recursive; G500, J500 and R500 mean 500 causative SNPs; J10 and R10, 10 causative 
OTU; J100 and R100, 100 causative OTU; J250 and R250, 250 causative OTU. The horizontal dashed lines indicate simulated h2 or b2 parameter values 
(0.25, 0.5 depending on the scenario). Results are an average of 30 replicates



Page 13 of 20Pérez‑Enciso et al. Genet Sel Evol           (2021) 53:65 	

Can the underlying biological scenario and causative OTU 
be recovered?
An important goal of many experiments is to dissect the 
biological basis of the interactions between the microbi-
ome and the genome, even if this is not strictly needed 
for prediction. So far, our simulations suggest that stand-
ard statistical methods can be used to quantify—with 

some bias—the contribution of microbiability to the 
phenotypic variance. It also appears possible to distin-
guish which of the ‘Microbiome’ or ‘Genome’ scenarios 
fit a dataset best. Similarly, it appears possible to assess 
whether both G and B contribute to the phenotypic vari-
ance, i.e., whether the ‘Recursive’ or ‘Joint’ scenarios are 
plausible. A question, however, is whether it is possible to 

Fig. 6  Parameter estimates for r2 = 0.25. Estimates of heritability ( h2 ), microbiability ( b2 ), and the correlation between the genome and microbiome 
( gb ) for each of the RKHS (Bayes C) analysis models: model Rgbx includes microbiome and genome data, and their interaction; Cgb includes 
genome and microbiome data; Rg (Cg) includes genome data only, and Rb (Cb) includes microbiome data only). Details of simulation scenarios are 
in Table 1: G: Genome scenario; M: Microbiome; I: Indirect; J: Joint; R: Recursive. The horizontal dashed lines indicate simulated h2 or b2 parameter 
values (0.125, 0.25 depending on the scenario). Results are an average of 30 replicates
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distinguish between the ‘Joint’ and ‘Recursive’ scenarios, 
i.e., whether the data can indicate which of the ‘Indirect’ 
or ‘Microbiome’ scenarios is more plausible, if either. 
Furthermore, can causative OTU be identified? These 
are far more difficult questions to answer than assess-
ing prediction performance or estimating microbiability. 
When the variance component estimates obtained under 
the ‘Joint’ and ‘Recursive’ scenarios are compared (Figs. 5 
and 6), they appear to be nearly identical for the same r2 . 
The two scenarios differ in that at least some causative 
OTU abundances are under partial genetic control in the 
‘Recursive’ scenario. Thus, the ‘Recursive’ scenario should 
result in a covariance between G and B. For the RKHS 
modeling, we studied whether this covariance could 
be partly captured by adding an interaction factor g ◦ b 
(Eq.  3) much as imperfect disequilibrium can generate 
‘phantom’ epistasis [60]. However, the interaction esti-
mates were not found to be greater in the ‘Recursive’ than 
in the ‘Joint’ or ‘Microbiome’ scenarios when no interac-
tion was simulated (Figs. 5a and 6a). As for Bayes C, we 
investigated whether the two scenarios could be distin-
guished by analyzing the covariance cov(u(i), v(i))/var

(

y
)

 
(see Methods). Again, these estimates were close to zero 
regardless of the simulated scenario (Figs. 5b and 6b).

An alternative approach to infer whether the ‘Recur-
sive’ scenario holds or not is to run a genome-wide 
association study (GWAS) for each OTU abundance. 
If we identify significant SNPs for OTU that are likely 
to influence the phenotype y, we could conclude that 
the ‘Recursive’ scenario is plausible. Unfortunately, this 
analysis can be doomed by the large number of tests 

to be performed, i.e., NOTU × NSNP . To illustrate the 
caveats of GWAS on abundances, Fig. 7a shows the dis-
tribution of -log10 P-values of neutral SNPs vs. SNPs 
with an effect on abundances. Taking the 5% empirical 
threshold of the neutral P-value distribution to declare 
an association, simulations suggest that the P-values 
of only ~ 3% of the causative SNPs will be above that 
threshold, i.e., approximately what is expected by 
chance. These P-values depend of course on the actual 
number of causative SNPs and on abundance heritabili-
ties, but most of the evidence to date points to a weak 
relationship between the genome and the microbiome 
[27]. It will be very difficult to identify causative SNPs 
for abundance using GWAS information alone [11, 25].

Another question of interest is what proportion of the 
OTU that affect the phenotype we can expect to dis-
cover. One option is to count the frequency with which 
a given OTU enters the Bayes C model during sampling. 
Figure  7b shows the probability of including a causa-
tive OTU in the Bayes C sampling chain, which ranged 
from ~ 5% ( b2 = 0.125) to ~ 20% ( b2 = 0.25). On average, 
about 50 ( b2 = 0.25) and 30% ( b2 = 0.125) of the causative 
OTU were among the 5% most frequently included OTU 
in the Bayes C chain. Nevertheless, since the number 
of causative OTU was 25, the rate of false positives was 
high. We can conjecture that only a few causative OTU 
are likely to be identified in medium-sized experiments, 
such as simulated here.

An alternative approach is a microbiome-wide asso-
ciation study (MWAS), i.e., to perform a linear regres-
sion of the phenotype on each of the OTU abundances 

Fig. 7  Power in genome- (GWAS) and microbiome- (MWAS) wide association studies. a Distribution of -log10 P-values of a GWAS of abundances. 
b Probability of inclusion in the Bayes Cgb model of causative OTU for the two levels of microbiability considered. c Power of identifying a causative 
OTU computed as the probability of exceeding the 95% threshold of the empirical distribution of P-values in an MWAS for the Recursive scenario
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and then select the significant OTU as potential causa-
tive OTU [4]. Figure 7c shows the average power, defined 
as the percentage of true causative OTU among the 5% 
most significant OTU. In the ‘Recursive’ scenario, power 
was ~ 15 and ~ 20% for b2 = 0.125 and 0.25, respectively. 
Again, this is not too satisfactory since we expect a high 
fraction of false positives. In this scenario, it is perhaps 
more useful to consider probabilities of inclusion in the 
Bayes C chain rather than P-values from linear regres-
sion since the former are the result of a joint analysis of 
all OTU and can be used directly for prediction.

Finally, we investigated the pattern of abundance her-
itabilities. Figure  8a shows the simulated heritabilities 
for the causative inherited OTU, which approximately 
followed a gamma distribution, as well as the estimated 
heritabilities for the causative OTU in the ‘Recursive’ sce-
nario. The two distributions were rather similar, although 
the estimates were slightly shrunk towards zero, a con-
sequence of using a REML-like prior. Of course, a prob-
lem with real data is that we do not know which OTU are 
inherited, and which are not, and the true distribution 
of OTU heritability estimates will be a mixture due to 
heritable and not heritable abundances. Figure  8b illus-
trates the distributions of heritability estimates of neutral 
(non-inherited) and causative inherited OTU. In Fig. 8b, 
we mixed 1.7 neutral OTU per causative OTU, which 
is arbitrary since we do not know the actual number of 
OTU under genetic control, but the resulting mixture is 
similar to the distribution of heritabilities observed by 
Difford et  al. [4] (Fig.  8c). If the distributions in Fig.  8b 
were representative of the true state of nature, this would 
suggest that about 1/(1 + 1.7) ~ 40% of rumen OTU could 

be subject to additive genetic variance in the experiment 
reported by Difford et al. [4] (Fig. 9). 

Discussion
Given the uncertainty with the true scenario, a flexible 
simulation approach is proposed
Figure  1 represents highly simplified relationships 
between the genome, microbiome, and phenotype. These 
scenarios cover a wide range of possible interactions that 
are not exhaustive. For example, we did not consider the 
case of a phenotype having a causative effect on abun-
dances, i.e. the ‘reversed’ Microbiome scenario. The sce-
narios chosen are nevertheless important to interpret 
empirical data and can help to identify limiting factors 
for prediction of complex traits. Furthermore, provided 
that a good fit is found, they will help the design of 
experiments that combine microbiome and genetic data. 
We chose combinations of parameters that represent 
extreme case scenarios and found that the results were, 
qualitatively, robust to the choice of parameters such 
as r2 . However, a parameter that can be relevant is the 
number of causative microbiome taxa, i.e., those with an 
effect on the phenotype, which appears to affect the bias 
of microbiability estimates when Bayes C is used (Fig. 5).

In this study, we proposed a new simulation procedure 
that addresses some important challenges. First, the algo-
rithm avoids the need for actual phenotype simulation 
by using real genotype and abundance data. Although 
we concede that this procedure may limit the general-
ity of the study, e.g., in terms of data size or abundance 
patterns, we believe that the advantages of using real 
data are numerous, since no simulation procedure can 

Fig. 8  Simulated, estimated and observed abundance heritabilities. a Distributions of simulated and GBLUP estimated heritabilities of abundance 
for causative OTU in the Recursive scenario. b Distribution of GBLUP estimated heritabilities of abundance for neutral and causative OTU in the 
Recursive scenario. c Distribution of estimates of heritabilities of OTU abundance reported by Difford et al. [4]
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accommodate all known and unknown subtleties of the 
highly dimensional distributions at hand. Second, we 
developed a permutation procedure (see Box  1) that 
allows linking previously uncorrelated data to fit a target 
correlation value. Also, by only permuting OTU within 
clusters, we minimized disruption of the overall covari-
ance structure (see Additional file 1: Figure S2). It should 
be noted that an OTU or SNP does not need to be causa-
tive to be useful for prediction and our simulation strat-
egy allows existing correlations between abundances or 
among SNPs (i.e. linkage disequilibrium) to be main-
tained to mimic this fact.

For this work, we used real rumen microbiome and 
genomic data from Holstein dairy cattle. Methane emis-
sions and the rumen ecosystem make a fundamental 
area of microbiome research, but we believe our results 
can be applied to other environments and species as 
well, including humans, provided that similar generative 
parameters hold. We considered a range of values for 
heritability and microbiability, from 0 to 0.50, which cov-
ers most of the estimates reported in the literature across 
species, e.g., [3, 13, 30, 61]. Human studies tend to use a 
larger number of SNPs than the high-density cattle gen-
otyping data used here. Yet, ample evidence shows that 
the number of SNPs obeys a law of diminishing returns 
and a negligible difference in predictive performance has 
been observed between full sequence and high-density 
genotyping data [51, 62, 63]. Distributions of OTU abun-
dances are always highly leptokurtic, as observed here, 

and statistical properties tend to depend primarily on the 
actual read depth rather than on the specific ecosystem 
[46].

Here, we have presumed that the effects on abun-
dances are additive on the log scale. Similar models are 
widely used in a diversity of scenarios. For example, 
multiplicative models are used to accommodate fit-
ness effects in evolutionary genetics [64] or to deal with 
highly leptokurtic distributions such as for abundances 
of microorganisms or of gene expression levels, which 
the log transformation addresses. In addition to the 
log-transformation, a widely popular choice in genet-
ics is the threshold model [8], which assumes the pres-
ence of a continuous liability (here abundances) with an 
effect value of ‘0’ below a given threshold and ‘1’ other-
wise. This model has the advantage of not depending on 
whether abundances are log-transformed or not and is 
also biologically sound since it is conceivable that a mini-
mum microorganism abundance is required to trigger a 
particular effect. To test the robustness of the log-trans-
formation, we simulated phenotypes such that 25% of the 
causative abundance observations were above the thresh-
old (i.e., abundances were binarized) and the analysis was 
performed on the log transformed abundances, as before, 
using Bayes C. As expected, using a ‘wrong’ model for the 
analyses was detrimental to prediction but not dramati-
cally (Fig.  8a). Compared to the multiplicative model, 
parameter estimates were affected downwards (Fig.  8b). 
On this basis, we conjecture that the fundamental results 
obtained herein should hold even if the relationship 

Fig. 9  Comparison of multiplicative (log) and threshold ‘Microbiome’ (M) and ‘Joint’ (J) scenarios ( r2 = 0.5) using Bayes Cgb. a Predictive accuracy, 
computed as the correlation between predicted and observed phenotypes; and b Estimates of heritability ( h2 ) and microbiability ( b2 ). Results are 
the average of 30 replicates. Scenarios M and J as specified in Table 1; the log transformation results are shown for completeness and are the same 
as in Figs. 3 and 5. Data are average of 30 replicates
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between OTU abundance and phenotype is not strictly 
multiplicative.

There is room for methodological developments
Numerous studies have reported estimates of microbi-
ability for economically important traits, e.g., [4, 16, 30, 
59], but the reliability of these estimates is not known. 
Estimates may be affected by the estimation proce-
dure and there are numerous alternatives to estimate 
b2 , including Bayes C [20], GBLUP [38], and Bayesian 
RKHS regression using either Bray–Curtis dissimilarities 
as relationship matrix [30] or with the variance–covari-
ance from the log-transformed OTU as kinship matrix 
[14, 30]. Our results (Figs. 5 and 6) indicate that estimates 
of microbiability obtained using BayesC may be biased 
upwards, especially when b2 is higher than 0.25 and the 
number of causative OTU is small. However, we found 
that estimates of b2 derived using Bayes C were very close 
to zero in the null scenario (see Additional file 1: Figure 
S1B). Thus, models using priors from the Spike-Slab fam-
ily, which consider a priori the possibility of null effects, 
can be used to test whether heritability or microbiabil-
ity is substantial. In contrast, estimates obtained using 
Bayesian RKHS were slightly less biased and less sensitive 
to the number of causative OTU. However, estimates of 
variance fractions in the order ~ 0.10 were obtained even 
if the true variance was zero. As a result, small effects 
may not be distinguishable from null effects. Ramayo-
Caldas [30] reported higher microbiability estimates 
using Bray–Curtis based kernels with Bayesian RKHS 
than those using the log-transformed covariance matrix 
of abundances. Other methods have been proposed to 
select variables in a context of compositional data, e.g., 
[65, 66]. The behavior of estimation methods for microbi-
ability certainly merits further research.

One conclusion from this work is that it will be difficult 
to distinguish between some of the underlying scenarios 
or to identify causative OTU and SNPs, at least by using 
standard linear models, as was done here. The distinc-
tion between ‘Joint’ and ‘Recursive’ scenarios is of special 
relevance for breeding. The latter assumes partial genetic 
control of some causative OTU. Yet, we found that both 
scenarios resulted in very similar patterns in terms of 
predictive performance and parameter estimates (Figs. 3, 
4, 5, 6). Perhaps, a more powerful approach would be 
to use structural equation models (SEM), which allow 
the inclusion of a variable both as an independent and 
a dependent variable. Saborio-Montero et  al. [67] com-
pared a linear bivariate (one OTU and the phenotype) 
model with a SEM but found few differences between 
models. One limitation of their approach is that one SEM 
was fitted for each abundance, instead of fitting several 
abundances simultaneously.

There is growing evidence of interactions between the 
microbiome and the host genome [1, 25, 68] but it is not 
clear which approach is optimal to statistically model 
this phenomenon. The interaction of the genome and the 
microbiome poses challenging modeling and prediction 
problems. A main aim of this paper was to assess how 
‘standard’ linear approaches behave under these complex 
scenarios. Although the number of possible interactions 
to consider can be huge when the number of SNPs and 
the number of OTU is large, interactions between fea-
tures in two high-dimensional sets can be modeled in 
a Gaussian context using co-variance functions. These 
functions are the Hadamard product of set-specific 
similarity matrices such as the Hadamard product of a 
SNP-derived and an OTU-derived ‘relationship’ matrix. 
Such an approach has already been used to model, e.g. 
interactions between SNPs or between SNPs and envi-
ronmental covariates, e.g., [54], and here we employed 
this in the RKHS framework through the G ◦ B covari-
ance matrix. Unfortunately, no improvement in predic-
tion was attained and the model was not able to capture 
the covariance between genome and microbiome in the 
recursive scenario. None of the methods evaluated here 
were optimal for both inference and prediction. Thus, 
there is room for improvement, but this requires proper 
theoretical development that is beyond the scope of this 
work. Possibilities include extending recursive models as 
done, e.g., by Saborio-Montero et  al. [59], or improved 
selection indices, as in Weishaar [69].

A wide array of penalized linear methods exists for 
inference and prediction, which differ in their priors [70]. 
We observed that Bayes C performed better than Bayes-
ian RKHS in terms of prediction. We used a non-uniform 
distribution for simulating the effects of genes and OTU, 
specifically a gamma distribution, as is sustained by 
empirical and theoretical investigations, at least for gene 
effects [48, 50, 71]. Thus, it can be expected that the Bayes 
C prior fitted the simulated data better than RKHS, for 
which the prior was flat across SNPs and OTU. The well-
known ‘no-free-lunch theorem’ [72] in computer sciences 
states that no method is superior in performance across 
all scenarios or for all tasks. In agreement with this, we 
found that variance component estimates from RKHS 
were both slightly less biased and much less sensitive 
to the number of causative effects (OTU or SNPs) than 
estimates from Bayes C. Previous work also showed that 
Bayes C variance components are highly sensitive to the 
genetic architecture of the trait [73].

Final remarks: on using microbiome for prediction 
of complex traits
The utility of microbiome for the prediction of complex 
traits, e.g., in prospective studies or in breeding, depends 
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crucially on its stability in time and space. Stability will 
likely be lower for rare OTU than for core members [13], 
and so the abundance of causative OTU will be relevant 
in this context. For instance, although measures of gas-
trointestinal microbiome abundances are known to be 
repeatable, they cannot be expected to remain stable 
throughout an individual’s entire life span. After wean-
ing and under standard management conditions, e.g., 
constant diet and absence of antibiotic treatment, the 
diversity of monogastric gut microbiota increases with 
age of the host until its composition remains stable [34] 
Rumen microbial communities are highly resilient and 
host-specific [74, 75] but also change in early life, with 
the transition towards a more stable and adult-like rumi-
nal ecosystem occurring between weaning and one year 
of age [76]. Therefore, for prediction purposes, we rec-
ommend the inclusion of microbial data obtained at least 
after weaning, preferably at adulthood. Compared to 
genomic data, this certainly limits the use of microbiota 
for prediction in breeding schemes.

Conclusions
To conclude, this study suggests that microbiome data 
can significantly improve the prediction of complex phe-
notypes, regardless of whether some abundances are 
under direct genetic control or not. However, for this 
strategy to be successful, medium- to large-sized experi-
ments are required and the microbiome should be rela-
tively stable and available prior to phenotype collection. 
This limits the use of the microbiome for prediction in 
breeding schemes as compared to genome data, which 
can be collected at birth and remains unchanged. Never-
theless, important potential applications remain, such as 
predicting methane emission in cattle, obesity and feed 
efficiency, disease predisposition, or crop production 
using the soil metagenome. Overall, we show that stand-
ard linear methods can be used, in spite of the highly 
leptokurtic distributions observed in OTU abundances. 
Given the specific advantages of each of the algorithms 
evaluated, there is room for specific theoretical devel-
opments that combine benefits from both. Nonetheless, 
we argue that new models should be based on a better 
understanding of the relation between the microbiome 
and the phenotype. It seems important to quantify, even 
approximately, the number of taxa that affect the pheno-
type and to characterize the distribution of their effects, 
as it may affect the reliability of parameter estimates 
(Fig. 5). However, we are far less optimistic (e.g., Fig. 7) 
with regards to the identification of causative OTU, and 
of the putative QTN that affect relative abundances.
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 Additional file 1: Figure S1. Comparison between flat and informative 
priors. Posterior distributions of heritability (black line) and microbiability 
(blue dashed line) in a single replicate of the ‘Joint’ scenario, r2 = 0.25. 
Numbers in the panel titles are predictive accuracies for each prior and 
method. Overall, mildly informative priors resulted in similar predictive 
accuracies as for flat priors and more reasonable posterior distributions. 
Figure S2. Gibbs sampling values of heritability (black line), microbiability 
(red line), and correlation between genome and microbiome effects 
(green line) in a single replicate of the ‘Recursive’ scenario ( r2 = 0.5). The 
comparison is between flat and informative priors. Figure S3. Results with 
the null model using the Bayes C model. This figure shows the results with 
the null model using the Bayes C model when samples were permuted 
relative to genotypes and abundances. (A) Prediction accuracy, computed 
as correlation between predicted and observed phenotypes, for each of 
the Bayes C analyses: Cgb includes microbiome and genome; Cg includes 
genome data only, and Cb includes microbiome data only. (B) Estimates 
of heritability ( h2 ) and microbiability ( b2 ) for each of the Bayes C analyses. 
Data are the average of 30 replicates. Figure S4. Plot of the principal 
component analysis of the original abundance data (top left) and three 
simulated datasets under the ‘Recursive’ model. Each dot corresponds to 
a single individual and data are log-transformed. The permutation has 
a negligible influence on the data structure. Figure S5. Distributions of 
effects. (A) Observed and fitted (red line) distribution of abundance linear 
regression effects on methane emissions reported by Difford et al. [4]. (B) 
Comparison of gamma distributions used for sampling genetic ( α ) and 
OTUs’ ( ω ) effects: α ∼ Ŵ ( k = 0.2, θ = 5) and ω ∼ Ŵ (k = 1.4, θ = 3.8), 
plotted in red and black lines, respectively (Eq. 1).
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