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Abstract: Inhibiting the main protease 3CLpro is the most common strategy in the search for antiviral
drugs to fight the infection from SARS-CoV-2. We report that the natural compound eugenol is
able to hamper in vitro the enzymatic activity of 3CLpro, the SARS-CoV-2 main protease, with an
inhibition constant in the sub-micromolar range (Ki = 0.81 µM). Two phenylpropene analogs were
also tested: the same effect was observed for estragole with a lower potency (Ki = 4.1 µM), whereas
anethole was less active. The binding efficiency index of these compounds is remarkably favorable
due also to their small molecular mass (MW < 165 Da). We envision that nanomolar inhibition of
3CLpro is widely accessible within the chemical space of simple natural compounds.

Keywords: SARS-CoV-2; main protease; eugenol; drug selection; enzyme inhibitors; antivirals;
spectroscopy; molecular modeling

1. Introduction

The COVID-19 pandemic caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) is having a strong impact on the social and economic conditions
worldwide, as well as on the scientific community. Highly collaborative efforts have been
started to tackle the emergency, with the aim of improving the detection of infections,
tracing the occurrence of potentially contagious contacts, adjusting the pre-existing med-
ical therapies, developing vaccines for prevention and monoclonal antibodies for early
treatment, and identifying new drugs against this viral infection. Unfortunately, discover-
ing specific antiviral compounds against SARS-CoV-2 is still demanding. Currently, only
the broad-spectrum drug Remdesivir has been approved [1], in spite of its relatively low
activity.

The coronavirus genome contains two overlapping open reading frames (ORF1a and
ORF1b) encoding polyproteins pp1a and pp1ab. These polyproteins are processed by a
3C-like protease (3CLpro or main protease, Mpro), responsible for cleaving at eleven sites,
and a papain-like protease (PLpro), responsible for cleaving at three sites. Both 3CLpro
and PLpro are essential for viral replication, making them attractive targets for drug
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development. Most of the efforts to develop an antiviral drug specific for SARS-CoV-2
aim at inhibiting the main protease 3CLpro, due to its key role in the virus replication [2].
3CLpro is a cysteine protease with an active site located in the cleft between two N-terminal
domains and containing a catalytic Cys-His dyad.

A plethora of molecules have been proposed in the literature as potentially active against
this pharmacological target, especially by using computational predictions [3–5]. Some of these
have been confirmed to bind 3CLpro by experimental methods, and have shown promising
inhibitory effects. Among the molecules investigated, natural compounds have a prominent
role [6] due to their large diffusion, high variety of molecular features, and wide spectrum of
effects in cells. Molecules with confirmed in vitro inhibitory activity against 3CLpro include
baicalein [7,8], quercetin [9], rutin [10], epigallocatechin-3-gallate [11], and myricetin [12,13].

We have contributed to this community effort by using an experimental pipeline for drug
screening formerly employed to identify inhibitors against other protein targets [14–17]. We
have successfully redirected this platform to tackle 3CLpro from SARS-CoV-2. In particular, we
have identified quercetin as a low micromolar inhibitor (Ki = 7.4 µM), a high potency, especially
considering its small molecular mass (MW = 302.2 Da), which has a favorable outcome in
terms of a high binding efficiency index (BEI = pKi/MW) [9]. Subsequently, we demonstrated
that a natural glycoside form of quercetin, rutin, has a comparable potency against 3CLpro
(Ki = 11 µM) [10]. Thus, their common scaffold can be considered promising for further
optimization. A seleno-functionalized quercetin analog was later proved to inhibit SARS-CoV-
2CoV-2 replication in infected cells at non-toxic concentration, with an IC50 value of 8 µM [18].

In our search for other scaffolds with favorable potency to be used as 3CLpro inhibitors,
and among hundreds of compounds tested so far, we have also considered three well-known
phenylpropenes [19]: eugenol, estragole, and its isomer anethole (see Figure 1).
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Figure 1. Chemical structure of eugenol, estragole, and anethole.

These terpenes are volatile substances commonly found in spices and aromatic
herbs including clove, basil, cinnamon, pepper, fennel, and anise [20], and are gener-
ally considered safe for human use [21]. They have a small molecular mass (eugenol
has MW = 164.2 Da, and the other two compounds have MW = 148.2 Da), well within
the conventional limit (MW < 300 Da) for considering them as chemical fragments. The
compounds were tested against recombinant 3CLpro, which was expressed and purified as
previously described [9]. In this communication we report their notable inhibitory activity,
provide some suggestions on using their scaffold in a lead compound development and,
more importantly, set a new landmark reference encouraging further research on the use of
natural products (or their derivatives) as antivirals against SARS-CoV-2.

2. Results and Discussion

A combination of experimental and computational techniques were used to character-
ize the interaction of eugenol, estragole, and anethole with the main protease 3CLpro, with
particular regard to their inhibitory properties.

Figure 2 shows the data obtained for eugenol and estragole, by using the same experi-
mental setup and conditions already reported [9,10,18]. The catalytic activity of 3CLpro was
monitored in vitro by using a Förster resonance energy transfer (FRET) continuous assay, in
the presence of the substrate (Dabcyl)KTSAVLQSGFRKME(Edans)-NH2. The enzyme activity
was quantitated as the initial rate (slope) for each substrate FRET emission curve, which varied
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as a function of the compound concentration. By assuming a simple inhibition process, and
through a non-linear regression applying a model that considers inhibitor depletion due to the
binding, this yielded an apparent inhibition constant Ki,app of 1.7 and 12 µM for eugenol and
estragole, respectively. In contrast, anethole was less potent (Ki,app of 25 µM, data not shown).
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Figure 2. (a) Fluorescence emission of the substrate (concentration 20 µM) in the presence of 3CLpro
(0.2 µM) as a function of time, at varying amounts (0–125 µM) of (a) eugenol and (b) estragole.
The initial slope of the curves quantifies the enzymatic protein activity. The arrows indicate the
increase in inhibitor concentration. (c) Inhibition curve for eugenol (open squares) and estragole
(closed squares). The continuous line is from a non-linear least squares regression fit, and pro-
vides the inhibition constant (Ki = 0.81 and 4.1 µM for eugenol and estragole, respectively). The
different colors in (a,b) correspond to the different concentrations shown in (c): 0 (black), 1.95 (red),
3.91 (green), 7.81 (blue), 15.63 (cyan), 31.25 (magenta), 62.5 (yellow), and 125 µM (brown).

A further analysis of the data, by taking into account the substrate concentration and the
competitive inhibition [9,10], led to an estimation of the intrinsic inhibition constant Ki of 0.60
and 4.3 µM for eugenol and estragole, respectively, the two most active compounds (see again
Figure 2). Furthermore, to confirm target engagement for each compound, we used near-UV
circular dichroism (CD) and fluorescence emission. This region of the CD spectrum is particu-
larly sensitive to subtle changes in the protein structure and in the environment of aromatic
residues, which include the key histidine in the catalytic dyad of 3CLpro (His41/Cys145) [22].
As shown in Figure 3, the CD and fluorescence spectra confirmed that eugenol binds to 3CLpro.
Similar results were obtained for estragole (Figure 3).
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Figure 3. (a) Near-UV CD and (b) fluorescence emission spectra of the 3CLpro-eugenol complex
(black lines) at enzyme and inhibitor concentrations of 10 and 100 µM, respectively. The addition
of individual spectra of 3CLpro and eugenol is also shown (red lines). (c) Near-UV CD and (d) flu-
orescence emission spectra of the 3CLpro-estragole complex (black lines) at enzyme and inhibitor
concentrations of 10 and 100 µM, respectively. The addition of individual spectra of 3CLpro and
estragole is also shown (red lines). The non-equivalence between the spectrum of the complex and
the addition of the individual spectra of the free species provides direct evidence for the enzyme–
inhibitor interaction.
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3CLpro shows a complex conformational/functional landscape. Its active conforma-
tion is homodimeric, whereas the monomeric form is inactive. However, the presence of
other high-order oligomers (e.g., tetramers and octamers) with considerable hydrolytic
activity has been reported [9,23]. It is then possible that ligands binding to 3CLpro may
modulate its conformational equilibrium, and even act as inhibitors by shifting it towards
the inactive monomeric state [24]. Interestingly, we found that under our experimental
conditions 3CLpro populated mainly dimers, with a minor fraction of larger oligomers,
but the interaction with eugenol resulted in a considerable increase in high-order quater-
nary structures, as shown by electrophoresis (Figure 4). This observation, combined with
3CLpro engagement demonstrated by the CD and fluorescence data (Figure 3), suggests
that eugenol exerts its inhibition activity as a direct action on the protein catalytic site and,
in turn, it has an allosteric effect that promotes 3CLpro oligomerization.
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In the absence of structural data to confirm the exact location of the ligand bound
to 3CLpro, we used computational techniques to gain insight into the anchoring mode,
as previously described [9,10,18]. The results of docking simulations performed with
AutoDock Vina [25] predicted the binding into the 3CLpro catalytic site with affinity at
least in the micromolar range (binding energy < −5.0 kcal/mol). Random errors on the
docking energies were very low due to the high exhaustiveness used (≤0.1 kcal/mol),
and, therefore, uncertainties were essentially due to the systematic error of the scoring
function of AutoDock Vina [25]. Remarkably, the binding score obtained in the docking to
unliganded 3CLpro structures present in the Protein Data Bank (PDB) repository (such as
entries 6Y2E [22] and 7JUN [26] obtained by, respectively, X-ray and neutron crystallog-
raphy) was significantly less favorable than the value observed in vitro. This observation
could explain why neither eugenol nor estragole were reported in previous large-scale
computational screening of flavonoids [27,28]—at variance with other natural compounds
later confirmed to inhibit 3CLpro.

The result obtained in the docking experiments could be affected, at least in part,
by the limitation of this technique due to the fact that the protein structure is considered
rigid during the simulation, combined with the structural plasticity of the 3CLpro site in
hosting chemical fragments [29]. Thus, we extended our molecular docking experiment
to 3CLpro structures extracted from protein–ligand complexes. As shown in Figure 5, a
consensus was obtained on a binding mode of eugenol consisting in the compound closely
interacting with its propanoid tail with the catalytic residue His41, possibly hindering, in
this way, its catalytic activity. The binding affinity was <–5.5 kcal/mol, and could be further
improved up to the threshold of –6.0 kcal/mol by employing molecular dynamics (MD)
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simulations to adjust the accommodation of the ligand (following a protocol already used
for investigating the 3CLpro/rutin complex [10]). A comparable value was obtained for the
most favorable binding mode of estragole, although its binding energy was slightly lower.
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Due to the extensive MD sampling performed, compared to the relatively short
timescale necessary to equilibrate the position of our small ligands (below 1 ns), in this
case, the uncertainties on the binding affinity could be assumed to be essentially dictated
by the systematic error on the force field used. Within these limitations, the simulation
results are consistent with a plausible association of both eugenol and estragole within the
binding site of 3CLpro.

The binding affinities and inhibitory effects found for the phenylpropenes here inves-
tigated, and especially for eugenol, are noteworthy for a number of reasons. Foremost,
and to the best of our knowledge, this is the first report of a natural compound that in-
hibits 3CLpro with a potency in the (high) nanomolar range. Whereas other compounds
with sub-micromolar potency have been found in the last few months, they have higher
molecular weight (thus, lower BEI) and have been designed by brute-force approaches to
optimize the binding to 3CLpro [3,5]. Importantly, although those synthetic compounds
are modeled to avoid potentially inappropriate pharmacokinetic properties, many of them
interact covalently and their toxicity and metabolic profile is yet unknown. In contrast,
our natural compounds have low toxicity (LD50 value for eugenol is >1930 mg kg–1 in
rodents, and even higher for the other phenylpropenes) [30]. In particular, eugenol is
already considered a safe food additive, and it has been widely used as an oral disinfectant
in dentistry for more than a century [31]. Furthermore, its antiviral properties have already
been reported in a number of cases, for instance, it has been demonstrated to inhibit Herpes
simplex virus in vitro [32].

Other reasons for an interest in the compounds here reported are due to their molecu-
lar properties. The fact that eugenol and estragole are both highly active to inhibit 3CLpro
strongly suggests that the phenylpropanoid scaffold is responsible for this feature. Fur-
thermore, the decrease in the inhibitory efficiency in the comparison between estragole
and anethole, which differ solely by the position of a double bond, indicates that the
flexibility due to dihedral angle rotations in the –CH2–CH=CH2 moiety is a molecular
feature that favors the bioactivity of both eugenol and estragole. All of these findings may
provide useful indications for the use of eugenol as a lead compound, with the aim to
attempt an optimization of its molecular scaffold against 3CLpro. This process may follow
the same route that has led to improvements of the non-covalent binding and antiviral



Pharmaceuticals 2021, 14, 892 6 of 10

activity of quercetin, through a synthetic functionalization [18]; or to the rational selection
of pyrogallol-containing natural products starting from myricetin [33], which covalently
bind the protein catalytic residue Cys145.

3. Materials and Methods
3.1. Chemical Compounds

For our experiments, eugenol and estragole were purchased from Alfa Aesar—Thermo
Fisher Scientific (Karlsruhe, Germany) and anethole from Sigma-Aldrich (Milan, Italy), all
in liquid form and with purity ≥ 98%, and they were dissolved in assay buffer (Tris 50
mM, pH 7).

3.2. CLpro Expression and Purification

SARS-CoV-2 3CLpro (ORF1ab polyprotein residues 3264-3569, GenBank code: MN908947.3)
was expressed using a His-tagged construct in a pET22b plasmid transformed into BL21 (DE3)
Gold E. coli strain, as reported previously [9,10,18]. Briefly, after induction of expression with
isopropyl 1-thio-β-D-galactopyranoside in cells grown in LB/ampicillin media, the soluble
protein extract, obtained by sonication rupture, was purified using metal affinity chromatography
(cobalt HiTrap TALON column, GE-Healthcare Life Sciences, Barcelona, Spain). After dialysis
in storage buffer (sodium phosphate 50 mM, pH 7, sodium chloride 150 mM), an extinction
coefficient of 32,890 M−1 cm−1 at 280 nm was employed for protein concentration quantification.

3.3. CLpro Catalytic Activity

In vitro catalytic activity of 3CLpro was monitored using a Förster resonance energy
transfer (FRET) continuous assay with the substrate (Dabcyl)KTSAVLQSGFRKME(Edans)-
NH2 (Biosyntan GmbH) [22]. This substrate contains the nsp4/nsp5 cleavage sequence,
GVLQ↓SG. The enzymatic reaction was initiated by adding substrate at 20 µM to the
enzyme at 0.2 µM in a final volume of 100 µL, in assay buffer: sodium phosphate 50 mM,
NaCl 150 mM, pH 7. The initial rate was determined in a FluoDia T70 microplate reader
(Photon Technology International, Birmingham, NJ, USA) for 20 min (excitation wave-
length, 380 nm; emission wavelength, 500 nm; both wavelengths are the closest possible to
those indicated by the substrate manufacturer). The readout was the fluorescence intensity
increase due to diminished FRET in the substrate as it was hydrolyzed by 3CLpro. Initial
rate was estimated as the initial slope in the fluorescence intensity as a function of time.
The Michaelis–Menten constant, Km, and the catalytic rate constant or turnover number,
kcat, were estimated previously (Km = 11 µM and kcat = 0.040 s−1) [14].

3.4. Inhibition Assay

The inhibition constant for each compound was estimated by measuring the enzyme
activity as a function of compound concentration: enzyme at 0.2 µM final concentration
was incubated with compound at a concentration 0–125 µM for (at least) 30 min, initiating
the reaction by adding substrate at 20 µM final concentration [9,10,18], in assay buffer:
sodium phosphate 50 mM, NaCl 150 mM, pH 7. The initial slope of the substrate fluores-
cence emission time curve was processed to calculate the percentage of inhibition at each
compound concentration. The initial rate was estimated as the initial slope in the fluores-
cence intensity as a function of time. The initial slope ratios provided the percentage of
activity or the percentage of inhibition. Non-linear regression analysis employing a simple
inhibition model (considering inhibitor depletion due to enzyme binding) allowed us to
estimate the apparent inhibition constant for each compound [9,10]. Assuming competitive
inhibition, the intrinsic (i.e., substrate concentration-independent) inhibition constants
were determined.

Different controls were included in all activity measurements: substrate with no
protease, no substrate with protease, and substrate with protease. As expected, no activity
was observed in the first and second cases, and maximal activity was observed in the third
case. In addition, from our work, several compounds inhibiting SARS-CoV-2 3CLpro have
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already been identified and reported (e.g., quercetin [9] and rutin [10]), and they were used
as positive controls for 3CLpro inhibition. Experiments were performed in duplicates, at
least. Non-active compounds exhibited maximal protease activity (around 100% activity)
at any concentration.

3.5. Spectroscopy: Circular Dichroism and Emission Fluorescence

Although far-UV circular dichroism is easier to interpret in terms of structural features
of the protein, near-UV circular dichroism is more sensitive to slight alterations in the
microenvironment of the protein aromatic residues and, therefore, a better reporter of
the potential protein–compound interaction. Near-UV circular dichroism spectra were
recorded in a Chirascan spectropolarimeter (Applied Photophysics, Leatherhead, UK) at
25 ◦C, in a 1 cm path length cuvette and employing a protein concentration of 10 µM
and a compound concentration of 100 µM. Only raw ellipticity (reported in mdeg) was
considered because only the influence of the compounds on the protein target was assessed.
Spectroscopic measurements were made in sodium phosphate 50 mM, pH 7.

Fluorescence spectroscopy was employed for probing the solvent-exposure of the three
tryptophan residues of 3CLpro as a reporter for the potential protein–compound interaction
using a Cary Eclipse spectrofluorimeter (Agilent, Santa Clara, CA, USA). Emission spectra
were recorded between 300 and 400 nm (excitation at 290 nm) at 25 ◦C, in a 1 cm path length
cuvette and employing a protein concentration of 10 µM and a compound concentration of
100 µM. Spectroscopy experiments were performed in duplicates, at least.

3.6. PAGE Native Electrophoresis

The potential modulation of the quaternary assembly of 3CLpro by the compounds
was assessed through PAGE native electrophoresis. A fixed protein concentration (7 µM)
was incubated (overnight at 4 ◦C and 1 h at room temperature before the experiment) with
increasing concentrations of compounds (0, 7.8, 15.2, and 31.5 µM) and run through a 12%
acrylamide gel. After staining with Coomassie Blue, the different oligomeric forms could
be observed.

3.7. Molecular Docking

The association between 3CLpro and the compounds tested was assessed by using the
docking engine AutoDock Vina 1.1.2 [25] following the same protocol already described for
modeling the binding with quercetin [9] and its analogs [10,18]. The protein was extracted
from PDB structures, either in unliganded form [22,26] or complexed with a variety of
small chemical fragments [29]. A blind search was carried out at high exhaustiveness,
16 times larger than the default value [34], resulting in an exponentially larger probability
of finding the most favorable binding mode. The whole protein was considered as rigid
and with full flexibility for the ligands around their rotatable dihedral angles.

3.8. Molecular Dynamics

The protein–ligand complexes obtained through docking simulations were refined
by MD in explicit water, performed using the GROMACS package in combination with
the force field Amber ff99SB-ILDN and GAFF, with the same procedure formerly reported
for the 3CLpro-rutin complex [10]. After preparation through energy minimization, an-
nealing, and equilibration, the production runs were carried out at constant pressure and
temperature for 10 ns. Integration time was 2 fs (with constrained bond distance for non-
hydrogen atoms), sampling was every 1 ps, and all other simulation conditions were as
previously reported [35].

4. Conclusions

The overall results presented in this communication, obtained by using a combination
of experimental and computational techniques already successfully employed to find in-
hibitors for the main protease 3CLpro from SARS-CoV-2, indicate that eugenol is a potent
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inhibitor of this protein that is active at high nanomolar concentrations. This property is
in common with estragole (albeit with lower potency), and less pronounced for anethole.
These findings provide indications that natural substances may be used directly against
COVID-19, under appropriate conditions or formulations. The phenylpropanoid scaffold
could be used in rational design endeavors as a chemical fragment for drugs aimed at
inhibiting 3CLpro. However, as happens with any drug to be developed, some potential
limitations can be foreseen, stemming mainly from the pharmacokinetics of these com-
pounds once administered (i.e., absorption–distribution–metabolism–excretion properties,
ADME), which would determine their bioavailability and their effective concentration
for inhibiting viral replication at the proper intracellular location. Thus, the appropriate
formulation and administration routes will be key for therapeutic success. Regardless of
this, the results reported in this work indicate that nanomolar inhibition of 3CLpro by
simple bioactive molecules is within reach, and our findings may represent a milestone
towards the discovery of other natural compounds with more favorable properties.
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