
ll
OPEN ACCESS
Protocol
Correlative confocal and scanning electron
microscopy of cultured cells without using
dedicated equipment
Javier

Casares-Arias,

Miguel A. Alonso,
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SUMMARY

This protocol enables correlative light and electron microscopy (CLEM) imaging
of cell surface features without using dedicated equipment. Cells are cultured
and fixed on transparent substrates for confocal microscopy imaging. No
conductive coating is employed in the scanning electron microscopy workflow,
providing a clean cell surface observation, with fiducial markers assisting align-
ment of optical and topographical images. This protocol describes CLEM imag-
ing for midbody remnants in MDCK cells but can also be applied to different
cell types and surface features.
For complete details on the use and execution of this protocol, please refer to
Casares-Arias et al. (2020).

BEFORE YOU BEGIN

To be identified under the confocal microscope, the biological structures must be labeled with fluo-

rescent molecules prior to imaging. Immunofluorescence labeling protocols, widely used in the

field, usually include a permeabilization step that leads to ultrastructural detail loss, rendering the

use of antibodies unsuitable for a CLEM approach. Therefore, in order to localize and analyze the

structures of interest, fluorescent fusion proteins or similar approaches, such as click chemistry

(SNAP/HALO-tag), must be used.

This protocol can be applied to different cell types and surface features. In the examples included to

illustrate the protocol, a MDCK cell line stably expressing two different fluorescent fusion proteins

has been used. For further details, please refer to (Casares-Arias et al., 2020).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Minimum Essential Media (MEM) Thermo Fisher Scientific Cat#31095-029

Trypsin Thermo Fisher Scientific Cat#27250-018

EDTA (Tritiplex III) Merck Cat#108418.0250

(Continued on next page)
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MATERIALS AND EQUIPMENT

Confocal microscopy

Images were captured using a 603 water objective (NA 1.2) on a Nikon A1R+ confocal microscope.

488 and 561 nm laser lines were used to image the fluorescent fusion proteins, 640 nm laser line was

13 fixing solution

Reagent Final concentration Amount

Paraformaldehyde (8% in water) 2% 2.5 mL

Glutaraldehyde (8% in water) 2% 2.5 mL

Phosphate Buffer 1M pH 7.4 0.1 M 1 mL

ddH2O n/a 4 mL

Total n/a 10 mL

13 Fixing solution can be stored at room temperature (20�C–22oC) for up to a month.

23 fixing solution

Reagent Final concentration Amount

Paraformaldehyde (16% in water) 4% 2.5 mL

Glutaraldehyde (16% in water) 4% 2.5 mL

Phosphate Buffer 1M pH 7.4 0.2 M 2 mL

ddH2O n/a 3 mL

Total n/a 10 mL

23 Fixing solution can be stored at room temperature (20�C–22oC) for up to a month.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Poly-L-Lysine Merck Cat#P1524

G418 Santa Cruz Cat#Sc-29065B

Phosphate Buffer Solution 1 M pH 7.4 Merck Cat#P3619

Paraformaldehyde Merck Cat#30525-89-4

Glutaraldehyde EMS Cat#16220

Ethanol Merck Cat#1.00983

Acetone Merck Cat#24201-M

Hexamethyldisilazane (HMDS) Merck Cat#440191

250 nm Gold nanoparticles BBI Solutions Cat#em.gc250

Experimental models: Cell lines

MDCK cell line ATCC Cat#CRL2936

Recombinant DNA

mCherry-Tubulin Takara Bio N/A

pNG72-GFP-L-CHMP4B Juan Martı́n Serrano,
King’s College London

(Ventimiglia et al., 2018)

Software and algorithms

FIJI-ImageJ2 (Rueden et al., 2017) imagej.net/ImageJ2

TrakEM2 (Cardona et al., 2012) https://www.ini.uzh.
ch/�acardona/trakem2.html

Other

35 mm glass-bottom dishes MatTek Cat#P35G-1.5-20-C

A1R+ confocal microscope Nikon N/A

3M� Copper Conductive Tape,
Single Adhesive Surface

Ted Pella, Inc. Cat#16072

3M� XYZ Axis Tape, Electrically Conductive,
Double Sided, 9712

Ted Pella, Inc. Cat#16081

Large Sample Stub for SEM, B32 mm Ted Pella, Inc. Cat#16148

Field Emission SEM Verios 460 FEI (now Thermo Scientific) N/A
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used on reflection mode to image the gold nanoparticles (Au NPs). Specific acquisition parameters

for each image set are detailed on the step-by-step method details section.

Note: Additional tracks, such a transmitted light, can also be acquired during confocal

imaging.

Scanning electron microscopy

Scanning electron microscopy (SEM) images were acquired with a Field Emission SEM FEI (now

Thermo Scientific) Verios 460. High-end recent SEMs, as this model, are able to provide high reso-

lution in the very low voltage (VLV) range (% 1 nm at 1 kV). This has allowed us to image uncoated

biological samples on glass substrates.

Note: Though we strongly recommend the use of VLV-SEM to avoid the need of coating the

samples with conductive layers, the protocol can be adapted to allow the utilization of more

conventional SEM equipment (see troubleshooting 1: Using Alternative SEM without VLV

capabilities).

The imaging of uncoated biological samples has the advantage of reducing possible artifacts in the

observed morphology due to the deposited layer. However, the reduced conductivity of the sam-

ples induces charging effects that degrade the image quality and therefore have to be minimized.

The use of VLV is a first strategy to achieve this. Additional methods include the use of very short

dwell times (50–100 ns). To maximize the signal to noise ratio in these conditions, frame integration

scanning modes need to be used (around 100–200 frames per image are recommended), with soft-

ware-based drift correction option activated (if this option is not available, charge-originated drift

may destroy the quality of image after frame integration). Particular acquisition parameters for

each image set are specified on the step-by-step method details section.

Most SEM systems providing high resolution at very low voltages have implemented the option of

applying beam deceleration (Zarraoa et al., 2019). This method consists in applying a negative bias

voltage (typically 0.5–4 kV) to the sample holder in order to decelerate the incident beam before

reaching the sample surface. As a consequence, the effective beam landing energy equals the col-

umn acceleration voltage (which is kept relatively high �from 2 to 5 kV� for optimum column per-

formance and resolution) minus the sample bias. The resulting electric field between the pole piece

and the sample acts as an additional electrostatic lens that reduces the beam diameter and enhances

secondary electron (SE) collection at the detector placed inside the column –also called in-lens de-

tector– improving spatial resolution. The SE and back-scattered electrons are also spatially redistrib-

uted by this electric field and the amount of SE more pathologically affected by charge effects that

are collected by the detector is reduced. Therefore, the use of beam deceleration can improve both

the image resolution and the charge management.

STEP-BY-STEP METHOD DETAILS

Coating and addition of gold fiducial markers to the coverslip

Timing: 2 h

1. Cover the surface of the inset of a glass-bottomed 35 mm Petri dish with 650 mL of 0.1% (wt/vol)

poly-L-lysine solution (dissolved in water) and incubate for 30 min at 37�C (Figure 1A).

Note:On the presented example, poly-L-lysine has been used only to ensure correct adsorp-

tion of the Au NPs to the glass surface, since MDCK cells do not require any substrate coating

to grow. Though this possibility has not been tested, alternative coatings required to ensure

cell attachment should not interfere with the protocol, provided that they allow the correct

visualization of the Au NPS over the substrate.
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2. Rinse with deionized water and air-dry.

Note: Though sterile working conditions are optional during this phase, drying steps should

be performed in a fume hood to keep the coverslip surface as clean as possible.

3. Prepare a suspension of Au NPs (in deionized water) to achieve a final density along the coverslip

surface of around 1–5 3 104 particles mm�2.

a. Thoroughly vortex the Au NPs stock before pipetting the required volume on a separate tube.

b. Sonicate the suspension in a bath sonicator for 3 cycles of 30 s at the highest output setting to

break up NP aggregates.

c. Dilute the suspension to the desired concentration in deionized water.

Note: In our case, 250 nm spherical gold nanoparticles were used, as they can be easily

observed both under the confocal and scanning electron microscopes. Au NPs with smaller

sizes or different shapes can also be used, though final density may need to be adjusted to

ensure that individual NPs can be observed near the structures of interest.

CRITICAL: The presence of salts in the Au NPs suspension could cause undesired

aggregation.

4. Add 650 mL of Au NPs suspension to the inset, incubate for 2 h at 37�C (Figure 1B).

Note: You may need to optimize the final density of fiducial markers by adjusting Au NPs con-

centration and/or incubation time. Au NPs suspension volume may vary for different dish

sizes.

5. Retire the remaining solution and air-dry (Figure 1C).

6. Mark the bottom of the coverslip with an ethanol-resistant marker to orient the sample during

subsequent image acquisition steps. Two marks, defining ‘‘north’’ and ‘‘east’’ of the sample are

typically enough (Figure 1D).

Cell culture

Timing: 2–3 days

Figure 1. Coverslip coating and fiducial markers attachment procedure

First, the coverslip is coated with Poly-L-lysine (A), followed by incubation with a Au NPs suspension (B) and then air-

dried (C). Once the surface is ready for cell culture, reference marks are added to the bottom of the coverslip for

further alignment (D).
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CRITICAL: These steps should be carried out under sterile working conditions.

Note: This protocol has been optimized for the imaging of midbody remnants on renal epithe-

lial MDCK cells, other cell types or structures of interest may require additional steps or

different conditions.

7. Sterilize the dish previously coated with Au NPs by exposing it to the germicide lamp of a cell cul-

ture hood for 15–30 min.

8. Add 2 mL of MDCK cells expressing the desired fluorescent fusion proteins (7.5 3 104 mL�1) sus-

pended in MEM to the plate.

CRITICAL: The initial number of cells must be optimized according to the cell line and the

duration of the culturing phase, so that the culture is not completely confluent by the time

of fixing.

Note: Culture media may vary for different cell types.

9. Culture the cells for 48–72 h at 37�C in an atmosphere of 5% CO2.

CRITICAL: For the alignment strategy to work, culture must be subconfluent at the time of

fixing. For this, the initial number of cells and duration of the culturing phase must be

adjusted. The goal is not to achieve a specific percentage of confluence, but to ensure

that the substrate and Au NPs are exposed in some areas (see Figure 2). If the use of sub-

confluent cultures represents a limitation, see troubleshooting 2: Use of confluent cultures.

Fixation

Timing: 2–10 h

CRITICAL: Only electron microscopy-rated fixatives must be used, common-use alde-

hydes might include traces of organic solvents, such as methanol, that can damage the

cell surface.

10. Add a volume of 23 fixing solution (4% paraformaldehyde + 4% glutaraldehyde in phosphate

buffer 0.2 M) equal to the volume of culture medium (MEM) in the dish. Incubate for 10 min

at room temperature (RT; 20�C–22�C).
11. Remove most of the liquid and add fresh 13 fixing solution (2% paraformaldehyde + 2% glutar-

aldehyde in phosphate buffer 0.1 M). Incubate for 2 h at 20�C–22�C or 8–10 h at 4�C.

Pause point: Samples can be stored in fixing solution at 4�C for up to a week.

Alternative: Different storage solutions, such as PBS, can also be used. In such case, the addi-

tion of antibacterial agents (Penicilin-Streptomycin or sodium azide) is advised.

Confocal imaging

Timing: 4–6 h

During this phase, the localization of the surface features of interest labeled with fluorescent proteins

and the Au NPs present in the sample is determined by confocal fluorescence and reflection micro-

scopy, respectively. Candidate structures for CLEM analysis are selected, and all the relevant

confocal images are acquired.
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12. Substitute fixing solution with phosphate buffer 0.1 M.

13. Place the dish on the sample stage, using the marks added during step 6 as a reference. Perform

the imaging at the center of the coverslip if possible.

14. Acquire a large field-of-view (FOV) (2 3 2 mm) image for alignment and navigation purposes,

including the fluorescence signals and the reflection channel showing the Au NPs. In our

case, these images were generated by acquiring a 10 3 10 tilescan z-stack (5 mm total with

250 nm steps) with a resonant scanner, 83 averaging and pixel size of 200 nm (Figure 2A).

Note:Acquisition settings must be optimized depending on the abundance of the structure of

interest, the proportion of cells expressing the fluorescent protein and signal strength.

CRITICAL: We strongly recommend performing all the confocal imaging in one session to

guarantee a fixed sample orientation. If this is not possible, the rest of the images can be

Figure 2. Confocal dataset of the CLEM procedure

(A) Confocal large-FOV image (contrast enhanced).

(B) Confocal medium-FOV image.

(C) Look-up image showing the localization of the medium-FOV images and structures of interest (squares and circles

respectively). Arrowheads in (B) show the position of the Au NPs that are closer to the structure of interest (circle).

Magenta box in C corresponds to the imaging area shown in B.
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acquired on a different session, though alignment might be an issue and require special

attention.

15. Localize candidate surface features and acquire medium-FOV (1003 100 mm) images, including

the fluorescence signals and the reflection channel showing the Au NPs. We acquired these im-

ages with a unidirectional galvano scanner, no averaging and 50 nm pixel size (Figure 2B).

Note: The closer a candidate structure is to an area with exposed substrate, the easier will be

to localize it under the scanning electron microscope (SEM).

CRITICAL: When selecting the imaging region, be sure to include an area with exposed

substrate including Au NPs near the structure(s) of interest (see arrowheads on Figure 2B).

16. As medium-FOV images are recorded, keep track on their position relative to the large-FOV

image. This information is needed for the elaboration of the look-up map (see next step). A

convenient way of doing this is by using the option that most microscope manufacturers offer

of re-centering the stage to a given position of a previously acquired image when a motorized

stage is available. During this process, the position of each medium-FOV image is generally an-

notated on an additional copy of the large-FOV image. If this capability is not available, see

‘‘troubleshooting 3: Confocal dataset tracing’’ for alternatives.

17. Prior to sample removal, record the objective position, and thus imaging area, relative to the

coverslip. For this, a picture of the stage adaptor during the imaging session can be taken. Addi-

tionally, once the backside of the coverslip has been cleaned, make an additional ethanol-resis-

tant mark on the same position to frame the imaged area.

Note: The mark indicating the area imaged by confocal microscopy is used as starting point

for SEM imaging, and thus should be as accurate as possible.

Pause point: Samples can be stored for up to a week at 4�C upon substitution of the phos-

phate buffer by 13 fixing solution.

Alternative: Different storage solutions, such as PBS, can also be used. In such case, the addi-

tion of antibacterial agents (Penicilin-Streptomycin or sodium azide) is advised.

Look-up map elaboration

Timing: 30 min

In order to facilitate the correlation process, it is recommended to elaborate a look-up map prior to

the SEM imaging session. This consists of the large-FOV confocal image of the full area where the

position of each medium-FOV imaged is indicated. This will be helpful both for navigation and iden-

tification of individual structures in the sample along the SEM session.

18. Open the large-FOV image in ImageJ. Given the file size, performing a z-projection and creating

a compressed jpeg version is advised.

19. Highlight and identify the regions that correspond to each medium-FOV image, repeat the pro-

cess with the candidate structures present inside them. This will allow to identify each structure,

keeping track of its corresponding medium and large-FOV images (Figure 2C).

Coverslip extraction

Timing: 5 min
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CRITICAL: This process involves removing most of the liquid from the dish, it must be car-

ried out as fast as possible to avoid uncontrolled drying.

Note: This phase must be carried out on a fume hood.

20. Remove most of the liquid from the dish, turn it upside-down and add some drops of acetone

around the perimeter of the coverslip. Incubate for 5–10 s (Figures 3A and 3B), then and clean

any remaining acetone.

21. Now that the adhesive is soft, apply pressure homogeneously along the coverslip perimeter

from the inside (sample side). This can be done by pushing the dish against a hollow cylinder

with a slightly smaller diameter than the inset (Figures 3C and 3D).

Note: This coverslip detaching technique involves touching the periphery of the sample sur-

face, and must be carried out with extreme care.

Alternative: If a hollow cylinder of the appropriate size is not available, or the nature of the

sample is incompatible with the aforementioned technique, the coverslip can also be de-

tached with the help of a scalpel. For this, Introduce a scalpel in between the coverslip and

the plastic and gently rotate the dish to liberate the coverslip (Figures 3E and 3F). This tech-

nique, however, is prone to coverslip cracking and must be carried out with extreme care.

22. Once the coverslip is detached, place it (sample facing up) quickly on a 6-well plate with phos-

phate buffer and remove any remaining adhesive if needed.

Figure 3. Coverslip extraction procedure

(A) First, imaged region is marked on the bottom of the coverslip.

(B–F) (B) Following buffer removal, the dish is turned upside-down, and acetone is added around the perimeter of the

coverslip. Once the adhesive has softened, coverslip is extracted by uniformly applying pressure from the sample-side

on the coverslip with a hollow cylinder (C and D) or by using a scalpel (E and F).
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Dehydration and drying

Timing: 10 h

Note: This protocol has been optimized for the acquisition of high resolution SEM images,

which requires high vacuum conditions. Therefore, the samples must be dehydrated and

dried before the session.

Sample dehydration is carried out in order to substitute all the water in the sample by an organic sol-

vent (ethanol), preparing it for subsequent drying steps (Katsen-Globa et al., 2016). Ethanol is

substituted then by hexamethyldisilazane (HMDS), a low tension volatile non-polar solvent that me-

diates sample drying without requiring any special equipment.

CRITICAL: These steps must be carried out on a fume hood. HMDS is highly toxic andmust

be handled wearing the appropriate personal protective equipment.

23. Immerse the samples in increasing concentrations of ethanol starting with 10%, increasing with

10% increments up to 100%, incubating 3 min per solution.

24. After reaching 100% ethanol, incubate 3 min in a 1:1 mixture of ethanol and HMDS, followed by

an additional 3 min incubation in pure HMDS.

CRITICAL: Increased incubation times with HMDS can cause severe cell shrinkage.

25. Remove all the liquid from the dish and air-dry on the fume hood overnight.

Note: This protocol has been optimized for epithelial cells, non-adherent cell types might

require additional steps, such as osmium post-fixation.

Pause point: Uncoated biological samples might re-hydrate or degrade after drying. We

therefore recommend carrying out these steps within one week before SEM imaging session.

In the meantime, samples must be stored in a dry environment to help preserving their

integrity.

SEM imaging

Timing: 2–5 h

This step includes a first stage where the candidate cell surface features imaged by confocal micro-

scopy are located. This is followed by a second phase where small-FOV SEM images of those struc-

tures are acquired.

26. Mount the sample on the SEM stub (large stub, diameter > 30 mm, see materials and equip-

ment). Keep track of the substrate orientation and position of interest, as marked after confocal

imaging:

a. Use a thin conductive double sided tape (carbon) to attach the sample (cells on the upper

side) to the aluminum stub (Figures 4A and 4B). Align the reference marks done on the sam-

ple during the last stage of ‘‘coating and addition of gold fiducial markers to the coverslip’’

section [step 6] with the stub in such a way that you can keep track of orientation.

b. After that, frame the edges of the glass substrate with metallic tape (copper, aluminum) (Fig-

ure 4C). In this way, the upper surface of the substrate is in electric contact with the SEM hold-

er and this slightly helps to mitigate sample charging during imaging. Be careful not to cover

or touch the area imaged by confocal microscopy.
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c. Place the stub on the SEM stage holder (Figure 4D) and introduce it on the SEM chamber.

Orient the sample matching the microscope motion axis by using the reference marks.

d. Keep track of the position of the imaged area (marked at the end ‘‘Confocal imaging’’ stage

[step 17]) relative to an easy to identify part of the sample, such as the border.

Note: Some SEM microscopes include optical navigation systems that allow to use an image

of the mounted sample as a navigation reference (Figure 4E).

27. Locate the surface features of interest identified by confocal microscopy:

a. Navigate to the area imaged by confocal microscopy.

b. Set the working conditions for the electron beam: desired working distance (we used 4 mm),

very low voltage and low current to minimize charge effects. For the latter two parameters,

we recommend 0.5–1 kV and 13–25 pA, respectively. Align the column.

Note: when adjusting the working distance, consider that it must allow the acquisition of all

the different FOV sizes required.

c. Acquire a large-FOV (2 mm wide, around 503) image in order to compare with the look-up

map (Figure 5A). Either the in-chamber or the in-lens SE detectors can be employed here.

Beam dwell times around 1–3 ms are usually adequate, as charge is not a big problem at

this low magnification.

d. Compare both confocal and SEM large-FOV images and identify relevant structures such as

the pattern formed by the cells, occasional defects, etc., that allow correlating them (Figures

5A and 5B). Correct the position and the orientation of the sample if needed. Typically, Au

NPs are still not visible at this stage and therefore they cannot serve as a reference yet.

e. Using the look-up map, start identifying the sections of interest in the sample. Acquire me-

dium-FOV (100 mm wide, around 1,0003) images (Figure 5C). Dwell times in the range of

100–300 ns are appropriate here. The imaged area should be equivalent to the medium-

FOV confocal microscopy images obtained in step 15 (Figure 5D). Areas of the substrate

showing the Au NPs must remain visible. For the medium-FOV images the in-lens secondary

electrons detector is preferable to the in-chamber one as it provides better resolution.

Figure 4. SEM sample mounting

(A and B) Carbon double-tape is used to attach the coverslip to the stub holder.

(C) Copper tape is used to provide some electric contact between the sample surface and the stub holder.

(D) Sample is then placed on the holder, aligned to its axis using the reference marks (arrowheads) and introduced on

the SEM chamber.

(E) An in-chamber image can be used for navigation purposes, reference marks (arrowheads) can be used to align the

sample with the microscope moving axis.
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Note:Depending on the size of the structures of interest, higher resolution images, in terms of

pixels, might be needed at this point. As a reference, we employed 3072*2048 pixels for the

medium-FOV images, keeping the rest of the images at 1536*1024 pixels. Image definition

here must be high enough to allow the observation of the Au NPs and the identification of

the surface features of interest by using the position of the Au NPs as a reference.

Figure 5. SEM large-, medium- and small-FOV images and initial alignment

Large FOV SEM image (A) is compared to its confocal counterpart (contrast-enhanced) (B). The contours originated by

the cell colonies (dotted lines in all panels) serve as navigation cues and allow to unequivocally find the same imaging

area using different imaging techniques. Occasional imperfections in the sample, such as the dirt fiber shown in the

top-left of A and B panels, can also facilitate orientation and alignment process. This allows the localization of the mid-

FOV imaging areas (C and D) (magenta boxes on panels A and B) containing the structure of interest. The pattern

formed by the Au NPs on the substrate (arrowheads on panels C and D) is used to localize the structures of interest on

the SEM (blue box in C). Once the surface feature of interest has been localized on the mid-FOV SEM image, the small-

FOV (E) and tilt images (F) can be acquired. Magenta dotted boxes in C and D correspond to the regions aligned in

Figure 6 and represented after alignment on Figure 7.
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f. By comparing confocal and SEM medium-FOV images, identify the regions where the struc-

tures of interest are located (Figures 5C and 5D). Then, the pattern formed by the Au NPs is

used to univocally localize them.

28. Small-FOV SEM image acquisition of the surface features of interest:

a. Take small-FOV images (in the range of 10,0003�100,0003) with the in-lens SE detector.

For imaging of midbody remnants, the range 25,0003�60,0003 with FOV width of around

2–5 mm was employed (Figure 5E). At these high magnifications, low-dwell times

(50–100 ns) will be mandatory to reduce charge effects. Frame integration (around

100–200 frames) with software drift correction activated will allow to increase the image

signal-to-noise ratio.

Note: Charge accumulation might be an issue at this magnification level. For persistent

charge effect issues, see troubleshooting 4: Charge during SEM imaging.

b. If views of the structures from different orientations are needed, tilt and rotate the sample

stage (depending on the options available in your SEM equipment) and acquire images in

the same conditions (Figure 5F).

CRITICAL: Intensive focusing on the structures can produce damage by the electron beam

or induce the deposition of carbon coating. Therefore, careful alignment of the beam in a

region close to the structure of interest is recommended before moving to the intended

section. This way, the image is acquired without any previous exposition of the area of in-

terest to the beam.

Image alignment

Timing: 1–2 h

If the goal of the correlative approach is to localize a structure that stands out against the cell surface,

the analysis of the overall pattern of the cells and the Au NPs (as exposed in the previous steps) is

usually enough. If a more precise localization or correlation is required, confocal and SEM images

must be aligned.

29. Open the medium-FOV confocal and SEM images on ImageJ, perform brightness and contrast

adjustments if needed. Find the structure of interest and crop a region around it, including the

closest Au NPs, in both images (magenta boxes in Figures 5C and 5D).

Note: The closer the structure of interest is to the Au NPs, the better the alignment will be (see

‘‘troubleshooting 5: Image alignment’’ if this requirement is difficult to fulfill).

30. Generate the final confocal image by selecting the desired planes, making projections, etc.

Then, split the channels and save each one of them as a different TIFF file.

31. Start a new TrakEM2 project (File – New – TrakEM2 (blank)), two windows will appear:

a. The ‘‘Project’’ window, formed by three columns (Figure 6A).

b. The ‘‘Navigation’’ window, consisting of a black canvas and surrounding menus (Figure 6B).

Note: For further details on how to use TrakEM2 plugin, please refer to themanual available at

www.ini.uzh.ch/�acardona/trakem2.

32. Create a new layer (on the ‘‘Project’’ window, layers column: select ‘‘Top Level [layer set]’’ - right

click - new layer – z coordinate:1 – OK). Rename the layers as ‘‘Confocal’’ and ‘‘SEM’’ respectively

(right click on each layer – rename) (Figure 6A).
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CRITICAL: When creating a new layer on TrakEM2, a ‘‘z coordinate’’ value different than

0 must be chosen, otherwise the alignment process will fail.

33. Import all the confocal images to the ‘‘Confocal’’ layer (drag-and-drop the files from a folder to

the canvas). The three images will be placed on top of each other, and will be listed on the

Figure 6. Alignment process with TrakEM2 plug-in

(A) Detail of the ‘‘Project’’ window of TrackEM2, showing the ‘‘Layers’’ section including two layers for the confocal and

SEM images respectively.

(B) Overview of the ‘‘Navigation’’ window, including the ‘‘Patches’’ list in the left and an overview of the currently

visible image (Au NPs in the example).

(C) Magnification of the ‘‘Patches’’ list after confocal images have been imported, linked, and only the one containing

Au NPs left visible.

(D) Result ofmanual landmark registering inboth confocal (left) and SEM images (right), note that the number assigned to each

fiducial marker is the same in both images, and that their size is not the same due to different sampling.

(E) Same images after alignment, note that the confocal image has been scaled and translated to match its SEM

counterpart, which has remained unchanged.

(F) Magnification of the ‘‘Patched’’ list after the inclusion of the SEM image in the same layer as the confocal

counterparts, note that all the images are linked together to preserve the alignment.

(G) Small-FOV SEM image is placed on top of the mid-FOV one and manually aligned.

(H) Final state of the ‘‘Layers’’ section prior to stack exportation to ImageJ, note there is one layer per image in the

dataset. Red arrowheads and arrows in C and F highlight the visible images and the linked ones, respectively.

ll
OPEN ACCESS

STAR Protocols 2, 100727, September 17, 2021 13

Protocol



‘‘Patches’’ list in the left side of the window (Figure 6C). Move to the ‘‘SEM’’ layer (use ‘‘<’’ and ‘‘>’’

keys to navigate between layers) and add the SEM image to it following the same procedure.

34. Next, link all the images in the ‘‘Confocal’’ layer (so the different channels remain aligned) and

make visible only the channel containing the Au NPs. This is achieved by using the ‘‘link’’ (chain)

and ‘‘visibility’’ (eye) icons (Figure 6C).

35. Register both images using the Au NPs as manual landmarks (right click on the canvas – align –

align layers manually with landmarks). Then, select the Au NPs near the feature of interest one by

one in the same order (Figure 6D).

36. Align both images by ‘‘similarity’’ (right click on the canvas – apply transform –model: similarity –

Propagate to first layer – OK), the layer containing the confocal image will be translated, rotated

and scaled according to the Au NPs position (Figure 6E).

CRITICAL: The selected layer during the alignment process will be used as a reference, and

will not be modified. In order to keep the orientation stable along the SEM dataset, the

mid-magnification SEM image must be the one used as a reference.

37. Once both medium-FOV images are aligned (see limitations section), put them all in the same

layer and link them (right-click on the SEM image in the ‘‘Patches’’ list – ‘‘Send to previous layer’’)

(Figure 6F).

38. Scale the images to match pixel size with the high magnification SEM image:

a. Select all images from ‘‘Patches’’ list

b. Right-click on canvas – transform – transform (affine)

c. Right-click on canvas – specify transform. Introduce the same scaling factor in X and Y.

d. Right-click on calvas – apply transform.

Note: Pixel size can be found on the image metadata, or calculated considering the field of

view and the resolution of the images. If necessary, re-scale the canvas to fit the entire image

(Right-click – Display – Autoresize canvas/LayerSet).

39. Import the small-FOV SEM image to the same layer, and manually align it to the mid-FOV SEM

image (Figure 6G). For this, image ‘‘visibility’’ icon (eye) can be used.

40. Create as many new layers as necessary, then move every image to a separate layer (select im-

ages on the ‘‘Patches’’ list – right-click – send to next layer) (Figure 6H).

41. Make sure all the images are visible and export the final stack to ImageJ (right-click on canvas –

Export – Make flat image, set ‘‘Start’’ and ‘‘End’’ fields to span all the layers).

EXPECTED OUTCOMES

After image acquisition, correlation, and alignment, the final result is an ImageJ hyperstack contain-

ing the medium-FOV confocal image aligned to the medium and small-FOV SEM images (Figures

7A–7C). This provides a topographical image of the cell membrane structure of interest with nano-

metric-range resolution, together with the multi-labeling protein localization data acquired through

confocal microscopy. Additionally, and if tilt images were generated during SEM imaging, the

feature of interest can also be observed from multiple angles (Figure 5F).

Note:All the images included to illustrate this protocol (Figures 2, 5, 6, and 7) belong to the same

dataset. The different FOV can be traced from one figure to another by using the following color

codes: yellow for large-FOV, magenta for medium-FOV and blue for SEM small-FOV. A contin-

uous box represents the entire FOV, whereas a dotted one corresponds to a cropped region.

LIMITATIONS

Due to the different environmental conditions required for confocal and scanning electron micro-

scopy imaging, dehydration and drying must be carried out in between both imaging methods
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(steps 23–25). It has been previously reported that drying of biological samples, regardless of the

methodology used, decreases cell volume (Katsen-Globa et al., 2016). On a CLEM workflow, this re-

sults in a slight misalignment of the resulting images. Though fiducial markers over the substrate

remain immotile, making alignment possible, the small movements of the cell surface due to shrink-

ing could modify to some extent the localization of the structures of interest (see troubleshooting 5:

Image alignment).

TROUBLESHOOTING

Problem 1

Using Alternative SEM without VLV capabilities

In this protocol, a scanning electron microscope capable of achieving subnanometric resolution un-

der very low voltage (VLV) conditions has been used. This allows the analysis of uncoated biological

samples on glass substrates, reducing sample manipulation and delivering the highest possible res-

olution. If a conventional SEM microscope without VLV capabilities is used, charging effects will

appear during imaging (steps 27 and 28).

Potential solution

Coating of the sample with a conductive material (such as gold, platinum or carbon) would minimize

charging effects and allow the usage of higher beam voltages. However, this would be achieved at

the expense of the level of detail in the final image, since the conductive layer will even out the finest

structural details of the sample, potentially hiding relevant features. The coating should be done af-

ter sample dehydration and drying (subsequent to step 25). Deposition of a thin conductive coating,

between 2 and 15 nm, by means of a physical vapor deposition technique should be enough. The

thickness of the coating needs to be adjusted to allow the visualization of the Au nanoparticles.

Problem 2

Use of confluent cultures

Figure 7. Expected outcome: correlated light and scanning electron microscopy images

(A and B) The pattern formed by the Au NPs on the substrate (arrowheads) has been used to align both images,

allowing their superposition (C). The position of the small-FOV image (C, inset) can be traced back to the original

confocal dataset, this allows to combine the nanometric-range topographical SEM measurements with the multi-

labeling protein localization data acquired through confocal microscopy.
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The proposed methodology for CLEM imaging strongly relies on the existence of large-scale pat-

terns on the sample, such as the overall shape of the cell colonies, to localize the imaging area

and perform an initial rough alignment. A confluent cell monolayer after the cell culture phase

(step 9) looks homogeneous under low-magnification conditions, preventing the direct application

of this protocol.

Potential solution

In order to introduce a higher degree of physical confinement for the cells, while maintaining orien-

tation cues inside the sample, micro-patterned substrates could be used.

Another possibility is the creation of a large-scale pattern on the sample after fixation by scratching

out portions of the cell monolayer. This process, however, damages the cells right at the border of

the pattern, which is the area where the alignment strategy works best.

Problem 3

Confocal dataset tracing

Once the confocal large-FOV image has been acquired and the candidate features identified, the

proposed methodology relies on the use of a motorized sample stage for repositioning during me-

dium-FOV images acquisition (steps 15 and 16). In the absence of a motorized sample stage, or if the

navigation cues present in the sample are too complex, this process might be challenging.

Potential solution

In this case, the use of gridded coverslips (Mattek, Cat#P35G-1.5-14-CGRD) may be of help. The

squared pattern embedded on the substrate, together with the alphanumeric code that identifies

each square, allows to localize each medium-FOV image for look-up map elaboration. For this, an

additional transmitted-light track has to be acquired during confocal imaging, as to make the

pattern visible in the final images.

Problem 4

Charging during SEM imaging

During SEM imaging (steps 27 and 28) of non-conductive samples, the accumulation of negative

charges on the specimen surface causes strong contrast variations in the image or drift, precluding

the obtention of good quality images.

Potential solution

We recommend adapting the SEM imaging conditions as follows, with each step providing a higher

level of complexity.

1. Keep the voltage at 1 kV but reduce the beam current.

2. Keep beam voltage at 1 kV and beam current at 13 pA (or lower beam current if desired), and

apply beam deceleration (see materials and equipment section). A typical value for the sample

bias to employ is 1000 V.

Note: Beam deceleration strategies should be applied too if the image quality at 1 kV is too

low.

CRITICAL: The use of beam deceleration strategies usually prevents the option of tilt

imaging.
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3. Reduce beam voltage at 500 V and keep beam current at 13 pA (or lower beam current if desired).

Beam deceleration is usually mandatory in this case to obtain high resolution images at this very low

voltage. A typical value for the sample bias voltage to be applied is 1500 V.

Note: These softer conditions (options 1, 2 and 3) can also be useful for preventing damage of

the structures.

Problem 5

Image alignment

Dehydration and drying procedures carried out between confocal and SEM imaging (steps 23–25)

may cause subtle deformations of the cell surface due to shrinking. Since the Au NPs are directly

attached to the substrate, and thus unaffected by these deformations, there might be a slight shift

in the position of the features of interest when confocal and SEM images are compared after align-

ment (step 41).

Additionally, the proposed methodology is optimized for the analysis of features that are relatively

close to areas with exposed substrate, since alignment accuracy decreases with distance.

Potential solution

Image alignment precision can be improved, and its application range extended by applying the Au

NPs directly on top of the cell surface prior to fixation (step 10). This way, the Au NPs would be

affected by the deformation of the cell surface at the same extent as the features of interest, allowing

its compensation. This alternative approach would also allow the correlative analysis of features that

are far from exposed substrate areas.

Though the vast majority of the protocol would be unaffected by this modification, the final image

alignment process should be modified to include the movement of the Au NPs between imaging

methods. While the proposed methodology uses only translation, rotation and scaling to achieve

alignment (step 36), elastic deformation (‘‘Affine’’ on TrakEM2) of one of the datasets might be

needed to compensate the movement of Au NPs placed on top of the cells.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Javier Casares Arias (javier.casares@bsse.ethz.ch).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article includes all datasets generated or analyzed during this study.
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