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This paper presents an active inference based simulation study of visual foraging. The

goal of the simulation is to show the effect of the acquisition of culturally patterned

attention styles on cognitive task performance, under active inference. We show

how cultural artefacts like antique vase decorations drive cognitive functions such

as perception, action and learning, as well as task performance in a simple visual

discrimination task. We thus describe a new active inference based research pipeline that

future work may employ to inquire on deep guiding principles determining the manner

in which material culture drives human thought, by building and rebuilding our patterns

of attention.
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INTRODUCTION

Do the worlds we build alter our own minds and the ways we process information? In one sense, it
is obvious that they do—we read books, we listen to our teachers, and learn new ways of thinking
and reasoning as a result. Thanks to lifelong learning, we may become experts in a domain such
as forestry and become able to attend to, and differentiate, new things as a result. But we are also
immersed in a sea of material structures and artefacts such as pottery, ceramics, clothing, buildings,
tools, and more. As we encounter and explore these artefacts and structures, they too influence our
patterns of visual and embodied exploration, and thus our learning. But the nature and potential
cognitive importance of these interactions with material structure remains ill-understood.

Iterated encounters with non-linguistic aspects of material culture, we believe, do not simply
reflect human thinking and reasoning—rather, they shape and alter it. Our minds are as much the
products of these materialities as the cause. This is a bold claim, yet one that is quite often found in
the sciences of mind and culture (Dennett, 1991, 1996; Clark, 1997; Sutton, 2002; Knappett, 2005;
Renfrew and Malafouris, 2010). To our knowledge, it is a claim that has not been experimentally
demonstrated or subjected to rigorous analysis and testing. The simulations we report below are
meant as a first step towards building a pipeline to explore and test this claim—that encounters
with non-linguistic artefacts can alter patterns of thought and attention in cognitively interesting
and beneficial ways.

With this goal in mind, our paper presents a proof of principle for modelling visual foraging and
sensory learning of artefacts using active inference for Markovian inference models. Markovian
models are used to perform predictive statistical inference over some states of interest, given
the outcomes those states are known to generate. For instance, Markovian model can be used
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to perform weather forecasting over some unknown states (a.k.a.
hidden states, or unknown variables) which would represent the
weather for each day of the week (e.g., rainy; sunny), and where
the outcomes would be some observable property of the possible
states (e.g., cloud shapes). After observing these properties,
inference proceeds by combining known prior probabilities
of transitioning from one state to the next (e.g., history of
transitions between rainy to sunny days, or sunny days to sunny
days, etc.) with the known likelihood of observables under each
state. The resulting posterior specifies the Bayesian probability
the hidden variables at the next time step (e.g., tomorrow’s
weather). In this paper, we utilise the theory of active inference
to perform the requisite inference, action-selection, and learning
for our model.

Crucially, active inference straddles multiple levels of Marr’s
hierarchy, from deep computational considerations in statistical
inference and thermodynamics, all the way down to being able to
build biologically plausible models of psychophysical tasks which
accord with known neurophysiology. This theoretical breadth
licences us to create an active inference model of the interaction
between inference and learning systems and material culture
which can demonstrate, through psychophysical observables, the
importance of the material world for shaping mental attention
styles and ultimately cognitive capacities.

We present two experiments. In experiment 1, we provide a
pilot simulation of visual foraging that showcases the potential
of our method for modelling empirical data on foraging
over differentially complex cultural artefacts. Experiment 1 can
be viewed as a training experiment, where artificial agents
learn about the hierarchical structure of artefacts, and where
this acquired knowledge is later applied to a categorisation
task (experiment 2). Our simulation focuses on implementing
artificial behaviour that could mimic in vivo participants scan
paths over antique vases such as observed in Criado-Boado et al.
(2019). Criado-Boado and colleagues studied the influence of
decoration patterns on scan paths employed by visual foragers.
They use a vertical index (Vi) to measure the influence of various
patterns on visual saccades, relative to the size of the visual
display presenting the differentially decorated vases (e.g., more
or less complex decoration painted horizontally or vertically).

We show that an increase in decoration complexity, when
modelled as patterns of hidden states, entails characteristically
different scan paths, and hence Vi; We call these scanpaths
“Culturally Patterned Attention STyles” (C-PAST). These scan
paths are the result of the agent attempting to predict the
next decoration based on observed pigments and learning the
probability transitions between the visual motifs forming the
decorations. These scanpaths should be viewed as heuristics
of culturally shaped patterns of attention. Future work should
attempt to fit the model generating those scanpaths with real
participant data. The motivation for calling the scanpaths
“cultural” is that vase decorations have been shown to be a
good indicator of cultural complexity. Hence, we call “cultural,”
or rather “culturally patterned” the scanpaths that result from
learning based on the exposure to such decorations; the
patterning here being synonym of learning.

In experiment 2, we provide a modelling method to transfer
the learning of priors across simulations under active inference,
which, to our knowledge, has never been done before in the
literature. Transfer learning here refers simply to the transfer of
knowledge across tasks (e.g., employing knowledge acquired in
task X to perform the actions required in task Y). The challenge
with the transfer of learning in active inference modelling is
that the model parameters (e.g., transition probabilities between
hidden states) are normally task specific, which means that
they correspond to the environment of the task at hand (e.g.,
motifs as hidden states being specific to the vase perceived by
the agent). The novel modelling strategy we propose in this
paper allows transfer learning by breaking down the environment
of a task into units that are general purpose hidden states.
These units are locations in a discrete 2-dimensional map,
which we call the remapping likelihood matrix (see method for
details). The remapping matrix allows us to local representations
of the immediate environment, and, crucially, to reuse these
units or groups of units, when learned, across tasks. While
it unlocks the possibility to accomplish our simulation, we
recognise that the present method of likelihood remapping
is trivial. Based on the learning of the structure of vases’
decorations in experiment 1, in experiment 2 we simulate a
pattern categorisation task that involves reusing learned model
parameters in experiment 1. In the categorisation task, the agent
has to match a series of motif cut-outs with their corresponding
motif. We show how performance (hits vs. non-hits) changes
depending on learned parameters under the different levels
of cultural complexity afforded by vases transferred from
experiment 1.

In summary, with experiment 1 and 2, we show the potential
of active inference to study (i) exposure to artefactual complexity
leading to the acquisition of the knowledge underwriting
different Culturally Patterned Attention STyles (C-PAST)—here
knowledge about transition probabilities among hidden states, or
representations of the structure of the world; (ii) the repurposing
of C-PAST in novel cognitive tasks, and the manner in which
different C-PAST influence performance in novel cognitive tasks.
We are aware that the task that we use may be considered too
simple to demonstrate the effect of C-PAST on cognitive task
performance, and that our task is limited to non-natural scenes.
However, the goal of our simulation, beyond reproducing the
results of Criado-Boado et al. (2019) is to provide a simple
example of a scalable modelling strategy for future research on
related issues in the field of cognitive archaeology.

VERTICAL INDEX, SOCIAL COMPLEXITY,
CULTURAL COMPLEXITY AND ATTENTION

The vertical index (Vi) is a measure that compares the proportion
of horizontal to vertical saccades made when viewing an image
(Criado-Boado et al., 2019; Millán-Pascual et al., 2021). This
measure, which is closely related to the density of information
presented in vertical dimensions, has been shown to vary
considerably across items ranging from pots to monuments,
drawn from different archaeological epochs (Prieto-Martínez
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et al., 2003). The archaeological record shows that decoration
patterns of complex prehistoric societies generally followed high
Vi patterns, whereas low Vi patterns are found in simpler
societies. Criado-Boado et al. (2019) note that archaeologists
accept that the evolution of pottery decorations parallels, in the
particular chronological sequence on study, changes in the level
of complexity of social organisation [see Prieto-Martínez et al.
(2003) for a detailed characterisation of the social complexity
embedded in the pottery sequence analysed in Criado-Boado
et al. (2019) and see Criado-Boado (2014)] for a more general and
theoretical account of the interactions between materiality and
social processes] and propose that a virtual index of decoration
may be a measure or reflection of such a social complexity
[Müller et al. (2015) also illustrates similar conclusions for a
different pottery style]. Criado-Boado et al. (2019) found that
the verticality of decoration correlated with the chronological
evolution of the decorations on ceramics displayed in their
study; these being associated with difference cultural periods
and associated levels of social complexity. They showed that
eye movements of participants followed the same evolutionary
trend reported by the Vi index when presented with the vases’
decorations characteristic of each successive social periods.

Here, what we refer to as social complexity differs from what
is sometimes described as cultural complexity (Sterelny, 2020).
Social complexity denotes the overall level of organisation of
a society, whereas cultural complexity denotes the complexity
of artefacts found in a given population. Cultural complexity
is sometimes viewed as a proxy to social complexity, as it
would reflect the level of skills and expertise of the tool and
artefacts makers and users, which in turn would reflect the
level of social complexity. Cultural complexity can be viewed as
either repertoire complexity, or peak complexity (Sterelny, 2020).
Repertoire complexity corresponds to the number of distinct
tools that were used in each society, whereas peak complexity
corresponds to the level of complexity of a given tool, which can
be measured in terms of parts and functions of the tool; these
being called technounits Oswalt (1973). The correlation observed
by Criado-Boado et al. (2019) was between social complexity and
the Vi of decorations on vases. The correlation was not between
social complexity and cultural complexity.

A challenge with studying the relation between social
complexity and cultural complexity is that repertoire complexity
and peak complexity may vary independently (Sterelny, 2020),
and depending on the sort of artefact one considers, peak
complexity may even be inversely proportional to the true
level of skills of artefacts makers reporting social complexity.
Moreover, the locus of peak complexity may change over
time in a same society. These problems are especially salient
when considering the complexity of aesthetic objects like vase
patterns. For instance, it is common to observe disparity
within the artefactual repertoire, with simpler societies having
poorer decorative vase patterns but highly complex body
ornamentations like tattoo motifs or plumes arrangements. The
same applies to more advanced societies and pottery decorations,
whose peak complexity can correlate at first with the level of
social complexity, but then decrease with time as the society
discovers new material and media for artistic expression (e.g.,

jewellery, metallurgy, architecture, etc.). For instance, pottery
was important to express social styles and social identities in
the Atlantic façade between 6,000 and 2,000 BP, while in other
cultures and times other sort of material were used to mainly
express social identity (e.g., jewellery, metallurgy, monuments, or
tattoos, personal ornaments, or plumes).

Despite the intrinsic interest of these issues and their
importance for understanding the historical record, it is
important to note that our target in the simulation studies is
something rather different. Our goal is to explore the potential
role of cognition (attention, perception and learning) as a variable
operating within these complex regimes. Specifically, we are
asking whether, and in what ways, interactions with artefacts
might alter patterns of attending, which in turn alter ways of
thinking and reasoning about the world (e.g., in a cognitive
task). Thus, we introduce cognition (attention, perception and
learning) as a third variable to the complex relation between
social complexity and cultural complexity. The hope is that styles
of cognition may function as an explanatory bridge between
cultural and social complexity. Accordingly, our simulation
explores the synthetic relationship between task performance
and the acquisition or learning of attention styles based on the
exposure to vase decorations. The motivation for this simulation
is to explore the ways interactions with artefacts might alter
patterns of attending, which in turn alter ways of thinking and
reasoning about the world (e.g., in a cognitive task). If such effects
are real, then there may be a good reason to believe that there
exists a link between the structure of the human-made world
and the ways we think and reason after cultural immersion in
different such worlds. Because artefacts affording greater vertical
index correlate with social complexity, and because vertical
indices illicit characteristically different visual foraging patterns
(Criado-Boado et al., 2019), one could hypothesise that there
is a ratchetting loop between the acquisition of attention styles,
features of the artefacts that illicit such an acquisition (e.g., Vi),
and cultural complexity.

Note that novel patterns of attending do not necessarily
witness of a neurobiological change in the human evolutionary
history (e.g., encephalization). The hypothesis on the cognition-
culture loop is not primarily a gene-culture co-evolutionary
hypothesis on the evolution of social complexity and cultural
complexity (e.g., Henrich, 2015). Rather, such a hypothesis refers
to dynamics at the level of cognition and culture. Attention
styles are acquired over developments; they are akin to cognitive
“gadgets” (Heyes and Frith, 2014) that support the scaf-folding
of more complex abilities such as language and mind reading.
One of these abilities may be that of reproducing complex human
social ensembles; an ability scaf-folded through artefactually
mediated acquisition of attention styles. The current simulation
is a first step towards studying such cognition-culture loop under
the theory of active inference.

Finally, note that our project differs from related research
in the field of active inference, culture and cognition. Here,
our goal is not to account for the formation and function of
human culture, but rather, to inquire on the manner in which
culture shapes perception and influences task performance. That
is, we are not here attempting to define what culture is and

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2021 | Volume 15 | Article 729665

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Constant et al. Culturally Patterned Attention Styles

how it works, but rather we are here attempting to describe
the way humans may respond to its products and how those
influence cognitive task performance. While this latter problem
is certainly part of the more general project of accounting for
the formation and function of culture, this problem remains one
that can be approached independently of the larger discussion
on the ontology of culture. Under active inference, the ontology
of culture is defined as patterns of attention, or “regimes” of
attention shaped by local practises (e.g., Kaufmann and Clément,
2007; Ramstead et al., 2016; Constant et al., 2019, 2020; Veissière
et al., 2020). Despite the differences in research orientations noted
above, our simulation may be viewed as providing one possible
illustration of the manner in which the acquisition of regimes of
attention (here C-PAST) influences task performance.

METHOD: ACTIVE INFERENCE

Active inference is a theory arising from theoretical neuroscience,
which posits that perception, action, and learning can be
fundamentally united since they can be cast as performing a
form of approximate Bayesian inference (known as variational
inference) on the same information—theoretic objective (Friston,
2010). Although anchored in abstract conceptions of inference,
active inference possesses a neurobiologically plausible process
theory (Friston et al., 2017), and has been applied to explaining
and building models of diverse aspects of neural and cognitive
function such as planning and navigation under uncertainty
(Kaplan and Friston, 2018), saccade generation and reading (Parr
and Friston, 2017), sequential decision making tasks (Friston
et al., 2013, 2016), up to complex continuous control tasks
(Pio-Lopez et al., 2016; Fountas et al., 2020; Millidge, 2020;
Tschantz et al., 2020), as well as psychophysical observables such
as modelling evidence accumulation (FitzGerald et al., 2015).
Moreover, through the expected free energy functional, active
inference also entails a natural epistemic drive which has been
exploited before in previous active-inference studies of visual
foraging (Friston et al., 2015; Mirza et al., 2016). Here, we
present a high-level description of active inference. For a detailed
overview of active inference in discrete state-spaces and for the
purpose of economy of space, we refer the technically minded
reader to the dedicated method papers of Friston et al. (2015,
2017), and Da Costa et al. (2020).

An Overview of Variational Inference
Active inference posits that action, learning and perception can
all be described as a process of variational inference. Variational
inference is an approximation to exact Bayesian inference which
postulates the existence of a variational recognition density,
which is matched to the true posterior via an optimisation
process. Variational inference thus converts a difficult and
intractable inference procedure into a potentially tractable
optimisation process, for which good approximate solutions
exist. Variational inference obtains its solution by minimising the
variational free energy functional, and this is used in our model
for perception—i.e., the inference of hidden states from observed
outcomes. Active inference extends this theory to include action,
which is inferred from preferences over sequences of potential
future states. This requires the use of a subtly different objective

functional—the expected free energy—which is a functional
over expected future states and observations. The expected
free energy naturally includes an epistemic exploration-inducing
information gain term which encourages active inference agent’s
to seek out novel outcomes, which thus canmimic key behaviours
in visual foraging which is all about information gathering.

Variational inference depends on two mathematical objects—
the variational recognition distribution (hereafter referred to
as the variational distribution) and the generative model. The
variational distribution is a distribution over all hidden variables
in the model and represents the agent’s beliefs about the
state of the world. The generative model is the agent’s model
of how the observables in the world are “generated” by the
hidden variables which must be inferred. During inference, the
variational distribution (the agent’s beliefs) are optimised to best
conform to the outcomes or data observable by the agent. Thus,
in inference, the generative model is “inverted” —in that we look
to recover the mapping from observations to hidden states, given
a mapping from hidden states to observations.

An Overview of the Variational Distribution
Formally, let x refer to hidden variables, where xn refers to the
hidden state at level n, and π refer to a policy (fixed sequence
of actions). The variational distribution can then be factorised
as follows:

Q(x10 :T , x
2
0 :T ,π) = Q(x10)Q(x

2
0)Q(π)

T
∏

t=1

Q(x1t |π)Q(x
2
t |π) (1)

Moreover, the agent’s generative model can be factorised as:

p(o0 :T , x
1
0 :T , x

2
0 :T ,π) = p(π)p(x10)p(x

2
0)p(o0)

T
∏

t=1

p(ot|x
1
t )p(x

1
t |x

1
t−1, x

2
t ,π)p(x

2
t |x

2
t−1,π) (2)

Given these distributions, inference is achieved by optimising the
variational distribution in order to minimise free energy:

Q∗(x10 :T , x
2
0 :T) = argminF(Q0 :T , o0 :T)

F = DKL(Q(x10 :T , x
2
0 :T;φ)||p(o0 :T , x

1
0 :T , x

2
0 :T))

(3)

In a similar fashion, action selection is achieved by optimising the
variational distribution to minimise expected free energy, which
we compute at each step:

π ∼ Q∗(π) = argminπ ς(Q,π)
ς(Q,π) = EQ(ot :T ,x1t :T ,x

2
t :T |π)

[

DKLQ(x1t :T , x
2
t :T |π)

||p(ot :T , x1t :T , x
2
t :T)

]

An Overview of the Generative Model
In the current work, the active inference agent utilises a two-
level hierarchical generative model parametrised by four matrices

“A1,” “A2” and “B1
′′

and “B2
′′

(for a deeper description of
hierarchical models in active inference see, Friston et al., 2017).
Here we present the role these matrices play in the variational
inference over states, future states and outcomes in general. In the
result section, we describe the semantic of these matrices, which
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will be specific to the tasks we seek to accomplish in experiments
1 and 2.

The “A” matrices represent the parameters of a likelihood
distribution which maps from the hidden states at a hierarchical
layer to the outcomes associated with the layer (the outcomes of
all hierarchical layers other than the lowest layer correspond to
the hidden states of the hierarchical layer below). These matrices
denote the instantaneous probabilistic mappings between the
hidden states and outcomes.

The “B”matrices represent the (policy- dependent) transitions
between the hidden states over multiple time-steps. The
parameters of the “B” matrices were learnt through experience.
This learning can be cast as inference on the parameters of a
dirichlet hyperparameter over the entries of the “B” matrix. For
more details see Da Costa et al. (2020). Crucially, the parameters

of the “B2
′′

matrix are inferred over the course of a trial and
provide the representation of the C-PAST.

Given such a generativemodel and an initial state distribution,
sequences of potential future outcomes and hidden states can
be generated and compared for different potential policies
(sequences of action) which could be enacted. These sequences
of future outcomes and hidden states are scored by the expected
free energy functional (denoted “G”). Policies are selected
which minimise “G.”. In our experiments, look-ahead was only
performed for a single time step into the future and actions were
selected which greedily minimised “G.”

Another important aspect is the encoding of an agent’s
preferences into the generative model. This is encoded through
the matrix “C” which specifies a desired probability distribution
over outcomes. In our experiments the agent strongly desired to
observe pigments and will be averse to observing non-pigments.
This simple constraint on agent behaviour is sufficient to generate
complex visual-foraging behaviour.

We specify a prior the entries of the “A” matrices. Crucially,
to ensure that the active inference agent only was in possession
of local knowledge (i.e., the content of its foveated region and
not the entire image), we utilised the novel likelihood remapping
trick by which the “A” matrices were represented in a state-
dependent fashion so that the agent was only aware for a given
hidden state (location), the presence or absence of the pigment in
a 3 x 3 square around the agents location. Likelihood remapping
allows the agent to perform state inference and navigation by
bypassing the full representation of the generative process (i.e.,
environment). This is in contrast to standard active inference
approaches which typically require the agent to be given a correct
global understanding of the scene. To achieve this locality, the
“A” matrix becomes state-dependent so that it only provides
information about outcomes in the proximity of the state the
agent is in. A further description of this likelihood remapping
method can be seen below in Figure 1.

RESULTS

Experiment 1
The goal of experiment 1 was to exemplify the relation between
artefactual complexity and scan path cultural specificity under
active inference. We showed how variations in artefactual

complexity leads to the acquisition of different “Culturally
Patterned Attention STyles” (C-PAST). Scan paths are artificial
visual saccades enacted by the agent during the visual foraging
task. The goal of the visual foraging task was simply for the agent
to explore the visual scene, which consists of a vase decorated
with motifs made of pigments. The agent’s simulated gaze starts
at the centre of the vase and is free to explore the vase for 100
timesteps. We presented the simulated agent with vases that had
different levels of complexity—that is, that were made up of more
or less visually rich patterns. The richness of the patterns came
from the inclusion of more or less vertical features, or motifs,
from horizontal (0 degree angle), to oblique (−45 and+45 degree
angle), to vertical (90 degree angle). We measured the influence
of pattern complexity on visual foraging with a version of the
virtual index (Vi) used in Criado-Boado et al. (2019). Vi is a
measure of visual saccades relative to the size of the display upon
which the vase is presented. The empirical results of Criado-
Boado et al. (2019) suggest that vase complexity affects change in
scan paths’ Vi. The purpose of simulation 1 was to reproduce this
effect in silico and based on the parameters needed to simulate the
effect, phenotype the different attention style or C-PAST acquired
through exposure to vases with four levels of complexity (0 to 3)
(see Figure 2).

The Model for Experiment 1

To perform the task in experiment 1, the simulated agent
applies our inference algorithm to a simple two level Markovian
generative model. The generative model allows the agent to infer
two things: (i) the hidden states at level 1 or 2, and (ii) an
action policy, which optimises the desired sequence of hidden
states enacted by the agent. In experiment 1, the level 1 hidden
states are locations on the visual display where pigments can
be found. The presence or absence of a pigment functions as
the sensory outcome. Level 2 hidden states represent the motifs
which consist of repeating patterns of pigments, for instance,
crosses, diagonal and horizontal lines (see Figure 2). Using a two-
level hierarchical generative model allows us to simulate an agent
that can infer the presence of more abstract hidden states (i.e.,
level 2 motifs) based on its inference of simpler hidden states
(i.e., level 1 pigments). For each cycle of inference at level 2,
four cycles of inference are performed at level 1, that is, four
pigments are inferred. The heatmap we present below is the result
of having inferred those different hidden states. The second thing
the agent can infer based on its generative model is an action
policy, which here stands for a (sequence of) visual saccades.
Action policies are simply sequences of control states that are
inferred over multiple time steps based on preferences the agent
has for certain outcomes.

The generative model represents and performs inference over
four sets of parameters. The first is a likelihood parameter
A1, which exists at level 1, and is a probabilistic mapping
between sensory outcomes (pigments) and level 1 hidden states
(locations on the visual display). At level 1, we keep the likelihood
deterministic (all [0 1]), which speaks to the fact that the
agent can clearly perceive the pigments. The second likelihood
parameter A2, represents the probabilistic mapping between the
motifs and the locations perceivable by the agent. This likelihood
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FIGURE 1 | Likelihood remapping. For illustrative purposes, this figure presents a generative process (A hat) made of 36 locations, or states. Each state is associated

with an outcome, either black or white. (1) The initial likelihood is defined for an agent that would start in location 8. The likelihood of the generative model is specified

based on the 8 locations, or hidden states surrounding the current location, as well as the current location. (2) Based on the inferred policy (e.g., 8 → 15), we move

the agent in the generative process, here, to location 15. (3) Indexing the novel surrounding and current location from the generative process, we remap the likelihood

that will be used at t + 1 to infer the state and the policy.

is also deterministic, which speaks to the fact that the agent knows
how a given motif (for instance a cross) can be represented by
a sequence of pigments. The second set of parameters are the
transition probability mappings between level 1 hidden states
B1 or the level 2 hidden states B2. In experiment 1, the agent
learns the transitions between hidden states (motifs) at level 2.
Transitions are deterministic at level 1 and depend entirely on
the action policy. A two-level model, with uncertainty in level
2 transitions (motifs transitions) will scan differently. Increases
in vase complexity drive the learning of motifs transition (i.e.,
patterns). We refer the reader to the method section for the
details of the manner in which our inference algorithm performs
the inferences, formulates action policies, and learns B2.

Vertical Index
The Vertical index (Vi) is defined as the height “h” of the region
upon which the agent gazed times the number of vertical saccades
(number of steps taken vertically given the inferred policies),
minus the width “w” of the region gazed upon time the number of
horizontal saccades, all that divided by the sum of the product of
the height “h” and number of vertical saccades, and the product
of the width “w” and the number of vertical saccades:

VirticalIndex(Vi) =
h∗nb.vert.saccades− w∗nb.horiz.saccades

h∗nb.vert.saccades+ w∗nb.vert.saccades
(4)

The change in Vi relative to the four levels of complexity are
presented in Figure 3, with their associated level of decoration
complexity. GIF representations of the simulation as well as the

source code for all experiments can be found at https://github.
com/BerenMillidge/MaterialCulture. The results show that Vi
correlates positively with the levels of complexity, as expected,
and empirically observed in Criado-Boado et al. (2019). We
present the scanpaths in Figure 4.

C-PAST

We define the “Culturally Patterned Attention STyles” (C-PAST)
as sets of motif-transition parameters learned when the agent is
presented with decorations during exploration. Our simulation
shows that difference in pattern complexity naturally entails
differences in C-PAST, leading to systematic differences in Vi
(Figure 3). To measure the C-PASTs, we use the entropy, in
information theoretic terms, of the sets of motif-transition
parameters B2. Formally, we define our measure of C-PAST as

C − PAST = H[B2] = −

N
∑

i

B2
: i logB

2
: i (5)

where H is the Shannon entropy and N is the number of
motifs. We use entropy because it allows us to describe intrinsic
features of the distributions, without having to commit to a
normative assessment of those distributions (e.g., compared to
an ideal, extrinsic criterion of goodness). Indeed, the purpose of
measuring C-PASTs is simply to phenotype the various attention
styles that obtain from the exposure to various levels of cultural
complexity. Note that we only allowed for learning of transition
probabilities (B2 parameters), but in principle, nothing prevents
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FIGURE 2 | (A) Vi is a measure of visual saccades relative to the size of the visual area gazed upon. This area increases with decoration complexity. (B) States and

outcomes for the generative model. At level 1, the outcomes are the absence or presence of a pigment. The states are the locations (1/900) of which we

(Continued)
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FIGURE 2 | take a sample of nine currently available locations to define the focal area (updated based on the navigation matrix for every trial, see method). Level 2

states are motifs (sets of locations) and their associated outcomes are the location at level 1 [e.g., “P(location|motif)]. The focal area corresponds to the outcome

likelihood at level 1. The important thing to remember is that we are respecifying the likelihood after each eye movement, using the remapping likelihood matrix (see

method section). (C) 900 locations grid over which the active inference agent scans. The agent can decide to move from the central location of the 3 x 3 focal area

(grid) to any location of the grid. The four levels of decoration complexity build on one another. Level 0 is a straight line, and level 1 adds verticality by adding oblique

shapes below the line. Level 2 adds oblic motifs on the top of the straight line as well, and level 4 adds vertical lines below the oblique shapes at the bottom.

FIGURE 3 | (A) The effect of artefact complexity on the vertical index (Vi) measure of scan paths. Consistent with the empirical findings of Criado-Boado et al. (2019),

we find that artefactual complexity positively correlates with Vi (B). The effect of artefact complexity on the C-PAST measure of learned generative models. As

described in the main text, this measure quantifies the entropy of the motif-transition parameters “B2,” which are learned over the course of the 100 trials. These

results demonstrate that artefact complexity correlates positively with C-PAST, highlighting the symmetry between environmental complexity and model complexity.

one from allowing learning in other parameters so as to get a
richer measure of C-PAST (e.g., entropy of A and B parameters).

Results Experiment 2
The goal of experiment 2 was to explore the impact of different

C-PASTs on cognitive task performance in a novel cognitive task.
Note that the learning only happens in experiment 1. This means

that we simply import the trained or learned parameters into the

experiment two without letting the model further learn within

the context of experiment 2. Accordingly, experiment 2 is not
a typical transfer learning experiment. However, the proposed

setup is ready for bone fide transfer learning simulations as
future work could allow for learning, and thus study the effect
of transferred learning on learning and task performance. Here,

we only focused on the effect of prior learning on novel
task performance. Experiment 1, which could be viewed as a
“training,” or learning experiment was a visual foraging task.
Experiment 2 is a simple visual classification task where the agent
is presented with a predetermined series of cut-outs of certain
shapes and must select the shape that matches the cut-out (see
Figure 5). We simulated the task under the four different C-
PASTs acquired in experiment 1. These were acquired through
the exposure to the four different levels of decoration complexity
on the vase. We presented the same predetermined series of cut-
outs to all agents. We then recorded hits and non-hits over 100
trials, or series of 100 cut-outs. The agent received no feedback
on its answer, meaning that no further learning took place in
experiment 2.

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2021 | Volume 15 | Article 729665

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Constant et al. Culturally Patterned Attention Styles

FIGURE 4 | For each panel [(A–D), or complexity 0 to 3], the upper left quadrant represents the heatmap and the final location (red dot), with the motifs superimposed

at the end of the 99 trials; the lower left quadrant represents the heatmap alone at the end of the 99 trials; and the lower right quadrant represents the scan path over

99 trials; the upper right quadrant represents the final motif perceived. The heatmap represents the paths and the number of times the agent moved over a location.

The more often a location was gazed upon, the yellower it became (gradient from blue to yellow). MP4 versions of the experiment can be found at https://github.com/

BerenMillidge/MaterialCulture.

The Model for Experiment 2

We use the same model as in experiment 1, but with a
single level of parametrisation. Hidden states correspond to
the shapes that made up the motifs in experiment 1, and the
sensory outcomes are the cut-outs. Accordingly, the transition
matrices (B parameters) are the transition probability mappings
between shapes, and the likelihood parameter (A parameter) is a
likelihood mapping between cut-outs and shapes. The likelihood
mapping is deterministic, meaning that our agent can perfectly
sense the shapes and their associated cut-outs (i.e., the agent
has a non-noisy sensory access to cut-outs). The mappings for
the transition parameters are those that have been learned in
experiment 1 (i.e., as level 2 transition probability mappings,
or level 2 B parameters B2), and so may contain uncertainty.
Crucially, and distinct in this work is that we use a novel method
of “likelihood remapping” to ensure that the agent at any point

only perceives its local environment—i.e., the central foveated
region of the visual.

Performance

The stimuli we employed in experiment 2 was a series of cut-outs.
The task was to select the matching cut-out. We recorded the
number of hits and non-hits over 100 trials. Figure 6 presents the
results for the agents having been trained under the four different
levels of decoration complexity in experiment 1. Our results show
that C-PAST trained under higher levels of cultural complexity
leads to increased performance.

DISCUSSION

This paper presents two computational experiments using active
inference. The first was a training simulation wherein an
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FIGURE 5 | (A) States and outcomes are the shapes and the cut-outs respectively. There are no preferences for specific cut-outs; only aversion for the outcome that

corresponds to the “+”. This is to make sure that the simulated agent always makes a decision across the 100 trials. (B) The task wherein the agent is presented with

a series of cut-outs (outcomes) and has to infer what shape should fit in. We ran 100 trials where the agent is presented with a blank display followed by a cut-out. A

single trial has three moments: (i) the agent is presented with a target (first slide); (ii) the agent receives the sensory entry, or cue that corresponds to the cut-out

(second slide); (iii) the agent infers and selects the motif that matches the cut-out (slide 3).
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FIGURE 6 | From left to right: Hits (1.0) vs. non-hits (0.0) over 100 trials for agent’s exposed to different levels of artefact complexity. We find that the accuracy of

agent’s guesses (percentage of hit-rate) correlates with the level of artefact complexity.

agent could freely explore the decorations on four different
vases affording four different levels of decoration complexity.
Decoration complexity was defined in terms of the amount
of verticality in motifs as well as the number of motifs. We
used the decoration complexity to train different culturally
patterned attention styles (C-PASTs), which we phenotyped in
terms of the entropy of the distribution of their associated
parameters. We observed that the different C-PASTs correlated
with different virtual indices (Vi). The overall observation was
that the increase in complexity correlated with increase in Vi, as
observed empirically by Criado-Boado et al. (2019). Complexity
and Vi also correlated positively with C-PASTs’ entropy. The
goal of our simulation study was simply to reproduce the results
of Criado-Boado and colleagues using active inference. Because
active inference is known as a good computational candidate
to account for human behaviour, the main contribution of our
simulation is to have provided the beginning of a behaviourally
plausible explanation for the computation that may underwrite
the results of Criado-Boado and colleagues. The explanation
for the correlation we simulated is simple: the more complex
the stimuli, the more exploration there is, and the more
exploration there is, the more transitions are observed and
therefore the more dispersion there is in the B2 parameters (i.e.,
the mappings are less deterministic). Cultural complexity thus
has the consequence of “loosening” the learning of transitions
among cultural motifs, and so renders learning more flexible
(i.e., opens the agent to exploring novel shapes), which is a
phenomenon discussed in relation to creativity (Van de Cruys
and Wagemans, 2011; Veissière et al., 2020). There is more
complexity and variety in the experienced transitions amongst
hidden states, or more elaborate hierarchical structure, which
in turn facilitates learning more complex and varied models
of the world. In experiment 2, we simulated a simple visual
classification task in which we reused the C-PAST trained in
experiment 1. Here again, increased flexibility in learning prove
useful. We measured success rate (hits non-hits) in a simple
visual discrimination task under each C-PAST. The overall
observation was that C-PASTs acquired during the exploration

of more complex artefacts lead to better performance in the
discrimination task.

Crucially, our results on the relation between cultural
complexity and the “loosening” of the learning of transitions
among cultural motifs are consistent with archaeological
observations. For instance, in neolithic contexts, it has been
observed that relatively uniform ceramic decorations increase
the diversity of the decoration over time. For example, we
can structurally identify Neolithic societies in Central Europe
for which oldest phase uniform decorations are in use over
a large area. In the following phase, this uniformity dissolves,
which correlates with increase in decorations variability. In
the case of Linear Pottery, this is associated with spin-offs
of individual farmsteads from the central settlement around
5100 B.C. and increased generational independence (Shennan
and Wilkinson, 2001). A similar phenomenon can be seen
for the large-scale Globular Amphora phenomenon with a
broadening of ritual activities around 3,000 BC (Müller, 1996).
From 2500 B.C. onwards, cyclical increases and decreases in
motif variation are observed for the Bell Beakers, which can
be linked to an intentional renewed restriction of cultural
diversity usually occurring every 150 years or so. Since
comparable changes in diversity are also probable in the Bronze
Age (cp. Staniuk, 2020), we should be able to identify a
fundamental phenomenon for illiterate societies. The learning
changes observed in the simulations offer at least one of
several explanatory patterns for the archaeological observations
described in the example.

The purpose of experiment 1 and 2 was to demonstrate
the feasibility of an active inference based archaeological study
of the effect of material culture on cognition. In future work,
we plan on using the computational paradigm developed
here to test empirically the correlations observed in our
simulated experiment. Even though we used very simple tasks in
experiments 1 and 2 for illustrative purposes, nothing prevents us
from designing more complex simulation scenarios that can be
used to model participant’s performance in richer environments.
Indeed, the likelihood remapping strategy we employed in this
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paper, because it builds environments based on a single type of
hidden states, makes it possible to design complex 2D or 3D
training environments and to transfer the learning of the model
across different such environments.

Projected iterations of this new experimental paradigm could
address at least four important and interlocking issues. The
first, and most obvious, is to explore the effects of different
material structures and practises on learning and attention.
This could be done with contemporary artefacts characteristic
of different culture, which we could use to test cross-cultural
variations in visual attention styles. Such future studies should
be informed by studies on cultural differences in physical
objects perception (e.g., Masuda and Nisbett, 2001, 2006;
Kitayama et al., 2003; Ishii et al., 2014). The second is to
explore learning and transmission in whole populations of
active inference agents. The third is to look at how learning
that is achieved in one such generation and passed on to
another influences the design of the environment itself—the so-
called “trans-generational bottleneck” whose importance in the
domain of language change has been the subject of much recent
experimentation (for a review, see Smith and Kirby, 2008). Here,
there is an opportunity to confront the real historical record with
predictions made on the basis of the simulations. The fourth—
and potentially the most revealing—would be to explore the
principal dimensions along which variations in material culture
and patterned practises impact learning and attention, using this
to drive new (more functionally revealing) ways of grouping and
taxonomising the real socio-historical record. For example, we
predict that important variations will flow from the way different
material designs manipulate sensory surprise at different levels of
abstraction and processing.

Summing up, we have described a new experimental pipeline
for exploring links between active inference and changing
cultural complexity. These links are, we hypothesise, mediated
by changing patterns of attention—patterns that can be trained
and enforced by the structural and decorative complexity of
the objects we encounter. In future work using this pipeline,

we hope to discover more of the hidden variables and deep
guiding principles linking material culture to changing patterns
of thought and reason.
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