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Abstract. In recent years, in vitro experiments have shown that the spread of Alzheimer’s disease is caused by a non-conventional
activation of muscarinic receptors by dephosphorylated extracellular tau protein. However, so far, in vivo data to support this
hypothesis has not been obtained. The eye provides a good model where cholinergic (muscarinic) transmission can be analyzed.
The role of muscarinic receptors in the stimulation of lacrimal gland secretion has already been described, and it has been
suggested that acetylcholine is the main transmitter controlling tear secretion. In this project, we have studied the interaction
between tau and muscarinic receptors by analyzing tear secretion in the eyes of white rabbits. Our results show that tau protein
increases tear secretion by 47.2% in a similar way to a muscarinic receptor agonist carbachol (84.3%). The use of muscarinic
antagonists indicated that tau interacts with M1 and mainly M3 muscarinic receptors. In summary, tau can bind muscarinic
receptors in vivo and this may explain the spread of the pathology.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disease characterized by the presence of senile plaques
and neurofibrillary tangles that are aggregates of paired
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helical filaments, the main component of which is tau
protein. One of the main features of this pathology is
a huge death of cholinergic (bearing nicotine or mus-
carinic receptors) neurons [1]. Upon neuronal death,
intracellular tau could be released to the extracellular
medium and become toxic [2, 3]. Also, the presence
of extracellular tau in physiological fluids such as
the cerebrospinal fluid of AD patients could be the
consequence of previous cell death [4]. Nevertheless,
there is evidence to indicate that tau might be released
by mechanisms that do not imply cell death [5–13].
Indeed, it has been shown that extracellular tau can
induce more tau release by a mechanism that involves
the participation of muscarinic acetylcholine receptors.
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This would not only implies that cell death may be
the cause of tau spreading from cell to cell, through
muscarinic receptors, but also, in the absence of cell
death, that the progression of tau pathology could take
place by a mechanism involving the binding of tau
to muscarinic receptors. Nevertheless, all the studies
investigating the possible interactions between tau and
muscarinic receptors have been performed in vitro with
little or no information between the real interactions of
both proteins in vivo.

The eye, and in particular tear secretion, provides
an interesting and elegant model where cholinergic
transmission modulation can be studied. The control
of tear production is carried out by the autonomic ner-
vous system, and the stimulation of these nerves excites
lacrimal glands, promoting secretion of lacrimal elec-
trolytes, water, and proteins.

Although both the parasympathetic and the sym-
pathetic nerves innervate the lacrimal gland, the
parasympathetic system predominates, both anatom-
ically and functionally [14–17]. In this sense the most
relevant parasympathetic neurotransmitters regulating
tear secretion are acetylcholine and VIP. These ago-
nists are all stimulatory and can activate different
signaling pathways [18].

In this sense, the use of cholinergic agents can
induce or inhibit tear production. As an example,
intra-arterial or intraperitoneal systemic administra-
tion of acetylcholine, pilocarpine, or other cholinergic
agonists stimulates lacrimal gland protein and fluid
secretion measured from cannulated lacrimal gland
excretory duct of anesthetized rabbits [19–25]. Having
said that, the effect of muscarinic antagonists suggests
a major role for parasympathetic nerves in stimula-
tion of lacrimal gland secretion since the systemic
administration of the muscarinic cholinergic antago-
nist scopolamine, for instance, produces dry eye in
mice [26]. Altogether this indicates that acetylcholine
is the main transmitter controlling tear secretion.

Since it has been suggested that there is interaction
between tau and muscarinic receptors in some in vitro
models, but as this has not been fully elucidated in
vivo, the present experimental work shows how tau can
modulate tear secretion in vivo and how this process
is mediated by its interaction with muscarinic acetyl-
choline receptors.

MATERIALS AND METHODS

Animals

24 male New Zealand white rabbits (2.5 ± 0.5 kg)
were used throughout all the experimentation. The ani-

mals were kept in individual cages with free access
to food and water. All the protocols described here
adhere to the ARVO Statement for the Use of Ani-
mals in Ophthalmology and Vision Research, and
the experiments were carried out in accordance with
the principles of the European Communities Council
Directive (86/609/EEC).

Compounds and solutions

Carbachol (carbamylcholine), pirenzepine, and
galamine were purchased from Sigma (St. Louis,
USA). 4-DAMP was purchased from Tocris (Min-
neapolis, USA). All the other reagents were from
Merck (Darmstadt, Germany).

The recombinant unphosphorylated human tau iso-
form (tau42) containing 2 N-terminal inserts and 4
microtubule binding repeats were isolated as previ-
ously described [27].

Hyperphosphorylated tau was purified from
an insect cell culture infected with baculovirus-
expressing human tau42 protein [28]. Tau peptide
comprising the following sequence EIVYKSPVVS-
GDTSPRH, residues 391 to 407 (nomenclature of
the largest tau isoform), present at the C-terminal
region of the protein, was synthesized and purified, as
previously described [29].

Tear volume measurements

Tear secretion was measured by using the Schirmer I
test. The tear collection was always performed accord-
ing to Van Bijsterveld criteria [30]. The Schirmer strip
was placed on the temporal tarsal conjunctiva of the
lower lid for 5 min.

Control experiments were performed by applying
10 �l of saline solution (NaCl 0.9%) and 5 min after
that, the Schirmer strip was applied in the rabbit’s lower
lid for 5 min. When the experiments were performed,
the same volume of the desired compound at the con-
centration indicated in each case was applied and 5 min
after the instillation the Schirmer strip was applied for
5 min as previously indicated. Tear secretion in each
case was measured as the length of the wet strip (in
mm).

Agonist studies

Single dose experiments designed to study the time-
course of the tear secretion process were performed
by adding carbamylcholine (carbachol, 100 �M), tau,
tau peptide, or phospho tau (all at 1 �M) in a final



A. Martinez-Aguila et al. / Tau Stimulates Muscarinic Receptors In vivo S73

volume of 10 �L topically on the rabbit ocular surface.
Contralateral eye received the same volume of vehicle
(control). In order to see whether carbachol and tau
were sharing the same receptors, carbachol (100 �M)
was applied and 15 min later 1 �M tau was added.

Carbachol, tau, and the peptide of tau were tried at
several concentrations ranging from 10−9 M to 10−3 M
in order to obtain the corresponding concentration-
response curves relating the dose of these agonists to
the volume of tear production.

Antagonist studies

To study the effect of different antagonists in the
inhibition of tear secretion produced by tau, the antag-
onists were tested alone (in vehicle) or 30 min before
the application of tau 1 �M (10 �L). 5 min after that,
the Schirmer strip was applied in the rabbit’s lower lid
for 5 min.

As with the agonists, the ability of the antagonists
was checked by assaying them at different concen-
trations. For these studies, the concentration of tau
was fixed at 1 �M (10 �L), and graded doses of
pirenzepine, galamine, and 4-DAMP were tested from
10−8M to 10−4M to generate a family of curves to
obtain the corresponding pA2 and IC50 values.

Statistical analysis

All data are presented as the mean ± S.E.M. Statis-
tical differences between treatments were calculated
using ANOVA test. Plotting and fitting were carried out
by GraphPad Prism 5 computer program (GraphPad
Software).

RESULTS

The effect of tau and carbachol on tear secretion
in New Zealand white rabbits

The protein tau was tested at a single concentra-
tion of 1 �M (10 �L). Its application increased tear
secretion 47.62 ± 9.12% over the basal tear secretion.
Previously, it was indicated that a tau peptide contain-
ing the residues 390–423 of the molecule is sufficient
to interact with M1/M3 muscarinic receptors present in
neuronal cells and that the interaction of that tau pep-
tide with the cell receptors promotes the same effect as
the addition of the whole tau molecule [3].

So we tested to see if the selected peptide of the
protein tau (1 �M 10 �L) had the same effect, and
found that upon addition of tau peptide 390–423, a sim-
ilar effect to that observed for the whole tau molecule
was shown by increasing tear secretion 50.00 ± 7.14%
(n = 8).

On the contrary, phosphorylated tau did not have
any effect in tear secretion (Fig. 1A). Concerning the
maximal effects for tau and its peptide, tau peptide pre-
sented a peak in tear secretion at 5 min and it continued
at 35 min, while the tau protein had no effect at 35 min
(Fig. 1B).

Carbachol, the long lasting analogue of the natu-
rally occurring transmitter acetylcholine, was assayed
in order to see its effects on tear secretion. As shown
in Fig. 1A, a single dose of 10 �L (100 �M) carbachol
induced a peak in tear secretion of 84.31 ± 10.38%
over basal tear secretion (10 �L vehicle, NaCl 0.9%)
whose maximal effect was detected 20 min after the
application of the substance (Fig. 1B, n = 8).

Fig. 1. Effect of carbachol, tau, tau peptide, and phosphorylated tau in rabbit tear secretion. A)Maximal effect of carbachol (100 �M), tau (1 �M),
carbachol (100 �M)+tau (1 �M), tau peptide (1 �M), and phosphorylated tau (0.5 �M). 100% represents tear secretion before application of
any drug (i.e., at t0). B) Time-course of carbachol (100 �M), tau (1 �M), and tau peptide (1 �M). Values represent the mean ± s.e.m of eight
independent experiments. **p < 0.01, ***p < 0.001, with respect to control levels (ANOVA tests).
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Fig. 2. Concentration-response course for carbachol, tau, and tau
peptide. Graded doses of compounds were applied as described
in methods. The maximal increased in tear secretion due to car-
bachol, tau, and tau peptide were 84.3 ± 10.4%, 47.6 ± 9.1%, and
50.0 ± 7.1%, respectively. Values represent the mean ± s.e.m of
eight independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001,
with respect to control levels (Two-way ANOVA test with Bonferroni
posttests).

In order to study if both carbachol and tau were
acting via the same receptors, these compounds were
applied and its possible additive effect analyzed. As
can be seen in Fig. 1A, the addition of both substances
did not produce an increase in tear secretion, indicating
that they may act via the same receptor.

Dose-response behavior for tau, its peptide, and
carbachol on tear secretion

Tau and its peptide were tested in a different range
of concentrations (from 10−9M to 10−5M) to fully
investigate the effect of those peptides on tear secre-
tion. As a consequence of this concentration-response
analysis, it was possible to obtain a sigmoidal curve
for each of them with pD2 values of 6.88 ± 0.12 and
6.27 ± 0.09, for tau and the peptide of tau, which were
equivalent to EC50s of 0.13 and 0.54 �M, respectively
(n = 8) (Fig. 2). Both tau and its peptide were able to
produce a maximal tear secretion of 149.45 ± 9.12%
and 152.00 ± 9.42% at 10−6 M, respectively (n = 8),
with no statistical differences between them.

When carbachol was tested in a broad range of con-
centrations (from 10−8M to 10−3M) in order to see
the concentration response behavior, it was possible to
obtain a sigmoid dose-response curve. As can be seen
in Fig. 2, carbachol sigmoidal curve obtained presented
a pD2 value of 5.03 ± 0.09 which was equivalent to
an EC50 of 9.43 �M (n = 8). The maximal tear secre-
tion depicted by carbachol was 186.45 ± 11.77%, at
10−3M (n = 8), this value being significantly higher
than the ones obtained by tau and tau peptide
(Fig. 2).

Antagonist studies

We measured the effect of tau in the presence of
single doses of muscarinic antagonists in order to see
whether or not there was a connection between tau and
muscarinic receptors. The antagonists were tested in
their ability to modify basal tear secretion by them-
selves. As can be seen in Fig. 3A, the only one able to
produce a significant reduction in the basal tear produc-
tion was the M3 antagonist 4-DAMP. This compound
was able to reduce basal tear secretion by about 11%
when compared to control (n = 4).

A concentration of 1 �M tau produced an increase
in tear secretion of 147.62 ± 9.12% above basal tear
secretion value (basal 100%). Under these stimulated
conditions, the effect of tau was challenged by means of
several muscarinic receptor antagonists. In this sense,
tear secretion was inhibited to 102.66 ± 4.09% in case
of pirenzepine (M1 antagonist), 112.08 ± 6.36% with
galamine (M2 antagonist), and 95.48 ± 11.46% with
4-DAMP (M3 antagonist) (Fig. 3A).

Since these studies were only performed at sin-
gle muscarinic antagonist concentrations, which may
not reflect the real antagonistic properties of these
agents, all the antagonists were tested again in a broad
range of concentrations, from 10−8M to 10−4M in
order to see the concentration response behavior. As
shown in Fig. 3B, pirenzepine, galamine, and 4-DAMP
revealed pA2 values of 6.17 ± 0.09, 5.38 ± 0.18, and
5.83 ± 0.02, respectively, which were equivalent to
IC50 values of 0.69, 4.18, and 1.48 �M, respectively
(n = 8).

Concerning the maximal inhibitory effect produced
by the antagonists, it is important to emphasize that
4-DAMP was able to block 100% of the tear secretion
triggered by tau, while galamine and pirenzepine were
unable to completely block the tearing induced by tau
(Fig. 3B).

DISCUSSION

In the present experimental work, we have found that
human tau protein or its peptide, containing residues
390–423, are acting as agonists of muscarinic receptors
M1/M3, and that they can increase tear secretion on
rabbits. Since tau peptide with the residues 390–423 of
the molecule appears to be sufficient for that increase,
we have looked at the sequence of rabbit tau and we
found that such sequence was identical in rabbit and
human tau. Those tau residues contain some residues
that could be modified by phosphorylation and the tau
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Fig. 3. Antagonism by pirenzepine, galamine, and 4-DAMP (100 �M, 10 �L) of the responses produced by tau. A) Effect of the antagonists
applied in the absence of any added compound (prepared in saline solution). B) Maximal inhibition. C) Concentration-response course for the
antagonists. Values are the mean ± S.E.M. of eight independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, with respect to control levels
(Two-way ANOVA test with Bonferroni posttests).

antibody PHF-1 could recognize such phosphorylation
[31]. Our analyses have shown phospho tau is unable to
interact with muscarinic receptors. Interestingly, it has
been described that tau antibody targeting the 396/404
region reduces tau pathology [32] and it may be due to
a possible block of tau-cell receptor interaction.

Rabbit tear secretion has been widely used as
a model where physiological and pharmacological
research can be performed [33, 34]. Most of the con-
trol of tear secretion is carried out by the autonomic

nervous system and therefore tearing is influenced
by instillation of drugs that modulate this system.
Indeed, the application of carbachol or the instilla-
tion of muscarinic antagonists clearly demonstrated
the importance of the parasympathetic nervous system
in the control of tear secretion. Different substances
and stimuli have demonstrated their ability to induce
tear secretion [35, 36]. Good examples are nucleotides
and dinucleotides [37]. They are present in tears and
when topically applied they stimulate tearing by act-
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ing on purinergic receptors [38]. It is interesting to
point out that dinucleotides such as Ap4A which act
as a tear inducer, can increase their effect when the
indoleamine melatonin is present in tears [39]. This is
another example of cross-talk between different sub-
stances and may reflect, together with the interaction
between tau and muscarinic receptors here described,
that tear secretion can be modulated in different man-
ners. It is noteworthy that in both cases, even being so
different, the final effect that is obtained is an increase
in tear secretion. This fact raises some new questions
to take into consideration. On the one hand, the exoge-
nous application of tau, as demonstrated, induces tear
secretion. This might be interesting from a therapeutic
point of view since one of the most prevalent ocular dis-
eases is dry eye which very often occurs with a lack of
tear secretion [40–42]. Interestingly, tau is stimulating
muscarinic receptors (see Fig. 1A), therefore induc-
ing tear secretion without the side effects cholinergic
agonists can produce when applied to the eye such as
myosis, lens opacity, or a blockade lens accommoda-
tion [43–47]. So, this may suggest that either tau or its
fragment could be used as a treatment for dry eye if no
other side effects are found for this protein. However,
caution should be taken with this possibility in view
of recent data suggesting that tau could be a prion-
like protein involved in the spreading of tau pathology.
Also it is interesting to point out that although carba-
chol induces more tearing at a fixed concentration, the
concentration-response analysis indicates about one
order of magnitude difference between EC50s, indicat-
ing that although carbachol presents a better efficacy
(maximal effect), tau is more potent (smaller EC50),
which totally concurs with previous reports on neu-
ral cells cultured [48]. Altogether, we may consider
tau and its peptide as partial agonists of muscarinic
receptors.

Another important issue is that tau could be present
naturally in tears. In this sense, rabbit’s eye has been
used as a model to test tau function, but it is not known
if tau could be present, in a physiological way, in tears.
If tau is present in human tears, and its concentration
in patients is concomitantly increased as occurs in the
CNS, it would be possible to suggest the quantification
of this protein in tears as an easy way to detect the
pathology in the very early stages of the disease.

In summary, we have demonstrated that tau is able
to stimulate muscarinic receptors, mainly M1/M3, in
a model in vivo. This interaction may explain in the
CNS that the stimulation of these receptors and the
concomitant Ca2+ increase triggers the release of more
tau explaining the spread of the pathology.
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