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Abstract 12 

The trophic position (TP) of fishes determines their importance in terms of energy flows 13 

within food webs. However, accurate estimations of TP are often prevented because of 14 

the difficulties in tracing all food sources. This is particularly challenging for 15 

omnivorous fishes, such as those from the Order Stomiiformes. In this study, we applied 16 

recent developments in stable isotope analysis of amino acids to untangle the 17 

contributions of microbial vs. metazoan food webs in 13 species of Stomiiformes. The 18 

inclusion of  the microbial food web reduced the differences between TP estimates 19 

using stable isotopes and those derived from stomach content analysis. In addition, the 20 

new estimates allowed to quantify the relative contribution of the microbial food web to 21 

each species (6-21%), highlighting the importance of detritus consumption even in 22 
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piscivorous species (e.g. Stomias boa, Chauliodus danae). The comparison of TP 23 

estimates obtained with selected amino acids in fish muscle allowed for the detection of 24 

the microbial influence integrated at time scales relevant for net fish growth, even when 25 

trophic exchanges in the microbial food web occur at much shorter time scales. The 26 

assessment of TP considering the differential contribution of microbial and metazoan 27 

food webs challenges our current understanding of marine food webs; yet provides a 28 

new quantitative tool for the analysis of their structure and function. 29 

Keywords: amino acids, metazoan food web, microbial food web, micronekton, stable 30 

isotopes 31 

Introduction 32 

The trophic position (TP) of a given species or individual summarizes its role in the 33 

food web by integrating all the food sources contributing to its biomass. Originated 34 

from the merely quantitative concept of discrete trophic levels, explaining the 35 

unidirectional flow of energy through an ecosystem (Lindeman, 1942), the definition of 36 

TP has evolved to a quantitative, fractional measure of trophic hierarchy, which takes 37 

into account the omnivory behaviors of most species, particularly in aquatic food webs 38 

(Vander Zanden and Rasmussen, 1996). Accurate estimations of TPs of fishes are 39 

critical to understand their role in the ecosystem and, ultimately, to improve our 40 

knowledge on energy fluxes and food web structure and resiliency. Multispecies and 41 

ecosystem management require robust predictions on the structure and dynamics of 42 

food webs (Grumbine, 1994; McCormack et al., 2019). In turn, regime shifts imply 43 

abrupt reorganizations of food-web and community structures that can be traced from 44 

changes in TPs (Möllman et al., 2015; Kröncke et al., 2019). Therefore, the large 45 

variability in TP values obtained  through different methods must be taken into account 46 

when analysing food web dynamics, as outlined below.  47 

Classical evaluations of TP for most fish species rely on the observations of identifiable 48 

prey remains in their stomachs (i.e. gut content analysis). This approach has been used 49 

to estimate TP values for individual species, such as those compiled in FishBase (Froese 50 

and Pauly, 2021), which have been key elements of biomass-based ecosystem models, 51 

including ECOPATH (Pauly and Christensen, 1995; Pauly et al., 1998). To overcome 52 

the uncertainties in identifying all prey items and in attributing a definite TP to each of 53 

them, alternative assessments of TP can be made using tracer molecules such as fatty 54 
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acids and stable isotopes (Post, 2002; Pethybridge et al., 2018). Fatty acids analysis is 55 

commonly applied to identify the diet of consumers (Dalsgaard et al., 2003; Iverson et 56 

al., 2004; Stowasser et al., 2009; Xu et al., 2020). However, lipids  have faster turnover 57 

rates than structural proteins, particularly in the white muscle (e.g. Lu et al., 2019), thus 58 

integrating the diet over relatively short time scales (i.e. weeks to months). The analysis 59 

of stable nitrogen isotopes is based on the progressive enrichment of the heavier 60 

nitrogen isotopes (
15

N) within organisms along the food web, and the quantification of 61 

the TP of a given species is possible by measuring the accumulation of stable nitrogen 62 

isotopes (
14

N and 
15

N) in its tissues (Post, 2002).  63 

Despite a general agreement with diet-based TP estimates (e.g. Kline and Pauly, 1998), 64 

stable isotope-based TP assessments using bulk tissues require a careful selection of 65 

isotopic baselines and trophic discrimination factors, which is often challenging. The 66 

baseline characterizes the locally-relevant nutrient sources (Jennings and van der 67 

Molen, 2015) while the discrimination factor represents the isotopic enrichment 68 

between adjacent trophic levels (Hussey et al., 2014; Bastos et al., 2017). In contrast, 69 

the use of amino acid-specific stable isotopes has provided TP estimates increasingly 70 

closer to those derived from dietary data (Choy et al., 2012; Bradley et al., 2015; 71 

Nielsen et al., 2015). These values are based on the different isotopic fractionation rates 72 

affecting the ‘source amino acids’ (i.e. those that barely change along the food web) and 73 

the ‘trophic amino acids’ (i.e. those that undergo predictable isotopic enrichment 74 

moving up the food web).  75 

Recently it has been suggested that more realistic estimations of TP can be made by 76 

taking into account trophic-level differences in isotopic enrichment (McMahon and 77 

McCarthy, 2016) and markers of microbial consumers (Decima and Landry, 2020). In 78 

contrast with previous applications based on the averaging of source and trophic amino 79 

acids, the new TP estimates can be used to quantify the relative contribution of 80 

microbial vs. metazoan food webs to the overall TP of a given species. Such 81 

differentiation is possible because certain amino acids show isotopic enrichment in all 82 

types of consumers, including protozoans in microbial food webs, while others are 83 

enriched only for metazoans (Decima et al., 2017). In contrast to metazoans, 84 

chemotrophic microbes exhibit a large plasticity for amino acid acquisition resulting in 85 

more diverse isotopic enrichment patterns (McMahon and McCarthy, 2016; Ohkouchi 86 

et al., 2017). External hydrolysis of seston by heterotrophic bacteria produces an even 87 
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enrichment of all amino acids (Hannides et al., 2013), while amino acids synthesized 88 

from inorganic nitrogen by chemoautotrophic bacteria show an enrichment pattern 89 

similar to that of algae, and those obtained from metabolic processing and salvage of 90 

amino acid-rich dissolved substrates by heterotrophic bacteria are enriched following a 91 

pattern similar to that of animals (Ohkouchi et al., 2017). However, dominance of 92 

chemoautotrophy and heterotrophy on amino acid-rich substrates are generally 93 

restricted to specific ecosystems or to experimental settings and the isotopic enrichment 94 

of microbial amino acids of most oceanic ecosystems is expected to be a combination of 95 

the different patterns (McMahon and McCarthy, 2016). For instance, selective 96 

resynthesis of some amino acids (as alanine or glycine) and direct uptake of others (as 97 

glutamic acid) have been invoked to explain the large variability observed in the 98 

enrichment of individual amino acids after bacterial degradation of dissolved organic 99 

matter (Calleja et al., 2013). Both processes were observed  in experimental food webs 100 

including protists (Gutierrez-Rodriguez et al., 2014; Decima et al., 2017). The selective 101 

enrichment cannot be traced using bulk isotopic determinations, thus leading to an 102 

underestimation of the contribution of the microbial food web to the TP of metazoan 103 

consumers (Gutiérrez-Rodríguez et al., 2014). Examples of TP taking into account the 104 

microbial food web were recently provided for zooplankton (Decima and Landry, 2020) 105 

and several micronekton species (Bode et al., 2021a).  106 

In this study, we aimed to provide new insights to reconcile isotopic TP estimates with 107 

diet-based TP estimates in 13 fish species of the Order Stomiiformes. To do so, we 108 

compared results derived from the natural abundance of stable nitrogen isotopes (bulk 109 

and amino acid compound-specific) with those based on diet and reported in the 110 

literature. The objective was to produce accurate estimations of TP, which take into 111 

account the contribution of organisms from the microbial food web, and that may be 112 

applied to the comparison of fish species within and across ecosystems. The selected 113 

fish species were representative of different migration and feeding habits, and were 114 

distributed over different water depths. This allowed for the examination of potential 115 

differences in TP caused by generalist feeding expected in migrant and omnivorous 116 

fishes (Choy et al., 2012; Carmo et al., 2015). The new estimations will contribute to 117 

quantify the close links between microbial and metazoan food webs in oceanic 118 

ecosystems. 119 

Material and Methods 120 
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Sampling 121 

Samples of 13 species of stomiiforms were collected within different water column 122 

layers during the MAFIA cruise in the subtropical N Atlantic using a 35 m
2
 midwater 123 

trawl fitted with a Multisampler (Olivar et al., 2017, 2019). These species were 124 

representative of different daily migratory and dietary habits, as well as depth 125 

distributions (Supplementary Table S1). Fishes were sorted, identified on board, and 126 

kept frozen (–20 °C) for up to 12 months. In the laboratory, the standard length (SL) of 127 

each fish was measured before freeze-drying. In this study, one individual per species 128 

was processed for stable isotope analysis. However for some species) up to three 129 

individuals of the same size were combined to obtain sufficient mass for analysis 130 

(Supplementary Table S1). Details of the fish samples and raw data can be found in 131 

Bode et al. (2021b). Samples of calanoid copepods (Calanoides spp.) were collected 132 

from the same sampling stations where fishes were caught using a MOCNESS-1m
2
 net 133 

(200 µm mesh) between the surface and 800 m depth to provide a baseline reference for 134 

TP estimations (Bode and Hernández-León, 2018a, b). Calanoid copepods were sorted 135 

in the laboratory and dried (50°C, 48 h) prior to stable isotope analysis.  136 

Stable isotope analysis 137 

Determinations of stable nitrogen isotope ratios were made in bulk for copepod and fish 138 

tissue samples and in derivatized amino acids for fish samples only. Nitrogen isotopic 139 

ratios were reported as 
15

N values (‰) with respect to air (Coplen et al., 2011). 140 

Between 6 and 16 Copepod samples, each containing between 5 and 15 individuals, 141 

were analysed for each station. Final copepod 
15

N values were pooled by station. 142 

Portions of the dorsal musculature of fish were selected, except for very small 143 

specimens (i.e. < 35 mm) that were analysed as whole after removal of the gut and 144 

gonads. All samples were ground to a fine and homogeneous powder with a mixer mill 145 

(Retsch Mixer Mill MM-200). The quantification of bulk samples was made using an 146 

elemental analyser coupled to an isotope-ratio mass spectrometer. Isotope standards of 147 

caffeine IAEA-600 (International Atomic Energy Agency), IA-R041-15N/13C L-148 

alanine, (Iso-Analytical Limited) and urea IVA33802174 (IVA Analysentechnik e.K.) 149 

were analysed with the samples along with internal acetanilide and sample standards 150 

(cyanobacteria culture of known isotope composition used as an internal control). 151 

Precision of triplicate determinations of standards or samples was <0.4‰. 152 
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For the quantification of amino acid specific 
15

N ratios we followed the procedure 153 

detailed in McCarthy et al. (2013) and Mompeán et al. (2016). Briefly, 10 mg sample 154 

aliquots were hydrolysed with 6N HCl (20 h, 110 °C), filtered through 0.20 μm 155 

hydrophilic filters, evaporated to dryness under an N2 stream, and then treated with 2.5 156 

ml of 1:5 acetyl chloride:2-propanol, flushed with N2 and heated (110°C, 60 min). 157 

Subsequently, the solvents were evaporated under N2 and the extracts treated with 0.9 158 

ml of 3:1 diclomethane:trifluoracetic anhydride (DCM:TFAA) and heated (110 °C, 15 159 

min). The resulting derivatized amino acids were purified by solvent extraction in 1:2 160 

chloroform:phosphate buffer and centrifugation (Loick-Wilde et al., 2019), evaporated 161 

at room temperature under N2, and stored at −20 °C in 3:1 DCM:TFAA until further 162 

analysis.  163 

The individual amino acids were separated using a gas chromatograph equipped with a 164 

TraceGOLD TG-5MS chromatographic column (60 m, 0.32 mm ID, 1.0 μm film), and 165 

were subsequently injected into a mass spectrometer using a continuous flow interface 166 

and a combustion module. The δ
15

N of each amino acid in the sample was calibrated 167 

with the values obtained for isolated standards (Shoko Science) analysed by combustion 168 

as described for bulk analysis. Additional corrections were made using an internal L-169 

norleucine standard (SIGMA) added to each sample. The molar fraction of individual 170 

amino acids (%molar) was also determined in the same analytical run by calibration of 171 

the area of the Mass 28 from the spectrometer with amino acid standards (McCarthy et 172 

al., 2013). Mean precision of triplicate samples (two injections per sample) was <0.3‰ 173 

per individual amino acid. All isotopic determinations were made at the Servicio de 174 

Análisis Instrumental of the Universidade da Coruña (Spain). 175 

Amino acids were classified as either source or trophic (McClelland and Montoya, 176 

2002; McCarthy et al., 2013; McMahon and McCarthy, 2016). Source amino acids 177 

included glycine (Gly), threonine (Thr), serine (Ser), methionine (Met), phenylalanine 178 

(Phe), and lysine (Lys). Trophic amino acids included alanine (Ala), leucine (Leu), 179 

isoleucine (Ile), proline (Pro), valine (Val), and the mixtures of glutamine and glutamic 180 

acid (Glx), and of aspartamine and aspartic acid (Asx). The variability of nitrogen 181 

sources among samples was investigated using both the canonical source amino acid 182 

Phe and the molar-weighted average δ
15

N of all source amino acids. Trophic position 183 

estimates were made using the δ
15

N values of the canonical trophic amino acids Glx 184 

(Chikaraishi et al., 2009) and Ala (Decima and Landry, 2020). Values of TP computed 185 
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from Glx represented only the metazoan food web while those computed from Ala 186 

represented both the microbial and metazoan food webs. (Gutiérrez-Rodriguez et al., 187 

2014; Decima et al., 2017; Decima and Landry, 2020). 188 

Trophic position estimations 189 

The TP of each species was obtained from stable isotope measurements by using four 190 

models (Table 1). In the first two models, bulk measurements of fish δ
15

N were 191 

combined with baseline reference values of calanoid copepods by assuming either 192 

constant (TPbulk1) or scaled values (TPbulk2) of the trophic discrimination factor (TDF). 193 

In both cases the baseline values (either constant or scaled) were considered to be TP = 194 

2, as generally assumed in similar studies (e.g. Kline & Pauly, 1998; Hussey et al., 195 

2014; Valls et al., 2014). In the third and fourth models, amino acid δ
15

N values were 196 

used to estimate TP taking into account metazoan-only (TPGlx, Chikaraishi et al., 2009) 197 

and microbial + metazoan trophic steps (TPAla, Decima and Landry, 2020), respectively. 198 

In both cases, the amino acid TP estimates were obtained using different TDF values for 199 

the trophic steps in plankton and in fish (McMahon and McCarthy, 2016). The 200 

propagated error (sd) in the mean values of TP for each species was calculated using 201 

first-order Taylor series expansions of the corresponding equations in Table 1 by 202 

considering the analytical errors in the individual determinations δ
15

N for bulk, trophic 203 

and source amino acids, as well as the variability in the coefficients employed in each 204 

model (Bradley et al., 2015; Ohkouchi et al., 2017). Values of TP derived from stable 205 

isotopes were compared with those reported in the global fish species database FishBase 206 

(Froese & Pauly, 2021). 207 

Statistical analysis 208 

Non-parametric ANOVA (Kruskal-Wallis) was used to test differences in isotopic 209 

composition and TP by three different factors (i.e. habitat depth layer, migration habit, 210 

and feeding type) that were analysed one at a time because not all species occurred in 211 

each combination of factors. Habitat depths were provided by FishBase and data from 212 

our samples (Olivar et al., 2017), and defined as mesopelagic (in this case considering 213 

species distributed between the surface and1000 m depth) and bathypelagic layers (for 214 

species reaching depths below 1000 m depth). Migrants (i.e. species performing large 215 

diel vertical movements to layers near the surface) and partial-migrants (i.e. species 216 

with limited diel vertical migrations and not reaching the upper 100 m layer) were 217 
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grouped together and compared with non-migrant species (those always living below 218 

200 m depth). Finally, diet diversity as reported in FishBase and in additional references 219 

(Supplementary Table S1) was summarized in three categories: plankton (mainly 220 

copepods), nekton (small fish and non-copepod crustaceans including large amphipods, 221 

euphausiids and decapods), and mixed (plankton and nekton) diets. Comparisons 222 

between the different TP estimates were made using ANOVA and post-hoc Bonferroni 223 

tests. Statistical analyses were made using SPSS 17.0 (SPSS Inc.) and graphics using 224 

Past 4.0 (Hammer et al., 2001). 225 

Results 226 

The different TP estimates ranged from high values (4.02 for TPAla) for those derived 227 

from amino acids to unrealistically low values (<1.5) for those derived from bulk δ
15

N 228 

(Figure 1). Mean values of TPAla and TPGlx were not significantly different from TP 229 

values reported in FishBase (p>0.05) while those from other estimates were 230 

significantly lower (p<0.01). Isotope-based TP estimates did not vary significantly 231 

when the species were grouped by migration habit, habitat depth layer, or feeding type 232 

(Supplementary Figure S1, p>0.05). In addition, there were no significant differences in 233 

the nitrogen baselines by habitat depth layer, either estimated by δ
15

N in phenylalanine 234 

or by the mean value in source amino acids (Supplementary Figure S2, p>0.05).  235 

Some of the differences in TP values were also evident when considering individual 236 

species, with the lowest values and largest variation observed for bulk estimates (Figure 237 

2). Borostomias elucens, Malacosteus niger, and Stomias boa were the species with the 238 

highest TP values (ca. 4) when estimated from amino acids. Interestingly, not all species 239 

considered as piscivores or with a mixed plankton and nekton diets had always high TP. 240 

For instance, mean TPAla for Chauliodus danae was 3.46, almost equivalent to the 241 

values for planktivorous species as Cyclothone acclinidens, Argyropelecus sladeni, C. 242 

pseudopallida or mixed diet species as A. hemigymnus. Conversely, planktivorous 243 

species as Polyipnus polli and Vincigueria nimbaria had mean TPAla values equivalent 244 

to those of species with a mixed diet (e.g. Sternoptyx diaphana or Sigmops elongatus).  245 

The difference between mean TPFB and TP values estimated from stable isotopes for 246 

individual species were larger for those based on bulk isotopes (mean ± sd = 0.70 ± 247 

0.94, and 0.91 ± 0.53, for TPbulk1 and TPbulk2, respectively) than for those based on 248 

amino acids (0.38 ± 0.40, and -0.12  0.29 for  TPGlx and TPAla,respectively). These 249 



9 
 

differences did not vary significantly when considering migration habits, depth layers, 250 

or diet types (p>0.05), except for the difference between TPFB and TPGlx in species with 251 

a dominant nektonic diet (p<0.05) that were on average ca. 1 TP lower for the latter 252 

(Figure 3).  253 

Discussion  254 

The general agreement between TP estimates using the δ
15

N values of the trophic amino 255 

acid Ala, instead of the commonly used Glx, and TP values reported in FishBase points 256 

to a new way to compare TP estimates based on stable isotopes analysis with those 257 

based on diet information. While the gut content data was generally considered an 258 

oversimplification of the food web, particularly at low TPs, the inclusion of microbial 259 

trophic steps (i.e. those involving consumption of bacteria, flagellates, and protozoa) 260 

along with metazoan trophic steps (e.g. consumption of copepods) in TPAla supports the 261 

general validity of FishBase estimates intended for modelling purposes, at least for mid 262 

trophic levels as the stomiiform fish species considered in this study.  Computation of 263 

TP from diet data requires a good understanding of the trophic pathways involved and 264 

the collection of sufficient data at large spatial and temporal scales, which is particularly 265 

challenging in the case of opportunistic feeders such as the pelagic fishes (Jennings and 266 

van der Molen, 2015). However, diet-based TP provide conservative values for 267 

comparison with TP computed by other methods (Pethybridge et al., 2018). FishBase 268 

estimates were based on ECOPATH models made by assuming that the species TP were 269 

the weighted average of the TP of all the food items reported in the literature for each 270 

species (Pauly and Christensen, 1995; Pauly et al., 1998), following the convention of 271 

attributing TP = 1 for primary producers, detritus, and the associated bacteria (Mathews, 272 

1993). This procedure implies the propagation of uncertainties as the TP of the different 273 

prey are combined, but it is assumed that for a given species there would be a 274 

compensation of errors with opposite signs. Previous comparisons in different 275 

ecosystems revealed a general correlation between ECOPATH and TP values computed 276 

from δ
15

N in bulk tissues (Kline and Pauly, 1998) but more detailed studies concluded 277 

that the former were lower (Milessi et al, 2010; Navarro et al., 2011; Lasalle et al., 278 

2014; Du et al., 2015) or higher than the isotopic-based TP (Du et al., 2020). Such 279 

differences may have resulted from the use of inappropriate values for the reference 280 

baseline, as most studies assumed TP = 2 but employed different organisms as 281 

representative primary consumers (from copepods to filter-feeding molluscs). The 282 
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copepods (Calanoides spp.) used in our study are considered a filter-feeding herbivore 283 

(e.g. McGinty et al., 2018), but related species of Family Calanidae were reported to 284 

have TP values between 2 and 2.5 (Decima & Landry, 2020). However, even if we 285 

assumed a mean TP = 2.5 for our baseline, TPbulk1 and TPbulk2 values would be still 286 

lower than those of TPFB.  287 

The use of δ
15

N averaged by trophic and source amino acids in TP estimations reduced 288 

the difference with those derived from gut contents at species and group level by 289 

levelling the isotopic signatures of individual amino acids (Choy et al., 2012; Bradley et 290 

al., 2015). However, while pooling various amino acids improves the precision of TP 291 

estimates (Nielsen et al., 2015), this procedure prevents the separation of the 292 

contribution of the microbial vs. the metazoan trophic steps. The results obtained in this 293 

study showed that models based on bulk δ
15

N underestimated by ca. 1 the TP reported 294 

in FishBase, and had larger errors than those derived from amino acids, as showed in 295 

previous studies (e.g. Bradley et al., 2015). The amino acid-based TP values were 296 

comparable to those reported for the same species but using averaged trophic and source 297 

amino acids in other studies. For instance, our TPAla estimate for M. niger (3.91 ± 0.51) 298 

was equivalent to the value reported by Bradley et al. (2015) in the North Atlantic (3.87 299 

± 0.56), and those for S. elongatus and A. hemigymnus (3.34 ± 0.40 and 3.40 ± 0.51, 300 

respectively) were within the values reported in Richards et al. (2020) for these species 301 

in the Gulf of Mexico (3.44 ± 0.29 and 3.38 ± 0.36). Our analysis also revealed that, 302 

despite a general relationship between TP values and the diet reported for each species, 303 

the literature assigned values, including FishBase and additional references 304 

(Supplementary Table S1) may not be applicable to all populations of each species, 305 

likely due to the opportunistic feeding behaviour of most micronektonic fishes (e.g. 306 

Bernal et al., 2015). This may be the case for A. hemigymnus whose TP reported 307 

showed high variability even when obtained from the same methodology (Valls et al., 308 

2014; Bradley et al., 2015; this study). Some species categorized as piscivores, 309 

including S. elongatus and C. danae, had mean TP values of ca. 3.5, suggesting a 310 

substantial dependence on plankton prey. In turn, planktivorous species (e.g. P. polli, V. 311 

nimbaria) showed TP values overlapping those of species with mixed plankton and fish 312 

diets (e.g. S. diaphana, A. hemigymnus). Indeed, C. livida, a species with no reported 313 

dietary information, showed TP values close to those of piscivorous species, while it 314 
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would be considered to have a planktivorous diet, as reported for other species of the 315 

same genus (Supplementary Table S1).   316 

The distinction between TP contributions by the metazoan only vs. the metazoan + 317 

microbial food webs (Decima et al., 2017) allows the assessment of the importance of 318 

the microbial trophic steps in different types of consumers. Specifically, this is possible 319 

by analysing the difference between TPAla and TPGlx values (Decima and Landry, 2020). 320 

In this study, this difference did not vary among species grouped by migration habits, 321 

habitat depth layers, or feeding types. Similar results were found in a previous study 322 

conducted on micronekton fishesof various taxonomic orders, including Stomiiformes 323 

(Bode et al., 2021a). The lack of a clear pattern of this difference suggests that the 324 

microbial contribution to the TP of meso- and bathypelagic fishes is not primarily 325 

controlled by a single factor but rather by a combination of depth, migration, and diet, 326 

including feeding on detritus. 327 

The mean contribution of microbial trophic steps, measured as the difference between 328 

TPAla and TPGlx relative to TPAla, varied between  6% for A. sladeni and 21% for B. 329 

elucens. These values were within those observed for omnivorous plankton (Decima 330 

and Landry, 2020) and other micronekton fish species (Bode et al., 2021a), and suggest 331 

a major importance of detritus consumption along with the associated microbial food 332 

web). Indeed, this is not unexpected because unidentified detrital remains were reported 333 

in the stomachs of some Cyclothone species, as C. acclinidens (DeWitt and Cailliet 334 

1972) or C. braueri (Palma, 1990; Bernal et al., 2015), and are also likely present in 335 

most species considered as planktivores or mixed feeders.  Detrital aggregates, or 336 

marine snow, constitutes a nutritious and relatively abundant trophic resource in deep 337 

ocean waters and can support zooplankton (Fanelli et al., 2011; Kiorboe, 2011) but also 338 

small fish and larvae (Miller et al., 2013; Tsukamoto and Miller, 2020). Marine snow 339 

aggregates are micro ecosystems containing organic matter remains of phytoplankton 340 

(e.g. dead cells, exopolymers), zooplankton (e.g. crustacean, carcasses, appendicularian 341 

houses), and all other kind of detrital remains and minerals, as well as bacteria and their 342 

protozoan predators (Alldredge and Silver, 1988; Passow, 2002). These aggregates, 343 

which can attain sizes of several centimetres (Burd and Jackson, 2009; Guidi et al., 344 

2009), offer a concentrated food source for consumers that would not be able to reach 345 

otherwise.  346 
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The inclusion of biomass recycling processes through microbes and detritus has 347 

challenged the application of food web models based on stable isotopes (Gutierrez-348 

Rodriguez et al., 2014; Flynn et al., 2018). However, the identification of the 349 

appropriate markers for microbial trophic steps (Decima et al., 2017) allows for the 350 

quantification of these processes and their influence in the overall TP of consumers at 351 

ecologically relevant time scales (months, in this case). While trophic processes are 352 

typically fast in the microbial food web, with the propagation of changes in the source 353 

baseline at the scale of days (e.g. Gutierrez-Rodriguez et al., 2014), the effect for 354 

metazoan consumers can only be detected at longer time scales related to the turnover 355 

time of isotopes in their tissues. For instance, the stable isotope turnover rate in animals 356 

varies inversely with individual body mass, and equations have been provided for 357 

estimating turnover rates (expressed as half-life) in different tissues and organisms 358 

(Vander Zanden et al., 2015). Using the equation for ectotherms and the individual 359 

weight of the specimens analysed in this study, we estimated that half-lives of nitrogen 360 

stable isotopes in the species analysed here varied between 15 days, for the small-sized 361 

C. acclinidens, and 44 days for the much larger C. danae. Since almost 95% isotopic 362 

renovation is roughly equivalent to ca. 5 half-lives (Hobson and Clark, 1992), we can 363 

estimate that the TP determined with both bulk or amino acid-specific stable isotopes 364 

correspond to the diet integrated between ca. 3 and 7 months.  365 

The results of this study align with those of previous reports indicating that TP 366 

estimations of micronekton including the contribution of the microbial food web can be 367 

achieved using δ
15

N values of selected trophic and source amino acids (Bode et al., 368 

2021a). The new TP values are equivalent to values derived from models based on 369 

simplified assumptions on the food web and literature diet data as provided by 370 

FishBase. However,  in contrast to previous models (e.g. Nielsen et al.,  2015), the 371 

separation between microbial vs. metazoan trophic step contributions provides a new 372 

quantitative tool for the analysis of food web structure and function. These estimates are 373 

particularly needed in the case of oceanic food webs dominated by omnivore species 374 

that also feed on detritus (Libralato, 2013; Heymans et al., 2014).   375 
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Table 1. Equations employed for the estimation of trophic position (TP) used in this study. δ
15

Ns: natural abundance of bulk stable nitrogen 

isotopes in stomiiform fishes; δ
15

Np: natural abundance of bulk stable nitrogen  isotopes in calanoid copepods; δ
15

NAla, δ
15

NGlx, δ
15

NPhe: natural 

abundance of stable nitrogen isotopes of alanine, glutamine + glutamic acid, and phenylalanine, respectively. TEF: trophic enrichment factor. 

CSIA: compound-specific stable isotope analysis 

 

Type Equation Parameters References 

Additive (bulk) 
         

 δ   
    δ   

   

       
   

        = 3.4 ± 1.0‰ Post (2002) 

Scaled (bulk) 
         

             δ   
             

   δ   
      

 
    

δ
15

Nlim = 2.93 ± 0.71‰ 

k = 0.14 ± 0.49 

Hussey et al. (2014) 

Total (CSIA) 
       

 δ     
    δ                 

    
    

TEFp = 4.5 ± 2.1‰†
 

TEFs = 6.1 ± 0.3‰‡
 

β = 3.2 ± 1.2‰†
 

McMahon and McCarthy (2016) 

Decima and Landry (2020) 

 

Metazoan 

(CSIA) 
       

 δ     
    δ                 

    
    

TEFp = 7.6 ± 1.2‰†
 

TEFs = 5.7 ± 0.3‰‡
 

β = 3.6 ± 0.5‰‡
 

McMahon and McCarthy (2016) 

Bradley et al. (2015) 

† Chikaraishi et al. (2009) 

‡ Bradley et al. (2015) 
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 Figure legends 

Figure 1. Box plot of mean TP values estimated through the different methods (see 

Table 1). FB: FishBase, bulk1: additive model, bulk2: scaled model, Ala: microbial + 

metazoan food web, Glx: metazoan food web. Circle: outlier. Different letters indicate 

significant means (Bonferroni post-hoc test, P<0.05). Each box encompasses the 25 and 

75% quartiles, whereas the whiskers indicate 1.5 times the interquartile range, the 

horizontal line indicates the median, and circles indicate outliers (>1.5 times the 

interquartile range).  

Figure 2. Mean (± propagated sd) trophic positions (TP) of the 13 stomiiform fish 

species analysed estimated using bulk (a) or amino acid-specific (b) stable nitrogen 

isotope ratios. Values compiled in FishBase (FB) are included for comparison.The 

equations used to obtain  the different estimates are provided in Table 1.  

Figure 3. Box plot of mean differences in the trophic position (TP) estimates of 

individual species (see Table 1) across migration habits (migrants and partial migrants 

vs. non-migrants), habitat depth layers (mesopelagic, bathypelagic), and feeding types 

(plankton, nekton, mixed). Each box encompasses the 25 and 75% quartiles, whereas 

the whiskers indicate 1.5 times the interquartile range, the horizontal line indicates the 

median, and circles indicate outliers (>1.5 times the interquartile range). The red arrow 

indicates significant differences (Bonferroni post-hoc test, p<0.05). 
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Figure 3. Box plot of mean differences in the trophic position (TP) estimates of 

individual species (see Table 1) across migration habits (migrants and partial migrants 

vs. non-migrants), habitat depth layers (mesopelagic, bathypelagic), and feeding types 

(plankton, nekton, mixed). Each box encompasses the 25 and 75% quartiles, whereas 

the whiskers indicate 1.5 times the interquartile range, the horizontal line indicates the 

median, and circles indicate outliers (>1.5 times the interquartile range). The red arrow 

indicates significant differences (Bonferroni post-hoc test, p<0.05). 
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Supplementary Table S1. Details of the stomiiform fishes analysed in this study. Longitude (lon) and latitude (lat) of collection, and standard 

length (SL, mm) of specimens are provided. One individual was analysed for most species, except for S. boa (pool of 3 individuals), P. polli and 

C. pseudopallida (pools of 2 individuals each). Species vertical depth range (layer, m) and migration habits (M: migrant; NM: non-migrant; PM: 

partial migrant) were obtained from Olivar et al. (2017), own unpublished data, and FishBase. Main diet according to FishBase and additional 

references.  

 

Species Family lon lat 

depth 

layer SL  

migration 

habit diet† diet  

Cyclothone acclinidens Gonostomatidae  -21.3721 14.3818 300-800 31 NM plankton
1-3

  

zooplankton (mainly copepods and 

debris) 

Cyclothone livida Gonostomatidae  -21.3721 14.3818 400-800 31 NM no data zooplankton ? 

Cyclothone pseudopallida Gonostomatidae  -22.6762 10.8212 300-800 31 NM plankton
4,5

  zooplankton (mainly copepods) 

Sigmops elongatus Gonostomatidae  -17.3951 25.3535 100-1200 111 PM nekton
5-8 

midwater fish and crustaceans 

Vinciguerria nimbaria  Phosichthyidae  -23.9500 7.2500 0-800 48 M plankton
6,8-10

  zooplankton (mainly copepods) 

Argyropelecus hemigymnus Sternoptychidae -21.3722 14.5105 0-1000 30 PM mixed
2,4,5,8,11-13 

zooplankton  (also midwater fish) 

Argyropelecus sladeni Sternoptychidae  -22.6762 10.8212 100-700 31 PM plankton
14,15

 crustaceans 

Polyipnus polli Sternoptychidae  -20.1641 18.1283 200-600 35 NM plankton
16

  zooplankton (mixed crustaceans) 

Sternoptyx diaphana Sternoptychidae  -20.2150 18.0719 100-1200 27 PM mixed
2,8,13,15,17 

zooplankton  (also midwater fish) 

Borostomias elucens Stomiidae -20.1641 18.1283 0-1500 98 M nekton
18 

midwater fish and crustaceans 

Chauliodus danae Stomiidae -20.2150 18.0719 0-1800 152 M nekton
16,19-21 

midwater fish and crustaceans 

Malacosteus niger Stomiidae -22.6462 10.9406 0-1800 71 M mixed
8,16,18,22,23 

zooplankton (also crustaceans and fish) 

Stomias boa Stomiidae -20.1641 18.1283 0-700 91 M nekton
11,24 

midwater fish and crustaceans 

†Numbers indicate references listed below 
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Supplementary Figure S1. Box plots of trophic position (TP) estimates (see Table 1) of the 

stomiiform fishes analysed in this study grouped by migration habits (migrants and partial 

migrants vs. non-migrants), habitat depth layers (mesopelagic, bathypelagic), and feeding 

types (plankton, mixed, nekton). Each box encompasses the 25 and 75% quartiles, whereas 

the whiskers indicate 1.5 times the interquartile range, the horizontal line indicates the 

median, and circles indicate outliers (>1.5 times the interquartile range).  

non migrant migrant

T
P

1

2

3

4

5

T
P

non migrant migrant
1

2

3

4

non migrant migrant

5

T
P

1

2

3

4

non migrant migrant

5

T
P

bathypelagicmesopelagic

1

2

3

4

5

T
P

1

2

3

4

bathypelagicmesopelagic

5

T
P

1

2

3

4

bathypelagicmesopelagic

5

T
P

1

2

3

4

bathypelagicmesopelagic

T
P

5

mixedplankton nekton

1

2

3

4

5

T
P

mixedplankton nekton
1

2

3

4

5

T
P

mixedplankton nekton

1

2

3

4

5

T
P

mixedplankton nekton

1

2

3

4

5

T
P

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

bulk1 bulk2 Ala Glx

m
ig

ra
ti
o

n
la

y
e

r
d

ie
t

1

2

3

4

5



29 
 

 

 

 

 

 

Supplementary Figure S2. Box plot of δ
15

N baseline in (a) phenylalanine (δ
15

NPhe) or (b) 

averaged source amino acids (δ
15

Nsrc) in the stomiiform fishes analysed in this study grouped 

by habitat depth layers. The box encompasses the 25 and 75% quartiles, the whiskers indicate 

1.5 times the interquartile range, and the horizontal line indicates the median.  
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