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a b s t r a c t

Diet is one of the main sources of exposure to toxic chemicals with carcinogenic potential, some of which
are generated during food processing, depending on the type of food (primarily meat, fish, bread and
potatoes), cooking methods and temperature. Although demonstrated in animal models at high doses,
an unequivocal link between dietary exposure to these compounds with disease has not been proven
in humans. A major difficulty in assessing the actual intake of these toxic compounds is the lack of stan-
dardised and harmonised protocols for collecting and analysing dietary information. The intestinal micro-
biota (IM) has a great influence on health and is altered in some diseases such as colorectal cancer (CRC).
Diet influences the composition and activity of the IM, and the net exposure to genotoxicity of potential
dietary carcinogens in the gut depends on the interaction among these compounds, IM and diet. This
review analyses critically the difficulties and challenges in the study of interactions among these three
actors on the onset of CRC. Machine Learning (ML) of data obtained in subclinical and precancerous stages
would help to establish risk thresholds for the intake of toxic compounds generated during food process-
ing as related to diet and IM profiles, whereas Semantic Web could improve data accessibility and usabil-
ity from different studies, as well as helping to elucidate novel interactions among those chemicals, IM
and diet.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Diet is one of the main sources of exposure to toxic compounds
with carcinogenic potential. In October 2015 the International
Agency for Research on Cancer from the World Health Organiza-
tion (IARC-WHO) announced the classification of processed meat
as ‘‘carcinogenic to humans” and red meat as ‘‘probably carcino-
genic to humans” [1]. Diets from most developed countries are
characterized by high intakes of meat, which is often fried, griddled
or barbecued, and by an increasing consumption of processed
foods. When cooking muscle meat from animals or fish at high
temperature, some chemicals are formed at levels that depend
on the cooking procedure and temperature; some of these com-
pounds can cause cancer when administered at high doses in
experimental animals [2]. However, although the intake of dietary
compounds with carcinogenic potential in humans is considerably
lower than in experimental animals, lifetime exposure can differ
considerably among individuals. No regulations exist about the
presence in foods of cooking -related potential carcinogens. This
aspect is specially relevant for public health, as most cooking
mutagen/genotoxic compounds are generated at home, restaurants
and local ready-to-eat food providers.

Despite that some international projects have evaluated the
association between nutrition (including cooking methods) and
cancer, such as the European Prospective Investigation into Cancer
and Nutrition (EPIC) or the NIH-AARP Diet and Health Study, an
unequivocal link between dietary exposure to chemicals and
human cancer [3] has not been shown. The underlying reasons
for this may be as follows: i) the difficulty to determine the exact
exposure to these compounds (depending not only on the intake
but also on the cummulative exposure and delayed effect through
life), ii) interindividual variation in the detoxifying activity of
endogenous enzymes, iii) cummulative exposure to toxic com-
pounds from different environmental sources, iv) synergistic inter-
action among different compounds and, v) the role, not sufficiently
explored to date, of the interaction between diet and the intestinal
microbiota (IM) on the net carcinogenic potential. Therefore, stud-
ies designed to explore these interactions could help to establish
risk thresholds for disease as a function of dietary intake of poten-
tial carcinogens, global diet and microbiota. The present review
analyses difficulties inherent to this type of studies and how
Machine Learning (ML) and Semantic Web could assist in data
modelling for risk assessment.
2. Chemicals with carcinogenic potential formed during food
cooking and processing

One of the most important risk factors for the development of
cancer is the exposure to dietary toxic chemicals with carcinogenic
and pro-carcinogenic potential which, when consumed regularly at
certain levels, can increase the risk of triggering tumorigenic pro-
cesses. Nitrates, nitrites, nitrosamines (NA), heterocyclic amines
(HCA), polycyclic aromatic hydrocarbons (PAH) and acrylamide, are
amongst the substances with the highest carcinogenic potential.
Some of these compounds are not naturally present in foods but
can be incorporated (nitrates and nitrites) or generated (NA, HCA
and PAH) during the processing of foodstuffs containing nitrogenous
and creatine components by heat-direct exposure procedures [4].
1082
HCA have accumulated solid scientific evidence as cancer risk factors
and are the only carcinogens formed exclusively during the cooking
process. Specifically, HCA show a mutagenicity index more than
1000 times higher than benzo(a)pyrene (BaP) [3]. Carcinogens may
act through various mechanisms, such as chromosomal aberrations,
single strand breaks and DNA adducts or oestrogenic activity [5]. Sev-
eral prospective cohort studies reported mean intakes of HCA
between 69.4 ng/day and 821 ng/day in European countries [6,7]
and from 49.95 ng/day to 151.9 ng/day in Chinese communities
and the United States [8,9]. The observed variability among countries
and individuals may be attributed to differences in the methodology
used for the assessment of potential carcinogenic chemicals and to
differences in dietary patterns and cooking preferences around the
world. For example, compared to the 134.5 ng/day contribution of
50 g of broiled beef (0.00269 ppm/day), one daily serving of 50 g
of broiled chicken could increase the intake of HCAs
(PhIP + MeIQx) by 1350 ng/day (0.027 ppm/day) [10]. Induction of
tumours in the large intestine of F344 rats and C57BL/6 mice have
been demonstrated during prolonged exposure (40 to 72 weeks) to
high concentrations of some HCA in diet (i.e. 300 ppm/day) [2].
Although useful to demonstrate tumorigenic potential, experiments
with animals are not intended to predict true human cancer inci-
dence associated with exposure to chemicals.

PAHs are found in cured and processed meat and fats, primarily
[11]. Dietary exposure levels ranged from the order of ng/day in
some Asian publications [12] to the order of lg/day reported in
other publications [13]. BaP is the most-used marker to detect
the presence of PAHs in foods [14,15]. NA are detected in cured
meat and smoked foods and are also endogenously formed from
the interaction of nitrosating agents with amines and amides
[16]. The intake of NA showed unclear relationships with
pancreatic-cancer but positive associations with colorectal cancer
(CRC) and gastric cancer [17,18].

Nitrates and nitrites are often used as food additives in pro-
cessed meats, fish, cheese, and fermented products, to preserve
them from microbial alteration [19]. The simultaneous presence
in certain foods of amino acids can lead to a chemical reaction that
results in the formation of NA, especially when a heat treatment is
applied; N-nitrosopyrrolidine (NPYR) and N-nitrosodimethylamine
(NMDA) are the NA most frequently found in foods [19]. Several
studies have shown an increased risk of CRC development for
NMDA intakes of 0.03–0.07 mg/day [20].

Acrylamide is formed by asparagine decarboxylation in the
presence of reducing sugars during nonenzymatic browning (Mail-
lard reaction) [21]. It is naturally found in foods, but can also form
during the thermal treatment. In European countries, the major
sources of acrylamide are potatoes, coffee and cereal products
[22]. Acrylamide has been classified by the EFSA [23] as probably
carcinogenic to humans. However, there is still no regulation on
the maximum recommended intake albeit there is a general rec-
ommendation to limit its consumption.
3. Challenges to determine the actual intake of toxic chemicals
with carcinogenic potential generated during food cooking and
processing

Recent meta-analyses of epidemiological studies are still not
completely conclusive about the relationship of the intake of toxic
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compounds with carcinogenic potential resulting from food pro-
cessing and cancer development [3] as it is complex to disentangle
the effect of these compounds from the effect of the food itself.
Most of the research revealing the impact of red and processed
meat consumption in the relative risk of developing several chronic
pathologies, such as CRC, prostate or lung cancer is the result of
longitudinal epidemiological studies. Although these studies are
useful from a descriptive point of view and for the generation of
research hypotheses, they have a limited potential for the estab-
lishment of cause-effect relationships, leading to the continuing
debate about the health impact of meat intake.

A major difficulty in assessing quantitatively the actual intake
of food potential carcinogens in the population is the selection of
the most appropriate method for the collection of dietary data.
The food frequency questionnaire (FFQ), multiple day food records
and 24-hour dietary recall are among the most extensively used
tools for this purpose. With independence to the systematic and
random errors inherent to these methods [24] some factors such
as the time period covered by the dietary questionnaires and the
number of items included or the quantification of the portions con-
sumed, affect the quality of the information collected and therefore
the conclusions drawn. It is important to note that the risk of
developing cancer from exposure to environmental factors, includ-
ing diet and lifestyle, is cumulative over a subject’s lifetime. For
this reason, it seems more appropriate to use questionnaires with
the capacity to describe long-term dietary habits, such as the FFQ.
However, the FFQ has the disadvantage of providing less accurate
information on energy and nutrient intake compared with the
other methods mentioned above. In addition, some of the postu-
lated mechanisms linking meat consumption to cancer risk include
the content of these foods in HCA [4], PAH and other compounds
generated during the high-temperature processing of foods, partic-
ularly in meats cooked at ‘‘well-done” degree [4]. Therefore, at the
time of quantifying the intake of different toxic compounds with
carcinogenic potential, it is important to detail in a harmonised
way some characteristics related to the culinary preparation of
foods, such as cooking time, processing method, temperature or
degree of browning [11]. This is a strong add-on difficulty because
it prolongs the duration of the baseline questionnaires, increasing
the number of items included. In addition, the analysis of the infor-
mation obtained is more complex than usual for the calculation of
a nutrient, since for each of the foods surveyed, the type of process-
ing (preservation or cooking) and the duration and temperature of
cooking should be considered. The estimation of dietary com-
pounds with carcinogenic potential can be extracted from informa-
tion compiled in various databases. The most widely used
databases are those developed by the EPIC study for the European
population [25] and by the Computerized Heterocyclic Amines
Resource for Research in Epidemiology of Disease (CHARRED) data-
base for the United States [26]. Both databases provide key infor-
mation for integrating the analysis of dietary potential
carcinogens on a systematic basis. The EPIC database compiles
information obtained from 139 references regarding the content
per 100 g of food in NA, HAC, PAH, nitrites and nitrates in more
than 200 food items. The food composition table is classified
according to the preservation method, cooking method, degree of
browning and temperature [25]. This information is also present
in the CHARRED database, which has developed a special module
within a FFQ in conjunction with the mutagens database to esti-
mate intake of the mutagenic compounds in cooked meats [26].
In adittion, acrylamide content was estimated from the EFSA cate-
gorisation of European food products for monitoring purposes [27].

A broader approach is necessary in the future in order to lay the
foundations for improving the understanding of the complex diet-
cancer association in the long term. This approach would require
consensus on standardised and harmonised protocols for collecting
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dietary information, classifying the degree of cooking and calculat-
ing carcinogens derived from food processing. This method should
be complemented with advanced tools for mathematical analysis
of data that enable researchers to both identify risk factors for
these pathologies and explain their impact in the complex context
of a subject’s global diet and lifestyles.
4. Intestinal microbiota and human health. Methods to study
composition and functionality

The IM is defined as the set of microorganisms inhabiting the
intestine. The microbiota has co-evolved with the host over thou-
sands of years, leading to the establishment of a mutually benefi-
cial microbiota-host relationship. The number of microorganisms
in the human gut exceeds 1014 and this microbiota encodes a col-
lection of genes ~10 times greater than these encoded by the
human genome, providing exclusive capabilities and functions
essential for the maintenance of health. The role of the IM begins
in early life, participating in the development of the host́s immune,
digestive and nervous systems by strengthening intestinal epithe-
lium integrity and gut barrier, protecting against pathogens and
playing a major role in helping to harvest nutrients and energy
from our diet. Therefore, the IM results in a key player for host
physiology [28].

This IM represents a large factory producing bioactive com-
pounds and participating in the host́s metabolism and nutrition.
Actually, host metabolism is the combination of the capabilities
of both the human and the IM genomes. The microbiota ferments
indigestible complex carbohydrates and proteins from the diet
producing short-chain fatty acids, primarily acetate, propionate
and butyrate, which are quickly absorbed by the gut epithelial cells
[29]. Acetate is primarily delivered to peripheral tissues for use as a
substrate in the synthesis of cholesterol and fatty acids; propionate
is absorbed in the liver and participates in gluconeogenesis; and
butyrate is used as one of the main energy sources by colonocytes.
Other metabolites are also produced by the IM such as branched
chain fatty acids, secondary bile acids, amino acids, trimethy-
lamine, neurotransmitters, and some essential vitamins [30,31].
Some of these metabolites may suffer further transformations,
such as the case of trimethylamine which, upon absorption will
be oxidised in the liver to trimethylamine-N-Oxide, a known risk
factor for cardiovascular disease. Therefore, all these metabolites
participate in the host’s physiology and strong evidence now sup-
ports the role of the IM in the maintenance of human homeostasis.
For this reason, adverse changes in the gut microbiota composition
and/or function, the so-called dysbiosis, are related to different gas-
trointestinal disorders, such as diarrhoea, inflammatory bowel dis-
ease, cancer, or extra-intestinal diseases such as obesity, allergies,
neurological sicknesses or other metabolic diseases. Different
stressors, including dietary changes, antibiotic or other drugs treat-
ments, and carcinogens from the diet can be involved in the devel-
opment of dysbiosis.

Members of Bacteroidetes and Firmicutes phyla followed by
Actinobacteria, Proteobacteria and Verrucomicrobia primarily
make up the composition of the adult IM. However, at lower taxo-
nomical levels, the complexity of the IM is higher and is repre-
sented by thousands of different microbial species. This diversity
also occurs among individuals, making almost impossible the def-
inition of a normal or healthy IM composition for an entire popula-
tion. However, it is also known that the IM exhibits high functional
redundancy, meaning that some functions may be conferred by
multiple bacteria, from related and unrelated species, making the
IM more conserved at the functional than at compositional level
[32]. Accounting for this variability, some authors have tried to
define the ‘‘normal or healthy” IM as the ‘‘intestinal microbial com-
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munity that assist the host to maintain a healthy status under cer-
tain environmental conditions” [33] understanding that under dif-
ferent environmental conditions including dietary habits the
optimal microbiota for health may also be different. For this rea-
son, when we aim to assess the effect of a specific factor or a speci-
fic disease on the gut microbiota, it is crucial to identify the specific
alterations present in the gut microbiota composition but also on
its functional properties, as well as the underlying mechanisms.

Human faeces constitute in practice the biological samples from
which the DNA, RNA and proteins are extracted in most cases to
study the intestinal microbiota composition and function whereas
metabolites and other chemical compounds can be extracted as
well to analyze molecules produced by the microorganisms. Cur-
rently, the study of the IM involves using the new omics techniques
based on high-throughput sequencing tools, also called second-
generation sequencing technology. The DNA sequencing of the whole
IM and the gene functions classifications are performed by metage-
nomics. Proteomics sequence the protein structures to determine
cell metabolism through the activity of the cell enzymes. The anal-
ysis of molecules produced by bacterial metabolism is made by
metabolomics, and transcriptomics studies the complete RNA mole-
cules quantifying the dynamic expression of genes under different
conditions. The effects of gut microbiota on the host are reflected
in different aspects and the combinations of those multi-omics
tools provide a new phase in the study of the IM and its physiolog-
ical role, linking the composition of the IM with host metabolism,
disease pathogenesis and predictions of therapeutic targets [34].
5. Intestinal microbiota dysbiosis is associated with colorectal
cancer and pre-cancerous states

Several studies have demonstrated that IM profiles from CRC
patients are different from that of healthy individuals [35]. Gener-
ally, patients with CRC have decreased microbial diversity in faeces
[36] and at the intestinal mucosa level [37]. It is currently not pos-
sible to define a common cancer-associated microbiota [11,38].
However, although no individual member of the gut microbiota
alone is sufficient to promote CRC, certain microbes have been
associated with this type of cancer through the formation of harm-
ful metabolites and the regulation of certain miRNAs, which then
promote an oncogenic microenvironment. There is evidence of
IM associations with CRC for Streptococcus bovis, which has been
renamed Streptococcus gallolyticus, Fusobacterium nucleatum, Bac-
teroides fragilis, Enterococus faecalis and certain pathogenic strains
from Escherichia coli [36]. However, it is not clear at present if these
microorganisms are drivers or passengers in CRC. In addition,
although some microbiota profiles have been associated with the
onset and early progression of CRC, studies in this field are still
scarce [39,40]. Some members of the gut microbiota can produce
microbial genotoxins such as colibactin by E. coli group B and fra-
gylisin by B. fragilis. Other compounds with cytotoxic action, and
potential involvement in the development of CRC are produced
by intestinal microbes such as Salmonella enterica, Helicobacter
pylori, F. nucleatum, B. fragilis, Pseudomonas aeuroginosa, Peptostrep-
tococcus anaerobius and E. faecalis among others [11]. The microbial
dysbiosis can also induce changes in host gene expression, subse-
quently favouring the development of CRC.
6. Role of the intestinal microbiota on the genotoxic/mutagenic
potential of dietary toxic compounds

The genotoxicity is the capability to cause damage to the cellu-
lar genetic material, and more specifically mutagenicity is the
capacity of genotoxic compounds to alter the DNA sequence,
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modifying the expression and functionality of genes. The genotox-
icity and/or the mutagenicity in faeces could be determined in an
affordable way using some in vitro tests currently available [11].

It has been suggested that there is an association of inflamma-
tion with the faecal genotoxicity and CRC through the relationship
existing between the gut microbiota and the innate immune sys-
tem [38]. Early intestinal mucosal damage (dysplastic lesions,
aberrant crypt foci, and/or intestinal polyps) can precede in years
the development of CRC and these mucosal lesions could be con-
sidered early markers of risk for the development of CRC. Intestinal
mucosal lessions are routinely examined for diagnostic purposes in
patients submitted to colonoscopy at hospitals, allowing to differ-
entiate neoplastic lesions, preneoplastic lesions and healthy
intestinal mucosa.

The efficiency of endogenous mechanisms of detoxification in
the human body largely depends on the metabolic state of the host,
and the type and levels of toxic compounds. Orally ingested toxic
compounds initially reach the liver by direct gut wall absorption
where they are detoxified through phase I (cytochrome P450 sys-
tem) and phase II (sulphate, glutathione or glucuronide conjugates)
enzymes and are subsequently stored in the gallbladder. Liver-
generated detoxified potential carcinogens are poured again
through the intestine by enterohepatic circulation during digestion
(phase III) where they can be transformed by the gut microbiota.

Faecal toxic compounds contributing to genotoxicity may have
diverse origins. As commented before, some members of the IM
can produce endogenous metabolites with genotoxic potential.
Other compounds are formed endogenously by the metabolic
activity of intestinal bacteria on dietary constituents such as
nitrates, dietary amines and cholesterol, or are synthesized from
precursors of the human metabolism such as the N-nitroso com-
pounds, fecapentaenes, long-chain fatty acids and secondary bile
acids. The production of these toxic compounds by the IM will
depend not only on the microbiota itself but also on the host phys-
iology, and the interaction of the IM with diet. In addition, other
toxic substances arriving to the gut are of exogenous origin (foods)
and include mycotoxins, plant glycosides, food additives, and the
chemical compounds formed during cooking and food processing
commented on previously.

Studies using in vitro and in vivomodels indicate that toxic diet-
ary compounds, apart from their direct effect, could adversely
affect the gut microbiota, modifying its diversity, composition
and/or functionality, and affecting host-immunity and metabolism
[35,41,42]. The IM can also modify the toxicity of these compounds
by i) decreasing their toxicity through direct binding with the
microorganisms and elimination with faeces, ii) metabolising and
transforming them into less toxic compounds, iii) metabolising
and transforming them into more toxically active molecules, and
iv) interfering with detoxifying mechanisms of the host, thus exac-
erbating their toxicity [11]. The most notable of these last interac-
tions is that occurring during enterohepatic circulation when toxic
molecules inactivated in phase II by conjugation to glucuronides in
the liver, return to the intestine by enterohepatic circulation.
There, the intestinal microbial glucuronidases, mostly from Enter-
obacteria, Clostridium and Bacteroides members, release the inacti-
vated chemical compound from the glucuronide and subsequently
turn it back into a toxic molecule.

Global diet modulates the composition and functionality of the
IM, influencing the way in which this microbial community inter-
acts with dietary toxic compounds and with detoxifying mecha-
nisms of the host, then contributing to increase or decrease in
the intestinal toxicity. In this scenario, it would be possible to iden-
tify early shifts in microbiota patterns (composition and/or func-
tionality) associated at variable degree with increased intestinal
toxicity, the intake of chemicals with carcinogenic potential and



Fig. 1. Schematic representation of risk assessment by exposure to dietary toxic compounds formed during food cooking and processing as a function of the IM, diet and
intestinal toxicity, applying ML and Semantic Web. The net exposure to toxic compounds depends on the intake and time of exposure and this influences the genotoxicity at
the intestinal environment. IM and global diet could modify the resulting toxicity of dietary chemicals. Prolonged exposure to high intestinal toxicity levels could lead to
changes in the intestinal mucosa that may be accompanied by shifts in the intestinal microbiota. Applying ML to dietary and microbiota data in silent, subclinical and
precancerous stages of intestinal mucosal damage could assist in CRC risk assessment whereas Semantic Web will facilitate data accessibility and management.
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global diet. These modifications of the microbiota (even when they
could represent adaptive processes) may be associated with abnor-
mal changes of the intestinal mucosa that would represent an aug-
mented risk for the subsequent development of CRC. The diversity
of chemical structures of dietary toxic compounds and the diffi-
culty to determine accurately their intake with diet substantially
increase the challenge of teasing out individual chemical class
influences on CRC. However, initial effort like those focusing on a
specific and defined group of compounds, as those chemicals gen-
erated during food processing, would make the task more realistic
and affordable. These compounds could be assessed by means of
dietary interviews that include cooking/preparation procedures,
duration and temperature of the process, and the use of specific
food composition databases.

Our hypothesis is that beyond differences in genetic susceptibil-
ities, metabolic states and the inherent variability of microbiota
profiles among individuals and human groups, the net exposure
to dietary molecules with carcinogenic potential will depend on
the type of compound, doses, frequency of consumption and life-
time exposure. These factors will be modified by food preparation
procedures, which will be closely related to the amount of com-
pound ingested, the global dietary patterns and IM profile of sub-
jects. Therefore, risk thresholds for CRC could be established as a
function of gut genotoxicity, IM and diet (global dietary patterns
and toxic molecules intake), considering precancerous or cancer-
ous mucosal changes as an outcome variable.

ML and Semantic Web are important tools that could assist in
the treatment and modelling of such data in order to categorize
the risk (Fig. 1).

The identification of changes in the microbiota associated with
the intake of toxic compounds with carcinogenic potential could be
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useful to elaborate guidelines for food processing and dietary
recommendations.
7. ML: a tool to assess risk by dietary exposure

ML can be considered a branch of artificial intelligence, as it
attempts to use computers to complement human intelligence
[43]. ML has become an essential tool for biomedical research
and the modern healthcare system, given that the amount of med-
ical and biological data requiring analysis has increased abruptly in
the last years, and some ML methods have shown their ability for
solving complex problems.

A key objective of any learning algorithm is to build models
with good generalization capability [44]. Thus, the classification
procedure is a cornerstone in any predictive problem. In addition,
there is not a standard classification method to date. Different
methods could be applied to design the prediction model. A deci-
sion tree (DT) is a mathematical tree where the internal nodes
are tests on the variables that define the inputs and the leaf nodes
are classes. C5.0, C4.5, CART or Random Forests (RF) are examples
of this kind of ML. Lazy learners such as k-Nearest Neighbours
(KNN) are based on learning by comparing a given test example
with each training example. Artificial Neural Networks (ANN) are
inspired in biological neural networks. Kernel methods as Support
Vector Machines (SVM) are based on the idea of embedding the
data into a high dimensional feature space using the kernel [45].

ML has been applied to dietary studies and for deciphering the
effect of the exposure to pollutants and carcinogens. Thus, Chatter-
jee et al. [46] identified potential risk factors for preventing obesity
using a broad set of different ML techniques. In another work [47]
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the mutual interactions between diet, microbiota, metabolic
responses and the immune system were developed using a ML-
based method. In a similar way, we employed DT to study the
interactions between serum free fatty acids and faecal microbiota
[48]. Gut microbiota was also identified as a factor in predicting
personalised postprandial glycaemic response to real-life meals,
obtaining an accurate prediction with boosting DT [49]. An oral
malodour classifier was developed as a function of the oral micro-
biota in saliva, with SVM, ANN and DT, and SVM being the most
accurate [50]. The decline of Akkermansia muciniphila was identi-
fied as a common dysbiotic marker linked to disease status by
using DTs [51]. Cammarota et al. [52] recently highlighted the
importance of the gut microbiome and the need of applying ML
to analyse the considerably quantity of complex health care data
in cancer research.

Therefore, ML has proven to be an efficient tool to identify some
key factor relationships associated with diet, health parameters
and lifestyles with the microbiota and disease [48–51]. Although
no general rule exists a priori indicating which ML method is the
best, depending on a given problem, it is expected that ML could
successfully contribute to establishing risk thresholds for CRC as
a function of the intake of chemicals with carcinogenic potential,
global diet, intestinal genotoxicity and shifts in microbiota profiles.
In summary, ML is able to consider factors from different sources
(such as those related to ingested of potential carcinogens, diet
and IM), select the most relevant ones and use them to predict
the risk of CRC. A general workflow of the process is provided in
Fig. 2.
8. Worked example of a ML process for CRC risk assessment

Since real data on diet, intake of toxic chemicals, intestinal
microbiota and fecal genotoxicity/mutagenicity are not yet avail-
able in a single database, a conceptual design is proposed using
previously published variables corresponding to the metabolism
of healthy people and people with CRC.

Dataset. The dataset employed is a subset of the Colorectal Can-
cer Detection Using Targeted Serum Metabolic Profiling experi-
ment from University of Washington. These data are available at
https://www.metabolomicsworkbench.org/.

The dataset is composed by 234 individuals and 124 variables.
For this example, Diagnosis is the target variable, that is recoded
as a binary variable representing if each example presents colorec-
tal cancer or not. From the total of existing variables in the repos-
itory, we have selected those that could be directly correlated with
the diet (sugars, aminoacids, fatty acids and other compounds of
interest) and including some anthropometrical variables related
with diet and health, as the BMI. In addition, from the 124 vari-
ables, we have selected the following as predictive ones to run this
example: ‘‘Acetylcholine” ‘‘Alanine” ‘‘Asparagine” ‘‘Aspartic_Acid”
‘‘Biotin” ‘‘Glutamic_acid” ‘‘Glutamine” ‘‘Histidine” ‘‘Linolenic_Acid”
‘‘Lysine” ‘‘Methionine” ‘‘MethylSuccinate” ‘‘Pyruvate” ‘‘Trypto-
phan” ‘‘BMI”

The following tables show basic statistics for these variable set
depending on the value of the target variable.
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Healthy
Variable
 min
 mean
 max
Acetylcholine
 227140.38
 1944056.93
 3933866.8

Alanine
 4029094.49
 6339425.03
 10736506.9

Asparagine
 446544.10
 697142.28
 926673.2

Aspartic_Acid
 367199.83
 1207280.26
 2736972.2

Biotin
 70262.10
 134817.68
 218108.1

Glutamic_acid
 696905.02
 2101133.59
 4333471.5

Glutamine
 23520246.16
 32222162.15
 42570355.8

Histidine
 10280560.84
 18694498.58
 29272649.1

Linolenic_Acid
 403397.25
 865422.94
 1610396.2

Lysine
 5435894.46
 10117619.23
 13735189.6

Methionine
 306713.00
 732652.67
 1004676.9

MethylSuccinate
 801214.57
 1303371.84
 1856837.4

Pyruvate
 55107.82
 174507.45
 429810.3

Tryptophan
 501607.00
 3715594.49
 5471963.8

BMI
 20.00
 27.58
 42.0
Colorectal Cancer
Variable
 min
 mean
 max
Acetylcholine
 712642.00
 1755303.59
 3723973.0

Alanine
 2910976.71
 5640811.77
 9555174.6

Asparagine
 456356.62
 656879.58
 1052985.7

Aspartic_Acid
 377375.66
 1636515.34
 4411499.3

Biotin
 63989.62
 123128.62
 228928.5

Glutamic_acid
 916836.31
 2683576.11
 6559485.0

Glutamine
 16182419.38
 29168842.58
 36269190.5

Histidine
 8189632.57
 14905491.46
 25936858.0

Linolenic_Acid
 167055.75
 662328.07
 1213540.7

Lysine
 5237148.72
 8703904.55
 12749510.4

Methionine
 338104.80
 617976.05
 1045772.3

MethylSuccinate
 825623.96
 1207703.72
 1885528.9

Pyruvate
 64219.18
 199196.83
 458775.4

Tryptophan
 1785060.16
 3451357.71
 5410601.2

BMI
 17.00
 25.35
 32.0
Preprocessing. As it is well known that some ML methods are quite
sensitive to variable scale, continuous variables were normalized. In
addition, missing values were treated using K-nearest neighbor
imputation.

Classification and evaluation. As it was highlighted before, a key
objective of any learning algorithm is to build models with good
generalization capability, which is equivalent to look for models
that accurately predict the class labels of previously unknown
examples. Therefore, the classification procedure is a cornerstone
in any predictive problem. In addition, there is no a standard clas-
sification method so far. Thus, several different methods were
tested to select the one performing the best for this task, taking
into account the trade-off between performance and interpretabil-

https://www.metabolomicsworkbench.org/


Fig. 2. General workflow of a Machine Learning process for CRC risk assessment as a function of diet, microbiota and intestinal genotoxicity. Data from diet (FFQ), microbial
metabolites, microbiota composition, microbial gene functions, and genotoxicity/mutagenicity (faeces) and biopsia analyses of the intestinal mucosa (routine colonoscopies
at hospitals) are collected in a joint database and submitted to a ML process. Some ML models (such as DT, on bottom-left) allow establishing profiles and thresholds related
to the input variables, while others (such as ANN, on bottom-right) are more difficult to interpret but are successful predictors.
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ity. The methods considered in this worked example are a tree
based method (C4.5), a lazy learners (Knn), a Neural Network (in
particular, multilayer perceptrons, MLP) and a support vector
machine with radial kernel.

Training a ML method is as complex as necessary to avoid over-
fitting and to correctly optimize the different hyperparameters
associated to each method. In this case we have applied cross-
validation with 10 folds. During the cross validation process, the
specific parameters associated to each method have been opti-
mized using the default configuration.
Sensitivity
 Specificity
J48
 0.75
 0.63

SvmRadial
 0.80
 0.62

Knn
 0.87
 0.87

MLP
 0.71
 0.64
From the results obtained, it is clear that the method performing
better according to both Sensitivity and Specificity is KNN. The
value of k was 9. Note that this parameter is set experimentally in
training phase. It is well known that KNN does not provide informa-
tion about the features providing this classification. Thus, using this
method, it is only possible to predict if an example is labelled as
Healthy or having CRC. The same occurs with MLP and SvmRadial.
As a consequence, if one is interested in analyzing the factors help-
ing in the prediction, a model based on decision trees should be
selected. The one employed here is C4.5. In this example, the model
produced is the following:
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From the initial set of variables, ‘‘Acetylcholine”, ‘‘Alanine”,
‘‘Asparagine”, ‘‘Aspartic_Acid” ‘‘Biotin”, ‘‘Glutamic_acid”, ‘‘Glu-
tamine”, ‘‘Histidine”, ‘‘Linolenic_Acid”, ‘‘Lysine” ‘‘Methionine”,
‘‘MethylSuccinate”, ‘‘Pyruvate”, ‘‘Tryptophan”, ‘‘BMI”, C4.5 detects
Histidine, Linolenic_Acid, Methionine and Pyruvate as relevant
variables for predicting CRC.

All the experiments in this worked example were performed
using RStudio 1.3.1093, R 4.0.3 and caret package, version 6.0-86.
9. Using Semantic Web to connect and to exploit data

The Semantic Web vision has supposed a shift of persistence,
modelling and interoperability of data [53]. Being able to represent
entities unambiguously, link them and integrate different data-
sources in a single representation, has enabled a new set of
semantic-aware applications. These computer science advances
are ready to be applied to different fields. Specifically, in the bio-
computational field, some works have explored its use i) to
describe human and mouse genes [54] ii) to offer a platform that
eases the consumption and curation of genome data [55] iii) to
integrate different drug data-sources [56] iv) to provide a platform
to analyse the course of diseases [57]. Therefore, we envisage next
challenges using Semantic Web technologies to model and to
exploit data from nutrition and microbiota interaction studies
(Fig. 3).

One of the main problems facing the exploitation of data from
these type of studies is the existence of many heterogeneous
data-sources with their own data models that cannot be integrated
easily with others. This issue prevents obtaining conclusions of the



Fig. 3. Semantic Web schema and technological stack proposed for microbiota and diet studies. Each concentric circumference represents a layer/process in the technological
stack; these layers are independent and can work by themselves. The layer stacking means that an upper layer contains the lower ones and need for them to be complete and
coherent. Different coloured graphs represent graphs from different sources, which are not yet integrated. Orange and yellow patterns in the validation phase represent the
mechanism of validation and normalization of the aforementioned heterogeneous graphs, which connect to a unique and integrated knowledge graph. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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joint-analysis of data from different studies. To alleviate this prob-
lem, some ontologies were proposed which ensure that all data
providers are talking about the same domain [58]. For example,
FoodOn [59] for data integration of food traceability and quality
control is a very specific ontology that offers a great basis for
reusability. In contrast, ONS [60] is a general ontology for nutrition
studies that can be tuned with specific elements if necessary.
Alongside the creation of well-defined ontologies, there arises the
need for tools able to migrate non-semantic data to these new
semantic standards. Recent development of heterogeneous data
mapping tools in the Semantic Web has supposed a new paradigm
in knowledge graph creation methodologies [61] offering reusabil-
ity, maintainability and a better user-experience. The use of these
tools can deliver a faster migration of non-semantic datasets to a
knowledge graph in which all desired studies can be integrated.
This will offer the possibility to analyse all data together, make it
accessible, and preserve it for future uses, which is in keeping with
FAIR (Findable, Accessible, Interoperable and Reusable data) princi-
ples [62].

Although a well-defined ontology can enable interoperability
and integration of different datasets, we must also ensure that dif-
ferent pieces of data follow the same shape, which will derive in a
cleaned and normalised graph and, therefore, an easier one to
query. The use of Resource Description Framework (RDF) [63] val-
idation technologies was explored in Fast Healthcare Interoperabil-
ity Resources (FHIR) specification [64] to not only validate data but
to share data models among humans and machines [65]. Therefore,
using ontologies, we can define the meta-knowledge of the
domain, e.g., the category’s relationships between different muta-
gens, nutrients or bacteria; using RDF validation techniques we
can ensure certain rules, e.g., that a value is between certain limits
or that a nutrient has a certain number of attributes.
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Once various datasets are converted, validated—using the afore-
mentioned techniques—and their semantics defined using a proper
ontology, new results could be delivered. Thanks to ontology axioms
it is possible to generate inferences on pre-existing knowledge in
order to reveal non-evident and underlying content, which could
be obviated [66]. For example, if we define Bacteroides fragilis we
know that it also belongs to the categories Bacteroides (genus), Bac-
teroidaceae (family), Bacteroidales (order), Bacteroidia (class) and
Bacteroidetes (phylum); however, this information is not evident
for a machine. Thus, the inference system will fill these upper cate-
gories, so all data is complete and can be easily integrated. In addi-
tion, the graph data model used by RDF enables a different data
modelling—in contrast with the normally used tabular form—, that
by means of SPARQL—the advocated RDF query language—could
reveal new relationships previously obviated [67]. This simplifies
the modelling of the former example in which we have multiple cat-
egories, and consequently we wish that B. fragilis were shown when
asking for a Bacteroidetes, and a Bacteroidaceae, among others.
Doing the same modelling in tabular form would imply considerably
more complicated structures that can be error-prone.

Finally, this methodology offers the possibility to not only
improve analysis techniques and discover hidden content but also
to transfer part of this knowledge and make it accessible for the
public. The emergence of projects as Wikidata [68] enables the cre-
ation of general-purpose knowledge graphs integrating data that
could be interesting for the entire world and that is curated by
users. It is possible, by taking advantage of proposed conversions,
to publish interesting conclusions of involved studies in the so-
called semantic eScience [69]. This approach may be employed
for the achievement of FAIR principles but also to achieve a trans-
ference and dissemination effort, which could lead to a relief in the
ongoing reproducibility crisis [70].
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10. Summary and outlook

The net exposure to dietary toxic compounds, and the intestinal
genotoxicity generated, depends on the intake and time of con-
sumption and on their interaction with the IM and global diet.
The IM of individuals with CRC differs from that of healthy people,
but studies relating the consumption of carcinogens with adverse
early shifts of microbiota (either beneficial adaptive or adverse
changes) are very scarce. The complexity of data and the several
variables potentially affecting these interactions may hinder the
interpretation of the studies. In this context, the application of
ML to the data obtained in subclinical and precancerous stages of
the intestinal mucosa could help to analyse the risk for develop-
ment of CRC associated to the intake of carcinogens as a function
of diet and microbiota profiles. Moreover, the use of the recently
developed Semantic Web approaches could improve data accessi-
bility and management, contributing to evidence of new interac-
tions among carcinogens, microbiota, and diet (Fig. 1).
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