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ARAKELOV THEORY ON SHIMURA VARIETIES.

by José Ignacio Burgos Gil
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1. Introduction

Arakelov theory is at the crossroad between number theory, algebraic
geometry and complex analysis. The starting point of this theory is the
analogy between S = Spec(OK), the spectrum of the ring of integer
OK of a number field K, and a smooth affine curve C defined over
an arbitrary field k. A smooth affine curve can always be completed
to a smooth projective curve C by adding a finite number of points.
Similarly, the closed points of S correspond to non-Archimedean places
of K and S can be “compactified” by adding the Archimedean places.
Of course this two compactifications are very different, the curve C has
a global structure of a smooth projective curve while S is just a patch
between Archimedean and non-Archimedean places. Nevertheless there
are striking formal analogies between these two pictures. For simplicity
of the exposition assume that k is algebraically closed.

The first analogy is the product formula. If 0 6= f ∈ k(C) is a non
zero rational function, then∑

p∈C(k)

ordp(f) = 0,
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while, if we choose an absolute value in each place of K suitably nor-
malized, then, for 0 6= f ∈ K,∑

v∈MK

− log |f |v = 0,

where MK is the set of all places of K, Archimedean and non-
Archimedean. A second example of such analogies is that, using
the appropriate notation (see [Neu99, Chapter 3]) a variant of the
Riemann-Roch theorem for algebraic curves is formally identical to
Minkowski theorems on the geometry of numbers. The aim of Arakelov
theory is to extend this analogy between algebraic geometry and
number theory to higher dimension. We refer the reader to the notes
by C. Soulé (Chapter I of this volume) for more details on Arakelov
Geometry and we will only recall some points of it.

Consider a projective and flat scheme X defined over Spec(Z). For
instance X can be obtained from a projective variety over Q by clear-
ing denominators of a system of defining equations and taking the irre-
ducible component containing the complex points. In other words, X
is obtained from a variety X ⊂ PNQ by taking its Zariski closure in PNZ .
Since SpecZ is affine and not complete, we can not expect X to behave
globally as a complete variety. In the same way that we “compactify”
SpecZ by adding one Archimedian point, we can “compactify” X by
adding one Archimedean fibre XR = X × Spec(R). The compound
object X q XR should behave formally as a complete variety over a
field. This means that many theorems in algebraic geometry should
have a number-theoretical analogue in this setting. This analogue will
typically involve algebraic geometry in X and complex analysis in XR.
Successful examples of such strategy are the Arithmetic Riemann-Roch
Theorem [GS92] and the Lefschetz fixed point theorem [KR01].

The main objects considered in Arakelov theory are arithmetic cycles
Z = (Z, gZ), where Z is an algebraic cycle on X and gZ is a Green
current for Z in X (C), and hermitian vector bundles E = (E, h), where
E is a vector bundle on X and h is a smooth hermitian metric on the
complex vector bundle EC over X (C).

There is an arithmetic intersection theory of arithmetic cycles
[GS90a] and a theory of arithmetic characteristic classes [GS90b]
for hermitian vector bundles. This theory of arithmetic characteristic
classes was first developed for smooth hermitian metrics.

Modular and Shimura varieties have many interesting vector bun-
dles that have modular or group theoretical interpretations, like the
line bundle of modular forms on a modular curve, or an automorphic
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vector bundle on a more general Shimura variety. In many instances,
these vector bundles come equipped with hermitian metrics that also
have modular or group theoretical interpretations. An example of such
metrics is the Petersson metric on the line bundle of modular forms.

The geometric and arithmetic invariants of Shimura varieties have a
very rich structure. Usually, geometric invariants are related to special
values of L-functions, while arithmetic invariants are related to log-
arithmic derivatives of L functions. Thus, arithmetic invariants give
information about the second term in the Taylor expansion of the L
function. Kudla’s program aims to make precise this idea. See for
instance [KRY06] and the references therein.

Many Shimura varieties and automorphic vector bundles have models
over arithmetic rings (for instance a ring of integers with some primes
inverted). Therefore we have at our disposal almost all the ingredients
needed to define and compute arithmetic invariants, at least for projec-
tive Shimura varieties. But many modular and Shimura varieties are
only quasi-projective and not projective, and, in order to be able to
define arithmetic invariants for them, it is useful to find suitable com-
pactifications. Under some conditions (see [Mum77] for precise details)
automorphic vector bundles can be extended to such compactifications,
but the interesting hermitian metrics do not extend to smooth hermi-
tian metrics on the completed vector bundle, but only to logarithmically
singular hermitian bundles.

Arakelov theory developed in [GS90a] and [GS90b] only deals with
smooth hermitian metrics. So in order to apply Arakelov theory to auto-
morphic vector bundles we need to extend it to logarithmically singular
hermitian vector bundles. This extension was made in [BGKK07] and
[BGKK05].

The aim of this note is to introduce the basic ingredients of the
extension of Arakelov theory to compactifications of quasi-projective
Shimura varieties. In section 2 we will recall some basic facts of Hermi-
tian symmetric spaces. In section 3 we will discuss connected Shimura
varieties. Section 4 is devoted to equivariant vector bundles and their
invariant metrics. In section 5 we will study log-singular metrics and
log-log forms and in section 6 we will put everything together to con-
struct an arithmetic intersection theory suitable to study non-compact
Shimura varieties.
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2. Hermitian symmetric spaces

In this section we will use the modular curve as an illustration of
the general theory of hermitian symmetric spaces. We start with the
complex upper half plane

H = {x+ iy ∈ C | y > 0}

and the group SL2(R). This group acts on H by Moebius transforms(
a b
c d

)
· τ =

aτ + b

cτ + d
.

The action is transitive and the stabilizer of the point i ∈ H is

SO2(R) =

{(
c −s
s c

)∣∣∣∣c2 + s2 = 1

}
.

Therefore we can write

(2.1) H = SL2(R)/ SO2(R).

There is something odd with this identity: the left hand side is a com-
plex manifold, while the right hand side is a real differentiable manifold.
Thus this identity has to be seen as an identity of differentiable man-
ifolds. Then, where does the complex structure come from? The next
exercise shows that the complex structure of H is determined (up to
complex conjugation) by the groups SL2(R) and SO2(R).

Exercise 1. — Consider the element

J =
1√
2

(
1 1
−1 1

)
∈ SO2(R)

1. Show that J has order 8 in SL2(R) but as an operator on H has
only order 4.

2. Show that the point i ∈ H is a fixed point of J and that the action
of J on the tangent space TiH is multiplication by i.

3. For g ∈ SL2(R) and τ = g · i, show that gJg−1 stabilizes τ and
the action of gJg−1 on Tτ H is multiplication by i.

Conclude that J defines an equivariant integrable almost complex struc-
ture (see [Wel80, Chapter I, Section 3] for the notion of almost complex
structure) on the quotient SL2(R)/SO2(R) such that equation (2.1) be-
comes an identity of complex manifolds.

The only other choice to cook a complex structure on SL2(R)/SO2(R)
using elements from SL2(R) would have been to use the transpose of
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J . This choice would have produced the complex conjugate space of
H, that is, the complex lower half plane.

As we explain below, the method of Exercise 1 can be generalized
from SL2(R) to other groups.

Definition 2.1. — 1. Let D be a complex manifold with almost
complex structure J and g a Riemannian structure on D. We
say that g is a hermitian structure if for every point p ∈ D and
tangent vectors v, w ∈ TpD, the condition

g(Jv, Jw) = g(v, w).

holds, A complex manifold with a hermitian structure is called
a hermitian space. If D is a hermitian space, the group of holo-
morphic isometries of D will be denoted by Is(D). The connected
component of the identity in this group will be denoted Is+(D).

2. Let D be a connected hermitian space. Then D is called a her-
mitian symmetric space if every point p ∈ D is an isolated fixed
point of an involutive holomorphic isometry of D.

Exercise 2. — On the space H with coordinates x, y we put the Rie-
mannian structure

(2.2) ds2 =
dx2 + dy2

y2
.

1. Show that the Riemannian structure (2.2) is invariant under the
action of the group SL2(R) and it is a hermitian structure.

2. Show that H is a hermitian symmetric space. Hint: J2 gives us
the involution that fixes i and the other needed involutions are
obtained by conjugation with elements of SL2(R).

In fact
Is+(H) = SL2(R)/{± Id} = PSL2(R).

For proofs of the next results and more information about sym-
metric spaces and hermitian symmetric spaces the reader is refered to
[AMRT10, III, §2] and [Hel78]. In particular, see [Hel78, Chapter
VIII] for the definition of irreducible hermitian symmetric spaces and
the ones of compact and non-compact type.

Theorem 2.2 ([AMRT10, Ch. III §2.1]). — Let D be a hermitian
symmetric space. Then there is a decomposition

D = D0 ×D1 × · · · ×Dn

where
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1. D0 is the quotient of a complex vector space, with a translation
invariant hermitian structure, by a discrete group of translations.
This factor is called of Euclidean type.

2. Each Di, i 6= 0 is an irreducible hermitian symmetric space that
is not of Euclidean type.

In the previous theorem, the factors Di, i 6= 0, that are compact
are called of compact type, while the non-compact ones are called of
non-compact type.

Theorem 2.3 ([Hel78, Ch. VIII Theorem 6.1])
1. The irreducible hermitian symmetric spaces of non-compact type

are the varieties of the form G/K where G is a connected non-
compact simple Lie group with center {e} and K is a maximal
compact subgroup with non-discrete center.

2. The irreducible hermitian symmetric spaces of compact type are
the varieties of the form G/K where G is a connected compact
simple Lie group with center {e} and K is a maximal proper con-
nected subgroup with non-discrete center.

Let D be a quotient of the form G/K as in the theorem. Let e be the
neutral element of G and o = [e] ∈ G/K its class in D. In both cases
of the theorem, to prove that G/K is a hermitian symmetric space we
have to construct an almost complex structure and, for each point, an
involution as we did for the upper half plane in Exercise 1. To this end
one uses the fact that K has non discrete center to find an element J
in the center of K whose action in ToD has order 4. Then the complex
structure on the tangent space at o is induced by J and the involution
that fixes o is induced by s = J2. Both operations are translated to
the whole space by conjugation. See the proof of [Hel78, Ch. VIII
Theorem 6.1] for more details.

Example 2.4. — 1. The group G = PSL2(R) = SL2(R)/{± Id}
is a connected non-compact simple Lie group with center {e}.
Moreover, K = SO2(R)/{± Id} is a maximal connected compact
subgroup isomorphic to U(1). It is abelian and non-discrete. Thus
its center is non-discrete. The quotient G/K is the hermitian
symmetric space of non-compact type H.

2. The group G = SU(2)/{± Id} is a connected compact simple Lie
group with center {e} and K as before is a maximal connected
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proper subgroup isomorphic to U(1). Again it is abelian and non-
discrete. Thus its center is non-discrete. The quotient G/K is a
hermitian symmetric space of compact type isomorphic to P1(C).

The spaces H and P1(C) of Example 2.4 are very close to each other.
In fact they are in duality. This is a general procedure that we describe
next.

Let D be an irreducible hermitian symmetric space of non-compact
type and o ∈ D. Put

G = Is+(D), a simple connected Lie group,
K = Stab(o), the maximal compact subgroup,
so ∈ K the involution fixing o.

Then so induces an inner automorphism σ of G. The subgroup Gσ of
elements fixed by σ agrees with K. Set

g = Lie(G)

k = Lie(K) = subspace of g where σ acts as + 1,

p = subspace where σ acts as − 1,

The group G is the identity component of the set of real points of an
algebraic group G . Indeed, consider the adjoint action

G −→ GL(g)

and let G be the Zariski closure of the image of G. It is a closed
subgroup of GL(g), hence algebraic and G is the identity component of
the group of real points G (R)+. Write GC = G (C).

Inside gC = g⊗ C = Lie(G (C)) we write

kc = k,

pc = ip,

gc = kc ⊕ pc.

Then gc is a real form of gC that determines a compact group Gc. The
compact dual of D is the symmetric space of compact type

Ď = Gc/K.

This construction can be reversed and the irreducible non Euclidean
hermitian symmetric spaces come in pairs, one compact and one non
compact (see [AMRT10, Ch. III §2.1]).
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Definition 2.5. — Let D be an irreducible hermitian symmetric
space. If D is of non-compact type, its compact dual is the previously
constructed hermitian symmetric space, while if D is of compact type,
its compact dual is D itself. If D is a hermitian symmetric space with
no Euclidean factors, its compact dual is the product of the compact
duals of all its factors.

Exercise 3. — Consider the case D = H.
1. Show that, in this case g is the Lie algebra of 2 by 2 real matrices

of trace zero, k the subalgebra of skew-symmetric matrices and p
the subspace of symmetric trace zero matrices.

2. Show that gc is the Lie algebra of 2 by 2 skew-hermitian complex
matrices of zero trace. Thus Gc = SU(2) and the compact dual of
H is isomorphic to P1(C).

When working with a general hermitian symmetric space G/K it
may be difficult to visualize the complex structure, unless we find a
nice representation of it as in the case of the upper half plane. The
big advantage of the compact dual is that its complex structure is eas-
ier to visualize. Moreover, a non-compact hermitian symmetric space
can always be embedded in its compact dual making also apparent its
complex structure.

Let D = G/K be a connected hermitian symmetric space with-
out Euclidean factor, and o ∈ D the image of e ∈ G. Assume that
G = Is+(D). Then there is a map uo : U(1) → G such that uo(z)
acts as multiplication by z in ToD. Then J = uo(i) defines the com-
plex structure of ToD and so = uo(−1) is the involution that fixes o.
The subgroup K is the centralizer of uo(U(1)) and, if D is irreducible,
uo(U(1)) is the center of K. The subspace p ⊂ g can be identified with
ToD and the action of K on ToD agrees with the adjoint action of K
on p. Let

pC := p⊗ C = p+ ⊕ p−

be the decomposition of pC into ±i eigenspaces with respect to J
(recall that p is the −1-eigenspace of so = J2). Denote by P± the
subgroup of GC generated by exp(p±). Then KC normalizes P± and
KC∆P−is a parabolic subgroup of GC with unipotent radical P−. Hence
GC/KC∆P− is a projective algebraic variety that we temporarily denote
by X. The following theorem exhibits X as a complex manifold. For
a proof of see [Hel78, Ch.8 §7], See also [AMRT10, Ch. III Theorem
2.1] for an outline.
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Theorem 2.6 (Borel and Harish-Chandra embedding theorem)
1. The map P+×KC×P− → GC given by multiplication is injective

and its image contains G. Moreover (KC · P−) ∩G = K.
2. We obtain maps

G/K // P+ ×KC × P−/KC × P− // GC/KC · P−

D

'

OO

P+

'

OO

X

'

OO

p+

' exp

OO

They are all open holomorphic immersions. The image of D in
p+ is a bounded domain and the image of p+ in X is a dense open
Zariski subset.

3. The compact form Gc of G acts transitively on X. Moreover (KC ·
P−) ∩Gc = K. Therefore X = Gc/K = Ď is the compact dual of
D.

Exercise 4. — We go back to the example D = H, G = PSL2(R),
K = SO2(R)/± Id. It will be easier to work with the double coverings
G̃ = SL2(R) and K̃ = SO2(R). The groups P+ and P− can be defined
as subgroups of G̃C, but the map uo : U(1)→ G does not lift to a map
to G̃.

1. Show that p+ and p− are the one dimensional subspaces of gC
generated respectively by the matrices

1

2

(
1 i
i −1

)
and

1

2

(
1 −i
−i −1

)
Therefore the subgroups P± are given by

P± =

{
P±(z) :=

(
1 + z/2 ±iz/2
±iz/2 1− z/2

)∣∣∣∣z ∈ C
}
.

2. Consider the action of P+ on P1(C) by Moebius transformations
and show that

P+(z) · i =
i(1 + z)

1− z
.

Conclude that the open immersion H→ p+ is given by

τ 7→ τ − i
τ + i
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and the image of the upper half plane is the interior of the unit
disk.

3. The adjoint action of SO2(R) on p+ is given by

Ad

(
a −b
b a

)
(M) =

1

(a+ ib)2
M.

4. Let t ∈ C×, the matrix

K(t) :=
1

2t

(
t2 + 1 i(t2 − 1)
i(1− t2) t2 + 1

)
belongs to SO2(C). The map t 7→ K(t) is a group isomorphism.
The adjoint action of K(t) on p+ is given by multiplication by
t−2.

5. Let

γ =

(
a b
c d

)
∈ G̃,

and denote by s1 the holomorphic map given by the composition

H→ p+
exp−−→ P+ → GC.

Then
γ · s1(τ) = s1(γ · τ) ·K(j1(γ, τ)) · p,

where p ∈ P− and

j1(γ, τ) =
(aτ + b) + i(cτ + d)

τ + i
.

6. Show that j1 satisfies the cocycle condition for the action of G̃ on
H. That is

j1(γ · γ′, τ) = j1(γ, γ′ · τ)j1(γ′, τ).

7. Let f : H → C× be the function f(τ) = (τ + i). Show that the
cocycle

j(γ, τ) = j1(γ, τ)f(τ)f(γ · τ)−1

is given by
j(γ, τ) = (cτ + d).

Conclude that the holomorphic map s : H→ G̃C given by

(2.3) s(τ) = s1(τ)K(τ + i)

satisfies
γs(τ) = s(τ) ·K(cτ + d) · p′

for some element p′ ∈ P−.
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3. Connected Shimura varieties

It is time to consider the quotient of a hermitian symmetric space by
some interesting discrete subgroups.

Definition 3.1. — 1. Let G be a group. Two subgroups Γ1 and Γ2

are said to be commensurable if Γ1 ∩ Γ2 has finite index in both
Γ1 and Γ2.

2. Let G be an algebraic group defined over Q that admits a closed
embedding G ↪→ GLn also defined over Q. An arithmetic subgroup
of G(R) is any subgroup of G(Q) that is commensurable with
G(Q) ∩GLn(Z).

3. An arithmetic subgroup Γ ⊂ G(Q) ⊂ GLn(C) is called neat if for
every x ∈ Γ, the subgroup of C× generated by the eigenvalues of
x is torsion free.

Remark 3.2. — 1. The notion of arithmetic subgroup depends on
the rational structure of G, but once this is fixed, it is independent
of the choice of closed embedding G ↪→ GLn.

2. Any neat arithmetic subgroup is torsion free. Every arithmetic
subgroup has a neat subgroup of finite index.

We are interested in locally symmetric spaces of the form Γ\D for
D = G(R)/K a hermitian symmetric space, with G an algebraic group
over Q and Γ an arithmetic subgroup of G(Q).

It turns out that, if the image of Γ in Is+(D) is torsion free, then it
acts freely on D and therefore the quotient Γ\D is a smooth complex
manifold. Moreover, the fact that Γ is arithmetic implies that Γ\D has
finite volume. Even more, we not only obtain a complex manifold, but
a smooth algebraic variety over C.

Theorem 3.3 (Baily-Borel [BB66]). — Let D(Γ) = Γ\D be the
quotient of a hermitian symmetric space by a torsion free arithmetic
subgroup Γ of Is+(D). Then D(Γ) has a canonical realization as a
Zariski-open subset of a projective algebraic variety D(Γ)∗ . In partic-
ular, it has a canonical structure of a quasi-projective algebraic variety
over C.

Remark 3.4. — In fact, D(Γ) has a structure of algebraic variety
defined over a number field.

We can now give a definition of Shimura variety. The precise def-
inition of Shimura varieties is rather involved as it describes a family
of varieties of a very precise form and requires the language of adéles.
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We refer the reader to the expository paper by Milne [Mil04] for the
precise definition and a different presentation of Shimura varieties. In
these notes we just will present the definition of connected Shimura
varieties using congruence subgroups.

Definition 3.5. — Let G be an algebraic reductive group defined over
Q. Choose an embedding G ↪→ GLn and, for each integer N ≥ 1, define

Γ(N) = G(Q) ∩ {g ∈ GLn(Z) | g ≡ Id mod N}.

A congruence subgroup of G is a subgroup that contains some Γ(N)
with finite index.

Every congruence subgroup is an arithmetic subgroup but the con-
verse is not true in general. For instance SL2 has infinitely many arith-
metic subgroups that are not congruence subgroups, see for instance
[LS03, Chs. 6,7].

Definition 3.6. — A connected Shimura datum is the data of
1. a semisimple algebraic group G defined over Q of non-compact

type,
2. a connected hermitian symmetric space D, and
3. an action of Gad(R)+ on D defined by a surjective homomorphism
Gad(R)+ → Is+(D).

Example 3.7. — The data of G = SL2, D = H and the action of G
on H by Moebius transforms is a connected Shimura datum.

Definition 3.8. — The connected Shimura variety Sh◦(G,D) is the
inverse system of locally symmetric varieties (Γ\D)Γ, where Γ runs over
the set of torsion-free arithmetic subgroups of Gad(R) whose preimage
in G(R)+ is a congruence subgroup.

This definition has some disadvantages. First, for some number the-
oretic applications it is better to start with a reductive group and not
a semisimple group. Second, each space on the tower (Γ\D)Γ has a
model over a number field, but the number field may change with the
subgroup. Therefore, the inductive limit may only be defined over an
infinite extension of Q. For instance the modular curve Γ(N)\H has
a canonical model over Q[ξN ], where ξN is a primitive N -th root of 1.
Therefore, the connected Shimura variety Sh◦(SL2,H) is defined over
the whole cyclotomic extension of Q.
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The definition of Shimura varieties (as opposed to connected Shimura
varieties) solves these disadvantages. In particular Shimura varieties are
defined over number fields. See [Mil04, §5] for more details.

In many cases, the algebraic variety X = D(Γ) = Γ\D is non-
compact and it is useful to compactify it. Part of the content of
Theorem 3.3 is that there exists a canonical compactification D(Γ)∗

that is a projective variety. This compactification is canonical but is
highly singular. Of course we can appeal to the general theorem of
resolution of singularities to find a non-singular compactification. But
then we lose control on the compactification. The theory of toroidal
compactifications [AMRT10] gives us a controlled family of smooth
compactifications.

Theorem 3.9. — Let D(Γ) = Γ\D be the quotient of a hermitian
symmetric space by an arithmetic subgroup Γ of Is+(D). Then D(Γ) ad-
mits a family of compactifications that can be described combinatorially
in terms of the groups G,K and Γ and are called toroidal compactifica-
tions. If Γ is neat, there are smooth projective toroidal compactifications
X of X with X \X a simple normal crossings divisor.

Example 3.10. — We recall how the general theory of compactifi-
cations of locally symmetric spaces applies to the modular curve. Let
Γ ⊂ SL2(Z) be a subgroup of finite index such that − Id 6∈ Γ and write
Y (Γ) = Γ\H. The group Γ acts on P1(Q). The curve Y (Γ) can be com-
pactified by adding one point for each equivalence class for the action
of Γ on P1(Q). These points are called cusps. The compactified curve
is denoted X(Γ).

X(Γ) = Y (Γ) ∪ {cusps}
In order to understand the algebraic structure of X(Γ), we give a local
coordinate on X(Γ) around each cusp. Any cusp can be sent to the
point∞ by an element γ ∈ SL2(Z). Replacing Γ by γΓγ−1, it is enough
to understand what happens at the cusp ∞ = (1 : 0) ∈ P1(Q).

The stabilizer of the point ∞ in Γ is an infinite cyclic group

Γ∞ =

{(
1 nw
0 1

)∣∣∣∣n ∈ Z
}

The integer w > 0 is called the width of the cusp ∞. Let ∆ be the
interior of the unit disk and ∆∗ the interior of the unit disk with the
point 0 removed. The map

H −→ ∆∗

τ 7−→ exp(2πiτ/w)
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induces an isomorphism Γ∞\H→ ∆∗. The map

Γ∞\H→ Γ\H
sends a neighborhood of 0 ∈ ∆ to a neighborhood of the cusp ∞ in
X(Γ). Thus we can use q = exp(2πiτ/w) as a local coordinate around
the cusp ∞.

4. Equivariant vector bundles and invariant metrics

We next move our attention to the construction of holomorphic equiv-
ariant vector bundles on a hermitian symmetric space. Being equivari-
ant they will descend to vector bundles on any quotient by an arithmetic
subgroup.

Let D = G/K be a hermitian symmetric space, V a complex vector
space of finite dimension and ρ : K → GL(V ) a representation of K.
The group K acts on G on the right and the map G→ D is a principal
K-bundle. Through the representation ρ, K also acts on V . This time
on the left. Thus we can form the space

V = G×
K
V := G× V/ ∼

where ∼ is the equivalence relation

(g · k, v) ∼ (g, ρ(k)(v)), for all g ∈ G, v ∈ V, k ∈ K.
The map V → D given by [(g, v)] 7→ g · o is well defined and V is
a differentiable vector bundle over D with fiber V . Moreover V is a
G-equivariant vector bundle with the G-action given by

g · [(g′, v)] = [(gg′, v)].

But, is it possible to give to V the structure of an equivariant holomor-
phic vector bundle? The answer is yes, but not in a unique way.

To this end, we can complexify ρ to a representation of ρ : KC →
GL(V ) and we can extend it to a representation of KC · P−. One
possible way to do this is to declare that the action of P− is trivial.

We now repeat the previous process to obtain a holomorphic vector
bundle

Vh := GC ×
KC·P−

V

on the compact dual Ď of D. The restriction of Vh to D is a holomor-
phic vector bundle that has the same underlying differentiable structure
as V . We will identify both vector bundles and think of V as an equiv-
ariant holomorphic vector bundle.
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Remark 4.1. — The condition that the action of P− is trivial gives
a particular choice of holomorphic structure. The holomorphic vector
bundles produced using this condition are called fully decomposable vec-
tor bundles. One has to be careful that some interesting equivariant
holomorphic vector bundles on D are not fully decomposable.

Denote by π : GC → Ď the projection deduced from Theorem 2.6
and let s : D → GC be a holomorphic map such that the composition
π ◦ s : D → Ď agrees with the embedding of D in Ď. For instance we
can take s as the composition D ↪→ p+

exp−−→ P+ ↪→ GC.
The holomorphic vector bundle π∗Vh over GC has a canonical trivi-

alization π∗Vh = GC×V . Thus V ' s∗GC×V ' D×V is a trivialized
vector bundle. Although the trivialization depends on the map s.

Let g ∈ G. Since π(g · s(x)) = π(s(g · x)), we deduce that

gs(x) = s(gx)j(g, x)p−(g, x)

for well defined elements j(g, x) ∈ KC and p−(g, x) ∈ P−. The map j
is a cocycle in the sense that

j(gg′, x) = j(g, g′ · x)j(g′, x).

This cocycle depends on the choice of s. The transformation rule for
p− involves conjugating by k, but we will not need it.

Exercise 5. — Prove that, in the trivialization determined by s, the
action of g on V is given by

g · (x, v) = (g · x, ρ(j(g, x))(v)

Example 4.2. — We go back to the example D = H. Both groups K
and K̃ are isomorphic to U(1). The irreducible representations of U(1)
are one dimensional and classified by its weight. The representation of
weight k ∈ Z is given, for z ∈ U(1) ⊂ C× by

ρk(z)(v) = zkv.

Since the map K̃ → K is a covering of order 2, a representation of K
of weight n determines a representation of K̃ of weight 2n.

Let k be an even integer. The one-dimensional representation of K
of weight k/2 induces the representation of K̃ = SO2(R) of weight k.
Let Lk be the corresponding G-equivariant line bundle on H. We use
the map (2.3) to trivialize Lk. By Exercise 4 (7) we deduce that the
action of G on Lk is given, in this trivialization, by

g · (τ, v) = (g · τ, (cτ + d)kv).
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Exercise 6. — In this exercise we want to recover the classical defini-
tion of modular forms. Let k be an even integer and let ρk : SO2(R)→
GL1(C) be the representation of weight k. Let Γ ⊂ SL2(Z) be a neat
subgroup of finite index, and write Y (Γ) = Γ\H for the corresponding
open modular curve. Since Γ is neat, Y (Γ) is a smooth quasi-projective
curve. Let Lk be the equivariant line bundle on H determined by ρk
and let Mk(Γ) the induced line bundle in Y (Γ). Prove that a section s
of Lk descends to a section of Mk(Γ) if and only if it is invariant under
Γ. That is, for any γ ∈ Γ,

γs(τ) = s(γ · τ).

Using the trivialization of Exercise 5 we can identify sections of Lk

with holomorphic functions on H. Prove that a holomorphic function
f defines a section of Mk(Γ) if and only if, for any γ ∈ Γ,

(4.1) f(γ · τ) = (cτ + d)kf(τ).

Remark 4.3. — Of course, the condition (4.1) makes sense for non-
necessarily neat arithmetic subgroups and for odd weight k. But not
always such functions can be interpreted as sections of a line bundle on
Y (Γ).

The next task is to put metrics on the vector bundles we have con-
structed. Since the group K is compact, given any complex representa-
tion ρ : K → GL(V ) there is a (non-unique) hermitian metric on V that
is invariant under the action of K. Let 〈·, ·〉 be one such K-invariant
metric on V . Then there is a unique way to define a hermitian metric
on the vector bundle V := G×

K
V → D such that:

1. the restriction to the fiber Vo = V over the point o agrees with
the given metric;

2. it is invariant under the action of G. That is, if g ∈ G, p ∈ D, Vp
the fiber of V over p and v, w ∈ Vp, then

〈u, v〉p = 〈g · u, g · v〉g·p.
In fact, given p ∈ D and v, w ∈ Vp, we can choose a g ∈ G with g ·p = o
and we necessarily have

(4.2) 〈u, v〉p = 〈g · u, g · v〉o.
So such invariant metric is unique once we have fixed the metric on V .
If g′ is another element such that g′ · p = o, then g′ = kg with k ∈ K,
and

〈g′ · u, g′ · v〉o = 〈kg · u, kg · v〉o = 〈g · u, g · v〉o.
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Thus the product (4.2) does not depend on the choice of g, and the
invariant hermitian metric is well defined.

Exercise 7. — 1. Let τ ∈ H and g ∈ SL2(R). Show that

=(g · τ) =
=τ

|cτ + d|2
,

where =τ denotes the imaginary part of τ .
2. Let ρk : SO2(R) be the representation of SO2(R) of weight k and

let Lk the associated equivariant line bundle over H and let C > 0
be a real positive constant. On the trivialization of Example 4.2,
show that the norm

(4.3) ‖(τ, v)‖2 = |v|2(4π=τ)k

defines an invariant metric on Lk. Show that every invariant
metric on Lk is a constant multiple of this one. The metric on
Lk given by (4.3) is called the Petersson metric.

5. Log-singular metrics and log-log forms

Let D = G/K be a hermitian symmetric space, where G is the con-
nected component of the identity of the set of real points of a semisimple
algebraic group defined over Q, and let Γ ⊂ G be an arithmetic sub-
group of G. Put X = Γ\D for the quotient of the symmetric space by
the arithmetic group.

Let ρ : K → GL(V ) be a complex representation of K. Since the
associated fully decomposable vector bundle V over D is G-equivariant,
it is also Γ equivariant. Thus it descends to a vector bundle E on X.
If V has a K-invariant metric, the vector bundle V has an induced
invariant metric, that descends to a metric on E. Let X be a toroidal
compactification of X as in Theorem 3.9. Once we have compactified
X, it is a natural question to extend to X the hermitian vector bundle
we have constructed. Let us first examine the case of the modular curve.

Example 5.1. — Let s be a section of the line bundle Mk(Γ) on Y (Γ)
and let f be the corresponding holomorphic function given in Exercise
6. By the transformation rule (4.1), we see that f is invariant under
the action of Γ∞. By Fourier analysis we have an expansion

(5.1) f =
∑
n∈Z

anq
n
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with q = exp(2πiτ/w) as in Example 3.10. The section s is said to
be meromorphic at the cusp ∞ if the expansion (5.1) has only a finite
number of negative terms and is said to be holomorphic if this expansion
has only non-negative terms. In fact we define

ord∞(s) = min {n | an 6= 0} .

This procedure specifies an extension of Mk(Γ) to X(Γ).

Exercise 8. — Let s be the section of Mk(Γ) of Example 5.1 and f
the corresponding function. Let ‖ · ‖ denote the Petersson metric (4.3).

1. Show that, in a neighborhood of the cusp ∞

‖s‖2 = |f |2(−w log |q|2)k = ϕ(q)|q|2 ord∞ s(log |q|2)k,

where ϕ is a continuous function with ϕ(0) 6= 0 and w is the width
of the cusp.

2. The first Chern form of the line bundle Mk with the metric ‖ · ‖
is given by

c1(Mk, ‖ · ‖) =
i

2π
∂∂̄(− log ‖s‖2).

Show that, locally around the cusp, this first Chern form can be
written as

(5.2) c1(Mk, ‖ · ‖) =
ik

2π

dq ∧ dq̄
qq̄(log qq̄)2

.

The (1, 1)-form given in equation (5.2) determines a metric on Y (Γ)
called the hyperbolic metric or also the Poincaré metric.

As Exercise 8 shows, we can not extend the line bundle Mk(Γ) in
such a way that the Petersson metric extends to a smooth (or even
continuous) metric on the whole X(Γ). The problematic term being
(log |q|2)k. The best we can hope for is a log-singular metric.

Log-log growth forms is a class of singular differential forms. Among
them one finds functions like log(− log |q|) and the Poincaré metric
(5.2). Log-log growth forms form an algebra and the complex of log-log
growth forms has nice cohomological properties. To study the prop-
erties of log-log growth forms, until the end of the section, we forget
about symmetric spaces and work with arbitrary complex manifolds and
normal crossings divisors. Thus we change the notation accordingly.

Let now X be a complex manifold, we will denote by E ∗X the sheaf of
smooth complex valued differential forms and by E ∗X,R the subsheaf of
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real valued forms. We will use roman typography to denote the space
of global sections. Namely

E∗X = Γ(X,E ∗X).

Recall that E∗X has a bigrading,

EnX =
⊕

p+q=n

Ep,qX ,

where η ∈ Ep,qX if it can be locally written as

η =
∑
I,J

fI,J(z1, . . . , zd)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

where the sum runs over subsets I = {i1, . . . , ip} and J = {j1, . . . , jq}
of {1, . . . , d}, and fI,J are C∞-functions.

There is also a Hodge filtration F given by

F pEnX =
⊕
p′≥p

Ep
′,n−p′
X ,

and a decomposition d = ∂ + ∂̄, where

∂ : Ep,qX → Ep+1,q
X and ∂̄ : Ep,qX → Ep,q+1

X .

Let D ⊂ X a normal crossings divisor. This means that locally, D is
given by the equation

(5.3) z1 · · · zk = 0.

That is, the divisor D is locally like a collection of coordinate hyper-
planes. We will say that an open coordinate neighbourhood U ⊂ X with
coordinates (z1, . . . , zk) is a small coordinate neighbourhood adapted to
D if D has an equation of the form (5.3) for some k ≤ n and each point
p ∈ U has coordinates (z1, . . . , zi) satisfying |zi| ≤ 1/(2e).

In the next definition we will use multi-index notation. That is, for
any multi-index α = (α1, . . . , αd) ∈ Zd≥0, we write

|α| =
d∑
i=1

αi, zα =
d∏
i=1

zαi
i , z̄α =

d∏
i=1

z̄αi
i ,

rα =
d∏
i=1

rαi
i , (log(1/r))α =

d∏
i=1

(log(1/ri))
αi ,

∂|α|

∂zα
f =

∂|α|∏d
i=1 ∂z

αi
i

f,
∂|α|

∂z̄α
f =

∂|α|∏d
i=1 ∂z̄

αi
i

f.
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If α and β are multi-indices, we denote by α + β the multi-index with
components αi + βi. If α is a multi-index and k ≥ 1 is an integer, we
will denote by α≤k the multi-index

α≤ki =

{
αi, i ≤ k,
0, i > k.

The following definition is taken from [BGKK05, Definition 2.17].

Definition 5.2. — Let X be a complex manifold and D ⊂ X a nor-
mal crossings divisor. Let U be a small open coordinate neighborhood
adapted to D. For every integer K ≥ 0, we say that a smooth complex
function f on V \D has log-log growth along D of order K, if there ex-
ists an integer NK such that, for every pair of multi-indices α, β ∈ Zd≥0

with |α+ β| ≤ K, it holds the inequality

(5.4)

∣∣∣∣∣∂|α|∂zα
∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣∣ ≺
∣∣∣∏k

i=1 log(log(1/ri))
∣∣∣NK

|zα≤k z̄β≤k |
.

We say that f has log-log growth along D of infinite order, if it has
log-log growth along D of order K for all K ≥ 0. The sheaf of differ-
ential forms on X with log-log growth along D of infinite order is the
subalgebra of ι∗E ∗U generated, in each small coordinate neighborhood
U adapted to D, by the functions with log-log growth along D and the
differentials

dzi
zi log(1/ri)

,
dz̄i

z̄i log(1/ri)
, for i = 1, . . . , k,

dzi, dz̄i, for i = k + 1, . . . , d.

A differential form with log-log growth along D of infinite order will be
called a log-log growth form.

A differential form ω on X \D is called log-log if ω, ∂ω, ∂̄ω and ∂∂̄ω
are log-log growth forms. The sheaf of log-log forms is denoted E ∗〈〈D〉〉
and the space of goblal sections as E∗〈〈D〉〉.

Log-log forms have very nice properties. In fact, they are almost as
good as smooth forms for many purposes. First E ∗〈〈D〉〉 is an algebra
and has a bigrading

E ∗〈〈D〉〉 =
⊕

p+q=n

E p,q〈〈D〉〉
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and an associated Hodge filtration

F pE ∗〈〈D〉〉 =
⊕
p′≥p

E p′,n−p′〈〈D〉〉.

We will denote by D∗X the sheaf of currents on X. It has also a bi-
grading and a Hodge filtration. Currents are a fundamental tool in
Arakelov theory. For more details about currents, the reader is referred
to de Rham book [dR73], also the fourth chapter of [GH94] or, for a
quick introduction the first section of [GS90a].

Recall that a morphisms of complexes (in any abelian category)
f : A∗ → B∗ is called a quasi-isomorphism if it induces an isomorphism
in cohomology objects. A morphism of filtered complexes

f : (A∗, F )→ (B∗, F ),

is called a filtered quasi-isomorphism if all the induced morphisms

F pf : F pA∗ → F pB∗

are quasi-isomorphisms.
The next result summarizes the main properties of the complex of

log-log forms.

Theorem 5.3. — 1. Every log-log form is locally integrable. More-
over, they have no residue, this means that the map E ∗X〈〈D〉〉 →
D∗X is a morphism of complexes.

2. The maps

(E ∗X , F ) −→ (EX∗〈〈D〉〉, F ) −→ (D∗X , F )

are filtered quasi-isomorphisms. Therefore, if X is a smooth pro-
jective variety, we can use the complex E∗X〈〈D〉〉 to compute the
complex cohomology of X with its real structure and its Hodge
filtration.

Proof. — The first statement is proved in [Mum77] for good forms,
that are very close to log-log forms. The proof in loc. cit can easily be
extended to log-log forms.

The second statement is [BGKK05, Theorem 2.23].

Recall that, to any holomorphic hermitian vector bundle we can as-
sociate a collection of characteristic forms that represent the character-
istic classes of the bundle. Let E be a holomorphic vector bundle on
a complex manifold X. Choose a local holomorphic frame for E. The
hermitian metric is represented in this frame by a matrix of smooth
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functions h. The curvature matrix of the metric is the matrix of (1, 1)-
forms

K = ∂̄(∂h · h−1).

The coefficients of the characteristic polynomial of K do not depend
on the frame and define global differential forms that represent the
characteristic classes of E. For more details, see for instance [GH94,
Chapter 3, §3] or [Wel80, III §3].

Definition 5.4. — Let X be a complex manifold, D a normal cross-
ings divisor and E a holomorphic vector bundle on X with a smooth
hermitian metric onX\D. The metric is said to be log-singular alongD
if, for each small coordinate chart of X adapted to D, and holomorphic
frame for E, the following estimates hold.

1. The functions hi,j and (deth)−1 grow at most logarithmically
along D.

2. The 1-forms (∂h · h−1)i,j are log-log forms along D.

The interest for us of log-singular metrics and log-log forms comes
from the following two theorems by Mumford [Mum77, Theorem 1.4]
and [Mum77, Theorem 3.1]. See also [BGKK05].

Theorem 5.5. — Let X be a complex manifold and D a normal cross-
ing divisor. Let E be a vector bundle on X with a smooth metric ‖ · ‖
on X \D that is log singular along D. Then the characteristic forms of
(E, ‖ · ‖) are log-log forms. In particular they are locally integrable and
the associated currents represent the Chern classes of E.

Theorem 5.6. — Let D = G/K be a hermitian symmetric space, with
G a semisimple algebraic group defined over Q, Γ a neat arithmetic
subgroup of G, V a complex vector space with a hermitian metric and ρ
a unitary representation of K on V . To these data we have associated a
smooth quasi-projective complex variety X = Γ\G/K and a hermitian
vector bundle E on X with hermitian metric h. Let X be a toroidal
compactification of X with D = X \X a simple normal crossing divisor.
Then E can be extended uniquely to a vector bundle E over X such that
h is log singular along D.

6. Arakelov geometry with log-log forms

Following the ideas of the previous section, in order to extend
Arakelov theory to Shimura varieties, it is enough to replace smooth
forms by log-log forms. The theory is almost identical to the classical
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theory by Gillet and Soulé [GS90a]. For more details the reader can
follow Chapter I by Soulé of this volume. We summarize the results in
the case of varieties over Spec(Z). All the changes occur at the generic
fibre. Thus there is no difficulty to extend everything to arbitrary
arithmetic rings. A variant of the theory presented here has been
developed in [BGKK05] and [BGKK07].

Let X be a regular flat projective variety over SpecZ. Let XC
be the associated smooth projective complex variety and let D ⊂ XC
be a normal crossing divisor defined over R. There is an antilinear
involution F∞ : XC → XC corresponding to complex conjugation of the
coordinates. Since the divisor D is defined over R it is invariant under
this involution.

Definition 6.1. — Let Z be a codimension p cycle on X . A log-log
Green current for Z is a current gZ ∈ Dp−1,p−1

X satisfying a symmetry
condition with respect complex conjugation

F ∗∞gZ = (−1)p−1gZ

and the equation

ωZ := ddcgZ + δZ ∈ Ep,pX 〈〈D〉〉.
A codimension p log-log arithmetic cycle is a pair (Z, gZ) with Z a
codimension p cycle and gZ a log-log Green current for Z. We denote
by Ẑp(X , 〈〈D〉〉) the group of codimension p log-log arithmetic cycles.

The group of rational cycles does not change with respect to the
classical Gillet and Soulé theory:

R̂at
p
(X , 〈〈D〉〉) = R̂at

p
(X ) = Span{(div(f), [− log |f |])+(0, ∂u+∂̄v)}

Definition 6.2. — The log-log arithmetic Chow groups are defined as

ĈH
p
(X , 〈〈D〉〉) = Ẑp(X , 〈〈D〉〉)/ R̂at

p
(X ).

A consequence of Theorem 5.3 is that any log-log Green current for
a cycle Z, that meets D properly, can be represented by a differential
forms with logarithmic singularities along Z and that is log-log along
D. This allow one to prove that most of the properties of the arithmetic
Chow rings carry over to the log-log arithmetic Chow groups.

For instance, one can define the intersection product as in the clas-
sical case, but there is the caveat that we have to move our cycles to
meet properly D as well.

Let Z and W be cycles of codimension p and q respectively in X .
Assume that ZC and WC intersect properly and that both intersect
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properly with D. Let gZ and gW be log-log Green currents for Z and
W respectively and represent them with differential forms with log and
log-log singularities. Then the ∗-product

gZ ∗ gW = gZ ∧ δW + ωZ ∧ gW
is well defined. As in the classical case, we face the technical problem
that Z and W intersect properly on the generic fibre but they do not
need to intersect properly globally. In fact the moving lemma is only
known for varieties over a field. To remedy this problem following
[GS90a], one introduce the Chow groups of X of cycles that do not
meet XQ. Denote these groups as CHp+q(X )fin,Q. Then there is a well
defined intersection product

(Z, gZ) · (W, gW ) ∈ CHp+q(X )fin,Q ⊕ Ẑp+q(XQ, 〈〈D〉〉).
By the moving lemma, this induces an algebra structure on

ĈH
∗
(X , 〈〈D〉〉)Q =

⊕
p

ĈH
p
(X , 〈〈D〉〉)⊗Q.

The inverse image also needs some compatibility with the divisor D.
Let f : Y →X be a morphism of varieties over Z. Write Y = YC and
X = XC for the associated complex varieties, and let fC : Y → X be
the induced morphism of complex varieties. Clearly, if the image by fC
of any component of Y is contained in D ⊂ X, then there is no hope
to define the inverse image. If we add the hypothesis that E = f−1

C (D)
is a normal crossing divisor of Y , then there is a well defined inverse
image map

f∗ : ĈH
∗
(X , 〈〈D〉〉) −→ ĈH

∗
(Y , 〈〈E〉〉).

The direct image can be more complicated and we discuss only the
case of morphisms to points. Assume that X is equidimensional of
dimension d+ 1 and let π : X → SpecZ be the structural map. Then
there are well defined direct images

π∗ : ĈH
p
(X , 〈〈D〉〉) −→ ĈH

p−d
(SpecZ).

Since

ĈH
p
(SpecZ) =


Z, if p = 0,

R, if p = 1,

0, otherwise.

only the groups ĈH
d+1

(X , 〈〈D〉〉) and ĈH
d
(X , 〈〈D〉〉) have a non-zero

direct image to SpecZ.
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In the paper [BGKK05] it is developed a theory of arithmetic char-
acteristic classes for log-singular hermitian vector bundles extending
the theory of [GS90b]. The essential ingredients for this extension are
Mumford’s theorems 5.6 and 5.5.

Theorem 6.3 ([BGKK05]). — Let X be a regular projective arith-
metic variety over SpecZ such that X = XC is a finite union of smooth
toroidal compactifications of locally symmetric hermitian spaces. Let D
be the boundary divisor that we assume to be a normal crossing divisor.
Let E be a vector bundle on X with a singular hermitian metric such
that, on each component of X, it is the fully decomposable holomorphic
vector bundle associated to a unitary representation of the compact sub-
group as described in §3. Then the theory of arithmetic characteristic
classes can be extended to define log-log arithmetic characteristic classes

ĉi(E) ∈ ĈH
i
(X , 〈〈D〉〉).

Corollary 6.4. — Let X be an integral model of a Shimura variety
of dimension d, Y a codimension p cycle on X and L0, . . . , Ld−p be
automorphic line bundles with their Petersson metric. Then the height

hL0,...,Ld−p
(Y )

is defined.

Example 6.5. — This example is taken from [Küh01]. Let Γ =
SL2(Z). This is an arithmetic group, but it is not neat and the quotient
Y (1) = Γ\H has elliptic fixed points. We can ignore the orbitfold
structure coming from the elliptic fixed points and pretend that Y (1) '
A1. Or, more preciselly, we can choose a neat subgroup Γ′ ⊂ Γ and work
on a covering of Y (1) but it is easier to work directly with Y (1). We
compactify Y (1) by adding one cusp to obtain a complete curve X(1).
Let k be a positive integer divisible by 12. Then Mk(1) is a line bundle
on X(1) with a log singular hermitian metric on the cusp: the so called
the Petersson metric. The fact that we need to go to weight 12 is
related with the orbitfold structure of Y (1). We can choose a model
X (1) ' P1

SpecZ of X(1) and Mk(1) can be extended to a line bundle on
X (1). See [Küh01] for details. We denote by Mk(1) the line bundle
on the model with the log singular hermitian metric. Then

ĉ1(Mk(1)) · ĉ1(Mk(1)) = k2
(

1

2
ζQ(−1) + ζ ′Q(−1)

)
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where ζQ is Riemann zeta function. As we see in this example, not only
the value of the Riemann zeta function appears, but also the value of
its derivative.

For more examples of arithmetic intersection numbers on Shimura
varieties and its relation with Kudla’s program, see [KRY06],
[BBGK07], [BHY15], [BO10], [BY09], [How15].
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