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Abstract

We investigate the combined effects of network scale flow variability and re-

tention due to matrix-diffusion on the scaling behavior of transport through

fractured media. Two of the principal mechanisms controlling the transport of

solutes through fractured low-permeability media are broad distributions of flow

velocities and retention times in the solid matrix. We study the relative impact

of these two processes under different initial conditions using a set of three-

dimensional discrete fracture network simulations. We use these simulations to

develop and calibrate an upscaled continuous time random walk (CTRW) ap-

proach for advective transport based on an Ornstein-Uhlenbeck model for the

particle velocities that accounts for the fracture-matrix coupling using a com-

pound Poisson process. This CTRW model can be conditioned on the initial

solute distribution and allows to observe late-time scaling behavior at distances

beyond what is feasible to observe using high-fidelity direct numerical simula-

tions. We determine that the initial distribution of particles leads to marked

differences in the persistent long-term scale behavior in the solute travel time

distributions, even those undergoing retention due to matrix diffusion through
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implementation and analysis of the model.

Keywords: fracture networks, matrix diffusion, solute transport, injection

mode, continuous time random walk

1. Introduction

The transit time of solutes carried along by flows within low-permeability/low-

porosity fractured media is determined by the interplay of multiple phenom-

ena [1, 2, 3, 4, 5, 6, 7]. Two of the principal mechanisms that govern the behav-

ior of solutes are the structure of heterogeneous fluid velocity field within the5

fracture network through which the solute advects [8, 9, 10, 11, 12, 13, 14, 15]

and mass transfer between mobile and immobile zones, e.g., diffusion into and

out of the rock matrix surrounding the fracture network [16, 17, 18, 19, 20, 21,

22, 23, 24]. The relative impact of these two mechanisms depends on various

hydrological and geophysical conditions, including how solutes enter the frac-10

ture network and properties of the rock matrix [17, 25, 26]. In general, the

initial distribution of a solute entering a domain can be described using one of

two conceptualizations: resident-based and flux-weighted injection [27]. Physi-

cally, resident-based injection corresponds to a source that introduces a solute

uniformly throughout an input area. For this reason, it is also referred to as15

uniform injection. This boundary condition can be achieved in experiments or

simulations by injecting a constant amount of mass into all inflow channels. In

the field, it could correspond to multiple leaking canisters within a buffer zone

surrounding a subsurface waste repository. In contrast, flux-weighted injection

corresponds to a solute released in proportion to the in-flowing volumetric flow20

rate at a location of insertion. This boundary condition can be achieved by

maintaining a constant concentration at all inflow channels and would corre-

spond to a miscible chemical released into a packed-off bore-hole connected to

multiple hydraulically active fractures. These two injection modes are known

to result in different transport behaviors through both fractured and hetero-25

geneous porous media [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The
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initial condition determines what regions in the domain are sampled by the

particles during a pre-asymptotic / non-ergodic period. When particles enter

the domain according to flux-weighting under ergodic conditions, the distri-

bution of Lagrangian velocities sampled at equal distances along a pathline is30

stationary and can be related directly to the Eulerian velocity PDF through

flux-weighting [40, 41, 35, 42]. In contrast, particles sample the unweighted Eu-

lerian velocity distribution along the inlet plane under resident initial conditions.

As particles move through the system, they channelize into regions of higher ve-

locity and evolve into the steady-state Lagrangian distribution [34], i.e., the35

velocity PDF is not initially stationary. The particles injected under resident

conditions sample more low velocities than their flux-weighted counterparts,

and in turn, lower decay exponents in the advective travel time distributions

are commonly observed [29, 35, 36, 34].

While these studies concerning the influence of particle injection mode have40

advanced our understanding of the impact of initial positions on transport, little

is comparatively understood about the combined effects of injection mode and

matrix diffusion. Field and laboratory experiments, as well as numerical simu-

lations, have shown that solutes undergoing matrix-diffusion exhibit power-law

scaling in the tails of the travel time distribution [16, 43, 44, 20, 21, 22, 23, 24].45

In the classical model of matrix diffusion, this power-law tail decays with an

exponent of -3/2 [22, 45, 46]. However, there are tracer tests in fractured rock

that exhibit breakthrough curves where the exponent deviates from this classi-

cal prediction [20, 24, 16]. A number of theories and interpretations have been

proposed to explain these differences [47, 17, 21, 48, 49]. A recent work [21]50

showed that under particular conditions, the interplay between advection and

matrix-diffusion could lead to power-law tailing behavior with exponents devi-

ating from the classically predicted -3/2 if the advective travel time distribution

decays sufficiently slowly. Moreover, it was found [21, 50] that the influence

of matrix diffusion manifests in breakthrough curves depending on the scale of55

observation. At short distances, there is a pre-asymptotic time regime that is

fully determined by advective heterogeneity, while at longer times, there is an
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asymptotic regime that shows the signatures of matrix diffusion.

We characterize the relative impact of flow heterogeneity and matrix diffu-

sion at different initial conditions on long-term transport behavior in fracture60

networks using a combination of high-fidelity simulations and upscaled trans-

port models. For the high-fidelity models, we perform a series of flow and

transport simulations in a semi-generic three-dimensional discrete fracture net-

work (DFN) at the kilometer scale. DFN models are a simulation methodology

to model flow and transport through a fractured medium where fractures are65

explicitly represented, cf. Berre et al. [51] for a review of modern approaches for

the simulation flow and transport in fractured media. We represent solute trans-

port as a plume of passive tracer particles to characterize the influence of both

uniform and flux-weighted injection modes. We observe particle attributes, e.g.,

travel time and path line distance, at uniformly spaced control planes through-70

out the network. We observe purely advective transport as well as that retarded

by matrix diffusion. This particle-based methodology readily allows for the in-

clusion of matrix diffusion into a DFN model using a time-domain random walk

(TDRW) where the total travel time of a particle is a combination of the time

advecting through the in-fracture flow field and time spent diffusing into and75

out of the matrix [52, 53, 21, 54].

The computational expense of running DFN simulators limits their usage to

study transport at large scales, which is required to observe the relative impact

of injection mode and matrix diffusion. This limitation has prompted the use of

upscaled transport models such as the continuous-time random walk (CTRW)80

and fractional-order transport models [55, 56, 57, 58, 59] to study flow and trans-

port in fractured media. To this end, we develop a CTRW model for advective

transport based on an Ornstein-Uhlenbeck model for the particle velocities and

the fracture-matrix coupling based on a compound Poisson process. We cali-

brate the model using the DFN simulations and then provide observations of85

transport behavior beyond what is observable using the high-fidelity simula-

tions. Additionally, we use this model to derive the expected scalings of the

breakthrough curves, which we compare to the CTRW observations. Through
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implementation and analysis of the models, we determine that the initial distri-

bution of particles leads to marked differences in the persistent long-term scale90

behavior undergoing retention due to matrix diffusion.

2. Solute Transport

We represent solute transport using a plume of indivisible nonreactive par-

ticles, i.e., using a Lagrangian approach. This section describes how the initial

positions of particles are determined and then their movement through the fluid95

velocity field within the fracture network.

2.1. Initial Positions

There are multiple methods to determine the distribution of particles under

resident/uniform and flux-weighted conditions. In one numerical method, all

particles are assigned the same mass, and the distribution of their locations dis-100

tinguishes injection mode. Let M denote the total mass of a solute represented

by N individual particles. Let {x0} denote the set of initial positions along

fractures intersecting with the inlet plane denoted Ω0. We use equi-spacing

(uniform distance) between points in {x0} along the fracture intersections. The

value of this distance depends on the total intersection length of fractures along105

Ω0 and N , δl = Ω0/N . To represent resident injection, the same number of

particles n are placed at every point in {x0}

n(x0) =

⌈
M

N

⌉
∀ x0 ∈ {x0} . (1)

For flux-weighting, we also need to consider the volumetric flow rate across the

entire inflow face and at every point in {x0}. The total volumetric flow rate Q̄110

along Ω0 is defined as

Q̄ =

∫
Ω0

dx0Q(x0) . (2)

where Q(x0) is the volumetric flow rate at x0. Then the number of particles

placed at x0 is proportional to the volumetric flow rate at that point

n(x0) =

⌈
M

N

Q(x0)

Q̄

⌉
. (3)115
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In an alternative numerical method, particles are assigned different portions

of the total mass, but same number of particles are assigned to every point in

{x0}. To represent resident injection, the mass of a single particle m(x0) placed

at point in {x0} is

m(x0) =
M

N
∀ x0 ∈ {x0} (4)120

and for flux-weighted

m(x0) =
M

N

Q(x0)

Q̄
(5)

By comparison, the two methods resident injection ((1) and (4)) are clearly

equivalent. For flux-weighting, comparison of (3) and (5) indicates that the

methods become equivalent as the number of particles or initial positions be-125

comes sufficiently large. The primary advantage of the second method is that

the number of initial positions can be substantially larger than when using the

first method for the same number of particles, which can facilitate improved

sampling of the velocity field with fewer particles. We adopt the second method

in our simulations.130

2.2. Particle Transport

We consider first purely advective transport of particles that originate from

the position x0 in the inlet plane Ω0 located at x = 0, which is perpendicular

to the mean flow direction. The particle position x(t) evolves according to the

advection equation135

dx(t)

dt
= u[x(t)], x(t = 0) = x0. (6)

The advective transport problem can be formulated equivalently in terms of the

distance s(t) traveled by a particle along a streamline. The length s(t) of the

trajectory at a time t is given by140

ds(t)

dt
= u[x(t)]. (7)

where we defined the Lagrangian velocity magnitude u[x(t)] = |u[x(t)]|. As

mentioned above, the length of the pathline, s, is used to parameterize the
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spatial and temporal coordinates of the particle. Thus, changing variables ac-

cording to dt → u[x(s)]ds, we obtain for the space-time particle trajectory in145

terms of s

dx(s)

ds
=

v(s)

v(s)

dt(s)

ds
=

1

v(s)
(8)

where we defined the space-Lagrangian velocity v(s) = u[x(s)] and its magni-

tude v(s) = |v(s)|. When particles arrive at a fracture intersections, we assume150

the flow is diffusion dominated and the probability to enter an outgoing fracture

is weighted by the outgoing volumetric flow rate, i.e., a complete mixing rule is

applied [60, 61, 62, 63, 64, 65]. Note that this stochastic method at intersec-

tions leads to dispersion of particles with the same initial position, which would

otherwise follow the same deterministic pathline through the network. We do155

not consider molecular diffusion in these simulations.

There are a variety of mathematical formulations to include the effects of

matrix diffusion into transport models, cf. Carrera et al. [17] for a review. The

general idea is that a source/sink term representing mass diffusing into and out

of the matrix is included into the solute transport equation. A key difference160

between the proposed models is the form of the source/sink term representing

matrix diffusion [66]. We account for particles diffusing in and out of the matrix

using the time domain random walk (TDRW) approach detailed in Delay and

Bodin [53], which is agnostic to the initial distribution of mass into the domain.

Details of the specific implementation are given in Appendix A. We consider the165

duration a particle spends within a fracture media to be the sum of the times

spent advecting through the fracture network and the times retained within the

surrounding rock matrix.

3. Upscaled Transport Model

In this section, we present the CTRW approach for advective transport that170

is based on an Ornstein-Uhlenbeck model for the particle speeds [67, 68, 69].

The fracture-matrix coupling is quantified by a compound Poisson process. Fur-

thermore, we derive the expected scalings of the breakthrough curves.
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3.1. Advective transport: Ornstein-Uhlenbeck model for velocity transitions

We model particle motion by a CTRW combined with an Ornstein-Uhlenbeck175

process for the normal scores of particle velocity as described in the following.

We assume that the series v(s) of equidistantly sampled particle speeds (see,

Eq. 8) form a stationary Markov process with the limit distribution ps(v). Un-

der ergodic conditions, this means for a sufficiently large injection volume and

flow domain, the steady space Lagrangian PDF ps(v) and the Eulerian velocity180

PDFs are related through flux-weighting [40, 41, 35],

ps(v) =
vpe(v)

〈ve〉
. (9)

Stationary Markov models for equidistantly sampled particle speeds have

been used for the prediction of transport in fractured and [70, 14] and porous

media [71, 72, 40, 68, 69]. Stationarity is assumed to hold also for the normal185

scores w(s) of particle speeds v(s), which are defined by

w = Φ−1[Ps(v)], Ps(v) =

v∫
0

dv′ps(v
′), (10)

where Φ(w) is the cumulative unit Gaussian distribution and Ps(v) is the cumu-

lative distribution of particle speeds. Based on the Doob theorem [73] we thus190

model the evolution of the normal w(s) with distance s along the streamline by

the Ornstein-Uhlenbeck process

dw(s)

ds
= −γw(s) +

√
2γξ(s), (11)

where ξ(s) is a Gaussian white noise characterized by zero mean and 〈ξ(s)ξ(s′)〉 =

δ(s − s′). The relaxation parameter γ = `−1
c is the inverse of the correlation

length scale `c. The initial values w0 = w(s = 0) are given in terms of the initial

speeds v0 = v(s = 0) by (10). The distribution of initial velocities is denoted by

p0(v). It varies depending on the injection mode, see Section 2.1. The particle

speed v(s) is given by w(s) by inverting (10) as

v(s) = P−1
v (Φ[w(s)]) (12)
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The Ornstein-Uhlenbeck model describes the stochastic evolution of v(s) from195

an arbitrary initial distribution p0(v). It is a stochastic model for the sequence of

particle speeds along trajectories. Note that this Markov model for the particle

speeds does not require detailed knowledge of the high-fidelity trajectories, but

only needs as an input the point distribution ps(v) of particle speeds, which

can be related to the flow speeds through equation (9), and the characteristic200

relaxation scale `c.

Particle motion along a streamline is described here by its advective travel

time ta(s), which satisfies according to (8)

dta(s)

ds
=

1

v(s)
. (13)

205

where v(s) is obtained from the Ornstein-Uhlenbeck process described above.

The CTRW quantifies the travel time t(s) up to a distance s along streamlines.

The linear distance x between the inlet and control planes and the distance s

along the tortuous streamlines are related through tortuosity χ as x = s/χ.

Tortuosity is discussed in detail in Section 4.3.4. In this sense, this approach210

models the particle trajectories projected onto the mean flow direction, this

means as one-dimensional objects. The distribution fv(t, x) of advective travel

times at a distance x from the inlet boundary is given by

fa(t, x) = 〈δ[t− ta(xχ)]〉. (14)
215

3.2. Matrix Diffusion: Compound Poisson process for fracture-matrix mass

transfer

We couple the CTRW model discussed in the previous section with diffusive

mass transfer between fracture and matrix. The series of residence or trapping

times in the matrix is modeled as a compound Poisson process [74, 75, 50, 76].220

This assumes that trapping occurs at a constant rate γ, which is related to the

diffusion time over the fracture cross section. The particle time t(s) at a given

distance s along the path is then given by

t(s) = ta(s) + τc[ta(s)], τc(t) =

nt∑
k=1

ηi. (15)

225
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The residence times ηi in the matrix are distributed according to ψf (t), which

is specified below. The number nt of trapping events up to time t is Poisson-

distributed,

pn(t) =
(γt)n exp(−γt)

n!
. (16)

230

The distribution ψc(t
′|t) = 〈δ[t′ − τc(t)]〉 of τc(t) is given in Laplace space by

ψ∗c (λ) = exp
(
−γt

[
1− ψ∗f (λ)

]
− λt

)
. (17)

We consider a semi-infinite matrix. Thus, the trapping time distribution is given

by the inverse Gaussian distribution235

ψf (t) =
ε exp(−ε2/4Dmt)√

4Dmt3
, (18)

where Dm is the diffusion coefficient in the matrix. The trapping or residence

time distribution is equivalent to the return time distribution to the bound-

ary. The microscopic distance ε from the interface regularizes the return time240

distribution, which otherwise is not defined in the continuum [77, 78]. The reg-

ularization implies that ψf (t) decays exponentially fast for times smaller than

ε2/Dm. At times t � ε2/Dm, it behaves as a power law ∼ t−3/2. Finiteness

of the matrix implies a long time cut off at τD = `m
2/Dm, where `m is a char-

acteristic matrix block scale. We assume here that τD is much larger than the245

observation time scale.

The trapping rate is given in terms of the effective fracture aperture be,

porosity φ and the diffusion coefficient Dm as

γ =
2φDm

εbe
, (19)

250

as detailed in Appendix B.

The distribution f(t, x) of arrival times at distance x = s/χ from the inlet

boundary is given in analogy to (14) by

f(t, x) = δ[t− t(xχ)]. (20)
255
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It is related to the travel time distribution fa(t, x) by

f(t, x) =

t∫
0

dt′fa(t′, x)ψc(t− t′|t′), (21)

This equation reads as follows. The probability for a particle arrival at time t is

given by the probability that the particle travels to distance x in time t′ times260

the probability that the compound trapping time is t− t′.

3.3. Scaling of breakthrough curves

In order to derive asymptotic expressions for the breakthrough curve scaling

at a control plane at x, we coarse grain the velocity process on the correlation

length `c, this means the particle speed is set constant over the distance `c, and265

sampled randomly according to ps(v) after the distance `c. This simplifies the

time process (15) according to

tn+1 = τn + τc(τn), τn =
`c
vn
. (22)

The distribution ψ(t) of the combined advective transition and residence times270

over the distance `c is given in Laplace space by

ψ∗(λ) = ψ∗a(λ+ γ[1− ψ∗f (λ)])n, (23)

where ψa(t) is the steady state distribution of advective travel times. It is given

in terms of the velocity distribution ps(v) as

ψa(t) =
`c
t2
ps(`c/t). (24)

The transition time distribution for the first step of distance `c is accordingly

given in terms of the initial velocity distribution p0(v) as275

ψ0(t) =
`c
t2
p0(`c/t). (25)

Note that it is through ψ0(t) and p0(v) that the model includes the injection

mode of the particles.
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In this coarse grained picture, the breakthrough curve f(t, x) is given by the280

n-fold self-convolution of the transition time distribution ψ(t), which reads in

Laplace space as

f∗(λ, x) = ψ∗0(λ+ γ[1− ψ∗f (λ)])ψ∗a(λ+ γ[1− ψ∗f (λ)])nc−1, (26)

where nc = xχ/`c. We note that the transition time distribution here behaves285

as ψa(t) ∝ t−1−β with 1 < β < 2, while the initial velocity distribution may

scale as ψ0(t) ∝ t−1−α with 0 < α < 2. Note that the exponent β in the steady

state transition time distribution cannot be smaller than 1 because it is derived

from the flux-weighted speed distribution ps(v) ∼ vβ−1. If the Eulerian speed

distribution pe(v) ∼ vα−1 with α > 0 at v smaller than some characteristic290

velocity v0, it follows that ps(v) ∼ vβ−1 with β = 1 + α > 1.

The behavior of the breakthrough curves is determined by two relevant times

scales. The scale t̄c = xc/ū measures the time for purely advective motion over

the distance between the inlet and control planes. The time scale τγ = γ−1 is

the average time a particle is mobile and the time scale τe = γ2ε2/D denotes295

the time at which particles have spent the same amount of time in the fracture

and in the matrix [50]. This means, for times t < τe advection in the network

dominates and for t > τe retention in the matrix is the dominant process.

We first consider the case of a flux-weighted injection such that ψ0(t) behaves

approximately as ψa(t). For tc < t < τe, the breakthrough curve is expected300

to scale as f(t) ∼ t−1−β because transport is dominated by the network-scale

advective heterogeneity because particles are mostly mobile and transport is

dominated by advection in the network. For t > τe, the matrix is activated as

a retention mechanism and the breakthrough curves behaves according to the

characteristic f(t) ∼ t−3/2 scaling.305

Secondly, we consider the case of a uniform injection characterized by ψ0(t) ∼

t−1−α with 0 < α < 1 while ψa(t) ∼ t−2−α. As in the previous case, for t̄c �

t� τe, advection dominates and the breakthrough curve scales as f(t) ∼ t−1−α.

However, for t � τe the behavior of the breakthrough curves is affected by

retention in the matrix and retention at the source zone due to slow advection.310
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This gives the breakthrough curve scaling f(t) ∼ t−1−α/2. The derivations of

these scaling behaviors are detailed in Appendix C.

4. DFN Flow and Transport Simulations

We perform a set of high-fidelity three-dimensional discrete fracture network

(DFN) simulations using dfnWorks [79] to determine the solute breakthrough315

curves, tortuosity of particle paths, and distributions of flow and particle speeds.

We record both the advective breakthrough curves and breakthrough curves of

particles undergoing advection and matrix diffusion at uniformly spaced control

planes in the domain that are perpendicular to the primary direction of flow. We

represent solute transport passing through the network using a plume of parti-320

cles. We consider both uniform and flux-weighted injection modes for the initial

positions of particles. We then observe attributes that are input parameters for

the CTRW model: distribution of particle speeds, correlation length, and tor-

tuosity. These parameters can in principle be obtained from non-Lagrangian

observations [42, 12], see also Section 4.2. Here, we calibrate the CTRW model325

in terms of the Lagrangian observations, and use it for the characterization and

prediction of the combined effect of network scale flow heterogeneity and matrix

diffusion on solute transport beyond what is possible using the DFN model.

4.1. Discrete Fracture Network Model

We perform flow and transport simulations in a semi-generic DFN composed330

of a single family of disc-shaped fractures within a cubic domain with sides of

length one kilometer. Fracture radii r are sampled from truncated power law

distribution with exponent α = 2.6 and upper and lower cutoffs (ru = 1000 m ;

r0 = 10 m) with PDF pr(r) for the radius

pr(r) =
α

r0

(r/r0)−1−α

1− (ru/r0)−α
. (27)335

Fractures in geological media are commonly observed to have length distribu-

tions that appear to follow a powerlaw distribution [2]. Fracture centers are
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uniformly distributed throughout the domain. Fracture orientations are sam-

pled from a Von-Mises Fisher distribution with intensity parameter κ ≈ 0 and

mean normal vector of (0, 0, 1) using the method provided by [80]. This method340

results in normal vectors with a uniform covering of the unit sphere, which mim-

ics disordered fractures networks composed of many families [81, 82]. There are

7055 fractures in the domain, which corresponds to a dimensionless density of

14 using the definition provided by [83], which indicates that the domain is 14

times denser than the critical percolation density value [84, 85, 86, 87]. The345

computational mesh of the DFN contains 11,368,981 nodes and 23,089,485 tri-

angles. The mesh has been optionally refined near intersections to ensure that

gradients in the pressure field, which are higher in these regions, are properly

resolved [88]. The hydraulic aperture of the fractures b is positively correlated to

the radii via a powerlaw relationship b = 5.0×10−4
√
r and fracture permeability350

is determined by the cubic law [89]. Although it is possible to include in-fracture

aperture variations into three-dimensional DFN simulation [9, 90, 91], we do not

do so here. Our focus is on the interplay of injection mode, advective transport,

and matrix diffusion rather than sub-fracture scale variability.

Flow in the fracture network is modeled using the Reynolds equation [92].355

Flow through the network is created by applying a pressure difference of 4 kPa

(1m/m gradient) across the domain aligned with the x-axis. This pressure dif-

ference allows to observes the effects of both advection and matrix diffusion

within this domain and for selected matrix properties, but is not meant to rep-

resent a particular field site. No flow boundary conditions are applied along360

lateral boundaries. We use the methods of Makedonska et al. [93] and Painter

et al. [94] to reconstruct Eulerian velocity field u(x) within each DFN. Figure 1

is an image of the network where fractures planes are colored by the logarithm

(base 10) of the velocity magnitude divided by the mean velocity magnitude

(vm = 2.72 · 10−7 m/s). There are large contrasts in velocity values between365

fractures and smaller variations within the fractures. Larger fractures are better

connected and more flow passes through them. Additionally, the positive cor-

relation between hydraulic aperture and fracture size results in lower resistance
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to flow within bigger fractures.

1km 1km

1km

Figure 1: Discrete fracture network composed of 7055 disc-shaped fractures whose radii follow

a powerlaw distribution. Colors denote the base ten logarithm of velocity magnitude divided

by the mean velocity magnitude (log10(v/vm) where vm = 2.72 · 10−7 [m/s]). There are large

contrasts in velocity values between fractures and smaller variations within the fractures.

4.2. Velocity Distributions370

The PDFs of Eulerian velocity magnitude (speed) are directly obtained from

the reconstructed |u(x)| velocity field and the Lagrangian PDFs are obtained

using the particle tracking methods described above. Figure 2 shows the Eule-

rian, flux-weighted Eulerian, and the space Lagrangian velocity PDFs as well as

the space Lagrangian velocity PDF at the injection plane for the three fracture375

networks under consideration. Under ergodic conditions and for a sufficiently

large injection volume and flow domain, the steady space Lagrangian PDF ps(v)

and the Eulerian velocity PDFs are related through flux-weighting as previous

discussed, cf. (9). In the samples shown here, we see good agreement between

the steady s-Lagrangian PDF and flux-weighted PDF at high velocities, and the380

two deviate from one another at low velocity values. Nonetheless, there is good
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agreement over five orders of magnitude. Also, the inlet velocity distribution

appears to be representative of the full Eulerian PDF. The right panel shows

the corresponding transition time distributions by directly inverting the veloc-

ity PDFs. The solid black lines denote the power-law scalings as t−1−β with385

β = 0.2, 1.2, 0.7, and 1.7. The high probability of low flow speeds translates

into power-law tails in the transition time PDF. As we have seen in Section 3.3,

power-law tails in ψ(t) gives rise to intriguing non-Fickian behaviors in the

solute breakthrough curves, which are discussed in detail in Section 5. We con-

jecture that the behaviors of the distribution of flow speeds and corresponding390

transition times can be related to network properties such as connectivity and

aperture distribution, which, however, needs to be probed in further studies.
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Figure 2: Left panel: (circles) steady s-Lagrangian velocity PDF, (pentagons) velocity PDF

at inlet plane. The solid lines show the Eulerian speed PDF and the flux-weighted Eulerian

speed PDF. Right panel: Corresponding transition time distributions. The solid black lines

denote the power-law scalings as t−1−β with β = 0.2, 1.2, 0.7, and 1.7

4.3. Lagrangian transport attributes

A set of one-hundred thousand particles denoted Ωa are tracked through the

network. Increasing the number of particles beyond these counts did not influ-395

ence observed quantities. We observe particle attributes at uniformly spaced

control planes that are perpendicular to the primary direction of flow placed at

250, 500, 750, and 1000 meters from the inlet.
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4.3.1. Breakthrough Curves

The first arrival time τ(x1,x0) of a particle starting at x0 to reach a control400

plane located at x is given by

τ(x1,x0) = t[s|x1(s) ≥ x1,x0], (28)

where s is the pathline distance along the trajectory and x1 corresponds to the

first spatial component of the position vector. The mass represented by each

particle m(x0) and τ(x1,x0) are combined to determine the solute mass flux405

f(t, x) that has broken through a control plane at x = x1 at a time t,

f(t, x1) =
1

M

∫
Ωa

dx0m(x0)δ[τ(x1,x0)− t], (29)

where, δ(t) is the Dirac delta function. We refer to (29) as the breakthrough

curve. We use (29) for both purely advective and advection/matrix diffusion

travel times. In the latter case, the diffusion coefficient in the matrix is set to410

Dm = 10−13 m2/s and the porosity φ = 5× 10−2. These values are selected to

allow to study both the effects of advection and matrix diffusion for this network

and flow field, but not meant to represent a particular field site although they do

fall within physically reasonable range of values for low permeability rocks [26].

4.3.2. Equivalent Aperture415

The method implemented to account for matrix diffusion in dfnWorks

allows for hydraulic apertures to vary between fractures [21]. However, the pre-

sented upscaled transport model requires a single equivalent/effective aperture,

which can be obtained by combining the advective travel time (28) with the

Lagrangian retention parameter defined in Cvetkovic et al. [8],420 ∫ s

0

2ds

b(s)v′(s)
. (30)

Dividing twice the advective travel time by (30) provides an integrated value

for the resistance along a pathline and an effective aperture value beff [95].

We observed an average value of beff = 0.0048 m for flux-weighted and beff =425

0.0041 m for resident injection at the outlet plane. In Appendix D, we compare
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the DFN BTCs including matrix diffusion using the actual fracture hydraulic

apertures that vary between fractures and the effective hydraulic apertures that

show good agreement between the two methods.

4.3.3. Correlation Length430

The autocorrelation of Lagrangian velocities is determined using the magni-

tude of particle velocities sampled equidistantly along pathlines:

Cvv(s) =
1

V0

∫
Ωa

dx0

∞∫
0

ds′
v′s(s

′)v′s(s
′ + s)

σ2
vv

, (31)

where σ2
vv is the velocity variance and v′s(s) the fluctuation about the mean.

The correlation distance `c is when fluctuations anticorrelate, which we take at435

the first zero crossing of (31). For resident injection `c = 221 m and for flux-

weighted injection `c = 204 m. Note that Cvv is a purely advective quantity.

4.3.4. Tortuosity

We focus on a flow-dependent geometric tortuosity, as it is naturally com-

patible with Lagrangian observations; other tortuosity definitions can be found440

in [96]. Let s(xi,x0) be the total pathline distance of a particle upon its first

crossing of a control plane at x = xi. Then the tortuosity of the pathline defined

χ(xi) =
si(x0)

xi
. (32)

We take the average of χ over Ωa. Under ergodic conditions, this means here445

at a linear distance x1 � `c much larger than the characteristic fracture length,

the tortuosity is given by [97]

χ∞ = lim
x1→∞

χ(x1) =
〈ve〉
〈u1〉

. (33)

The asymptotic tortuosity for this network is χ∞ = 2.54 due to higher number

of relatively short fractures, which induces a high tortuosity in the particle path.450

Note that the asymptotic tortuosity does not depend on the particle injection

mode. At finite distances, however, the tortuosity depends on the injection mode
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and on the local fracture geometry. For resident injection, χ = 2.18 (250m), 2.63

(500m), 2.78 (750m), and 2.55 (1000m). For flux-weighted χ = 1.62 (250m),

2.11 (500m), 2.63 (750m), and 2.50 (1000m). The observed values of tortuosity455

do not fully stabilize at χ∞, but the observed values at 1000 meters are close

to these asymptotic value. The values of flux-weighted particles are always less

than those observed for resident injection. Note that χ is a purely advective

quantity.

5. Results460

In this section, we discuss the behavior of solute breakthrough curves at

different control planes. We consider two different injection conditions, uniform

and flux-weighted, as discussed above. We first discuss the case of advective

transport, and compare the DFN simulations with the CTRW model. Then we

consider advective transport under matrix diffusion again for the two different465

injection conditions, and again compare the DFN simulations with the CTRW

model. In the following, the breakthrough curves for the uniform injection

are marked by blue, the ones for the flux-weighted injection by black lines or

symbols.

5.1. Advective transport470

Figure 3 shows solute breakthrough curves at different control planes for

uniform and flux-weighted initial conditions. The symbols and lines denote the

results from the direct numerical simulation and the CTRW model, respectively.

We observe a stronger tailing for the uniform than for the flux-weighted injection

at all control planes. This is due the fact that the uniform injection emphasizes475

the low speeds in the injection plane, while the flux-weighted injection empha-

sizes the high speeds as shown in Figure 2. The CTRW model provides a good

estimate for the peak and the tail behavior at all distances from the control

plane. It overestimates early arrivals at control planes close to the inlet. This is

due to the fact, that only a few fractures connect from the inlet to the control480
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Figure 3: Advective transport: Breakthrough curves at control planes located at (top left to

bottom right) xc = 250, 500, 750 and 1000 m for (blue) uniform and (black) flux-weighted

injection. The symbols denote the direct numerical simulations, the lines denote the CTRW

model data.

planes close to the inlet, while the CTRW model simulates access to to the full

spectrum of fracture velocities. Thus, the prediction of early arrivals improves

with distance from the control plane because particle are able to sample a larger

part of the velocity spectrum.

Figure 4 shows breakthrough curves for the two different injection modes,485

(left) uniform and (right) flux-weighted. We show both the data from the direct

numerical simulations and the CTRW model at 250 and 1000 m. We also include

the breakthrough curves at (dotted lines) x = 5000 and (dash-dotted lines) 104

m which are extrapolations based on the CTRW model. We can observe two

different power-law regimes that correspond to the power-laws identified for490

the speed distributions in Figure 2. Furthermore, we see that the tails of the

breakthrough curves for the uniform injection essentially collapse. This can be

traced back to the fact that the tail behavior here is dominated by the large

transition times the particles experience during the first step. For the flux-
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Figure 4: Advective transport: Breakthrough curves obtained from the CTRW model at (solid

line) xc = 250, (dashed) 1000, (dotted) 5000 and (dash-dotted) 104 m for (left) uniform and

(right) flux-weighted injection. The symbols denote the breakthrough data at xc = 250 m

and 1000 m from the direct numerical simulations.

weighted injection, the tails show the same power-law behavior, but seem to495

collapse at much larger times than for the uniform injection. They are due to

repeated sampling from the low velocity end of the speed distribution.

5.2. Advective transport under matrix diffusion
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Figure 5: Breakthrough curves for (black) purely advective transport and (red) with matrix

diffusion for (left) uniform and (right) flux-weighted initial conditions at xc = 1000 m.

Figure 5 compares breakthrough curves a the control plane at x = 1000

m for pure advection and under matrix diffusion for uniform (left) and flux-500

weighted (right) initial distributions. It clearly illustrates the increased tailing

due to solute retention in the matrix. Again, the tailing is stronger for the case

of uniform injection. In this case, strong retention in the source zone due to

low flow speeds competes with retention due to matrix diffusion, which leads to
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the power-law behavior as t−1−α/2 as discussed in Section 3.3, where α is the505

exponent that characterizes the power-law regimes for the velocity distributions

shown in Figure 2. The breakthrough curves for the flux-weighted injection are

dominated by matrix diffusion and show the characteristic t−3/2 scaling.
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Figure 6: Advective transport under matrix diffusion: Breakthrough curves at control planes

located at (top left to bottom right) xc = 250, 500, 750 and 1000 m for (blue) uniform and

(black) flux-weighted injection. The symbols denote the direct numerical simulations, the

lines denote the CTRW model data.

Figure 6 shows breakthrough curves at different control planes for uniform

and flux-weighted initial conditions under matrix diffusion. The CTRW model510

provides good estimates for peak and the tail behavior at all distances from the

injection plane. Early arrivals are overestimated at control planes close to the

injection plane. As for the purely advective case, this can be traced back to

the fact that only a few dominant fractures connect the injection and control

plane while the CTRW model simulates availability of the full fracture spectrum.515

Thus, the CTRW estimates for early arrival times improve with distance from

the inlet plane as more fractures are sampled.

Figure 7 shows breakthrough at distances x = 250, 1000, 5000 m and 10000
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Figure 7: Advective transport under matrix diffusion: Breakthrough curves obtained from the

CTRW model at (solid line) xc = 250, (dashed) 1000, (dotted) 5000 and (dash-dotted) 104 m

for (left) uniform and (right) flux-weighted injection. The symbols denote the breakthrough

data at xc = 250 m and 1000 m from the direct numerical simulations.

m from the inlet plane. The breakthrough curves at (dotted lines) x = 5000

and (dash-dotted lines) 104 m are extrapolations based on the CTRW model.520

The strong retention due to low flow speeds in the source zone combined with

matrix diffusion dominates the tail behavior for uniform injection. The tails of

the breakthrough curves essentially collapse. For the flux-weighted injection the

tails show the same scalings, but separate, again due to the repeated sampling

of low velocities and retention in the matrix along a particle path.525

6. Conclusions

We investigate and upscale the combined effect of flow heterogeneity and ma-

trix diffusion on conservative transport in three-dimensional fracture networks

under different initial solute distributions. Direct numerical simulations for flow

and particle transport give insight into the advective and diffusive transport530

mechanisms and the impact of heterogeneity and retention due to matrix diffu-

sion on solute breakthrough curves at different observation planes. In order to

probe the impact of the initial solute distribution, we consider resident/uniform

particle injections over the inlet plane as well as flux-weighted injection. We ob-

serve significant power-law tailing in the solute travel time distribution due to535

advective heterogeneity and a broad velocity distribution within the networks.
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This tailing is amplified under resident injection. In this scenario, the solute

is distributed equally across all velocities within the inlet plane, which leads

to stronger retention at the initial plane due to low speeds than for the flux-

weighted injection condition. In the presence of matrix diffusion, the break-540

through tailing is amplified both for the flux-weighted and resident injection

conditions. For the flux-weighted injection, we observe the characteristic t−3/2

late time scaling. In the case of resident injection, we observe a different scaling.

In this case, the interaction of strong retention due to low flow speeds along with

immobilization in the matrix leads to a different scaling behavior.545

We quantify these behaviors using an upscaled CTRW approach that ac-

counts for advective heterogeneity and retention in the matrix, conditioned on

the initial solute data. Velocity variability along each pathline is modeled as a

stationary Markov process where the velocity changes at equidistant positions

along the path. Specifically, we map the particle speed onto a Gaussian random550

variable which evolves according to an Ornstein-Uhlenbeck process. The proces

is parameterized by the Lagrangian speed distribution and correlation distance,

which in principle can be obtained from the Eulerian speed PDF and character-

istic fracture scale. Advective transition times are obtained kinematically from

the constant transition distance and speed. This approach captures the impact555

of flow variability and injection condition on breakthrough curve tailing. We use

a compound Poisson process to model retention due to diffusion into the matrix

blocks, which means trapping events occur at a constant rate along a particle

pathline. The trapping time distribution is governed by an inverse Gaussian

distribution. Thus, trapping times are sampled from an inverse Gaussian ran-560

dom variable where the trapping rate is given by the diffusion coefficient in the

matrix, matrix porosity, and the effective fracture aperture. This upscaled ap-

proach captures the combined effect of flow heterogeneity, and matrix diffusion

on solute transport and breakthrough at control planes at variable distances

from the inlet and gives analytical predictions for the long time scalings. The565

model relates the intermediate scalings of the breakthrough curves to advective

heterogeneity, and the distribution of particle and thus flow speeds. The latter
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depends on the network properties such as aperture distribution and correla-

tion between fracture length and aperture [42]. In this sense, the advective

breakthrough curve scalings reflect and change with the network structure. The570

characteristic t−3/2 scaling, however, is due to the fracture-matrix exchange

and independent of the medium structure. The upscaled model provides in-

sights into the mechanism and the complex interactions between advective and

diffusive mass transfer mechanisms. Furthermore it provides a computationally

efficient tool to extrapolate transport to distances and times difficult to reach575

using direct numerical simulations.

The upscaled model is parameterized by the distribution of Lagrangian

speeds, which in principle can be inferred from the Eulerian speed distribu-

tion, a flow property, by tortuosity and by the velocity correlation scale, which

depend on the network and flow properties. The relation between geometric and580

hydraulic network properties and these characteristics is an outstanding ques-

tion that needs to be answered to bridge the gap between medium properties

and flow and transport behaviors. The proposed upscaled approach captures

the main physical transport processes that dominate conservative tracer trans-

port. It shows that particle motion in a complex fracture network can be by585

quantified by an upscaled CTRW model based on a Markov process that is pa-

rameterized by point statistics of speed, and a single correlation scale, as well

as a Poissonian trapping process for fracture-matrix echange. The proposed

mathematical formulation for fracture-matrix interaction can be used also to

model linear kinetic adsorption of a solute to the solid matrix. Furthermore,590

the model can be generalized to chemical reactions of single species and between

particles by combining the CTRW model with suitable rules for particle survival

and interactions.
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Appendix A. TDRW for Matrix Diffusion

For a pulse injection into a single uniform fracture surrounded by an infinite

matrix, [22] derived an analytical solution considering only advection within the610

fracture. The probability density function of travel times exiting the fracture

may be obtained from their solution as:

P (t|tf ) =


atf√

π(t− tf )
3
2

exp

(
−a2tf

2

(t− tf )

)
if t > tf

0 if t ≤ tf
(A.1)

where tf is the advective travel time through a fracture, and

a =
φ
√
Dm

b
. (A.2)615

Here, φ is the matrix porosity, Dm is the matrix diffusivity, and b is the fracture

aperture, which can vary between fractures but not within them using this

formulation. From (A.1), the cumulative density function (CDF) for the travel

time distribution in a single fracture that accounting for both advection and

matrix diffusion is:620

F (t) = erfc

(
atf√
t− tf

)
. (A.3)

Particle tracking simulations provide the advective travel time of a particle in

a fracture (tf ). The time retained in the matrix can be obtained using the the

inverse CDF method

td =

(
atf

erfc−1(ξ)

)2

, (A.4)625

where, erfc is the complementary error function and ξ is a random number

drawn from the uniform distribution between 0 and 1. The total travel time to

pass through a fracture (t) is the sum of tf and td.

Appendix B. Trapping rate

The relation (19) can be understood by considering the travel time distribu-630

tion over a single fracture predicted by the Eulerian matrix diffusion formulation.
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It is given in Laplace space by [22, 21]

f∗(λ, τf ) = exp[−λτf − (2φτf/a)λϕ∗(λ)] (B.1)

By setting ϕ∗(λ) =
√
Dm/λ, we obtain635

f∗(λ, τf ) = exp[−λτf − τf (2φ
√
Dm/a)

√
λ] (B.2)

Note that the factor of 2 comes from the symmetry of matrix diffusion across

both fracture-matrix interfaces.

From the CTRW model, we obtain in Laplace space640

f∗(λ, τf ) = exp(−λτf − γ[1− p∗m(λ)]) (B.3)

The Laplace transform of the trapping time pdf is

p∗m(λ) = exp(−
√
λε2/Dm) ≈ 1−

√
λε2/Dm. (B.4)

645

Thus, the arrival time distribution over a single fracture can be written in the

limit ε� 1 as

f∗(λ, τf ) = exp(−λτf − (γε/
√
Dm

√
λ) (B.5)

Comparison between (B.2) and (B.5) gives650

2φ
√
Dm/a = γε/

√
Dm (B.6)

and thus

γ =
2φDm

εa
(B.7)

655

Appendix C. Scaling of breakthrough curves

The Laplace transform of ψa(t) can be expanded as

ψ∗a(λ) = 1− τ̄λ+ a(λτ0)β , (C.1)

where τ̄ is the mean advective transition time, τ0 a characteristic time scale,660

and a a constant that depends on the particular form of ψa(t). The Laplace
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transform of ψ0(t) for 1 < β < 2 is analogous. For 0 < β < 1, the Laplace

transform of ψ0(t) is given by

ψ∗0(λ) = 1− c(λτ0)β , (C.2)
665

where c is a constant. Furthermore, we note that the trapping time distribution

ψf (t) has the Laplace transform

ψ∗f (λ) = exp(−
√
λε2/Dm) ≈ 1−

√
λε2/Dm. (C.3)

We first consider the case ψ0(t) ≈ ψa(t) such that expression (26) simplifies670

to

f∗(λ, x) = ψ∗a(λ+ γ[1− ψ∗f (λ)])nc , (C.4)

Using expressions (C.1) and (C.3) in Equation (C.4), we can write

f∗(λ, x) = exp
(
nc ln

[
1− τ̄λ− τ̄ γ

√
λε2/Dm) + aτβ0 (λ+ γ

√
λε2/Dm)β

])
(C.5)

675

Expanding the logarithm gives

f∗(λ, x) = exp

[
−t̄c

(
λ+

√
λ/τe

)
+ at̄cτ̄

−1τβ0

(
λ+

√
λ/τe

)β]
(C.6)

where we defined τe = γ2ε2/D and t̄c = ncτ̄ . The scale τe marks the time at680

which particles have spent in average the same time in the fracture and the

matrix. For λτe � 1, we can expand

f∗(λ, x) ≈ 1− t̄cλ+ at̄cτ̄
−1(τ0λ)β (C.7)

and thus f(t, x) ∝ t−1−β for t̄c � t � τe. For times t � τe, retention in the685

matrix dominates the breakthrough curves. For λτe � 1, we can expand

f∗(λ, x) ≈ 1− t̄c
√
λ/τe, (C.8)

and thus f(t, x) ∝ t−3/2.
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We now consider the case that ψ0(t) ∼ t−1−α where 0 < α < 1 and ψa(t) ∼690

t−2−α. Thus, we can expand f∗(λ) as

f∗(λ, x) = exp
[
−cτα0

(
λ+

√
λ/τe

)α]
× exp

[
−t̄c

(
λ+

√
λ/τe

)
+ at̄cτ̄

−1τα+1
0

(
λ+

√
λ/τe

)α+1
]

(C.9)

where we set (nc − 1)τ̄ ≈ t̄c. For λτ0 � 1, we can expand695

f∗(λ, x) = 1− cτα0
(
λ+

√
λ/τe

)α
− t̄c

(
λ+

√
λ/τe

)
+ at̄cτ̄

−1τα+1
0

(
λ+

√
λ/τe

)α+1

(C.10)

For λτe � 1 we further obtain

f∗(λ, x) = 1− c (λτ0)
α − t̄cλ+ at̄cτ̄

−1 (λτ0)
α+1

(C.11)700

For t� t̄c, this means λt̄c � 1, we have in leading order

f∗(λ, x) = 1− c (λτ0)
α
, (C.12)

which implies that f(t) ∼ t−1−α. Similarly, for λτe � 1, we can expand705

f∗(λ, x) = 1− cτα0 (λ/τe)
α/2

(C.13)

which implies f(t) ∼ t−1−α/2 for t� τe.

Appendix D. Effective Aperture

Figure D.8 compares the DFN BTCs including matrix diffusion using the710

actual fracture hydraulic apertures that vary between fractures (blue squares)

and using the effective hydraulic apertures (black circles) at the outlet plane

x1 = 1000 m. The left subfigure shows that BTCS for resident injection and the

right subfigure shows the results for flux-weighted. There is a slight deviation

between the curves at the initial breakthrough but the scaling in the tails of the715

distributions are the same.
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Figure D.8: Comparison of DFN particle tracking that includes matrix diffusion. (left) Res-

ident/Uniform Injection (right) Flux-weighted Injection. The blue squares show the BTC

where the TDRW for matrix diffusion uses the actual hydraulic apertures, which vary between

fractures, and the black circles show the TDRW results using a single effective apertures.
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