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Abstract: Stochastic wave function formalism is briefly introduced and applied to study the dynamics
of open quantum systems; in particular, the diffusion of Xe atoms adsorbed on a Pt(111) surface. By
starting from a Lindblad functional and within the microscopic Caldeira–Leggett model for linear
dissipation, a stochastic differential equation (Itô-type differential equation) is straightforwardly
obtained. The so-called intermediate scattering function within the ballistic regime is obtained,
which is observable in Helium spin echo experiments. An ideal two-dimensional gas has been
observed in this regime, leading to this function behaving as a Gaussian function. The influence of
surface–adsorbate interaction is also analyzed by using the potential of two interactions describing
flat and corrugated surfaces. Very low surface coverages are considered and, therefore, the adsorbate–
adsorbate interaction is safely neglected. Good agreement is observed when our numerical results are
compared with the corresponding experimental results and previous standard Langevin simulations.

Keywords: LINDBLAD approach; Caldeira–Leggett master equation; stochastic differential equation;
stocastic wave functions; intermediate scattering function; ballistic regime

1. Introduction

Most physical and chemical systems in nature are open classical or quantum systems.
The corresponding dynamics are usually well described by considering an environment
with an infinite number of degrees of freedom [1,2]. The dynamics of open quantum
systems [3] is a central issue in different areas of physics, such as materials science, atomic,
molecular and statistical physics of complex systems. The interaction between a system
and its environment often leads to dissipation, quantum fluctuations and the irreversible
evolution of the system. These processes affect surface dynamics, surface tunneling, non-
adiabatic effects, and so on. Many disciplines, from physics to biology, have developed
increasingly powerful methods for modeling open quantum systems [4,5].

The adsorption of rare gases has been of interest from the pioneering work by Lang-
muir [6]. The diffusion of atoms/molecules on metal surfaces is usually considered in the
quantum regime due to internal and/or external vibrations of adsorbates, as well as energy
fluctuations at microscopic scale [7,8]. These studies provide valuable information on
adsorbate–substrate and adsorbate–adsorbate interactions. Thus, it seems to be essential to
study these phenomena using the theoretical formalism of open quantum systems in order
to better understand the main microscopic and elementary processes occurring at surfaces.
Moreover, these processes can be seen many times as a preliminary step in the study
of more complicated phenomena as, for example, in heterogeneous catalysis [9], crystal
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growth, chemical vapor deposition [7], desorption [10], adhesion [11], photon–electron-
induced surface reactions [12], etc.

Depending on the surface temperature, surface coverage and the adsorbate–substrate
interaction, diffusion times can vary by orders of magnitude [13,14]. The experimental
techniques used for the characterization of surface diffusion can be classified according
to the diffusion time that they are capable of measuring, such as fast or slow diffusion.
Scanning tunneling microscopy (STM) [15] and field ion microscopy (FIM) [16] are espe-
cially useful for slow diffusion, where the time between jumps is of the order of seconds.
These measurements provide a direct observation of the diffusion process. Among the
different experimental techniques used to study these processes and also extract informa-
tion indirectly about interaction potentials, the so-called quasielastic He atom scattering
(QHAS) [17–20] is considered as the surface science analogue of quasielastic neutron scat-
tering, which is widely and successfully applied to analyze fast diffusion (time between
jumps of the order of microseconds). In order to interpret QHAS results, a more elaborate
theory is needed to have reliable adsorbate–adsorbate and adsorbate–substrate interactions.
A more recent experimental and powerful technique is also available, the so-called He
spin echo (HeSE), which is similar to the neutron spin echo with ultra-high energy reso-
lution [21]. In the QHAS technique, the so-called dynamic structure factor or scattering law
is directly measured, which provides us with line shapes for three elementary processes:
the adsorbate diffusion process, low frequency adsorbate internal motions, and surface
phonon excitations. The inverse Fourier transform in the frequency domain of the dynamic
structure factor is the so-called intermediate scattering function which is an observable in
the HeSE technique. This function provides us with the same information as the dynamic
structure factor but in the time domain.

During the past few decades, many efforts have also been carried out to devise
various phenomenological models [22] and more recently to derive via first-principles the
dissipation functional from microscopic Hamiltonian [23]. Pertinent to surface dynamics,
the effect of surface degrees of freedom into atom/molecule-surface dynamics within the
density matrix approach is included [24–26]. In this formalism, microscopic events, such as
quantum jumps, which exist in open individual systems, disappear by ensemble average.
An alternative and less explored method consists of using a set of stochastic wave functions.
The master equation for this method is a particular case of stochastic differential equations
(SDE) known as the Itô equation [4]. This method reduces the dimensional problem from
N2 to N. In this sense, the SDE provides, aside from its statistical equivalent to the master
equation, a more convenient description of individual systems. This is important for the
study of quantum noise in mesoscopic [27] systems and individual atoms/molecules [28].
As far as we know, this is the first time that this theoretical analysis has been carried out in
the surface diffusion context.

In particular, in this work, we have analyzed the QHAS experimental results by
Ellis et al. [20] where, for the first time, experimental evidence for a two-dimensional
(2D) ideal gas of Xe atoms on Pt(111) at low coverage (θ = 0.017), low incident helium
atom energy (Ei = 10.15 meV) and surface temperature T = 105 K is observed. This
observation implies that Xe atoms behave as independent particles on the Pt(111) surface
during a certain time, the well-known ballistic regime in diffusion processes. This regime
is established for times t << η−1, where η is the friction coefficient. This study is carried
out for a flat and corrugated surface and the corresponding results are compared with
experimental and previous Langevin numerical results within the ballistic regime [14,20,29].

The paper is organized as follows. In Section 2, we briefly present the Linblad
formalism, as well as the equivalent stochastic differential equation for open quantum
systems. In Section 3, numerical results are presented and discussed in the ballistic regime
for flat and corrugated surfaces. Finally, Section 4 summarizes the conclusions that can be
drawn from this work.
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2. Theory
2.1. The Intermediate Scattering Function

A long time ago, Van Hove [30] described the differential cross section of the scattering
of slow neutrons by a system of interacting particles in terms of the generalized pair
distribution function, the so-called G(r, t) function of van Hove (with r being a position
vector and t a time interval). In the Born approximation, the scattering event is reduced
mainly to a statistical mechanics problem [30–32], the nature of the scattered particles
(neutrons, light, atoms, etc.) and details of the interaction potential with the system under
study being irrelevant (the linear response theory). In this formalism, the linear response of
the system implies that it is determined entirely by the properties exhibited by the system
in the absence of probe particles. The differential cross section can be written in terms of
the momentum transfer, h̄∆k, and energy transfer h̄ω as [30]

d2R(∆k, ω)

dΩdω
∝ S(∆k, ω) = (2π)−1N

∫
ei(∆k.r−ωt)G(r, t)drdt (1)

which gives the probability that the probe particles scattered from the diffusing system
reach a certain solid angle Ω in an interval of outgoing energy h̄ω. The response function
S(∆k, ω) is also termed the scattering law or dynamic structure factor (DSF), N being the
number of interacting particles in the system under study. As is well known, the spatial
Fourier transform of the G-function

I(∆k, t) =
∫

ei∆k.rG(r, t)dr (2)

is called the intermediate scattering function (ISF) and, therefore, S and I are related by the
inverse Fourier transform in frequency.

For surface diffusion, Helium atoms are generally used for probing the dynamics
of adsorbates or adparticles on surfaces. Due to the scattering, He atoms undergo an
energy exchange h̄ω = E f inal − Einitial and a parallel (to the surface) wave vector transfer
∆K = K f inal −Kinitial . Capital letters are used here for variables in the surface plane. The
prominent peak displayed by the DSF around the zero energy transfer or quasi-elastic
peak provides indirect information of the diffusion constant. Satellite weaker peaks at low
energy transfers observed are attributed to low frequency motions of some adsorbates, as
well as surface phonon excitations. Furthermore, long distance and time correlations in the
interacting system are extracted from the scattering law when considering small values of
∆K and h̄ω, respectively. The DSF dynamic is usually expressed as [30]

S(K, ω) = (2π)−1N
∫

e−iωt I(K, t)dt, (3)

with

I(K, t) ≡ 1
N
〈

N

∑
j,j′

e−iK·Rj(0)eiK·Rj′ (t)〉 (4)

where the brackets denote an ensemble average and Rj(t) the position vector of the j
adparticle at time t on the surface. From a theoretical point of view, one of the main
goals is to calculate the corresponding trajectories. For open quantum systems, there are
several ways to tackle such a calculation. The standard and generalized Langevin equation
formalism are widely used. However, as far as we know, the so-called stochastic wave
function formalism has not been used in this context.
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2.2. The Linblad Formalism

In the density matrix formalism, the time evolution of the reduced density matrix ρ of
an open quantum system is ruled by the equation of motion

dρ(t)
dt

+
i
h̄
[Ĥ, ρ(t)] = L ρ(t), (5)

where Ĥ andL are the Hamiltonian and Liouville operators of the system. The derivation of
the Liouville operator L from microscopic Hamiltonians usually leads to a quantum master
equation. From the pioneering work of Caldeira and Leggett (CL) [23] for an oscillator
linearly coupled to an Ohmic environment (linear dissipation), the master equation is
written as

dρ

dt
+

i
h̄
[Ĥ, ρ] = −η

h̄

{
2mkBT

h̄
[
x̂, [x̂, ρ]

]
+ i
[
x̂, [ p̂, ρ]+

]}
, (6)

where T and η represent the bath temperature (here, the surface temperature) and friction
coefficient between the oscillator and the Ohmic bath. Similar master equations have been
obtained along this line for a particle in a more general environment [33] with linear and
nonlinear couplings. The master Equation (6) is known to have a few drawbacks. First,
it is only valid at high temperatures, or equivalently, in the classical limit. The quantum
mechanical behavior is known to be important mainly in the low-temperature regime and,
therefore, it is important to extend this model to such a regime. Additionally, second, it
deals with the non-positivity of ρ on a time scale proportional to τ ∼ η−1, as shown in
different works [33,34].

There have been several attempts to derive master equations, preserving the positive
density evolution from microscopic Hamiltonians, and they can be found in the existing
vast literature. Such derivations are mainly limited to the so-called weak-coupling [8] or
high-temperature regimes [33]. However, the non-positivity problem is not found in the
theory of quantum dynamical semigroups by Lindblad [35], Kossakowski [36] and Gorini
and Sudarshan [2]. In particular, it was shown that the generator for a completely positive
map should be governed by

Lρ = ∑
k

{
[Âk, ρÂ+

k ] + [Âkρ, Â+
k ]

}
, (7)

where Âk are known as the Lindblad dissipation operators. However, these operators are,
in general, unknown, and the compact structure of the generator (7) does not generally
assure system equilibrium with the bath.

2.3. Construction of the Lindblad Operators and Extension to Low Temperature

A single Lindblad operator Â is generally taken to be a linear combination of the
operator position x̂ and the momentum p̂ as

Â = µx̂ + iν p̂, Â+ = µx̂− iν p̂. (8)

where µ and ν are arbitrary complex numbers. This particular choice is motivated by
considering (i) the form of the dissipation operator for a damped harmonic oscillator
with mass m and frequency Ω [36], that is, âd =

√
mΩ/2h̄[x̂ + (i/mΩ) p̂], which is a

linear combination of both operators, (ii) the dissipation terms of the master Equation (6),
and (iii) Dekker’s constraints [37] for the diffusion coefficients of the master equation for
a damped oscillator.
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The Lindblad operators (8) in the generator (7) are replaced by the master Equation (5)
according to

dρ

dt
+

i
h̄
[Ĥ′, ρ] = −µ2[x̂, [x̂, ρ]

]
− 2iµν

[
x̂, [ p̂, ρ]+

]
− ν2[ p̂, [ p̂, ρ]

]
,

Ĥ′ = Ĥ − 2µνh̄x̂ p̂. (9)

The first two terms on the right-hand side of (9) are essentially the same as those in the CL
master Equation (6). This comparison suggests the choice of µ and ν as follows

µ2 = 2k T mη/h̄2,

2µν = η/h̄,

ν2 = η/(8mkT) −−−→
T→∞

0. (10)

The coefficient ν2 is negligible at high-temperatures but not at low temperatures. The
master Equation (9), together with the coefficients given by Equation (10) represent the
simplest Lindblad master equation [33]. It provides a way to overcome the non-positivity
problem of the CL model. Remember that this choice is only valid at high temperatures. In
order to use the two coefficients given by Equation (10) at low temperatures, Equation (9)
has to be closely analyzed. The two dissipation terms of (6) have a different physical origin.
The second term on the right side corresponds to the dissipation induced by the bath and
is temperature independent

2µν = η/h̄. (11)

Unlike the second term, the first one depends on T and describes the environment-induced
fluctuation. The origin of this term comes from the high temperature approximation.

Thus, in order to extend the master equation to the low-temperature regime, the
CL master Equation (6) is derived within the path-integral approach [23] and theoretical
physics methods [33]. The generator L is then written in terms of the so-called noise D1(τ)
and dissipation D(τ) kernels as

Lρ = − 1
h̄2

∫ ∞

0
dτ

(
i D(τ)

[
x̂, [x̂(−τ), ρ]+

]
− D1(−τ)

[
x̂, [x̂(−τ), ρ]

])
, (12)

with

D1(τ) = h̄
∫ Ωc

0 J(ω) cos(ωτ) coth(h̄ω/2kBT) dω, (13)

D(τ) = h̄
∫ Ωc

0 J(ω) sin(ωτ) dω, (14)

J(ω) = ∑N1
n=1(k

2
n/2mn ωn) δ(ω−ωn) being the spectral function of the phonon bath and

Ωc the bandwidth cutoff frequency. For an Ohmic bath, J(ω) is usually approximated
by J(ω) = ηω/π. A different approximation to the noise kernel can be used at low
temperatures by observing that J(ω) coth(h̄ω/2kBT) is a smooth function of ω, while
cos(ωτ) is fast oscillating, then

D1(τ) ≈ 4h̄mη
π ωc coth

(
h̄ωc

2kBT

) ∫ Ωc
0 cos(ωτ) dω

= 4 mη h̄ωc coth
(

h̄ωc
2kBT

)
δ̃(τ) , (15)
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where δ̃(t) = 1/π
∫ Ωc

0 cos(ωt) dω with ωc being the center of the J(ω) band. The Marko-
vian limit is easily recovered when Ωc → ∞ and then δ̃(t) → δ(t). Thus, 2kBT →
h̄ωc coth(h̄ωc/2kBT) in the first diffusion term of (6) and µ2 is given by

µ2(T) =
2η m ωc

h̄
coth

(
h̄ωc

2kBT

)
. (16)

The parameter ωc can be uniquely determined by a harmonic oscillator approximation
at T = 0. The Lindblad operator Â should then be degenerated with the annihilation
operator of the harmonic oscillator, âd =

√
mΩ/2h̄[x̂ + (i/mΩ) p̂], implying µ/ν = mΩ.

Furthermore, the relation 2µν = η/h̄, valid for all temperatures, and (16) lead to µ/ν =
2mωc at T = 0. The harmonic approximation thus gives ωc = Ω/2. Then, the temperature
dependence of the two coefficients reads as

µ2(T) =
η m Ω

h̄
coth

(
h̄Ω

4kBT

)
, (17)

ν2(T) =
η

2h̄ m Ω
tanh

(
h̄Ω

4kBT

)
, (18)

with 2 µ/ν = γ/h̄. Both expressions reduce to (10) in the high-temperature regime
and are based on the fluctuation-dissipation theorem. Therefore, they bring the equi-
librium behavior into the Lindblad formalism through their temperature dependence.
Equations (17) and (18) fulfill Dekker’s constraints at any temperature.

In coordinate space, the master Equation (9) has the following form

∂ρ(x, x
′
, t)

∂t
+

i
h̄
[
H̃(x)− H̃∗(x′)

]
ρ(x, x′, t) =−

{
µ2(T)(x− x′)2 + η(x− x′)

(
∂

∂x −
∂

∂x′

)
−ν2(T)h̄2

(
∂

∂x + ∂
∂x′

)2
}

ρ(x, x′, t), (19)

with

H̃(x) = H(x) + ih̄ηx
∂

∂x
+ i

h̄η

2
. (20)

This master equation presents two important aspects: (i) a renormalized Hamiltonian
with an extra imaginary term involving a frictional force; (ii) an extra diffusion term (the ν2

term) with temperature-dependent diffusion coefficient. In this way, the corresponding
equation also guarantees the positivity of the density matrix at short times.

The master Equation (19) can be directly solved in a double-space (two-dimensional)
representation [38] but it can also alternatively be solved using a set of stochastic wave
functions. This approach can be a possible advantage of the Lindblad scheme, when the
dimensionality is a problem, to look for a direct solution.

2.4. Solution of the Master Equation with Stochastic Wave Functions

After Gisin and Percival [39], a master equation of Lindblad class can be equiva-
lently solved by a set of wave functions {|ψ〉} by using the representation of the density
operator as

ρ = ∑
j
|ψj〉〈ψj| = M|ψ〉〈ψ|. (21)
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An N-dimensional state space can be expressed in many ways as a mean M over the
distribution of normalized pure-state projection operators. Within the stochastic equation
framework, the variation |dψ〉 at time dt is given by the Itô form

|dψ〉 = |v〉dt +
Ñ

∑
j=1
|uj〉dξ j, (22)

where |v〉dt is the drift term and the differential stochastic fluctuations are represented
by a sum over independent Wiener process dξ j, which are complex with equal and in-
dependent fluctuations in their real and imaginary parts. This complex form has simple
invariance properties under unitary transformations. As is known, the mean and variance
of fluctuations are zero and dt1/2, respectively, with

M[dξkdξ∗n] = 2dtδkn M[dξ∗k dξ∗n] = 0 M[dξkdξn] = 0, (23)

where M is also used to represent a mean over fluctuations due to the stochastic process.
In order to preserve the normalization of the state vector |ψ〉, the fluctuations |uj〉 in

the state must be orthogonal to that state

〈ψ|uj〉 = 0. (24)

By carrying out means over |dψ〉 (22) and |dψ〉〈dψ|, we have that

M|dψ〉 = |v〉dt, M|dψ〉〈dψ| = 2
Ñ

∑
j=1
|uj〉〈uj|dt. (25)

Now from (25), the change in ρ is given by

dρ = M
(
|ψ〉〈dψ|+ |dψ〉〈ψ|+ |dψ〉〈dψ|

)
, (26)

and then the equation of motion can be written as

ρ̇ =
(
|ψ〉〈v|+ |v〉〈ψ|+ 2

Ñ

∑
j=1
|uj〉〈uj|

)
. (27)

The stochastic terms |uj〉 are determined by the component of ρ̇ in the space orthogonal to
|ψ〉

2
Ñ

∑
j=1
|uj〉〈uj| = ( ÎS − |ψ〉〈ψ|)ρ̇( ÎS − |ψ〉〈ψ|), (28)

where ÎS is the identity operator. Note that, although the |uj〉 are not uniquely determined
by (28), the operator given by the sum over their projections does. This is enough to
determine the diffusion process uniquely, since the first and second moments of |dψ〉 given
by (22) are the same for any |uj〉 satisfying (28). The remaining moments can be neglected
for an Itô process. By multiplying (27) for the state vector |ψ〉

ρ̇|ψ〉 = |ψ〉〈v|ψ〉+ |v〉, (29)

and applying the scalar product properties

〈ψ|ρ̇|ψ〉 = 2Re〈ψ|v〉, (30)
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the drift term is given by

|v〉 = ρ̇S|ψ〉 −
(

1
2
〈ψ|ρ̇S|ψ〉+ ic

)
|ψ〉, (31)

where ic is a non-physical imaginary phase change constant, which is determined (by
convention) to agree with the usual Schrödinger equation in the absence of interaction with
the environment.

The above theory and Equations (28) and (31) apply to any linear differential equation
for the density operator which is first order in time. Thus [38]

ρ̇ = −i[Ĥ, ρ] +
N2−1

∑
k=1

η̃k
(
2ÂkρÂ+

k − Â+
k Âkρ− ρÂ+

k Âk
)
, (32)

where the coefficients η̃k are given by η̃k = ηk/2. From (32) and (31), we have that

|v〉 = − i
h̄

Ĥ|ψ〉+
N2−1

∑
k=1

η̃k
(
2〈Â+

k 〉Âk − Â+
k Âk − 〈Â+

k 〉〈Âk〉
)
|ψ〉. (33)

where 〈 Âk 〉 = 〈ψ|Âk|ψ〉 represent the mean value of the Lindblad operator Âk. By replac-
ing (32) in (28), the stochastic terms are given by

|uk〉 =
(

Âk − 〈Âk〉
)
|ψ〉. (34)

Now, from (33) and (34), the resulting stochastic differential equation for the state
vector (22) is

d|ψ〉 = − i
h̄

H̃|ψ〉+
N2−1

∑
k=1

η̃k
(
2〈Â+

k 〉Âk − Â+
k Âk − 〈Â+

k 〉〈Âk〉
)
|ψ〉dt +

(
Âk − 〈Âk〉

)
|ψ〉dξ. (35)

3. Results and Discussion

As discussed above, the ISF is a key observable in the surface diffusion context. If the
surface coverage θ is low, the adsorbates can be considered as independent particles, that
is, the adsorbate–adsorbate interaction can be safely neglected. Thus, the ISF now reads as

I(∆K, t) = 〈e−i∆K·R̂(0)ei∆K·R̂(t)〉. (36)

For our problem, ∆K = ∆kx~i is the wave vector transfer parallel to the surface,
R̂(t) = x̂(t)~i and R̂(0) = x̂(0)~i are the position operators of the adatom/adsorbate in the
unidimensional space and the initial position operator, respectively. The x-dimension can
also be considered as one of the symmetry directions of the surface, where the projection
on the wave vector transfer is carried out.

The stochastic wave functions ψi(t) are obtained by numerically solving (35) and
using the splitting operator method together with the Fast Fourier transform (FFT). The
terms with only x̂ or p̂ operators are propagated in the coordinate or momentum space,
respectively. All the initial conditions for the position are chosen to be the same, x0 = 0, and
the propagation of the wave function moves towards negative values of x since the initial
velocity of the adsorbate is assumed negative, v0 < 0. Based on previous works [8,18,29],
the initial momentum p0 satisfies the Boltzmann relation: p0 =

√
2m kBT , where T is the

surface temperature and m is the adsorbate mass (Xe). The initial wave function ψ(x, 0) is

a Gaussian function given by ψ(x, 0) = 4
√

m ω
h̄ π exp

[
−m ω

2h̄ (x− x0)
2 + i

h̄ p0(x− x0)
]

where
ω is the corresponding width.
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The one dimensional discrete stochastic wave function is evaluated at N equally
spaced points belonging to the interval [x1, xN ], with N being a power of 2 in order to use
the FFT method. The discrete wave function is given at each time t by

ψ(x, t) ≡ {ψ(x1, t); ψ(x2, t); ψ(x3, t); ...; ψ(xN , t)}. (37)

The normalization of the numerical wave function is calculated as

Fnorm =

√√√√ N

∑
i=1

ψ∗(xi, t)ψ(xi, t)∆x (38)

where ∆x is the length between two consecutive points of the grid. The normalized
stochastic wave function is thus calculated as

ψn(xi, t) =
ψ(x, t)
Fnorm

. (39)

The mean value of any operator B̂ can be expressed as

< B̂ >=
N

∑
i=1

ψ∗n(xi)B̂ψn(xi)∆x. (40)

From the definition of scalar product, the ISF (36) is now written as

I(∆kx, t) =
1

Ns

Ns

∑
j=1
〈ψnj(x, t)|e−i∆kx [x̂(t)−x̂(0)]|ψnj(x, t)〉. (41)

where the mean value of the operator e−i∆kx [x̂(t)−x̂(0)] and x̂ can be obtained from (40).
Thus, the ISF I(∆kx, t) is then calculated according to

I(∆kx, t) = 1
Ns

∑Ns
j=1

(
∑N

i=1
(
ψ∗nj

(xi, t)e−i∆kx [xi(t)−x(0)]ψnj(xi, t)∆x
))

= 1
Ns

∑Ns
j=1 Ij(∆kx, t), (42)

where Ij(∆kx, t) is the ISF for each stochastic realization. These values are calculated inde-
pendently and summed up to have the average value I(∆kx, t). The stochastic differential
Equation (35) is solved Ns times. For a number of realizations of Ns = 1000, the numerical
stability for the mean value I(∆kx, t) is achieved. In particular, the unidimensional space x
is chosen to be in the interval x ∈ [xi, x f ], where xi = −150 Å and x f = 30 Å. The number
of points chosen is N = 8192. The increment ∆x can be calculated from ∆x = (x f − xi)/N.
For these parameters, the value obtained for this increment is ∆x = 0.02 Å. For simplicity,
from now on, ∆kx is replaced by ∆k

3.1. Flat Surface

It is important to first analyze the diffusion on a flat surface, V = 0. This exam-
ple is representative of low corrugated surfaces where the role of the activation barrier
is negligible since the adsorbate thermal energy is much greater than the barrier. The
adsorbate-surface interaction is through the friction coefficient η. In the limiting case
of small friction and flat potential, the results of the simulations have been compared
with the case of a two-dimensional (2D) ideal gas. The ISF (36) for the 2D ideal gas is
a Gaussian function

I(∆k, t) = e−
∆k2v2

0t2

4 , (43)
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where v0 =
√

2 kBT /m is the initial thermal adsorbate velocity.
In Figure 1, and in order to first check our propagation method, I(∆kx, t) is plotted

versus the propagation time for the surface parallel wave vector transfer ∆k = 0.40 Å
−1

,
friction coefficient η = 0, flat potential V = 0, surface temperature T = 105 K and initial
adsorbate velocity v0 = 115 m/s with negative direction. The propagation time t of the
stochastic wave function ψi(t) and the time step ∆t are chosen to be equal to t = 14 ps and
∆t = 0.01 ps, respectively. These values correspond to a number of time steps of Nt = 1400.
In Figure 1, our numerical simulation (SN) in red is also plotted showing a very good
agreement with the analytic function (43), valid for a 2D ideal gas. This result indicates
that the Xe-Pt(111) system under these conditions behave as a true 2D ideal gas where
the diffusion of the adsorbate Xe is completely free on the Pt(111) surface. This behavior

observed in Figure 1 is also reproduced for different ∆k values in the interval [0.05, 2.5]Å
−1

analyzed. This free particle motion is kept at very long times.

Ideal Gas

SN

2 4 6 8 10 12 14
t (ps)

0.2

0.4

0.6

0.8

1.0

I(Δk,t)

Δk = 0.40 Å
-1

Figure 1. Intermediate scattering function (41) plotted versus the simulation time t(ps) for a parallel

wave vector transfer ∆k = 0.40 Å
−1

, friction coefficient η = 0, surface temperature T = 105 K and
inital adsorbate velocity v0 = 115 m/s with negative direction. The red curve corresponds to the
numerical results of our simulations (SN) and the black curve to the Gaussian function (43).

The next step is now to study the behavior of this system in the ballistic regime at
different friction coefficients for a flat surface and compare with experimental results and
previous standard Langevin simulations [20]. As mentioned above, this regime is only
valid at times t << η−1. For such a goal, our purpose is to see how good the Gaussian
function, which describes the ballistic regime, is. The Fourier transform in time of the
Gaussian ISF is again a Gaussian function which corresponds to the DSF. The full width
at half maximum (FWHM) of the SDF, Γ, is extracted and plotted at different frictions for

different momentum transfer values ∆k ∈ [0.05, 2.5]Å
−1

. The friction coefficients η used in
these simulations are equal to the values used in a previous work [20]. By fitting the ISF
to a Gaussian function with width σt, exp(−t2/2σt), the values of Γ can be obtained from
σt through

Γ =
2h̄
√

2 ln 2
σt

. (44)

The width in time space σt of the ISF for a 2D ideal gas (43) is σt =
√

2/v0∆k. Using (44),
the dependence of Γ with the parallel wave vector transfer ∆k is given by

Γ = 2
√

ln 2 h̄v0∆k. (45)

Figure 2 shows a comparison between the numerical results of Γ as a function of
the parallel wave vector transfer ∆k at T = 105 K for two different values of the friction
coefficient, η = 0.25, 2.0 ps−1, and by assuming the corrugation of the Pt(111) surface to
be negligible. Black lines correspond to Equation (45). Left top panel (a) displays our
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numerical simulations. Langevin molecular dynamics simulations are displayed on the
right top panel (b) [20] for the same conditions. In panel (c), the fitting to a Gaussian
function of the ISF at very short times and small friction is also plotted. The numerical
results are in good agreement with those obtained in Ref. [20]. The slope of Γ decreases
as the friction coefficient increases. For a fixed value of ∆k, the value of Γ is higher for
η = 0.25 ps−1, so the width in the time domain is smaller and the function I(∆k, t) decays
faster. Thus, at higher values of ∆k, the fitting has to be carried out at smaller times. In
panel (c), the ballistic regime (t << 4 ps) seems to be well described around 0.8 ps. For
η = 2.00 ps−1, the friction is high enough to drastically reduce the ballistic regime at very,
very short times. In this case, the interaction with the substrate is very important and the
diffusive regime is reached at times t >> η−1. This regime is not studied here.

η = 0.25ps-1

η = 2.00ps-1

Ideal Gas

0.0 0.5 1.0 1.5 2.0 2.5

1

2

3

Δk [Å-1]

Γ
[m

e
V
]

(a) □□
□□

□□
□□

□
□
□□

□
□

□
□

△
△
△

△ △
△

△
△

△
η = 0.25ps-1

η = 2.00ps-1

Ideal Gas

0.0 0.5 1.0 1.5 2.0 2.5

1

2

3

Δk [Å-1]

Γ
[m

e
V
]

(b)

A e-t22σt
2

SN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (ps)0.0

0.2

0.4

0.6

0.8

1.0
I(0.40 Å-1

,t)

(c)

Figure 2. Quasielastic broadening Γ from Equation (44) as a function of surface parallel wave vector
transfer ∆kx for the decay process of the function I(∆k, t) with a low coverage θ = 0.017, surface
temperature T = 105 K and initial adsorbate velocity v0 = 115 m/s. Black lines correspond to
Equation (45). (a) Numerical simulations for a flat surface (V = 0 meV) with friction coefficients
η = 0.25 ps−1 (red) and η = 2.0 ps−1 (purple). (b) Langevin molecular dynamics simulations from
Ellis et al. [20]. Experimental results from the QHAS broadening at two incident He beam energies
Ei = 10.15 meV (triangles) and Ei = 26.85 meV (squares). (c) The ISF given by Equation (41) is

plotted versus the simulation time in ps for ∆k = 0.40 Å
−1

and friction coefficient η = 0.25 ps−1. Our
simulation results (SN) are represented by the red curve and the fitting Gaussian function e−t2/2σ2

t by
the black curve.

3.2. Corrugated Potential

The potential energy surface (PES) is simulated using the pairwise additive potential
approximation between the Xe and a square network of Pt atoms with a distance equal
to the unit cell length a = 3.93 Å. To ensure that the metal surface is large enough so that
the boundary effects do not influence the interaction potential, the number of cells Nc of
the surface in the XY plane is increased until the variation in the potential is as small as
a given threshold, say 10−3 meV.

A cosine corrugation function is proposed to represent the potential energy surface
of the Xe-Pt(111) system given by Va(x, y) = V1 cos

( 2π
a x
)

cos
( 2π

a y
)
+ V2, where V1 =

−13.64 meV and V2 = −12.32 meV. These values are obtained by fitting the cosine function
to the PES numerical result. Both numerical and analytic PSE are very similar because the
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amplitude of the interaction potential takes an approximated value equal to −28 meV and
the periodicity match with the unit cell length of the Pt for both cases. The unidimensional
corrugated potential is then used in the simulations with the form V(x) = Va(x, 0) =
V0 cos

( 2π
a x
)
. The amplitude V0 is taken so that the energy barrier for this potential (Eb = V0)

coincides with the Langevin molecular simulations [20]. In Figure 3, the directions (010)
and (100) of the metallic surface of Pt are plotted for the corrugated potential Va(0, y) and
Va(x, 0), respectively, in the interval x ∈ [90, 110]Å. The shape of the potential cutoff along
the (010) direction is analogous to the (100). Thus, the diffusion of the Xe adsorbate on the
metal surface of Pt is studied using the (100) direction for the interaction potential.
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Figure 3. Projections of the interaction potential Va along the directions (100) and (010) of the surface
in the interval x ∈ [90, 110]Å. The projection on the (010) direction is represented by a red curve and
the projection on (100) has been represented by blue points.

In Figure 4, the influence of surface corrugation on the Xe-Pt(111) system for a simu-
lation with small friction coefficient η = 0.03 ps−1 and surface temperature T = 105 K is
analyzed. Figure 4 shows the quasielastic broadening Γ as a function of ∆k. The slope of Γ
decreases as Eb increases. The adsorbate thermal energy can be obtained from ET = kBT.
For a temperature of T = 105 K, the thermal energy is ET = 9.04 meV. If the energy barrier
is less than 9.04 meV, the adsorbate can diffuse more or less freely over the metal surface of
Pt. For energy barriers belonging to this range, the system is in a ballistic regime at very
short times. If Eb = 9.6 meV, the difference between both energies is small and the system
is at the limit where some Xe gas particles can be trapped, but others can diffuse over
the surface. However, if Eb > 9.6 meV the thermal energy is not enough to overcome the
barrier and almost all the adsorbate particles are trapped in the potential valley and there
is no diffusion. In panel (c), the propagation time is much smaller than 1 ps in order to be
in the ballisitc regime, t << η−1. In this case, the chosen energy barrier is Eb = 9.6 meV
and the fitting to a Gaussian function is worse. The system under these conditions behaves
as a free 2D gas within a unit cell for very short times, particles are trapped inside the
potential valley. If a lower barrier energy is chosen, the corresponding fitting is better and
the propagation time in this regime is longer. Our numerical results are in good agreement
with those obtained by Langevin molecular simulations [20] and experimental data marked
by triangles and squares at low Eb values.
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Eb= 9.6meV

Eb= 23.6meV
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Figure 4. Quasielastic (Γ) broadening as a function of ∆k with a low coverage (θ = 0.017), small
friction coefficient η = 0.03 ps−1, surface temperature T = 105 K and the initial adsorbate velocity
v0 = 115 m/s. (a) Results of the simulations for potential energy barrier: Eb = 0 meV (blue),
Eb = 9.6 meV (red) and Eb = 23.6 meV (orange). (b) Results of a Langevin molecular dynamics taken
from Ellis et al. [20] with the same values of the energy barrier mentioned before, the theoretical
result for a 2D ideal gas (45) and experimental results of the QHAS broadening for two incident
beam energies Ei (triangles, Ei = 10.15 meV; squares, Ei = 26.85 meV) for scattering from Xe

adsorbed on a Pt(111). (c) The ISF I(0.40 Å
−1

, t) versus the simulation time t(ps) for an energy barrier
Eb = 9.6 meV. Our simulation (SN) is represented by a red curve and the Gaussian function e−t2/2σ2

t

by a black curve.

4. Conclusions

The stochastic wave function formalism has been briefly reviewed and applied to
the diffusion of a Xe gas on a Pt(111) surface. The Lindblad master equation, when it is
solved by means of stochastic wave functions, provides a good physical description of
the ballistic regime in this diffusion process. It provides an efficient numerical scheme to
study the quantum dynamics of open systems. As far as we know, this is the first time
this theoretical formalism has been applied to the surface diffusion context, since most
of works use the Langevin formalism (in its generalized or standard version). This is
particularly encouraging since recent experiments with better spatial and time resolutions
(HeSE technique) tend to reveal the underlying properties of individual systems and their
jump events directly in the time domain. New results for low and moderate values of the
surface coverage for the Xe/Pt(111) system have been recently obtained. Thus, thanks
to this type of study with quite satisfactory results, the next step will be to extend this
theoretical formalism to deal with the diffusion regime, t >> η−1. This would allow us to
consider more physical systems where recent experimental results are waiting for a better
interpretation. Adsorbates, such as Na, Li, H2, etc., on metallic surfaces have been studied
by using the HeSE technique. For light adsorbates, quantum methods are more convenient
than classical ones. In the surface diffusion context, this extension, which would be carried
out for the first time, is again very promising.

Perspectives

The dependence with the surface temperature and coverage can be studied for a better
understanding of microscopic processes. It is suggested to also extend and improve this
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numerical method for times greater than 20 ps with periodic two-dimensional interaction
potential in order to reach the Brownian regime. This method turns out to be a valuable
alternative for dealing with more diffusive systems studied via QHAS or HeSE such as, for
example, Na-Cu(001), Ar-MgO(100), etc., which have been previously considered within
the Langevin formalism [14,18,40].
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