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Abstract 15 

Chicory (Cichorium intybus L.) is a perennial herb from the Cichorium genus, Asteraceae family, 16 

and is worldwide cultivated. So far, chicory has been used mainly in animal feed, but also in several cases 17 

in the food industry: as salad, for teas and tea blends, for coffee supplementation, and as a source for the 18 

inulin production. Nowadays there is an increasing interest in chicory utilization for food production and 19 

supplementation. Some compounds present in chicory, such as polyphenols, inulin, oligofructose and 20 

sesquiterpene lactones may be considered as potential carriers of food functionality. This review 21 

describes nutritional, mineral and bioactive composition of the chicory plant and summarized the main 22 
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biological activities associated with the presence of bioactive compounds in the different plant parts. 23 

Finally, the review explores possibilities of uses of chicory and its implementation in food products, with 24 

intention to design new functional foods. 25 

Keywords: chicory, nutritional composition, bioactive compounds, biological activity, food  26 

 27 

1. Introduction 28 

 29 

Since ancient times, plants have been studied for the purpose of their application in traditional 30 

medicine as well as in the food sector in order to improve the health benefit and sustainability of different 31 

food products. Particular attention was drawn to bioactive components present in such plants, mainly to 32 

secondary metabolites as prominent constituents which are mostly the cause of biological activity and 33 

functionality of these plants. Numerous studies have proven that many of these plants possess various 34 

biological activities (Akhtar, Ismail, Fraternale, & Sestili, 2015; Al-Snafi, 2016). Plants, seaweeds, 35 

microalgae and food by-products are the most important sources of functional compounds such as: dietary 36 

fiber, phenolic compounds, flavonoids, oils, plant sterols, proteins, prebiotics, probiotics, anthocyanins, 37 

carotenoids and many others (Da Silva, Barreira, & Oliveira, 2016; Herrero, Sánchez-Camargo, Cifuentes, 38 

& Ibáñez, 2015). 39 

Previous scientific interest has resulted in the implementation of various plant species (such as 40 

fruits and algae) or their ingredients in different types of food products and beverages in order to find novel 41 

bioactive molecules which can bring them functionality (Mocan et al., 2017; Admassu, Zhao, Yang, 42 

Gasmalla, & Alsir, 2015).  As a result, numerous scientific reviews summarized nutritional, mineral and 43 

bioactive composition of food and health potentially beneficial plants such as: lettuce (Lactuca sativa L.), 44 

true morels (Morchella) and carob pods (Ceratonia silique L.) (Kim, Moon, Tou, Mou, & Waterland, 2016; 45 

Tietel & Masaphy, 2018; López-Sánchez, Moreno, & García-Viguera, 2018). 46 

According to our knowledge, only a few scientific publications investigated chicory in the context 47 

of food ingredient, and among these chicory was considered as a source of inulin, oligofructose and 48 

sesquiterpene lactones as potential carriers of functionality (Ferioli, Manco, & D’Antuono, 2015; Shoaib et 49 

al., 2016; Jeong et al., 2017).     50 
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Chicory (Cichorium intybus L.) is a perennial herb from the Cichorium genus, Asteraceae family, 51 

and is worldwide cultivated. The origin of this species is Europe (Mediterranean region), but it also may be 52 

cultivated in all other temperate regions and semi-arid areas (mid-Asia, northern Africa, eastern USA, 53 

Australia) (Al-Snafi, 2016; Wang & Cui, 2011). Chicory has rich nutritional composition and is potentially a 54 

rich source of bioactive substances for human food fortification: inulin, sesquiterpene lactones (especially 55 

lactucin, lactucopicrin, 8-deoxy lactucin, guaianolid glycosides, including chicoroisides B and C, 56 

sonchuside C), caffeic acid derivatives (chiroric acid, chlorogenic acid, isochlorogenic acid, dicaffeoyl 57 

tartaric acid), fats, proteins, hydroxycoumarins, flavonoids, alkaloids, steroids, terpenoids, oils, volatile 58 

compounds, vitamins (α-tocopherol, γ-tocopherol), β-carotene, zeaxanthin and minerals (Al-Snafi, 2016;  59 

Petropoulos et al., 2017). In addition to its important nutritive profile, chicory shows many types of 60 

biological activity: hepatoprotective, anti-inflammatory, antioxidant, sedative, immunological, 61 

cardiovascular, hypolipidemic, antidiabetic, anticancer, gastro-protective, antimicrobial and many others 62 

(Bahmani et al., 2015; Al-Snafi, 2016).  63 

The aim of this review is to consolidate the nutritional composition and bioactivity of the chicory 64 

plant, describe its health beneficial properties and demonstrate Cichorium intybus L. plant as a potential 65 

food ingredient. The importance of plant composition information is reflected in the ability to evaluate 66 

the intake of nutrients by consuming chicory enriched food products. Furthermore, this review collects 67 

literature regarding the relationship between nutritional components and their health-related bioactivity, 68 

which is the main point of food functionality.  69 

 70 

2. Nutritional composition of chicory 71 

 72 

Various nutritionally important compounds detected in chicory plant indicate its rich and versatile 73 

nutritional composition. Carbohydrates, phenolic compounds, flavonoids, fatty and amino acids,  74 

sesquiterpene lactones, vitamins, and minerals have been present in the Cichorium intybus L. 75 

Nutritional composition of raw chicory plant (Cichorium intybus L.) is presented in Table 1. Many 76 

scientific papers investigated the nutritional composition of individual chicory plant parts, and that 77 

information is summarized in Table 2.   78 
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 79 

Table 1 80 

Nutritional composition of raw chicory (Cichorium intybus L.) per 100 g fresh weight (f.w.) 81 

 82 

Nutrient Amount 

Proximates  

Water 94.52 g 

Energy 17 kcal/ 71kJ 

Protein 0.9 g 

Total lipid (fat) 0.1 g 

Ash 0.47 g 

Carbohydrate 4 g 

Total dietary fiber 3.1 g 

Minerals  

Ca 19 mg 

Fe 0.24 mg 

Mg 10 mg 

P 26 mg 

K 211 mg 

Na 2 mg 

Zn 0.16 mg 

Cu 0.051 mg 

Mn 0.1 mg 

Se 0.2 μg 

Vitamins  

Vitamin C 2.8 mg 

Thiamin 0.062 mg 

Riboflavin 0.027 mg 



 
 

5 
 

Niacin 0.16 mg 

Pantothenic acid 0.145 mg 

Vitamin B-6 0.042 mg 

Total folate 37 μg 

Folic acid 0 μg 

Folate, food 37 μg 

Folate, DFE 37 μg 

Vitamin B-12 0 μg 

Vitamin A, RAE 1 μg 

Retinol 0 μg 

Vitamin A, IU 29 IU 

Vitamin D (D2+D3) 0 μg 

Lipids  

Fatty acids, total saturated 0.024 g 

14:0 0.001 g 

16:0 0.021 g 

18:0 0.001 g 

Fatty acids, total monounsaturated 0.002 g 

18:1 0.002 g 

Fatty acids, total polyunsaturated 0.044 g 

18:2 0.037 g 

18:3 0.006 g 

Fatty acids, total trans 0 g 

Cholesterol 0 mg 

Amino acids  

Tryptophan 0.016 g 

Threonine 0.025 g 

Isoleucine 0.054 g 
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Leucine 0.039 g 

Lysine 0.035 g 

Methionine 0.005 g 

Phenylalanine 0.022 g 

Valine 0.041 g 

Arginine 0.066 g 

Histidine 0.015 g 

DFE, dietary folate equivalents; RAE, retinol activity equivalent; 83 

IU, international unit; data adopted from http://ndb.nal.usda.gov/ndb/search; 84 

accessed on October 28th, 2019; 85 

 86 

 87 

 88 

Table 2 89 

Nutritional composition of chicory (Cichorium intybus L.) plant parts, per 100 g of dry weigh 90 

 91 

 92 

 93 

 94 

 95 

 96 
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C
o
n
te

n
t 

g
/1

0
0
g

 

Dry 

mater 
Moisture Ash 

Crude 

fiber 

Insoluble 

dietary 

fiber 

Soluble 

dietary 

fiber 

Total 

dietary 

fiber 

Carbo- 

hydrates 

Total 

soluble 

sugar 

Inulin 
Crude 

protein 

Crude 

fat 

Ether 

extract 

Nitrogen 

free 

extract 

Reference 

R
o
o
t 

96.08 58 8.12 27.32       5.54  1.04 57.98 Jan et al. (2011) 

 

75.63 

± 

0.39 

4.25 

± 

0.11 

5.12 

± 

1.55 

30.73 

± 

0.33 

0.42 

± 

0.07 

31.15 

89.41 

± 

1.07 

11.06 

± 

1.00 

44.69 

± 

0.88 

4.65 

± 

0.25 

 

1.69 

± 

0.71 

 
Nwafor, Shale, and Achilonu  

(2017) 

 

87.57 

± 

0.05 

8.96 

± 

0.07 

  

66.93 

± 

0.01 

 

70.43 

± 

0.05 

12.33 

± 

0.04 

 

5.17 

± 

0.17 

3.01 

± 

0.5 

  

Zarroug,  Abdelkarim, Dorra, 

Hamdaoui, Felah, and 

Hassouna (2016) 

 

76.32 

± 

0.2 

4.45 

± 

0.32 

    

90.77 

± 

0.17 

  

3.83 

± 

0.35 

0.95 

± 

0.04 

  

Khalaf, El-Saadani, El-

Desouky, Abdeldaiem, and 

Elmehy (2018) 

L
e
a
f 

 

83.06 

± 

1.55 

10.91 

± 

1.86 

16.78 

± 

2.20 

   

70.71 

± 

3.08 

7.80 

± 

1.45 

10.95 

± 

2.56 

14.70 

± 

1.03 

 

3.68 

± 

0.19 

 
Nwafor, Shale, and Achilonu  

(2017) 

95.1  18.6 22.4    38.2   14.0 1.9   Ereifej et al. (2015) 

93.0 22.64 18.65 17.61         0.33 49.31 Jan et al. (2011) 

 

85.77 

± 

0.15 

15.13 

± 

0.74 

    

72.11 

± 

0.11 

  

10.22 

± 

0.26 

2.54 

± 

0.07 

  

Khalaf, El-Saadani, El-

Desouky, Abdeldaiem, and 

Elmehy (2018) 

S
e
e

d
 

 

6.40 

± 

0.16 

6.91 

± 

0.15 

25.68 

± 

0.19 

   

31.66 

± 

0.42 

  

19.57 

± 

0.17 

22.89 

± 

0.67 

  
Wen Ying and Jin Gui (2012) 

Puna chicory 

 

6.65 

± 

0.23 

6.80 

± 

0.20 

25.68 

± 

0.17 

   

34.72 

± 

0.23 

  

19.20 

± 

0.13 

22.56 

± 

0.23 

  
Wen Ying and Jin Gui (2012) 

Commander chicory 
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97 

95.0 

± 

0.20 

 

8.4 

± 

0.05 

      

1.79 

± 

0.04 

10.7 

± 

0.3 

14.4 

± 

0.2 

  

Jurgoński, Milala, 

Jusbkiewicz, Zduńczyk, and 

Bogusław (2011) 

 

94.74 5.26 11.55 36.63       18.55  13.58 19.69 
Jan et al. (2011) 

Wild chicory seeds 

95.76 4.24 17.19 38.12       14.45  10.28 19.69 

Jan et al. (2011) 

Chicory seeds from the 

market 
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2.1. Carbohydrates 98 

Carbohydrates, proteins and lipids are structural units and the main reserve materials in plants. 99 

Furthermore, carbohydrates express important role in plant defense response. Their content depends on 100 

plant species, cultivation method, weather conditions and other conditions which will be discussed in the 101 

following paragraphs. 102 

Carbohydrates content in chicory parts decreases in the following order: root (70.43 - 90.77%) > leaf (38.2 - 103 

72.11%) > seed (31.66 - 34.72%) (Table 2). (Jan et al., 2011; Nwafor, Shale, & Achilonu, 2017; Zarroug, 104 

Abdelkarim, Dorra, Hamdaoui, Felah, & Hassouna, 2016; Khalaf, El-Saadani, El-Desouky, Abdeldaiem, 105 

and Elmehy, 2018; Ereifej et al., 2015; Wen Ying & Jin Gui, 2012; Jurgoński et al., 2011). Among them, the 106 

most present are fibers and sugars (Table 2). Some studies noted variations in soluble dietary fibers (0.42 - 107 

66.93%) and crude fiber content (5.12 - 27.32%) in chicory root (Nwafor et al., 2017; Zarroug et al. 2016). 108 

Similar crude fiber content was found in chicory leaves (16.78-22.4 g/100g dry weight (d.w.)), while crude 109 

fiber content in seeds ranged from 25.68 to 38.12 g/100 g d.w. (Table 2). Slight differences in nutritional 110 

composition may be observed between various chicory varieties and cultivation technique such as organic 111 

or mineral fertilization or soil salinization (Wen Ying & Jin Gui, 2012; Jurgoński et al., 2011; Jan et al., 112 

2011; Sinkovič, Demšar, Žindarčič, Vidrih, Hribar, & Treutter, 2015., Petropoulos et al., 2017.).  113 

There is a lack of information about nutritive composition of chicory stem. Shad, Nawaz, Rehman, 114 

and Ikram (2013) reported presence of 2.12±0.10 g/100g d.w. of total sugar content in chicory stem. The 115 

similar content was reported in chicory root (2.03±0.02 g/100g d.w.) while leaves and seeds contained 116 

higher amounts of total sugars (4.50±0.37 g/100g d.w. and 3.05±0.06 g/100g d.w, respectively).  117 

 Compering the carbohydrate contents in chicory to Jerusalem artichoke tubers (that varied from 118 

55-65% depending on harvesting date) (Kocsis, Liebhard, & Praznik, 2007), and to cereals such as millet 119 

(total carbohydrates ranged 71.54-83.75 % depending on the set applied) (Chen, Ren, Zhang, Diao, & 120 

Shen, 2013), it can be concluded that chicory (especially root and leaves) may be considered as a rich 121 

and competitive source of carbohydrates. Leaves of Cichorium intybus L. showed higher content of crude 122 

protein, fiber, carbohydrates and lower fat content in comparison with some wild plants which could be 123 

considered as natural sources for antioxidants and valuable natural resources (Ereifej et al., 2015). 124 

Compared to chicory root, stem and seeds, leaves also showed higher contents of sugars (4.50 g/100g 125 
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d.w.), and non-reducing sugars (4.27 g/100 g d.w.) (Shad et al., 2013). Fructose seems to be the most 126 

abundant sugar present in chicory seeds, 22.5% d.w. (Jurgoński et al., 2011). Some studies reported 127 

presence of saccharides in chicory flowers (Cichorii flos) (Judžentienė & Būdienė, 2008). 128 

Chicory cultivar also showed a great impact on root yield and the amount of carbohydrates. 129 

Among the sugars, fructose was the most abundant compound with the content of 0.6-11.5%, then 130 

glucose (0.3-10.6%) and sucrose (2.6-11.1%) during three different experiments. Experiment 1 was 131 

devoted to determination of optimum planting and harvesting dates, experiment 2 was aimed to examine 132 

additional chicory cultivars harvested during a longer time period, while experiment 3 studied a chicory 133 

root development from the first of September through mid-November (Wilson, Smith, &Yonts, 2004). 134 

Fructan DP (degree of polymerization) was also influenced by different planting and harvesting dates, but 135 

the biggest share had fructans with DP 3-10 (28.4-60.3%), then DP 11-20 (11-31.9%) and DP>20 (1.9-136 

25.3%) depending on planting date, cultivar, and harvest date (Wilson et al., 2004). 137 

 Robert, Happi, Wathelet and Paquot (2008) investigated yield of pectin and soluble sugars in 138 

chicory root. They concluded that extraction temperature, time, protease pretreatment, water purity, and 139 

water washing of pulps significantly affected yield and pectin composition with an increase of yield and 140 

purity of pectin in rough extraction conditions. Pectin and galacturonic acid yield varied due to extraction 141 

conditions from 35.0±03 to 242±1.0 mg pectin/g d.w. and 24-182 mg GAE/g d.w. The following sugar 142 

components dominated in the pectin extract: galacturic acid (671 to 782 mg/g d.w.), galactose (21-60 143 

mg/g d.w.), rhamnose (10-24 mg/g d.w.), while xylose, arabinose and glucose were present in lower 144 

quantities (0-1 mg/g d.w., 5-18 mg/g d.w. and 0-3 mg/g d.w. respectively). Robert et al. (2008) also 145 

mentioned that harvest date caused the major changes in terms of neutral sugar content, while 146 

galacturonic acid content was constant during the harvest period. 147 

According to results obtained by Jurgoński et al. (2011) chicory leaves contained 62.4 g of mono- 148 

and disaccharides on 100 g f.w., higher than in all other chicory plant parts (root, seed and peel). 149 

 150 

2.1.1. Inulin  151 

 152 



 
 

11 
 

Chicory root is one of the major natural sources of inulin. This water-soluble storage 153 

polysaccharide belongs to a group of non-digestible carbohydrates called fructans. It is a fructose polymer 154 

with 𝛽-(2-1)-glycosidic-linkage which is a long-chain carbohydrate, consisting of 2–60 fructose molecules 155 

with a terminal glucose molecule. Inulin can play a role of fat and sugar replacer, texture modifier and as 156 

compound in functional food development due to its prebiotic properties. Many studies investigated inulin 157 

provided health benefits including: regulation of blood lipids (LDL-cholesterol and triacylglycerol) 158 

concentration, positive effect on constipation, bifidogenic effect with bacteria in the colon, decreasing the 159 

risk of many gastrointestinal diseases (ulcerative colitis, Crohn’s disease, colon cancer), enhancing 160 

mineral absorption (especially Ca, Mg and Fe), regulates appetite by affecting gastrointestinal hormones, 161 

immune-modulating effects and others (Shoaib et al., 2016). Many studies reported different amounts of 162 

inulin presented in chicory root. That content varies from 11-20 g inulin/100 g in the fresh root (Figueira, 163 

Jin, Brod, & Honorío, 2004) to 44.69% inulin on dry root weight basis (Nwafor et al.,  2017). Chicory root 164 

(11-20 g/100 g) possesses similar or higher amount of inulin compared to inulin rich plants: barley grains 165 

(18-20 g/100 g), Jerusalem artichoke tubers (12-19 g/100 g), asparagus roots (15 g/100 g), agave stem 166 

(12-15 g/100g), dandelion roots (12-15 g/100 g) and dahlia tuber (10-12 g/100 g) (Shoaib et al., 2016). 167 

Milala, Grzelak, Król, Juśkiewicz and Zduńczyk (2009) investigated inulin and total fructan content in 168 

chicory peel, root, leaves and seed. They obtained 14.5% inulin in the root (calculated on the dry matter) 169 

and 61.8% of total fructans. These values were the highest in comparison with other chicory plant parts. 170 

Chicory root yield and inulin content is significantly influenced by year’s weather conditions, as reported in 171 

the study of Černý, Pačuta and Kovár (2008). They reported 18.13-22.93 % of inulin in dry chicory root. 172 

The main factors which affect root yield, the content of inulin and the length of the inulin chains are the 173 

sowing date, the harvest date and the genotype. The significant reduction of the average inulin chain 174 

length may be noticed in the autumn when degrading fructan enzymes are the most active. This leads to 175 

the conclusion that early harvested plants (in September) are rich in longer-chain inulin molecules 176 

(Roustakhiz & Majnabadi, 2017).    177 

There are different reports about the DP of inulin from chicory root. Roberfroid and Delzenne 178 

(1998) stated that chicory inulin is a long chain fructan with DP 2-60. Vandoorne et al. (2014) investigated 179 

flooding stress impact on root growth, inulin content and inulin DP. Control samples showed 10.6 to 15.1 180 
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mean DP and 67.1 to 85.7 g inulin/ 100g d.w., depending on number of weeks after sowing. Samples 181 

obtained after flooding noted 10.1 to 12.3 mean DP and inulin amount of 76.4 to 85.0 g/100g d.w. in root. 182 

Monti, Amaducci, Pritoni and Venturi (2005) explained that the fructan average DP of single chicory root 183 

(commonly 10–20) is the average of short (fewer than 10 units) and long fructan chains (about 60). 184 

Chicory seeds contain the smallest amount of total fructans (1.9% d.w.) in relation to chicory root, peel 185 

and leaves (61.8% d.w., 47.7% d.w., 3.3% d.w., respectively), with inulin content of 0.3% d.w. (Milala et 186 

al., 2009). 187 

 188 

2.2. Volatile compounds 189 

 190 

The composition of volatile organic compounds in plants is species specific and affected by 191 

external conditions, including the availability of environmental factors such as light, nutrients and water 192 

(Kegge & Pierik, 2010). Their composition is also influenced by method of extraction. Extraction 193 

methodologies for volatile compound isolation from chicory applied organic solvents such as petroleum 194 

ether, chloroform, hexane and ethyl acetate (Nandagopal & Kumari, 2007). In the study of Judžentienė 195 

and Būdienė (2008), the volatile fractions from chicory root and chicory areal parts were isolated by 196 

hydrodistillation for 2 h with the Clevenger type apparatus with a mixture of pentane and diethyl ether 197 

(1:1). Solid-phase micro extraction (SPME) may also be used for isolation of volatile compounds from 198 

chicory according to Bais, Dattatreya, and Ravishankar (2003). 199 

Volatile oils are found in all parts of the plant, with the highest concentration in the roots which 200 

have been found to be effective at eliminating intestinal worms in humans (Athanasiadou, Githiori, & 201 

Kyriazakis (2007). Gol, Noghani and Chamsaz (2014) reported 48 different compounds from chicory root 202 

essential oil with camphor (20.74%), cymene (15.06%), gamma-terpinene (13.24%) and cuminal (10.79%) 203 

as major components. It can be noted that chicory root contains higher amount of camphor, gama-204 

terpinene and cymene (20.74%, 13.24% and 15.06%, respectively) compared to Salvia officinalis 205 

(11.25%, 0.08% and 0.07%, respectively) (Radulescu, Chiliment, & Oprea, 2004). Other volatile 206 

compounds found in chicory root are octane (34.3-69.8%), nonadecane (0.3-3.9%), aliphatic compounds 207 

and their derivates (64.1-81.3%) and tentatively identified compounds (4.8-22.7%) (Judžentienė & 208 
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Būdienė, 2008). Hexadecanoic acid (32.9%), nonadecane (26.1 %) and trans-α-bergamotene (14.0 %) 209 

were the most abundant volatile oil compounds from chicory areal parts reported in study of Rustaiyan, 210 

Masoudi, Ezatpour, Danaii, Taherkhani, and Aghajani (2011). Besides that, the oil contained also three 211 

sesquiterpene hydrocarbons, two oxygenated sesquiterpenes and nine aliphatic compounds with share of 212 

17.1%, 4.8% and 78.1 %, respectively.  Bais et al. (2003) identified volatile aromatic compounds (propyl 213 

isovalerate, undecanal, nonanol, isoamyl nonanoate and 2-decene-1-ol) in hairy chicory root after impact 214 

of fungal elicitors. Cichorium intybus L. leaves showed 7.43% oil yield, with better essential oil antifungal 215 

activity against Ganoderma lucidum than against Bacillus subtilis (Hanif, Bhatti, Jamil, Anjum, Jamil, & 216 

Khan, 2010). The p-cymol (17.12%), γ-terpinene (15.18%), cuminal (10.53%) and thymol (9.38%) were 217 

the most abundant compounds present in chicory leaves essential oil in study of Gol et al. (2014). 218 

 219 

2.3. Phenolic compounds  220 

Phenolic compounds are one of the most important groups of compounds responsible for various 221 

plant bioactivities. With its great morphological diversity, chicory presents the rich source of phenolic 222 

compounds, especially phenolic acids and flavonoids. Phenolic composition of chicory is highly influenced 223 

by cultivar and fertilizer administration. Moreover, the content of phenolic components varies depending 224 

on the part of the plant, with chicory seed and leaf as the richest parts.  225 

 226 

2.3.1. Total phenolic content 227 

 228 

Total phenolic content of 20.0±0.90 mg gallic acid equivalent (GAE)/g for dry methanolic chicory 229 

root extract was reported by Nwafor et al. (2017). Denev, Petkova, Ivanov, Sirakov, Vrancheva, and 230 

Pavlov (2014) noted different amounts of total phenolic content depending on the chicory culture, the 231 

harvest date and extraction solvent. According to these data total polyphenolic content varied from 3.7 to 232 

7.9 mg GAE/ g d.w. Total phenolic contents were significantly different for wild and cultivated chicory root 233 

(22.4 and 35.1 mg GAE/100 g, respectively) (Spina et al., 2008). Total phenolic content seems to be 234 

noticeable higher in chicory leaves, compared to other plant parts. According to Khalaf et al. (2018), total 235 

phenolic content in chicory leaves was 865.91 mg GAE/100 g (d.w.). Heimler, Isolani, Vignolini and 236 
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Romani (2009) determined contents of total phenolics in chicory leaves and noted amounts of 404.6 to 237 

696.3 mg GAE/100 g f.w. By comparing results obtained by Lin and Tang (2007) and previously 238 

mentioned studies devoted to the determination of total phenolic content in chicory leaves, it seems that 239 

chicory leaves contain a higher amount of total phenolics when compared to different fruits (strawberry, 240 

oriental plum, loquat) and vegetables (green, yellow, and red paper, red and white onion, ceylon spinach, 241 

bitter melon, beetroot). In study of Milala et al. (2009), lyophilized extract obtained from chicory seeds was 242 

the richest in polyphenol compounds compared to root, peel and leaves, and contained more than 10% of 243 

total phenolics.  244 

 245 

2.3.2. Phenolic acids 246 

Milala et al. (2009) determined 0.3% (d.m.) caffeoylquinic acids and 0.2% (d.m.) dicaffeoylquinic 247 

acids in root of Cichorium intybus L. Juśkiewicz, Zduńczyk, Żary-Sikorska, Król, Milala, and Jurgoński 248 

(2011) stated content of caffeoylquinic acids (0.50 g/100 g), monocaffeoylquinic acids (0.30 g/100 g) and 249 

dicaffeoylquinic acids (0.20 g/100 g) in lyophilized chicory root. By analyzing ethanol extract of chicory 250 

seeds, Jurgoński, Juśbkiewicz, Zdunczyk and Bogusław (2012) determined 9.6 g phenolic 251 

compounds/100 g fresh mass including mono- and dicaffeoylquinic acids  (caffeoylquinic acids (CQA) , 252 

2.8 g/100 g f.w. and 6.8 g/100 g f.w. respectively), with antioxidant activity of 505.1 nmol Trolox equivalent 253 

(TE)/g. They also confirmed that CQA-rich extract from chicory seeds in improving diet-induced metabolic 254 

disturbances. Pandino, Courts, Lombardo, Mauromicale, and Williamson (2010) reported total 255 

caffeoylquinic acid content in wild cardoon (0.0021% d.w.) and in globe artichoke (0.0071-0.2514% d.w.), 256 

which indicates that chicory possesses higher contents of these acids. On the other side, leaves of 257 

Acanthopanax trifoliatus (Asian vegetable and medical plant), harvested at different seasons contained 258 

mono and dicaffeoylquinic acids varied from 0.25-0.90% and 0.10-1.36% (Sithisarn, Muensaen, & 259 

Jarikasem, 2011). 260 

Willeman et al. (2014) reported the presence of chlorogenic acid in chicory root, flour and roasted 261 

grains at levels of 100.2 𝜇g/g of d.w., 1547 𝜇g/g, and 822.5 𝜇g/g, respectively. Khalaf et al. (2018) 262 

reported 272.48 mg/100 g d.w. chlorogenic acid, while Bahri et al. (2012) quantified hidroxycinnamic acids 263 
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in leaf tissue of Cichorium intybus L. and noted average concentrations of 130 mg/kg f.w. for chlorogenic 264 

acid. In study of Nwafor et al. (2017), chlorogenic acid content was 17.84% in chicory root. 265 

According to results obtained by Jurgoński et al. (2011) fresh chicory contained 2.13 g/100 g of 266 

chicoric acid.  Cichorium intybus L. leaves are also rich in chicoric acid with content of 370 mg/kg f.w. 267 

reported by Bahri et al. (2012). Moreover, chicoric acid in leaves (0.87 to 6.14 mg/g) was determined by 268 

Heimler et al. (2009).  269 

Caffeic acid is present in chicory root with content of 35.22% (Nwafor et al., 2017), as well as 1.27 270 

mg/100 g d.w. in leaves (Khalaf et al., 2018).  271 

Protocatechuic (2.50%, 7.98 mg/100 g d.w.), p-hydroxybenzoic (11.04%), iso vanillic (1.97%, 272 

30.66 mg/100 g d.w.) and p-coumaric acids (9.65%, 22.84 mg/100 g d.w.) were also present in chicory 273 

root and leaves, respectively (Nwafor et al., 2017; Khalaf et al., 2018). Khalaf et al. (2018) identified some 274 

phenolic acids in chicory leaves including gallic acid (1.52 mg/100 g d.w.), 4-amino-benzoic (8.61 mg/100 275 

g d.w.), p-OH-benzoic (11.93 mg/100 g d.w.), caffene (68.76 mg/100 g d.w.), ferulic acid (5.85 mg/100 g 276 

d.w.), iso-ferulic acid (49.10 mg/100 g d.w.), e-vanilic acid (131.02 mg/100 g d.w.), benzoic acid (77.50 277 

mg/100 g d.w.), ellagic acid (91.19 mg/100 g d.w.), alpha-cumaric (7.58 mg/100 g d.w.), 3,4,5-methoxy-278 

cinnamic (6.37 mg/100 g d.w.), salycilic acid (15.76 mg/100 g d.w.) and cinnamic acid (0.70 mg/100 g 279 

d.w.). Bahri et al. (2012) quantified hidroxycinnamic acids in leaf tissue of Cichorium intybus L. and noted 280 

average caftaric acid concentrations of 246 mg/kg fresh weight (f.w.). 281 

Shad et al. (2013) determined total phenolic acids in chicory stems, and reported content of 282 

2.09±0.21g/100g d.w. 283 

 284 

2.3.3. Flavonoids 285 

The flavonoid content in leaves was found at 112.38 mg quercetin equivalent (QE)/100 g d.w. in study of 286 

Khalaf et al. (2018), apropos 4.96 to 21.80 mg catechin/100g f.w. (Heimler et al., 2009). The range of 287 

these values was conditioned by first and second sampling, as well as the way of chicory farming 288 

(conventional or biodynamics). Total flavonoids (0.08±0.03 g/100g d.w.) were also determined in chicory 289 

stems (Shad et al., 2013). In their study of weed seeds, Abbas, Rana, Shahid, Mahmood-ul-Hassan and 290 

Hussain (2012) reported the presence of flavonoids in Cichorium intybus L. seeds, in content of 14.13%). 291 
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By comparing total flavonoid content in strawberry (14.6 mg QE/100 g f.w.), oriental plum (37.6 mg 292 

QE/100 g f.w.), mulberry (250.1 mg QE/100 g f.w.), loquat (14.2 mg QE/100 g f.w.), green (7.5 mg QE/100 293 

g f.w.), yellow (4.1 mg QE/100 g f.w.), red (10.4 mg QE/100 g f.w.) paper, red (36.5-56.4 mg QE/100 g 294 

f.w.) and white (30.6 mg QE/100 g f.w.) onion, ceylon spinach (133.1 mg QE/100 g f.w.), bitter melon (15.0 295 

mg QE/100 g f.w.), beetroot (62.8 mg QE/100 g f.w.), with total flavonoid content in different parts of 296 

chicory plant, it may be concluded that chicory leaves are promising source of flavonoids (Lin & Tang, 297 

2007). 298 

Quercetin glucuronide (0.74±0.02 g/100g f.w.) as well as luteolin glucuronide (0.98±0.216 to 299 

3.33±0.05 mg/g) were detected only in chicory leaves (Jurgoński et al., 2011, Heimler et al., 2009). 300 

According to Mulabagal, Wang, Ngouajio, and Nair (2009) the most abundant anthocyanin (>95) 301 

in leaves from five different Cichorium intybus L. cultivars was cyanidin-3-O-(6”-malonyl-β-302 

glucopyranoside). They also noted that anthocyanin from chicory leaf in its pure form presents in vitro 303 

activities similar to aspirin and may show anti-inflammatory activity in vivo. Nørbæk, Nielsen, and Kondo 304 

(2002) investigated anthocyanins from flowers of Cichorium intybus L. and reported the presence of four 305 

anthocyanins: delphinidin 3,5-di-O-(6-O-malonyl-β-D-glucoside), delphinidin 3-O-(6-O-malonyl-β-D-306 

glucoside)-5-O-β-D-glucoside, delphinidin 3-O-β-D-glucoside-5-O-(6-O-malonyl-β-D-glucoside) and 307 

delphinidin 3,5-di-O-β-D-glucoside. 3-O-p-coumaroyl quinic acid has been identified also, for the first time.  308 

Khalaf et al. (2018) identified some phenolic compounds in chicory leaves including catechein 309 

(96.41 mg/100 g d.w.), catechol (5.13 mg/100 g d.w.), epicatachin (13.12 mg/100 g d.w.) and coumarin 310 

(11.10 mg/100 g d.w.). In the study of Spina et al. (2008) the content of epigallocatechin gallate in wild and 311 

cultivated chicory root was similar (16.5 μg/g and 17.53 μg/g respectively). Tannins are also present in 312 

Cichorium intybus L. seeds in percent of 14.53±0.02 (Abbas et al., 2012). 313 

 314 

2.4. Amino acids and proteins  315 

Amino acids are organic compounds containing amino and carboxyl functional groups, that are 316 

building blocks of life. They are present in plants, animals and humans and they have an important role in 317 

human health maintenance. The levels of amino acids vary and many plant defense responses against 318 
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biotic or abiotic stress involve metabolic adjustments in amino acid metabolism and their presence. Some 319 

of them are determined in chicory and their presence is described. 320 

 Foster, Fedders, Clapham, Robertson, Bligh, & Turner (2002) reported different amounts of amino 321 

acids present in chicory rossete leaves differed by cultivation date and cultivar. They noticed similarities in 322 

amino acid composition among the cultivars and decrease of cisteine and hydroxyproline as well as 323 

decrease in total N concentration with latter harvested period. The major amino acids contained in rossete 324 

leaves were glycine (72.2-91.7 μmol/g d.w.), alanine (61.6-84.7 μmol/g d.w.), leucine (64.0-93.2 μmol/g 325 

d.w.), aspartate plus asparagine (60.9-83.5 μmol/g d.w.) and glutamate plus glutamine (69.5-96.2 μmol/g 326 

d.w.).  327 

Glutamine, glutamate, asparate, asparagine, glycine, serin and arginin are the main amino acids 328 

in chicory root and leaves, while ornithin, proline, threonine, isoleucine, valine, leucine, alanine, histidine, 329 

lysine, phenylalanine and γ-butiric acid are present in lower amounts (Druart, Goupil, Dewaele, Boutin, & 330 

Rambour, 2000). Salty soil conditions may improve proline accumulation both in wild chicory root and 331 

leaves as plant response to stress (Sergio et al., 2012). 332 

Total content of amino acids in two varieties of chicory seeds was in the range of 10.61-14.91 %, 333 

with glutamic acid (2.14-3.58%), aspartic acid (1.11-1.58 %), arginine (1.04-1.54%), glycine (0.79-0.99 %) 334 

and leucine (0.63-0.99 %) as the most abundant acids (Wen Ying & Jin Gui, 2012). Chicory seeds may be 335 

considered as good source of amino acids when compared to oil seeds and legumes such as sunflower 336 

(4.889-5.083% glutamic acid, 2.201-.3.002% aspartic acid, 1.586-2.194% arginine, 0.934-1.332% glycine 337 

and 1.490-1.511% leucine ), safflower (0.021-0.363% glutamic acid, 0.201-0.247% aspartic acid, 1.559-338 

1.665% arginine, 0.857-1.022% glycine and 1.002-1.023% leucine) and ground nut (1.397% glutamic 339 

acid, 3.459% aspartic acid, 2.795% arginine, 1.232% glycine and 1.622% leucine) (Ingale & Shrivastava, 340 

2011). 341 

The water-soluble proteins are the most abundant in chicory, followed by approximately similar 342 

contents of a salt soluble protein and free amino acids. Leaves have higher content of free amino acids 343 

and water-soluble protein content while roots contain appreciable amount of salt soluble protein content, 344 

taking into account their contents in chicory root, leaves, stem and seeds (Al-Snafi, 2016).  345 
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Water soluble proteins in stems (9.43±1.77 g/100g d.w.) where higher than in chicory roots and 346 

seeds (5.57±0.58 g/100g d.w. and 8.35±1.82 g/100g d.w, respectively), while chicory leaves contained 347 

14.13±1.50 g/100g water soluble proteins. Salt soluble proteins were abundant in stems at amount of 348 

6.85±0.38 g/100g d.w., similar as in leaves and seeds (6.91±0.53 g/100g d.w. and 6.81±0.51 g/100g d.w, 349 

respectively), while root contained 7.94±0.30 g/100g d.w. Free amino acids in stems were present in 350 

content of 5.98±0.31% g/100g d.w more than in roots and seeds (a 1.23±0.07 g/100g d.w. and 2.03±0.05 351 

g/100g d.w, respectively) while leaves were the richest in free amino acids content (8.46±0.24) (Shad et 352 

al., 2013). 353 

According to Table 2, chicory seeds are the richest source of crude protein (11.26 to 19.57%), 354 

followed by leaves (10.22 to 14.70%) and root (3.83 to 5.54%). In the study of Akeel, Al-Sheikh, Mateen, 355 

Syed, Janardhan, and Gupta (2014) concentration of protein in Cichorium intybus L. seeds was reported 356 

to be in the range 110.8-146.6 μg/ml depending on pH (6.5 and 7.4). When compared to crude protein 357 

content in Datura innoxia (17.21, 13.90, 2.09% in leaf, seed and root respectively) (Ayuba, Ojobe, & 358 

Ayuba, 2011), and buckwheat (22.7, 13.1, 5.6% in leaf, seed and root respectively) (Vojtíšková, 359 

Kmentová, Kubáň, & Kráčmar, 2019), chicory plant represents good source of proteins.  360 

The RDA (Recommended Daily Allowance) for adult men and women is 0.80 g of protein/ kg of 361 

body weight/day. According to this statement a 70-kilogram woman should eat 56 grams of protein each 362 

day. The intake range of 10 to 35 percent set for protein provides a reasonable guideline for how much 363 

protein should be part of a balanced and healthy diet (Lupton, 2002). Due to this recommendation, chicory 364 

seeds and leaves containing more that 10% of crude proteins are good sources of proteins from a dietary 365 

point of view. 366 

 367 

 368 

2.5. Minerals 369 

 370 

Minerals are needed for growth, metabolic functioning, and normal plant life cycle. Additionally, 371 

environmental stresses (salinity, drought, extreme temperatures, light conditions) affect mineral content in 372 

different way, depending on the species or cultivar, and the specific plant organ. Furthermore, minerals 373 
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are essential in human metabolism and body functions. Cichorium intybus L. mineral diversity is detailed 374 

in Table 3.  375 

Chicory root is a good source of minerals including calcium, potassium, sodium and magnesium 376 

which are distinguished by content compared to other minerals in the root (Nwafor et al., 2017; Jan et al. 377 

2011; Harrington, Thatcher, & Kemp, 2006; Foster, Clapham, Belesky, Labreveux, Hall, & Sanderson, 378 

2006).  Harrington et al. (2006) noticed the benefits of mineral composition of chicory root along with some 379 

common pasture weeds such as perennial ryegrass, white clover, and dandelion, due to the content of P, 380 

S, Mg, Na, Cu, Zn and B.  381 

Rosa et al. (2017) reported also the presence of Cr (0.0736 mg/100 g), Al (14.602 mg/100 g), Cd 382 

(0.019 mg/100 g), Ni (0.0574 mg/100 g), Co (0.0149 mg/100 g) and Si (6.78 mg/100 g), in chicory leaves.   383 

Abbas, Saggu, Sakeran, Zidan, Rehman, and Ansari (2015) noted high amount of mineral elements 384 

especially Ca (3.5%) and Mg (0.28%), while Se content was 3.2 mg/100 g. Reported silicon content is 385 

within limit of the daily intake from the British diet, even though a safe recommended dietary allowance as 386 

well as tolerable upper intake level for Al, Cd, Ni, Co and Si hasn’t been set yet for human diet. 387 

 Wen Ying and Jin Gui (2012) compared chemical composition of two varieties of chicory seeds 388 

(Puna chicory and Commander chicory) with alfalfa and corn seeds. Chicory seeds proved to be more 389 

dominant in the appearance of the mineral composition with higher contents of K (5.92 to 6.49 mg/g), Ca 390 

(19.52 to 20.09 mg/g), P (9.43 to 9.45 mg/g), Mg (3.59 to 3.96 mg/g), Cu (22.33 to 23.00 μg/g), Zn (55.50 391 

to 60.83 μg/g) and Mn (32.83 to 37.66 μg/g). 392 

By comparing wild and cultivated chicory seeds offered at the markets, Jan et al. (2011) noted 393 

slight differences in Mn and Ca content, as it is shown in Table 3. They reported that seeds are especially 394 

rich in Ca, K, Mg and Na. 395 

The mineral composition of the flower was not much studied. According to Szentmihàlyi, Marczal 396 

and Then (2006), chicory flower is rich in Fe (15.52 mg/100 g d.w.), Al (10.26 mg/100 g d.w), Mn (4.316 397 

mg/100 g d.w), Zn (4.20 mg/100 g d.w) and B (3.66 mg/100 g d.w), as presented in Table 3. Compared to 398 

leaves, shoots root and herb, flowers seem to contain the smallest content of mineral elements. Al, As, B, 399 

Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn were present at significantly different concentrations in these plant parts. 400 

 401 
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Table 3 402 

Mineral composition of chicory plant parts403 
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M
in

e
ra
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/ 

1
0

0
g
 

Ca K N P S Mg Na Fe Cu Mn Zn Pb Co Se Mo Reference 

R
o
o

t 

181.26 
± 

4.40 

103.7 
± 

4.62 
   

20.14 
± 

1.69 

67.42 
± 

2.45 

1.77 
± 

0.21 

0.36 
± 

0.02 

0.31 
± 

0.10 

0.39 
± 

0.03 

0.04 
± 

0.003 
   

Nwafor, Shale, 
and Achilonu 

(2017) 

360 1700    300 50  2.7 7.5 4     
Jan et 

al.(2011) 

540 
± 

0.00 

380 
± 

0.00 
    

140 
± 

0.00 

0.74 
± 

0.01 

0.07 
± 

0.01 

0.26 
± 

0.01 

0.17 
± 

0.1 

0.79 
± 

0.01 

0.09 
± 

0.01 
  

Zarroug,  
Abdelkarim, 

Dorra, 
Hamdaoui, 
Felah, and 
Hassouna 

(2016) 

1180 3800 4350 663 627 393 591 16.7 1.86 16.1 5.77  0.027 0.004 
 

0.042 
 

Harrington, 
Thatcher, and 
Kemp (2006) 

1280 2860  280 410 270  17100 1100 8700 3100    
 
 

Foster, 
Clapham, 
Belesky, 

Labreveux, 
Hall, and 

Sanderson 
(2006) 

L
e

a
f 

248.16 4550.96  842.82  124.02 51.08 19.18 1.045 6.28 2.28  0.0149  0.0152 
Rosa et al. 

(2017) 

3500     280 80.0  3.2 7.1 4.72   0.032  

Abbas, Saggu, 
Sakeran, 

Zidan, 
Rehman, and 
Ansari (2015) 

2500 2500    750 60  2.5 10.0 5.0     
Jan et al. 

(2011) 

292.61 
± 

13.35 

166.57 
± 

3.43 
   

6.94 
± 

5.86 

88.84 
± 

2.58 

9.17 
± 

0.85 

0.60 
± 

0.06 

0.90 
± 

0.01 

0.91 
± 

0.03 

0.03 
± 

0.01 
   

Nwafor, Shale, 
and Achilonu 

(2017) 

S
e

e
d
 

2000 1170    500 560  1.5 2.5 6.5     
Jan et 

al.(2011) 
Wild seed 
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3000 1100    650 510  1.3 6.5 6.0     
Jan et 

al.(2011) 
Market seed 

F
lo

w
e
r 

       
15.52 

± 
1.2 

2.23 
± 

0.2 

4.316 
± 

0.14 

4.20 
± 

0.44 
    

Szentmihàlyi, 
Marczal, and 
Then (2006) 

 404 
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2.6. Fatty acids and derivatives 405 

Lipids are mostly present in plant cell membranes and may act as plant energy stores.  Applied 406 

cultivation practice may affect lipid profile of plant. Fatty acids, especially omega-3, 6, 9 express important 407 

health benefits in human body. Many fatty acids and their derivatives were described in chicory. 408 

Average total lipid content in chicory leaves was 0.13 g/100g wet weight (w.w.),  lower than in 409 

other three wild edible Mediterranean Asteraceae plants: Taraxacum obovatum, Chondrilla juncea and 410 

Sonchus oleraceus (García-Herrera et al., 2014). Chicory plant contains significant quantities of the next 411 

fatty acids in descending order: linoleic, palmitic, linolenic, stearic, behenic and eicosanoic acids, and 2.5 412 

% of oil (Kam & Kanberoglu, 2019). 413 

 Fathalla, Bishr, Singab, and Salama (2015) investigated fatty acid methyl esters of Cichorium 414 

intybus L. seeds and reported the presence of lauric acid methyl ester (0.13 %), myristic acid methyl ester 415 

(0.06 %), palmitoleic methyl ester (0.38 %), palmitic acid methyl ester (19.77%), methyl dihydromalvalate 416 

(0.44 %), 9,12- linoleic methyl ester (58.98 %), stearic acid methyl ester (9.07 %), methyl linolelaidate 417 

(0.59 %), linolenic acid methyl ester (0.81 %), 11-eicosenoic acid methyl ester (0.65 %) and eicosanoic 418 

acid methyl ester (1.69 %). Najib, Ahamad, Ali and Mir (2014) reported the presence of five fatty acid 419 

esters in methanolic extract of the seeds of Cichorium intybus L.: n-hexadecanyl hexadecanoate, n-420 

pentadecanyl octadec-9-enoate, n-hexadecanyl octadec-9-enoate, n-hexadecanyl octadecanoate and n-421 

octadecanyl octadecanoate. 422 

The total fatty acid content in leaves of nine chicory cultivars ranges from 104 to 644 mg/100 g 423 

f.w., where α-linolenic acid (64%) is dominant. Chicory leaves are not so rich in fatty acids when 424 

compared to coriander (Coriandrum sativum L.) where the highest total fatty acid content was found in 425 

basal leaves with 61.21 mg/g d.w., followed by upper ones (41.8 mg/g d.w.) depending on different salt 426 

conditions during cultivation (0, 25, 50 and 75 mM of NaCl) (Neffati & Marzouk, 2008). The most abundant 427 

fatty acid in chicory leaves seems to be α-linolenic acid, followed by linoleic and palmitic acids. An n-6/n-3 428 

polyunsaturated fatty acids ratio of forced chicory is 1.38 and differs among cultivars. Among unsaturated 429 

fatty acids, oleic acid is the only one determined in chicory samples. Significant differences in content of 430 

fatty acids present in wild and cultivated chicory leaves was reported, while chicory leaves contains more 431 
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α-linoleic acid than lettuce (20%) and spinach (40%) (Elgersma, Søegaard, & Jensen, 2013; Sinkovič, 432 

Hribar, Vidrih, Ilin, & Žnidarčič, 2015; Jančić, Todorović, Basić, & Šobajić, 2016).  433 

 434 

2.7. Sesquiterpene lactones 435 

Sesquiterpene lactones are secondary plant metabolites mostly known from 436 

the Asteraceae family. Cichorium intybus L. is a rich source of sesquiterpene lactones, which have role in 437 

plant defense (Rees & Harborne, 1985). They are also considered as potential carriers of functionality with 438 

many positive bioactivities reported. 439 

Chicory root is a rich source of bitter-tasting sesquiterpene lactones, which promote appetite and 440 

digestion. Sesquiterpene lactones are soluble accumulating metabolites in Asteraceae, especially in 441 

chicory, mainly present in the latex (Wulfkuehler, Gras, & Carle, 2013; Willeman et al., 2014). The most 442 

abundant sesquiterpene lactones isolated from the root of Cichorium intybus L. are lactucin, 8-443 

deoxylactucin, 11(S),13-dihydro-8-deoxylactucin, lactucopicrin, 11(S),13- dihydrolactucopicrin, jacquinelin, 444 

crepidiaside B, lactuside A (Ripoll et al., 2007b; Beharav et al., 2010; Wulfkuehler et al., 2013; Willeman et 445 

al., 2014). Kisiel and Zielińska (2001) reported that lactucin-like guaianolides and their glycosides are the 446 

most abundant lactones present in roots and aerial parts of Cichorium species. Furthermore, roots of the 447 

plants produce a small number of germacrane- and eudesmane-type sesquiterpene lactones and their 448 

glycosides. Poli et al. (2002) mentioned that sequiterpene lactone content depends on the harvest date. 449 

Despite the bitter taste, sesquiterpene lactones derived from chicory root have many important activities 450 

such as: anti-inflammatory, anti-tumour, anti-leukaemic, cytotoxic, antimicrobial, allergenic, antioxidant, 451 

antibiotic, anti-cancerigenous, antiprotozoal, anthelmintic, antimalarial, sedative and anti-diabetic activity, 452 

inhibits egg hatching of Haemonchus contortus, promots appetite and digestion in humans, protects plants 453 

against herbivore attacks and helps signaling between plants (Schmidt, Ilic, Poulev, & Raskin, 2007; 454 

Ferioli & D’Antuono, 2012; Ferioli et al., 2015; Verma et al., 2013; Zhang, Yan, Wang, & Liu, 2016; Fan et 455 

al., 2017; Peña-Espinoza, Williams, Thamsborg, Simonsen, & Enemark, 2017; Giambanelli, D’Antuono, 456 

Ferioli, Garrido Frenich, & Romero-González, 2018). 457 

 Ferioli and D’Antuono (2012) detected various sesquiterpene lactones in leaves of two different 458 

cultivars of chicory. They quantified the presence of free and bounded forms of sesquiterpene lactones, 459 
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and their content was: 11(S), 13-dihydrolactucin (437.4 mg/kg d.w.), lactucin (350.3 mg/kg d.w.), 8-460 

deoxylactucin (598.8 mg/kg d.w.), 11(S),13-dihydro-8-deoxylactucin (613.9 mg/kg d.w.), 11(S),13-461 

dihydrolactucopicrin (69.5 mg/kg d.w.) and lactucopicrin (315.7 mg/kg d.w.). According to Ferioli et al. 462 

(2015) chicory is richer in total sesquiterpene lactones (383–2497 mg/kg d.w.) when compared to endive 463 

(128–2045 mg/kg d.w.). Foster, Cassida and Sanderson (2011) investigated variation in sesquiterpene 464 

composition and concentration in chicory leaves during growth. They stated that concentration of total 465 

sesquiterpene lactone generally decreases or remains constant, while composition of sesquiterpene 466 

lactones during the growing period varied among the forage chicory cultivars. 467 

 468 

2.8. Vitamins 469 

Only a few studies mentioned vitamin content in chicory. Chicory leaves are rich in  B1, B2, B6 and 470 

C, with average amounts of 133,4 to 156.7 μg/ 100 g f.w., 112.4 to 116.1 μg/100 g f.w., 162.8 to 168.7 μg/ 471 

100 g and 3.5 to 4.0 μg/ 100 g f.w. in wild and cultivated chicory plants, respectively, while the content of 472 

vitamin A in leaves was reported to be 0.45 mg/100 g f.w. (Jančić et al., 2016).  473 

 474 

3. Biological activity 475 

In recent years, many studies reported diverse bioactivity of compounds isolated from the chicory.  476 

Phenolic compounds including gallic acid, protocatechic acid, chicoric acid, chlorogenic acid, caftaric acid, 477 

(Heimler et al., 2009), hexoside (Dalar & Konczak, 2014), flavonoids (Khalaf et al., 2018), inulin (Shoaib et 478 

al., 2016), sesquiterpene lactones (Schmidt et al. 2007), coumarins (Khalaf et al., 2018) or other 479 

compounds present in chicory extracts were considered as responsible for positive impact on human 480 

health. Some of the proven bioactivities from compounds detected in chicory are antiradical (Kagkli, 481 

Corich, Bovo, Lante, & Giacomini, 2016), antimicrobial (Verma et al., 2013), antioxidant (Abbas et al., 482 

2015), hepatoprotective (Neha et al., 2014), antibacterial (Liu, Wang, Liu, Chen, & Cui, 2013), antidiabetic 483 

(Abdel-Rahim, Rashed, El-Hawary, Abdelkader, Kassem, & Mohamed, 2016), anthelmintic (Peña-484 

Espinoza, Williams, Thamsborg, Simonsen & Enemark, 2017) and anti-parasitic activity (Peňa-Espinoza, 485 
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Boas, Williams, Thamsborg, Simonsen, & Enemark, 2015). Bioactivity of chicory compounds is presented 486 

in Table 4.  487 

 488 

Table 4 489 

Summarized bioactivity of Cichorium intybus L.  490 

Bioactivity/Health 
condition 
 

Plant 
part 

Extract type Compound/s Reference 

Anti-hepatotoxic 
activity 

Chicory 
plant 

Ethyl-acetate 
extracts 

 Li, Gao, Huang, Lu, 
Gu, and Wang 
(2014) 
 

Leaf Water extract Cichoric acid Zhang et al. (2014) 

Leaf Ethanolic extract Flavonoids Neha et al. (2014) 

Seed Alcoholic extract 

Phytoconstituents from 
extract such as 
flavonoids, saponins and 
their glycosides 

Fathalla, Bishr, 
Singab, and Salama 
(2015) 

Anti-diabetic Plant 
(root, 
leaves, 
and 
stems) 

Ethanolic extract Potentially inulin Pushparaj, Low, 
Manikandan, Tan, 
and Tan (2007) 

Leaf  Potentially fibers (inulin) Abdel-Rahim, 
Rashed, El-Hawary, 
Abdelkader, Kassem, 
and Mohamed 
(2016) 

Seed Aqueous extract Phytochemicals such as 
anthocyanins, tannins, 
coumarins, chicoric acid, 
chlorogenic acid, and 
caffeic acid 

Ghamarian, 
Abdollahi, Su, Amiri, 
Ahadi, and Nowrouzi 
(2012) 

Antimicrobial  Root Ethyl acetate extract 
 
 

 
 
 

Koner, Ghosh, and 
Roy (2011) 
 

Root 
and 
leaf 

Methanolic extract Potentially inulin, 
sesquiterpene lactones, 
coumarins, flavonoids. 

Verma et al. (2013) 
 

Root  Sesquiterpenoid 
lactones from chicory 
root: cichoralexin, 10 α-
hydroxycichopumilide and 
8 α- 
angeloyloxycichoralexin; 
terpenoids and phenolics. 

Nishimura and Satoh 
(2006) 
 

Leaf  Phenolic compounds - 
gallic acid, protocatechic 
acid, chicoric acid and 
chlorogenic acid. 

Kagkli, Corich, Bovo, 
Lante, and Giacomini 
(2016) 
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Leaf 
and root 
 

Ethanolic and 
methanolic extracts 
of γ-irradiated 
chicory 

Phenolic compounds and 
flavonoids 
 

Khalaf, El-Saadani, 
El-Desouky, 
Abdeldaiem, and 
Elmehy (2018) 

Seed 
Methanolic extract 
and ethylacetate 
fraction 

Alkaloids, flavonoids, 
saponins, tannins, 
steroids, anthraquinone. 

Mehmood, Zubaır, 
Rızwan, Rasool, 
Shahid, and Ahmad 
(2012) 

Seed 
Aqueous and organic 
(ethanol and ethyl 
acetate) extracts 

Watersoluble compounds 
(inulin, flavonoids, etc) 

Shaikh, Rub, and 
Sasikumar (2016) 

Flower Ethyl acetate extract  
Petrovic, 
Stanojkovic, Comic, 
and Curcic (2004) 

Antioxidant 

Root Ethanolic extract Caffeoylquinic acid Liu et al. (2013) 

Flower Methanolic extract Phenolic compounds 

Derakhshani, 
Hassani, Pirzad, 
Abdollahi, and 
Dalkani (2012). 

Leaf 

The ethanolic and 
methanolic extracts 
of γ-irradiated 
chicory 

Phenolic compounds and 
flavonoids 
 

Khalaf, El-Saadani, 
El-Desouky, 
Abdeldaiem, and 
Elmehy (2018) 

Seed 
The methanolic 
extract and 
ethylacetate fraction 

Alkaloids, flavonoids, 
saponins, tannins, 
steroids, anthraquinone. 

Mehmood, Zubaır, 
Rızwan, Rasool, 
Shahid, and Ahmad 
(2012) 

Anti-inflammatory Root Polar solvent extract Sesquiterpene lactones 

 
Ripoll, Schmidt, Ilic, 
Poulev, and Raskin 
(2007a) 
 
Ripoll et al. (2007b) 
 

Antihyperglycemic Root 

Water extract 
 
 
Methanolic extract 
partitioned with ethyl 
acetate 
 

Chicoric acids: Caffeic 
and ferulic acids 

Caffeic acid moiety, di-O-
caffeoylquinic acids 
suppressed and derivates 
(3-caffeoylquinic, caffeic, 
and quinic acids) 

Azay-Milhau et al. 
(2013) 
 
Jackson, 
Rathinasabapathy, 
Esposito, and 
Komarnytsky (2017) 
 

Antimalarial activity Root 

Aqueous  root  
extracts further  
extracted with Et2O 
or EtOAc 

Sesquiterpene lactons: 
lactucin and lactucopicrin 

Bischoff, Kelley, 
Karchesy, Laurantos, 
Nguyen-Dinh, and 
Arefi (2004) 

Antifungal activity Root 
Aqueous phase of 
acetone extract 
purified with hexan 

Sesquiterpene lactons 
from root: 8-deoxylactucin 
and 11β,13-
dihydrolactucin. 

Mares, Romagnoli, 
Tosi, Andreotti, 
Chillemi, and Poli 
(2005) 

Anti-cancer activity Root Methanolic extract 
Lactucin, β-sitosterol, 
quinic acid, succinic acid 
and polyphenols like 

Mehrandish, Mellati, 
Rahimipour, and 
Nayeri (2017) 
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flavonoids. 

Tumour inhibitory 
activity 

Root Ethanolic extract 

Inulin, cichoriin, esculin, 
esculetin, caffeine, 
polyacetylenes, organic 
acids, gums, proteins and 
vitamins 

Hazra, Sarkar, 
Bhattacharyya, and 
Roy (2002) 

Antiradical activity 

 
 
Leaf 
 
 

Hydroalcholic 
extracts 
 
 
 
 

Phenolic compounds and 
flavonoids 
 
Gallic acid, protocatechic 
acid, chicoric acid and 
chlorogenic acid. 

Heimler, Isolani, 
Vignolini and Romani 
(2009) 
 
Kagkli, Corich, Bovo, 
Lante, and Giacomini 
(2016) 

Antiosteoporotic 
effect 

Leaf Aqueous extract 
 Saccharides and 
flavonoids 

Hozayen, El-
Desouky, Soliman, 
Ahmed, and Khaliefa 
(2016) 

Enzyme (α-
glucosidase, α-
amylase, pancreatic 
lipase and 
angiotensin 
converting enzyme) 
inhibitory activities, 
prevention of 
metabolic syndrome. 

Leaf 
Lyophilised 
hydrophilic extract  

Hydroxycinnamic acids 
and flavonoids, with 
isomers of chlorogenic 
acid, caftaric acid, cichoric 
acid,and luteolin hexoside 

Dalar and Konczak 
(2014) 

Anti-parasitic activity 
(Ostertagia 
ostertagi) 

Leaf 

Ethyl acetate extract 
of primal 
methanol/water 
extract  

Sesquiterpene lactones: 
lactucin, 11β, 13-
dihydrolactucin, 8-
deoxylactucin, 11β, 13- 
dihydro-8-deoxylactucin, 
lactucopicrin, 11β, 13-
dihydro-lactucopicrin. 
 

Peňa-Espinoza, 
Boas, Williams, 
Thamsborg, 
Simonsen, and 
Enemark (2015) 

Anthelmintic effects Leaf Methanol extract Sesquiterpene lactones 

Peña-Espinoza, 
Williams, 
Thamsborg, 
Simonsen, and 
Enemark (2017) 

Radioprotective 
effect 

Seed Methanolic extract 
Phenolic compounds such 
as chlorogenic acid which 
act as antioxidant agents. 

Hosseinimehr, 
Ghaffari-Rad, 
Rostamnezhad, 
Ghasemi, Pourfallah, 
and Shahani (2015) 

Improvement of 
glycemia, 
atherogenic index 
and antioxidant 
status 

Seed Ethanolic extract 
Caffeoylquinic acid-rich 
extract  

Jurgoński, 
Juśbkiewicz, 
Zdunczyk and 
Bogusław (2012) 

 491 

 492 

 493 
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3.1. Anti-hepatotoxic activity 494 

Li et al. (2014) noted the hepatoprotective effect of ethyl-acetate extract of chicory plant against 495 

carbon tetrachloride-induced hepatic fibrosis in rats. Oral doses of 6, 18, and 54 g/kg per day were 496 

investigated for hepatoprotective effect in Wistar albino rats, with a dose of 54 g/kg per day as the most 497 

effective. Significant decreasing of serum levels of aspartate aminotransferase (149.04±34.44, P<0.01), 498 

alanine aminotransferase (100.72±27.19, P<0.01), hexadecenoic acid (548.50±65.09, P<0.01), laminin 499 

(28.69±3.32, P<0.01) and hydroxyproline (263.33±75.82, P<0.01) in liver was noted. Fathalla et al. (2015) 500 

suggested that defatted extract showed lower hepatoprotective activity than total extract, and connected 501 

this with potential bioactivity of lipid fraction from chicory seed extract. Zhang et al. (2014) linked anti-502 

hepatitis B effect of chicory leaves with chicoric acid and its anti-hyaluronidase, phagocytosis stimulatory 503 

and antioxidative properties. Dose of 10–100 µg/ml chicoric acid from chicory leaves reduced significantly 504 

the hepatitis B surface and envelope antigen levels with the maximum inhibition rates of 79.94% and 505 

76.41%, respectively. Flavonoids present in hydroalcoholic leaf fractions also may be responsible for 506 

hepatoprotective role of chicory (Neha et al., 2014). Kostic et al. (2013) mentioned the role of chicory 507 

flower in treatment of skin diseases, diabetes and anti-hepatotoxic activity. 508 

 509 

3.2. Anti-diabetic effect 510 

Daily administration of 125 mg/kg ethanolic chicory plant extract for 14 days to Sprague–Dawley 511 

diabetic rats reduced serum glucose by 20%, triglycerides by 91% and total cholesterol by 16%. Inulin 512 

potentially express anti-diabetic effect in tested animals. The possibility that this extract induces insulin 513 

secretion from pancreatic β-cells was also highlighted in the study of Pushparaj, Low, Manikandan, Tan, 514 

and Tan (2007). Aqueous extract of chicory seed prevented body-weight loss and decreased fasting blood 515 

sugar in four-week trial in rats. Chicory appeared to have short-term (about 2 hours) and long-term (28 516 

days) effects on Type 2 diabetes mellitus as well as to be a natural dietary supplement for slowing down 517 

the pace of diabetes progress (Ghamarian et al., 2012). Chicory seed ethanolic extract containing 9.6% of 518 

caffeoylquinic acids improved glycemia, decreased the atherogenic index and increased blood antioxidant 519 

status during 28-day treatment of Wistar rats (Jurgoński et al., 2012). 520 

 521 
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3.3. Antimicrobial effect 522 

Ethanolic, methanolic, ethyil-acetate and aqueous extracts of chicory root, leaves and seeds 523 

expressed antimicrobial activity due to presence of phenolic compounds, flavonoids and sesquiterpene 524 

lactones depending on the plant part (Table 4). Koner et al. (2011) tested ethyl acetate extract of chicory 525 

root for anti-bacterial and anti-fungal properties and stated that chicory root has great ability to inhibit both 526 

Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Bacillus subtilis, Pseudomonas 527 

fluorescens, Rhizobium leguminosarum, Escherichia coli, Vibrio cholera), yeast (Sachharomyces 528 

cerevisiae) and Aspergillus niger. Verma et al. (2013) reported in vitro antibacterial activity of Cichorium 529 

intybus L. against some pathogenic bacteria as well as antibacterial activity of chicory leaves extract 530 

against Gram-negative pathogenic bacteria (Escherichia coli and Pseudomonas aeruginosa) considering 531 

inulin, sesquiterpene lactones, flavonoids and coumarins responsible for this activity. Petrovic, 532 

Stanojkovic, Comic and Curcic (2004) connected antibacterial activity of areal parts of chicory with 533 

presence of cichorin in its flowers. Shaikh, Rub and Sasikumar (2016) proved antimicrobial activity of 534 

chicory seed extract against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and 535 

Escherichia coli. Sesquiterpene lactones isolated from chicory leaves using ethyl-acetate and methanol 536 

showed important anti-parasitic activity against Ostertagia ostertagi and anthelmintic effect against free-537 

living and parasitic stages of Cooperia oncophora (Peňa-Espinoza et al., 2015; Peña-Espinoza, Williams, 538 

Thamsborg, Simonsen, & Enemark, 2017). 539 

 540 

3.4. Antioxidant activity 541 

Antioxidant activity of chicory plant was the subject of investigation in numerous scientific studies. 542 

Liu et al. (2013) linked antioxidant and antibacterial activities of chicory root extracts with the bioactive 543 

substances primarily identified as caffeoylquinic acids. Rub, Siddiqui, Ali, Shaikh, and Mukadam (2014) 544 

investigated the antioxidant activity of the polyphenol rich fraction of chicory roots and also reported its 545 

strong hypoglycemic potential. Dalar and Konczak (2014) studied the antioxidative activity of roots, stems, 546 

leaves, flowers, and the whole plant of Cichorium intybus L. As it is reported in their study, the leaves 547 

contained the highest level of total phenols (22.6 mg GAE/g d.w.) and exhibited the highest antioxidant 548 

capacities. The FRAP (ferric reducing antioxidant capacity) value of leaf was 251.6 μmol Fe+2/g d.w. The 549 
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ORAC (oxygen radical absorbance capacity) value of chicory plant parts was reported to decline in the 550 

following order: flower ≥ leaf > root > stem. They also identified many important phenolic compounds in 551 

ethanol based lyophilized extract of Cichorium intybus L. leaf: apigenin, hydroxybenzoic acid-O-hexoside, 552 

caftaric acid, isorhamnetin, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, apigenin glucoside, luteolin 553 

hexoside, quercetin/hesperitin glucoside, cichoric acid and quercetin rutinoside (rutin). Heimler et al. 554 

(2009) reported 19.30 to 48.60 mg sample f.w./mg DPPH, for antiradical activity IC50 (the antiradical dose 555 

required to cause a 50% inhibition) in chicory leaves. Khalaf et al. (2018) found that irradiation treatment 556 

was superior for improving the phytochemical, antioxidant and antimicrobial activities and the most 557 

indicated doses to maintain phytochemicals content, and to increase antioxidant activity, as well as 558 

antimicrobial, were 4 and 12 kGy for roots and leaves of chicory, respectively. They also reported that 559 

DPPH (1,1-diphenyl-2-picrylhydrazyl radical) radical scavenging activity of leaves was 80.95 ± 0.39%. 560 

Antioxidant capacities of chicory flower expressed as FRAP (240.8 μmol Fe+2/g d.w.) seem to be stronger 561 

than for root or stem. Furthermore, flowers expressed the highest ORAC (1307.7 μmol TE/g d.w.) 562 

compared to leaf, root and stem. Jurgoński et al. (2011) reported that chicory leaves extract showed 563 

higher antioxidant activity (210.1 nmol/g of f.w.), compared to the seed extract (505.1 nmol/g of f.w.). 564 

Chicory leaves and flowers possess valuable oxygen radical scavenging and total reducing capacities, 565 

comparable to those of Chinese medicinal plants (Dalar & Konczak, 2014). According to the results 566 

obtained by Montefusco et al. (2015) who investigated the hydrophilic and lipophilic antioxidant activities, 567 

contents of lutein (8.0 to 30.1 μg/g f.w.), 𝛽-cryptoxanthin (0.13 to 0.41 μg/g f.w.) and 𝛽-carotene (3.3 to 568 

14.1 μg/g f.w.) varied in cultivated and wild chicory cultivars. Antioxidant activities in chicory cultivars 569 

ranged between 352 and 1056 μmol TE/100 g f.w., depending on the varietal and environmental factors, 570 

related to growing, soil, and climatic conditions. Total phenolic content from 30.1 to 101.7 mg GAE/100 g 571 

f.w. was reported in edible parts of cultivated and wild chicory. The flavonoid content evaluated from 11.1 572 

to 66.2 mg catechin equivalents (CE)/100 g f.w., correlated with total antioxidant activity in chicory leaves. 573 

They also concluded that the hydrophilic antioxidant activity was higher than the lipophilic antioxidant 574 

activity in different chicory varieties. Comparing dietary supplementation with rutin and extract of chicory 575 

seeds rich in caffeoylquinic acid in rats, Jurgoński et al. (2012) concluded that chicory seed extract 576 

decreases serum atherogenicity and increases blood antioxidant status, contrary to rutin.  577 
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 578 

3.5. Other bioactivities 579 

 Many studies investigated and demonstrated a wide range of different chicory bioactivities.  580 

Sesquiterpene lactones rich alcoholic extract of chicory root showed anti-inflammatory effect in 581 

rats and mouses. Inflammation was reduced for 76% at 100 mg/kg dose in rats, and 71% for 200 mg/kg 582 

dose in mouses (Ripoll et al., 2007b).  583 

Chicoric acids, especially caffeic and ferulic acids, promote a decrease in hepatic glycogenolysis, 584 

increase insulin release and reduce hepatic glycogenolysis. From the other side, natural chicoric acid 585 

aqueous extract from chicory root improve intraperitoneal glucose tolerance in a dose-dependent manner 586 

considering Cichorium intybus L. as an antihyperglycemic agent (Azay-Milhau et al., 2013). Similar 587 

conclusions were noted in study of Jackson, Rathinasabapathy, Esposito, and Komarnytsky (2017), where 588 

the caffeic acid moiety was responsible for antihyperglicemic effect. 589 

Sesquiterpene lactones (lactucin and lactucopicrin) from chicory root cause antimalarial activity 590 

against HB3 clone of strain Honduras-1 of Plasmodium falciparum (Bischoff, Kelley, Karchesy, Laurantos, 591 

Nguyen-Dinh, & Arefi, 2004). On the other hand, sesquiterpene lactones 8-deoxylactucin and 11β,13-592 

dihydrolactucin, showed antifungal activity against zoophilic and anthropophilic dermatophytes (Mares, 593 

Romagnoli, Tosi, Andreotti, Chillemi, & Poli, 2005). 594 

A pilot work of chicory anti-cancer activity has been conducted. In the study of Mehrandish, 595 

Mellati, Rahimipour, and Nayeri (2017), methanolic extract of chicory root showed cytotoxic effect on 596 

human breast cancer SKBR3 cell line with IC50 value of 800, 400 and 300 after 24, 48 and 72 hours of 597 

treatment.  598 

Ethanolic (80%) extract of chicory root was studied in terms of tumour-inhibitory effect against 599 

Ehrlich ascites carcinoma in Swiss mice and showed significant results at doses from 300 to 700 600 

mg/kg/day (Hazra et al., 2002). 601 

Phenolic compounds from chicory seed, such as chlorogenic acid, are well-known as antioxidant 602 

agents, but may act as radioprotective agents also. Methanolic extract of chicory seeds was investigated 603 

against genotoxicity induced by ionizing radiation in human lymphocytes. All doses of chicory extract (10, 604 

50, 100, and 200 μg/mL) significantly reduced the frequency of micronuclei in binucleated lymphocytes 605 
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from human peripheral blood samples (Hosseinimehr, Ghaffari-Rad, Rostamnezhad, Ghasemi, Pourfallah, 606 

& Shahani, 2015) 607 

Aqueous chicory leaves extract rich in inulin and flavonoids may be considered as bone protection 608 

agent against glucocorticoid-induced osteoporosis in rats, more than parsley and basil extracts. These 609 

results were obtained during 8-week long treatment and indicated antiosteoporotic effect of chicory 610 

(Hozayen, El-Desouky, Soliman, Ahmed, & Khaliefa, 2016).  611 

Dalar and Konczak (2014) evaluated the ability of lyophilized hydrophilic leaf extract to inhibit 612 

selected digestive enzymes related to metabolic syndrome (α-amylase, α-glucosidase, pancreatic lipase 613 

and angiotensin converting enzyme). 614 

 In traditional medicine, chicory flowers were used for curing common ailments, as a tonic and 615 

appetite stimulant, and in treatment of gallstones, gastro-enteritis, sinus problems, cuts and bruises 616 

(Judžentienė & Būdienė, 2008). According to Bahmani, Zargaran and Rafieian-Kopaei (2014), chicory 617 

root, leaves and flowers were traditionally used for aiding the function of the gallbladder. Zolfaghari, Adeli, 618 

Mozaffarian, Babaei and Habibi Bibalan (2012) reported laxative and anticholesterol effect of chicory. 619 

Kratchanova, Denev, Ciz, Lojek and Mihailov (2010) summarized utilization of areal chicory parts in 620 

treatment of liver diseases, cholagogue, and digestive tract.  621 

 622 

4. Safety and Health claims 623 

 624 

Chicory extract, as well as inulin, is Generally Regarded as Safe (GRAS) by the FDA and appears 625 

on the Everything Added to Food in the United States (EAFUS) list (Food and Drug Administration, 2018). 626 

The safety of a chicory root extract was confirmed in study of Schmidt et al. (2007), during Ames test and 627 

four-weeks sub-chronic toxicity study in male and female Sprague–Dawley rats. They reported that 628 

chicory root extract containing sesquiterpene lactones is non-toxic and non-mutagenic at 70, 350, or 629 

1000 mg/kg/day, administered orally. Toxicological profiling (subacute and chronic toxicity) of aqueous 630 

chicory seed extract has been confirmed that has no ill effect and the dose of 200 mg/kg body weight 631 

resulted in significant reduction in serum glucose (52.7%) and triglycerides levels (65.3%) and decreased 632 

the oxidative burden in high-fat-diet-induced diabetic rats (Chandra, Khan, Jettey, Ahmad, & Jain, 2018). 633 
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The claim of chicory products short-term and/or long-term effects on diabetes has been proven by the 634 

glucose tolerance test and HbA1c measurement (Nowrouzi, Mazani, Rezagholizadeh, & Banaei, 2017). 635 

Furthermore, there are some clinical studies on human subjects which have demonstrated potential role of 636 

bioactive chicory root extract in the management of osteoarthritis (Olsen, Branch, Jonnala, Seskar, & 637 

Cooper, 2010), a positive effect of chicory inulin or oligofructose to reduce the postprandial blood glucose 638 

response (Lightowler, Thondre, Holz, & Theis, 2018), as well as oligofructose-enriched chicory inulin 639 

positive effects on the improvement of the glucose and calcium homeostasis, liver function tests, blood 640 

pressure and reduction in hematologic risk factors of diabetes in female patients with type 2 diabetes 641 

mellitus (T2DM) (Farhangi, Javid, & Dehghan, 2016). 642 

EFSA (European Food Safety Authority) confirmed health claim that non-digestible carbohydrates 643 

from chicory (fructo-oligosaccharides (FOS, oligofructose) obtained from chicory inulin), which should 644 

replace sugars in foods or beverages reduce post-prandial glycemic responses (EFSA Panel on Dietetic 645 

Products Nutrition and Allergies, 2014). EFSA and Commission Regulation (EU) 2015/2314 confirmed that 646 

the effect on bowel function demonstrated by the intake of native chicory inulin is a beneficial physiological 647 

effect with dosage of 12 g/day for this claim (Theis, 2018). 648 

5. Current and potential applications 649 

 650 

Currently, there are several known chicory applications: baked and ground chicons or roots for 651 

coffee substitute and supplement, utilization of leaves as a vegetable and cultivation of chicory as a forage 652 

plant for poultry and animal feed (Saeed et al., 2017). Chicory, as a great source of dietary fibers such 653 

as inulin and FOS and many functional food ingredients can assist in maintaining good health and in 654 

preventing diseases. Inulin is mostly applied into food as low-calorie sweetener, fat substitute and texture 655 

modifier, in order to increase dietary fiber content, improve technological and sensory value of the 656 

products (Drabińska, Zieliński, & Krupa-Kozak, 2016). Many studies investigated inulin bioactivity: tumor 657 

inhibitory, antidiabetic, anti-hepatotoxic and antioxidative activity (Table 4).  Chicory powdered roots finds 658 

another application in successfully replacing wheat flour (10%) and fat (25%) in cracker production after 659 

debittering by soaking the roots in water or citric acid solution (Massoud, Amin, & Elgindy, 2009). Chicory 660 
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fibers were also incorporated in restructured sausages in order to replace fat, with conclusion that addition 661 

of chicory fiber significantly reduced the moisture, fat, hardness and pH values of sausages (Choi et al., 662 

2016). Bossard, Leveque, and Marboutin (2006) obtained flour from dehydrated chicory root in order to 663 

prepare food dough for baking. Wang & Cui (2011) also mentioned utilization of chicory for tea production, 664 

such as tea for keeping fit. Also, implementation of chicory root extracts (1, 2 and 3%) in yogurt due to 665 

health promoting effect of chicory inulin as well as its ability to form creamy emulsions with aqueous liquid 666 

were investigated (Jeong et al., 2017). Dried chicory root extract (2-6 %) was implemented into yogurt-ice 667 

cream formulation with intention to decrease production costs by replacing dairy ingredients with other low 668 

cost alternatives, such as inulin and buttermilk. By increasing the amount of dried chicory root extract in 669 

yoghurt-ice cream formulation increased the textural and flavor properties and overall acceptability score 670 

while melting rate was decreased (Kumar, DC, Alam, & Sawant, 2018). Future research should be 671 

devoted more closely to the application of chicory in food products on an industrial scale, according to its 672 

important benefits and potential. 673 

 674 

6.  Conclusive remarks  675 

 676 

Cichorium intybus L. is a valuable source of bioactives for new food products especially because 677 

of the presence of inulin, sesquiterpene lactones and phenolic compounds in roots, leaves, seeds, and 678 

flowers. Among them, inulin as the most abundant compound determines chicory as one of the richest 679 

source of this prebiotic which can be used for development of added value food products. 680 

The health-promoting characteristics of the chicory-derived applications are well backed by the 681 

experimental data available from bioactivity studies especially anti-inflammatory, anti-diabetic, anti-682 

hepatotoxic, antihyperglycemic and antimicrobial activity. This data suggest that food enriched with 683 

chicory can provide a potential health effect determining it as a desirable ingredient in the diet. 684 

Chicory root seems to be a promising raw material for the enrichment of functional food products 685 

according to its high mass yield and diverse and rich composition of biologically important compounds 686 

(inulin, sesquiterpene lactones, and minerals) compared to other parts of the plant. Chicory root inulin 687 

possesses wide application possibilities in food industry: as prebiotic, fat replacer, sugar replacer, texture 688 
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modifier and for the development of innovative foods in order to improve health due to its beneficial role in 689 

gastric health. Also, sesquiterpene lactones from the chicory root could be utilized as a source for the 690 

development of functional foods with anti-inflammatory activity. Additionally, the utilization of all parts of 691 

chicory may contribute to reducing food waste and improvement of food system sustainability. 692 

Usually, processing practices of chicory plant includes roasting for production of coffee substitutes 693 

or surrogates (Oliveira et al., 2012), slicing and drying for tea production (Lee, Kang, & Hsieh, 2004), as 694 

well as hot water continuous extraction for inulin isolation (Zhu, Bals, Grimi, & Vorobiev, 2012) at industrial 695 

utilization. Inulin-containing waste may be reused in industrial fermentations to produce biofuels and bio-696 

based chemicals, as well as for production of single-cell protein, single cell oil, citric acid, and other 697 

chemicals (Hughes et al., 2017). On the other side, the industrial processing of chicory uses mainly the 698 

roots, resulting in large amounts of unused chicory by-products (leaves and peels) which may be 699 

investigated as a source for isolation of bioactive compounds such as sesquiterpene lactones and 700 

polyphenols. Future developments in the optimization of the extraction of economically important bioactive 701 

compounds from chicory and their implementation from pilot to industrial scale are needed in order to 702 

supply industry and ensure the valorization of chicory plant parts and the sustainability of the final 703 

products enriched in the nutritional and functional bioactives of chicory. 704 

 In summary, chicory plant may be considered as rich and promising raw material in terms of 705 

carbohydrates, proteins, phenolic compounds, flavonoids, and minerals content, making chicory as a 706 

desirable ingredient in the development of innovative and functional food products. 707 

This review clearly reveals chicory as a good potential valuable resource for food ingredients and 708 

functional foods, beverages and dietary supplements. 709 
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