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Abstract: In a preliminary study, commercial insect powders were successfully identified using
infrared spectroscopy combined with multivariate analysis. Nonetheless, it is necessary to check
if this technology is capable of discriminating, predicting, and quantifying insect species once
they are used as an ingredient in food products. The objective of this research was to study the
potential of using attenuated total reflection Fourier transform mid-infrared spectroscopy (ATR-
FTMIR) combined with multivariate analysis to discriminate doughs and 3D-printed baked snacks,
enriched with Alphitobius diaperinus and Locusta migratoria powders. Several doughs were made with
a variable amount of insect powder (0–13.9%) replacing the same amount of chickpea flour (46–32%).
The spectral data were analyzed using soft independent modeling of class analogy (SIMCA) and
partial least squares regression (PLSR) algorithms. SIMCA models successfully discriminated the
insect species used to prepare the doughs and snacks. Discrimination was mainly associated with
lipids, proteins, and chitin. PLSR models predicted the percentage of insect powder added to the
dough and the snacks, with determination coefficients of 0.972, 0.979, and 0.994 and a standard error
of prediction of 1.24, 1.08, and 1.90%, respectively. ATR-FTMIR combined with multivariate analysis
has a high potential as a new tool in insect product authentication.

Keywords: insect powder; authentication; 3D food printer; mid-infrared spectroscopy; multivari-
ate analysis

1. Introduction

The world population is increasing dramatically mainly as a result of the quality-
of-life improvement in developing countries and will reach over 9.8 billion by 2050 [1].
An increasing demand for protein-rich sources will be a threat to world food and feed
availability [2]. Nowadays, animal protein sources come mostly from livestock, such
as poultry, swine, and cattle. Stockbreeding requires large spaces and large quantities
of natural resources and also produces significant greenhouse emissions among other
contaminants [3].

Insects have been proposed as a suitable alternative to conventional livestock [4]. In
fact, insect breeding needs fewer resources compared to conventional livestock: water
consumption is lower; less space occupancy is required; and insects can be fed using food
waste products, such as potato peels, rotten fruits, and bakery by-products [5].

Moreover, when comparing the protein content of both insects and livestock, the first
one shows similar or even higher amounts of protein. For instance, the amount of protein
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in 100 g of fried grasshoppers is almost triple compared to the protein content in 100 g of
grilled beef [6].

Besides the high protein content, most insects have high amounts of polyunsaturated
fatty acids, vitamins, and micronutrients (e.g., calcium, iron, and phosphorus) essential
for human life [7]. However, it has been observed that the consumption of insects can be
risky due to the presence of possible pathogens, antinutrients, and allergenic substances,
assessed in several cross-reactivity studies [8,9].

Before being able to open the market to the commercialization of insects, the European
Commission needed to confirm that their consumption was totally safe for human health.
Unfortunately, in 2019, there was not enough information available about the potential risk
associated with insect consumption [10]. Since then, several studies have been performed to
evaluate the composition of common edible insect species. In early 2021, the European Food
Safety Authority (EFSA) revealed its opinion, positioning itself in favor of the consumption
of a very well-studied insect species, Tenebrio molitor [11]. A recent study in the European
insect market, conducted by the International Platform of Insects for Food and Feed (IPIFF),
forecasts that the following insect species to be approved will be the lesser mealworm
(Alphitobius diaperinus) and the migratory locust (Locusta migratoria) among others [12]. The
final approval by the European Commission of the use of T. molitor as a new ingredient in
food products is smoothing the path to the introduction of insects in Western diets [13].

Another challenge to overcome is insect consumption in Western countries. One
strategy that has been followed to introduce insects in Western diets is the use of edible
insect powders (i.e., dehydrated insects that have been ground to obtain a fine powder)
as ingredients for innovative food product design. However, the use of insect powders as
ingredients can lead to adulteration and fraud.

There are several techniques used by the food industry to verify the authenticity of
their products. Molecular techniques (e.g., genomics, proteomics, and polymerase chain
reaction with denaturing gradient gel electrophoresis (PCR-DGGE)) have been widely used
for origin authentication. Despite their high sensitivity, further characterization of markers
is required for real unknown samples [14]. In the case of complex food matrices, several fin-
gerprinting techniques, such as chromatographic techniques (e.g., high-performance liquid
chromatography (HPLC) and mass spectrometry (MS)), have been selected since they are
rapid and easy to execute [15]. As an example, matrix-assisted laser desorption/ionization
coupled with a time-of-flight mass spectrometer (MALDI-TOF) has been used as a method
for the authentication and classification of several commercial edible insect powders [16].
Although MALDI-TOF mass spectrometry has been proven to be a useful technique for
insect powder authentication, it has several drawbacks, such as time of analysis and cost,
that could hinder its implementation in the food industry.

Other fingerprinting techniques applied in food authentication are based on rotational–
vibrational spectroscopy (infrared and Raman spectroscopy). Fourier transform infrared
(FTIR) spectroscopy has been applied in different food matrices, such as juices, meat,
and extra virgin olive oil authentication, due to the ease of obtaining powerful results
quickly [17,18]. Nevertheless, fingerprinting techniques produce huge volumes of data
that need to be processed. For this reason, multivariate analysis is essential to process the
data collected based on fingerprint techniques [19].

The objective of the present work was to study the potential of using attenuated total
reflectance Fourier transform mid-infrared spectroscopy (ATR-FT-MIR) combined with
multivariate analysis to rapidly discriminate and predict the concentration of A. diaperinus
and L. migratoria powder added into a raw dough and 3D-printed baked snacks.
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2. Materials and Methods
2.1. Materials

Lesser mealworm (Alphitobius diaperinus) and migratory locust (Locusta migratoria)
powder from three different batches (100 g each) were supplied by Kreca Ento-Food BV
(Ermelo, The Netherlands). The chickpea flour was purchased from La Finestra Sul Cielo
S.A. (Madrid, Spain) and the hot madras curry powder from Westmill Foods (London, UK).
The extra virgin olive oil was obtained from Hacienda Ortigosa S.L. (Navarra, Spain) and
the salt from Sal Costa, S.L.U (Barcelona, Spain).

2.2. Dough Preparation

The ingredients selected to create a blank dough (B) were chickpea flour (46.3 wt%),
water (39.4 wt%), extra virgin olive oil (11.6 wt%), curry powder (1.8 wt%), and salt
(0.9 wt%). This dough formulation was made to obtain gluten- and dairy-free tasty dough
with good printability. Based on this formulation, different quantities of A. diaperinus or L.
migratoria powder were added, replacing 10% (Ad1, Ld1), 20% (Ad2, Ld2), or 30% (Ad3, Ld3)
of the total amount of chickpea flour used (Table 1). Both insect powders were previously
milled using an electric coffee grinder (TM-CG-03, Vilapur, Larkhall, UK) for 1 min. The
milling process reduced the particle size of A. diaperinus powder from D[4,3] values of
677 µm (span of 2.0) to 310 µm (span of 2.2). For L. migratoria commercial powder, almost
30% of the particles were bigger than 2000 µm, and, after the milling process, a D[4,3] of
967 µm (span of 1.1) was obtained (Figures S1 and S2 are available as Supplementary Files).
A total of 100 g was prepared for each formulation, mixing all the ingredients with a hand
blender (HB-10C.019A, HAEGER SPAIN, Barcelona, Spain) for 2 min.

Table 1. Insect powder percentage and measured weight of each ingredient for different formulations.

Ingredients (g)
Dough Formulation a

B Ad1 Ad2 Ad3 Ld1 Ld2 Ld3

Chickpea flour 100.03 ± 0.01 90.05 ± 0.02 80.02 ± 0.01 70.03 ± 0.01 90.03 ± 0.05 80.03 ± 0.02 70.04 ± 0.05
A. diaperinus powder - 10.02 ± 0.05 20.03 ± 0.04 30.02 ± 0.06 - - -
L. migratoria powder - - - - 10.07 ± 0.08 20.08 ± 0.09 30.06 ± 0.08

Water 85.01 ± 0.01 85.01 ± 0.01 85.00 ± 0.01 85.00 ± 0.01 85.01 ± 0.01 85.01 ± 0.01 85.01 ± 0.01
Olive oil 25.00 ± 0.01 25.01 ± 0.01 25.00 ± 0.01 25.01 ± 0.01 25.01 ± 0.01 25.00 ± 0.01 25.00 ± 0.01

Curry powder 4.00 ± 0.01 4.01 ± 0.01 4.00 ± 0.01 4.00 ± 0.01 4.01 ± 0.01 4.00 ± 0.01 4.00 ± 0.01
Salt 2.05 ± 0.03 2.04 ± 0.03 2.06 ± 0.02 2.02 ± 0.05 2.05 ± 0.04 2.07 ± 0.02 2.03 ± 0.03

Insect powder (%) 0.00 ± 0.00 4.64 ± 0.02 9.27 ± 0.02 13.89 ± 0.03 4.65 ± 0.02 9.28 ± 0.02 13.90 ± 0.02

Abbreviations used: B, blank dough with 0% insect powder; Ad1, dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3% of A.
diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6% of L. migratoria powder; Ld2, dough with 9.3% of L.
migratoria powder; Ld3, dough with 13.9% of L. migratoria powder. a Values are means of three different batches ± standard deviation (SD).

2.3. 3D Printing and Post-Processing Analysis

A portable 3D food printer (Focus, ByFlow Company, Eindhoven, The Netherlands)
was used to print the blank dough (B) and several doughs enriched with 4.6% (Ad1), 9.3%
(Ad2), and 13.9% (Ad3) of A. diaperinus powder. In the case of the dough enriched with
L. migratoria, the printing process could not be carried out because the average particle
size obtained in the ground L. migratoria powder was larger than the maximum size of the
nozzle of the 3D printer used. The printing was performed at room temperature using a
Voronoi circle model of 100 × 100 × 10 mm (Figure 1a). A total of 32.0 g of each dough
was printed using a 1.6 mm nozzle at a speed of 30 mms−1. Then, the dough was baked at
180 ◦C for 12 min using the ventilation mode of a vapor oven (3HV469X/02 model, Balay,
Pamplona, Spain). Each formulation was made in triplicate.
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Figure 1. The following photos show (a) a 3D visualization created by Webgcode of the Voronoi circle
model, (b) 3D-printed raw snack, and (c) 3D-printed baked snack.

In order to find out the amount of water lost during the baking process, the total weight
of the 3D-printed snack was measured before and after baking it (Table 2) (Figure 1b,c).
The concentration of the insect powder was recalculated based on the percentage of water
loss of the 3D-printed baked snacks.

Table 2. Water loss of the different 3D-printed baked snacks and the concentration of insect powder
after the baking process. Abbreviations used: B, blank snack with 0% insect powder; As1, snack with
7.2% of A. diaperinus powder; As2, snack with 14.4% of A. diaperinus powder; As3, snack with 21.9%
of A. diaperinus powder.

Snack Formulation B As1 As2 As3

Water loss (%) a 36.2 ± 0.2 36.0 ± 0.5 35.5 ± 1.5 36.5 ± 1.2
A. diaperinus powder (wt%) a 0.0 ± 0.0 7.2 ± 0.1 14.4 ± 0.4 21.9 ± 0.4

a Values are means of three different batches ± standard deviation.

2.4. Spectral Data Acquisition by FTIR

Spectral profiles were collected in the mid-infrared (MIR) region (4000–800 cm−1)
with 8 cm−1 resolution using portable spectrometer Cary 630 (Agilent Technologies Spain
SL, Madrid, Spain) equipped with a single bounce ATR diamond crystal accessory and a
deuterated triglycine sulfate (DTGS) detector. Spectral information acquisition was carried
out using MicroLab PC software (Agilent Technologies SL, Madrid, Spain). The final
spectra were obtained from the average of 128 scans to improve the signal-to-noise ratio,
and a background scan was taken before every sample scan to avoid noise in the spectral
data from the environment.

For the dough spectral acquisition, 4 mg of dough was placed on the sample stage
using a rolling pin (Excel Blades Corp, Paterson NJ, USA). Then, the sample was dried by
vacuum to remove the water contribution in the final spectra.

The baked snacks were milled using an electric grinder (TM-CG-03, Vilapur, Larkhall,
UK). Then, 4 mg of ground snack was placed in the sample stage. To enhance the contact
between the diamond crystal and the sample, a press clamp was used, standardizing the
layers’ width of the sample over the detector.

Spectral data from three different batches (prepared at three different days) of each
blank dough, dough enriched with 4.6, 9.3, and 13.9% of A. diaperinus and L. migratoria, and
3D-printed baked snack with 7.2, 14.4, and 21.9% of A. diaperinus were obtained, collecting
10 spectra per day and per sample. A total number of 30 spectra were obtained for each
type of sample at room temperature.

2.5. Multivariate Analysis

Multivariate analysis and data preprocessing were performed using a chemometric
software (Pirouette, version 4.5. Infometrix Inc., Bothell, WA, USA). Spectral data from
the doughs were mean centered, vector length normalized and transformed using second
derivative polynomial-fit Savitzky–Golay function (13 points). The spectral data from the
ground snacks were mean centered, transformed using multiplicative scatter correction
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(MSC) and second derivative polynomial-fit Savitzky–Golay function (13 points). A statis-
tical Principal Component Analysis (PCA)-based supervised algorithm, soft independent
modelling of class analogy (SIMCA), was used to create a discrimination and classification
model with the spectral data obtained [20]. In order to detect potential outliers, sample
residuals and the Mahalanobis distances were taken into account [21]. Three different
outputs were used to interpret SIMCA models created: class projections (i.e., 3-dimensional
PCA score plots), interclass distances, and discriminating power. Total misclassifications
were analyzed and interpreted for the input data. Models were validated using a predicted
set of samples, excluding 5 spectra per sample from the initial input data and creating new
models with the remaining data.

The pre-treated spectra were also analyzed by partial least squares regression (PLSR)
that was cross-validated (leave-one-out, internal validation approach) to generate cali-
bration models. The same transformations used for the creation of the SIMCA models
were applied to the spectral data used for the PLSR analysis: mean centered, vector length
normalized, and transformed by second derivative polynomial-fit Savitzky–Golay func-
tion (13 points) in the case of the dough and MSC and second derivative polynomial-fit
Savitzky–Golay function (13 points) for the 3D-printed baked snacks. Thus, the x variable
was the absorbance per each wavenumber, and the y variable (reference data) was the
percentage of edible insect powder added to the dough, or, in the case of the 3D-printed
snacks, the percentage of insect powder present in the final product. Furthermore, a pre-
dicted set of samples was used in order to validate the model, temporarily leaving out
5 spectra per sample from the training set. All the models were evaluated in terms of
regression vector, standard error of cross-validation (SECV), standard error of calibration
(SEC), determination coefficient (R2), and outlier diagnostics [22].

3. Results and Discussion
3.1. Spectral Information of Ingredients and Doughs

Previous studies have shown the ability of MIR spectroscopy to provide information
about the chemical composition of complex samples, such as food matrices, correlating
different IR bands with specific functional groups [23]. Moreover, it is important to analyze
all the ingredients alone to help elucidate the origin of the IR bands associated with certain
components in these mixtures (Figure 2).
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Comparing the spectral information from the ingredients used in the dough and
snack formulation (Figure 2), it can be observed that chickpea, curry, A. diaperinus, and L.
migratoria powder showed a broad IR band from 3000 to 3500 cm−1, which originated from
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the stretching of O-H bonds most likely coming from carbohydrates, fiber, and water [24].
Moreover, all these spectra exhibited two narrower IR bands at around 2900 and 2850 cm−1,
characteristics of asymmetrical and symmetrical stretching vibrations from C-H bonds
from methyl groups presumably caused by lipids or, in the case of insect powders, lipids
and chitin. Another common IR band between all the ingredients was observed around
1740 cm−1. This IR band can be associated with the stretching of C=O bonds from ester
groups related to lipids [25,26]. Chickpea flour and insect powders presented IR bands in
the region of 1650 and 1500 cm−1, and these were related to C-N stretching, C=O vibrations
of N-acetyl groups, and N-H bending from amide II groups, most likely from the presence
of proteins. In the case of insect powders, these IR bands can also be associated with
chitin presence [27]. Finally, a distinctive IR band at 1100–900 cm−1 from C-O stretching
vibrations, most probably corresponding to the presence of non-structural carbohydrates,
such as starch and sugars, was also detected in the chickpea and curry powder spectra [28].

The raw MIR spectra of the blank dough (B) and the doughs with different concentra-
tions of A. diaperinus (Ad1, Ad2, and Ad3) and L. migratoria (Ld1, Ld2, and Ld3) with their
respective transformed spectra are shown in Figure 3. Differences between the dough
samples are not easy to detect from the raw spectra, since all of them exhibit the same
IR bands related to the presence of lipid and chitin (2900 and 2850 cm−1), lipid (around
1700–1740 cm−1), protein (1650 and 1500 cm−1), and carbohydrates and chitin (from 1200
to 900 cm−1), with a similar absorbance.
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Figure 3. Raw MIR spectra (4000 to 800 cm−1) from doughs with (a) different concentrations of A.
diaperinus (Ad1, Ad2, and Ad3) and (b) the transformed spectra (vector length normalized and second
derivative, 13 points). Graphs (c) show the raw mid-infrared spectra of different concentrations
of L. migratoria (Ld1, Ld2, and Ld3) and (d) the transformed spectra. Abbreviations used: B, blank
dough with 0% insect powder; Ad1, dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3%
of A. diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6% of
L. migratoria powder; Ld2, dough with 9.3% of L. migratoria powder; Ld3, dough with 13.9% of L.
migratoria powder.
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All this information was important to decide the spectral region selected for the
building up of the SIMCA models.

First of all, the region from 4000 to 3000 cm−1 was excluded from the model due to
the high moisture content of the dough samples, trying to avoid discriminations based on
water content. Furthermore, the IR bands between 2700 and 1800 cm−1 were also omitted
to reduce the noise impact in the spectral analysis caused by the crystal.

Moreover, for all the formulations, the amount of insect powder added was increasing
at the same time that the proportion of chickpea flour was decreasing due to the substitution
of ingredients shown in Table 1. As can be seen in the raw spectra of the chickpea flour
in Figure 2, the signal in the carbohydrate region is quite intense compared to the other
ingredients. Therefore, since the aim of our research was to determine if it was possible
to discriminate the presence of insect powder in the designed product and in view of
the fact that the region from 1200 to 800 cm−1 was strongly influenced by the variable
quantities of chickpea flour, it was considered more appropriate to exclude this region from
the model. Finally, the spectral region chose for the data analysis was the one between 3000
to 2700 cm−1 and 1800 to 1200 cm−1.

3.2. Discrimination and Classification of Doughs by ATR-FT-MIR Combined with SIMCA

Initially, two different four-class SIMCA models were built up to obtain classification
models to discriminate the blank and the doughs enriched with different amounts of A.
diaperinus (Ad1, Ad2, and Ad3) or L. migratoria (Ld1, Ld2, and Ld3) powders and obtain
information about their biochemical differences.

To obtain these models, the original variables are replaced by linear combinations of
the same variables called factors, helping to reduce the dimensionality of the data without
losing information [29]. The number of factors was chosen to achieve a minimum of 90%
of the variance in each class of both models (Table 3).

Table 3. The number of factors, their cumulative variance, and the number of outliers used to create
4-class SIMCA models of A. diaperinus and L. migratoria dough.

Model Class Factor 1 (%) Factor 2 (%) Factor 3 (%) Outliers

4-class
SIMCA

A. diaperinus
dough model

B 82.2 92.7 95.0 0
Ad1 81.2 92.5 96.3 5
Ad2 92.0 95.8 98.0 3
Ad3 91.7 97.0 98.5 5

4-class
SIMCA

L. migratoria
dough model

B 82.2 95.7 95.0 0
Ld1 86.0 91.7 95.7 4
Ld2 96.9 98.2 99.1 6
Ld3 75.0 85.7 91.9 5

Abbreviations used: B, blank dough with 0% insect powder; Ad1, dough with 4.6% of A. diaperinus powder; Ad2,
dough with 9.3% of A. diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6%
of L. migratoria; Ld2, dough with 9.3% of L. migratoria; Ld3, dough with 13.9% of L. migratoria.

SIMCA class projection is a three-dimensional scatter plot that gives information about
the similarity of the spectral data (Figure 4). Each point in the class projection represents a
spectrum that belongs to a cluster (represented with an ellipse) with 95% of confidence.
Those groups that seem closer will be more similar to each other unlike those that will
appear further away, which will be much different [30].

The transformed spectra (3000–2700 cm−1 and 1800 to 1200 cm−1 region) of doughs
enriched with A. diaperinus powder (Figure 4a) or L. migratoria (Figure 4b) showed non-
overlapping and well-separated clusters allowing accurate dough classification for each
type. SIMCA’s misclassification algorithm for doughs enriched with A. diaperinus or L.
migratoria powders showed zero misclassifications, indicating that the training set for
each model was homogeneous, and all samples were correctly classified into their as-
signed classes.



Foods 2021, 10, 1806 8 of 19

Foods 2021, 10, x FOR PEER REVIEW 8 of 20 
 

 

The transformed spectra (3000–2700 cm−1 and 1800 to 1200 cm−1 region) of doughs 
enriched with A. diaperinus powder (Figure 4a) or L. migratoria (Figure 4b) showed non-
overlapping and well-separated clusters allowing accurate dough classification for each 
type. SIMCA’s misclassification algorithm for doughs enriched with A. diaperinus or L. 
migratoria powders showed zero misclassifications, indicating that the training set for each 
model was homogeneous, and all samples were correctly classified into their assigned 
classes. 

 
Figure 4. SIMCA class projection plots of (a) 4-class SIMCA A. diaperinus dough model and (b) 4-
class SIMCA L. migratoria dough model. Abbreviations used: B, blank dough with 0% insect powder; 
Ad1, dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3% of A. diaperinus powder; Ad3, 
dough with 13.9% of A. diaperinus powder. 

Discrimination power plots (Figure 5) show which are the major IR bands that 
contributed to the development of the classification models. Despite the fact both models 
were made with distinct insect species, similar IR bands were responsible for the 
differentiation of the clusters. As can be seen in Figure 5, the IR bands mainly responsible 
for the discrimination of the models were related to the stretching of C-H bonds from 
methyl groups associated with lipid content (2959 cm−1 and 2877 cm−1), the C=O stretching 
of esters of lipids (1777 cm−1), amide I groups most likely from proteins and chitin (1647 
cm−1 till 1546 cm−1), and bending vibrations of the CH2 and CH3 aliphatic groups (1427 
cm−1) that can be related to polysaccharides and sugars [31,32]. 

 
Figure 5. Soft independent modeling of class analogy discriminating power plots of FTIR spectroscopy spectra (3000–2700 
cm−1 and 1800–1200 cm−1) from (a) 4-class SIMCA A. diaperinus dough model and (b) 4-class SIMCA L. migratoria dough 
model. 

Figure 4. SIMCA class projection plots of (a) 4-class SIMCA A. diaperinus dough model and (b) 4-class
SIMCA L. migratoria dough model. Abbreviations used: B, blank dough with 0% insect powder; Ad1,
dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3% of A. diaperinus powder; Ad3, dough
with 13.9% of A. diaperinus powder.

Discrimination power plots (Figure 5) show which are the major IR bands that con-
tributed to the development of the classification models. Despite the fact both models were
made with distinct insect species, similar IR bands were responsible for the differentiation
of the clusters. As can be seen in Figure 5, the IR bands mainly responsible for the dis-
crimination of the models were related to the stretching of C-H bonds from methyl groups
associated with lipid content (2959 cm−1 and 2877 cm−1), the C=O stretching of esters of
lipids (1777 cm−1), amide I groups most likely from proteins and chitin (1647 cm−1 till
1546 cm−1), and bending vibrations of the CH2 and CH3 aliphatic groups (1427 cm−1) that
can be related to polysaccharides and sugars [31,32].
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Interclass distance (ICD) is a ratio of Euclidean distances between two classes that
indicate the similarities and/or dissimilarities between them [33]. ICD values above 3 are
considered significant to discriminate two clusters of samples as distinct classes [34]. As
shown in Table 3, ICD values between the clusters of dough enriched with A. diaperinus
powder increased with the amount of insect powder added, ranging from 3.1 to 12.2. In
the case of dough enriched with L. migratoria, the same tendency is observed, showing
increasing ICD values with the amount of insect powder added from 5.8 to 13.6 (Table 4).
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The fact that ICD values increased with the amount of insect powder added shows that
this ingredient is responsible for the dough classification [35].

Table 4. Soft independent modeling of class analogy interclasses distances from the 4-class SIMCA A.
diaperinus doughs model and the 4-class SIMCA L. migratoria doughs model.

A. diaperinus B Ad1 Ad2 Ad3

B 0.0
Ad1 3.1 0.0
Ad2 8.7 4.5 0.0
Ad3 12.2 7.2 3.1 0.0

L. migratoria B Ld1 Ld2 Ld3

B 0.0
Ld1 5.8 0.0
Ld2 8.4 3.0 0.0
Ld3 13.6 7.4 3.9 0.0

Abbreviations used: B, blank dough with 0% insect powder; Ad1, dough with 4.6% of A. diaperinus powder; Ad2,
dough with 9.3% of A. diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6%
of L. migratoria; Ld2, dough with 9.3% of L. migratoria; Ld3, dough with 13.9% of L. migratoria.

Model validation using an independent set of spectra (five spectra not included in
the SIMCA model from each class) showed a 100% correct classification for each type of
dough in both models tested. The specificity of each model was also evaluated by making
predictions of the L. migratoria spectra of each class into the four-class SIMCA A. diaperinus
dough model and by using this one to classify the spectra (Table 5). The same procedure
was used to evaluate the L. migratoria model. These results confirmed the ability of the
models developed to discriminate dough samples depending on the species of insect used
(A. diaperinus and L. migratoria) and the quantity of insect powder added [36].

Table 5. Dough model predictions of A. diaperinus SIMCA model using L. migratoria spectra and L.
migratoria SIMCA model using A. diaperinus spectra.

Model Dough No. Spectra Best Class Next Best Not
Classified

4-class
SIMCA

A. diaperinus

Ld1 26 0% 0% 100%
Ld2 24 0% 0% 100%
Ld3 25 0% 0% 100%

4-class
SIMCA

L. migratoria

Ad1 25 0% 0% 100%
Ad2 27 0% 0% 100%
Ad3 25 0% 0% 100%

Abbreviations used: B, blank dough with 0% insect powder; Ad1, dough with 4.6% of A. diaperinus powder; Ad2,
dough with 9.3% of A. diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6%
of L. migratoria; Ld2, dough with 9.3% of L. migratoria; Ld3, dough with 13.9% of L. migratoria.

It was also important to study if it was possible to differentiate between the type of
insects used to make the doughs. For this purpose, a six-class SIMCA model was created
using the IR data of doughs with different concentrations of A. diaperinus and L. migratoria
powders. The number of factors chosen for this model as well as their cumulative variance
is shown in Table 6.

The class projection plot (Figure 6) showed distinctive clustering patterns and six
well-defined classes, which are closer to those with a low amount of insect powder and far
away from the clusters with the highest quantity of insect powder.
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Table 6. The number of factors, their cumulative variance, and the number of outliers used to create
a 6-class SIMCA model of A. diaperinus vs. L. migratoria dough.

Model Class Factor 1 (%) Factor 2 (%) Factor 3 (%) Outliers

6-class
SIMCA A.

diaperinus vs.
L. migratoria

dough model

Ld1 86.0 91.7 95.7 4
Ad1 83.9 94.7 96.6 6
Ld2 96.7 98.2 99.1 7
Ad2 92.0 95.8 98.0 6
Ld3 75.9 85.7 91.9 5
Ad3 91.7 96.9 98.5 5
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Figure 6. Soft independent modeling of class analogy class projection of FTIR spectroscopy spectra
(3000–2700 cm−1 and 1800–1200 cm−1) from a 6-class SIMCA A. diaperinus vs. L. migratoria dough
model. Abbreviations used: Ad1, dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3% of
A. diaperinus powder; Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6% of L.
migratoria; Ld2, dough with 9.3% of L. migratoria; Ld3, dough with 13.9% of L. migratoria.

The discriminating power plot (Figure 7) showed that, as in the previous models,
the main discrimination was related to lipids (C=O stretching of esters from lipid content
at 2877 cm−1 and 1722 cm−1 to 1710 cm−1), protein or/and chitin content (amide I from
proteins and/or chitin at 1606 cm−1 and 1535 cm−1), and polysaccharides (1461 cm−1). This
reinforces the idea that these components might be important factors in the discrimination
of different insect species.

Moreover, the maximum discriminating power obtained in the A. diaperinus and
L. migratoria dough models was almost triple that obtained in the A. diaperinus vs. L.
migratoria dough model (Figure 7). This information reveals that both types of dough
display remarkably similar composition despite being made with different insect powders.

The ICD values observed in the model that compare the different insect doughs exhibit
the same trend as the individual models (see Table 4). The ICD value increases with the
insect powder content in the dough regardless of the type of insect powder used (Table 7).

The validation of the model was carried out using a new set of spectra, five for each
class. A 100% correct classification was obtained from all the spectra in all the tested
classes. Therefore, the capability of this model to discriminate between A. diaperinus and L.
migratoria powders in a food matrix was corroborated.
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spectra (3000–2700 cm−1 and 1800–700 cm−1) from a 6-class SIMCA A. diaperinus vs. L. migratoria
dough model.

Table 7. Soft independent modeling of class analogy (SIMCA) interclasses distances from a 6-class
SIMCA A. diaperinus vs. L. migratoria doughs model.

Dough Ld1 Ad1 Ld2 Ad2 Ld3 Ad3

Ld1 0.0
Ad1 3.0 0.0
Ld2 3.0 4.7 0.0
Ad2 3.3 4.3 3.8 0.0
Ld3 7.4 9.3 3.9 6.7 0.0
Ad3 6.4 7.3 5.1 3.1 5.0 0.0

Abbreviations used: Ad1, dough with 4.6% of A. diaperinus powder; Ad2, dough with 9.3% of A. diaperinus powder;
Ad3, dough with 13.9% of A. diaperinus powder; Ld1, dough with 4.6% of L. migratoria; Ld2, dough with 9.3% of L.
migratoria; Ld3, dough with 13.9% of L. migratoria.

3.3. Spectral Information of 3D-Printed Snacks

Another objective proposed in this research was to study if the insect powder could be
discriminated in the final product after being extruded by a 3D printer and going through
a baking process. Figure 8 shows the raw spectra of 3D-printed baked snacks made with
different amounts of A. diaperinus powder.

Thermal treatments, such as baking, are commonly used processes in the food industry
and in food preparation [37]. Some of these methods can help in elongating the shelf-life
of the processed products and improve the digestibility and bioavailability of proteins.
Nevertheless, thermal treatments can negatively affect a wide diversity of molecules (e.g.,
lipid oxidation, protein denaturation, and vitamin solubilization) [38,39].

When comparing the raw spectra of these snacks with the raw spectra of the cor-
responding doughs in Figure 2, we can observe that the broad IR band from 3000 to
3500 cm−1 was reduced. This IR band range is linked to the stretching of O-H bonds, and
its decreasing signal can be related to the water loss reported during the baking process [40].

The oxidation of unsaturated lipids is an autocatalytic reaction enhanced by thermal
processes [41]. However, the signal on the IR bands around 2900, 2850, and 1740 cm−1,
most likely related to the presence of lipid, seems to remain similar to the one shown in the
dough spectra.
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powder; As1, snack with 7.2% of A. diaperinus powder; As2, snack with 14.4% of A. diaperinus powder; As3, snack with
21.9% of A. diaperinus powder.

Moreover, another spectrum region that showed a distinct signal was the region at
1650 and 1500 cm−1, presumably from protein or chitin content. A plausible explanation
for this fact could be the denaturation of proteins due to the heating process at high
temperatures [42]. Studies on protein denaturation in milk-derived products reveal that
certain regions of the spectrum related to protein content (1700–1695 cm−1 (aggregated β-
sheets), 1645 cm−1 (random structure), and 1609 cm−1 (side chains)) have been affected by
heat treatments, altering the spatial conformation of the proteins and, as a consequence, the
intensity of the related IR bands [43]. Another approach for this variation on the IR bands
could be the presence of Maillard reaction products. Maillard reaction is a non-enzymatic
reaction, binding amino components and reducing sugars with covalent bonds, obtaining
aromatic compounds as a result [44].

Finally, a characteristic IR band at 1100–900 cm−1, probably from carbohydrates, can
be observed. As has been commented before, thermal treatments can lead to changes in
different nutrients. In the case of carbohydrates, these can be involved in several complex
reactions. One of these reactions is the hydrolyzation of long carbohydrates, such as starch,
obtaining reduced sugars and molecules that can enhance other reactions, such as the
above-mentioned Maillard reaction. Regarding the starch content, this macromolecule
can also undergo a process called gelatinization, changing its structure from ordered to
disordered, affecting its solubilization. Furthermore, free sugars can caramelize due to the
dehydration caused by the thermal treatment, contributing to the browning process [42,45].

All these changes produced by the aforementioned chemical reactions were reflected
in the raw spectra of the snacks, which were used afterward to explain the origin of the IR
regions responsible for the discrimination of the model created.

3.4. Discrimination and Classification of Snacks by ATR-FT-MIR Combined with SIMCA

A four-class SIMCA model was created to assess the differences between snacks made
with an increasing amount of A. diaperinus powder. A total of two factors were selected to
create this model, achieving a cumulative variance higher than 90% in all the classes of the
model (Table 8).

In the case of the class projection of the A. diaperinus snacks, the model showed well-
defined clusters. A two-axis plot was used to represent this model since only two factors
were needed to discriminate the different classes (Figure 9).
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Table 8. The number of factors, their cumulative variance, and the number of outliers used to create
a 4-class SIMCA model of A. diaperinus snacks.

Model Class Factor 1 (%) Factor 2 (%) Outliers

4-class SIMCA
A. diaperinus
snack model

Bs 97.2 98.7 1
As1 97.0 97.9 6
As2 89.5 93.5 4
As3 93.8 96.9 0

Abbreviations used: Bs, blank snack with 0% insect powder; As1, snack with 7.2% of A. diaperinus powder; As2,
snack with 14.4% of A. diaperinus powder; As3, snack with 21.9% of A. diaperinus powder.
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to different structural configurations of proteins affected by the thermal treatment. This 

Figure 9. Soft independent modeling of class analogy class projection of FTIR spectroscopy spectra
(3000–2700 cm−1 and 1800–1200 cm−1) from a 4-class SIMCA A. diaperinus snack model. Abbrevia-
tions used: Bs, blank snack with 0% insect powder; As1, snack with 7.2% of A. diaperinus powder;
As2, snack with 14.4% of A. diaperinus powder; As3, snack with 21.9% of A. diaperinus powder.

The discriminating power plot of the A. diaperinus snack model (Figure 10) showed
major discrimination of the IR band at 1647 cm−1, from amide I groups most likely from
protein and chitin presence, and the IR bands at 1707, 1699, and 1610 cm−1, probably linked
to different structural configurations of proteins affected by the thermal treatment. This fact
can also explain the decrease in the discriminating power from the IR band at 1505 cm−1.

All the classes exhibited a good classification, showing ICD values over 3. In addition,
this model shows the same trend as the previous models shown before of A. diaperinus or L.
migratoria dough, increasing the ICD value with the increase in insect powder concentration
(Table 9).

Five spectra from each class, that were not previously included, were used to validate
the model. Each class obtained a 100% correct classification of the new spectra showing
the capability of the model created to discriminate different baked snacks based on the
concentration of A. diaperinus powder used in the formulation.
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Figure 10. Soft independent modeling of class analogy discriminating power plot of FTIR spec-
troscopy spectra (3000–2700 cm−1 and 1800–1200 cm−1) from a 4-class SIMCA A. diaperinus
snack model.

Table 9. Soft independent modeling of class analogy interclass distances from a 4-class SIMCA A.
diaperinus snack model. Abbreviations used: Bs, blank snack with 0% insect powder; As1, snack with
7.2% of A. diaperinus powder; As2, snack with 14.4% of A. diaperinus powder; As3, snack with 21.9%
of A. diaperinus powder.

Snack Bs AS1 AS2 AS3

B 0.0
AS1 3.3 0.0
AS2 5.9 3.0 0.0
AS3 8.2 5.1 3.3 0.0

3.5. PLSR of Insect Powder Concentration in Doughs and Snacks

Based on the information obtained from the SIMCA models, a partial least square re-
gression (PLSR) analysis was applied to study the potential of predicting the concentration
of insect powder added to enrich the doughs and the snacks. PLSR models were built up
using the MIR region between 3000–2700 cm−1 and 1800–1200 cm−1 (Figure 11).
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The optimal number of factors was chosen based on a cumulative variance of the
factors higher than 90%, a low standard error of prediction (SEP), and the lowest jaggedness
possible. The SEP estimates the expected error of predicting an unknown sample, and the
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jaggedness is a measurement that quantifies the relevance of the noise compared to the
overall signal [46]. A low number of factors can lead to a poor explanation of the data,
obtaining high SEP and jaggedness values. On the other hand, a very large number of
factors end up overfitting the data, causing the algorithm to perform inaccurately with
new data sets [47]. In this case, the SEP will keep reducing its value but the jaggedness
value will increase revealing a high impact of the noise in the model. Following these
criteria, two factors were chosen for the PLSR models of A. diaperinus doughs (Ad PLSR),
L. migratoria doughs (Ld PLSR), and the A. diaperinus snacks model (AS PLSR). It is also
important to mention that all the PLSR models obtained a high R2, showing an excellent
prediction accuracy (Table 10).

Table 10. Parameters associated with each partial least square regression (PLSR) model. Abbrevia-
tions used: n refers to the number of spectra used to create the model; Ad PLSR, A. diaperinus dough
PLSR model; Ld PLSR, L. migratoria dough model; and As PLSR, A. diaperinus 3D-printed baked
snacks PLSR model.

Model Factors n Cumulative Variance (%) SEP R2
val SEC R2

cal

Ad PLSR 2 93 96.2 1.24 0.970 1.21 0.972
Ld PLSR 2 91 95.6 1.08 0.978 1.06 0.979
As PLSR 2 89 97.8 0.90 0.994 0.88 0.994

The regression vector was taken into account in order to find out which were the most
remarkable wavenumbers used to develop the PLSR model. The regression vector is the
weighted addition, depending on the variance, of each of the wavelengths comprised in
the model. The variable that contributes significantly to the prediction of the sample has a
higher coefficient compared to those that do not.

In the case of the PLSR dough models, the regression vector had a similar profile
(Figure 12). Both models showed that the IR bands that contributed most to the prediction
of the percentage of insect powder were 1647 cm−1 and 1610 to 1606 cm−1, linked to
amide I groups probably related to protein and chitin presence. Moreover, the IR band at
2877 cm−1, associated with the stretching of C-H bonds from methyl groups, most likely
from lipid presence, was also detected. All these regions from the spectra were exhibited
previously in the discriminating power from the A. diaperinus and L. migratoria SIMCA
dough models explained above.

Prediction models from A. diaperinus dough and L. migratoria dough exhibited similar
IR bands at 2922 and 2855 cm−1, associated with the stretching of C-H bonds from methyl
groups (most likely from lipid presence), and 1535 cm−1, presumably from protein and
chitin presence (amide I groups).

The same effect was found in the regression vector of the 3D-printed baked snack
(Figure 13). The regression vector obtained from the PLSR snack model showed similar
IR bands to those exhibited in the discriminating power of the A. diaperinus SIMCA snack
model in Section 3.4. In the case of the regression vector, the IR bands with the highest
contribution in the prediction model were probably related to protein, in particular to
different secondary structures, such as aggregated β-sheets (1700–1695 cm−1), random
structures (1645 cm−1), and exposed side chains (1609 cm−1), as a result of the thermal
treatment during the baking process.

To properly evaluate if the IR bands present in the regression vectors were linked to
the insect powder or/and chickpea flour, it was necessary to compare them not only with
the pretreated spectra of ingredients (Figure 2) but also with the doughs and snacks spectral
information (Figures 3 and 8). In the case of the IR bands related to lipids (1740 cm−1) and
lipids and chitin (the region between 3000 and 2700 cm−1), a slight increase in the signal
was detected in the doughs as the amount of insect powder increased (Figure 3). Comparing
to the transform spectra of raw ingredients (Figure 12c), the amount of lipids present in
the chickpea flour was lower than that in both insect powders. Thus, the differentiation
by the lipid region in the PLSR model was mainly related to the insect powder added
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to the dough. However, in the case of the protein region of the pretreated spectra from
the doughs (between 16,500 and 1500 cm−1), most of the IR bands showed increasing
absorbances while others exhibited a decreasing signal (Figure 3a,c). The pretreated spectra
of chickpea flour and A. diaperinus and L. migratoria powders also showed IR bands at this
region (Figure 12c). It is also known that different secondary structures of proteins absorb
at different wavenumbers [48]. Thus, the differences in the absorbance of the protein region
were not only due to the variation of the chickpea flour/insect powder ratio but also due to
the type of proteins added, the bonds that conform them, and the media (dough or snack).
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Figure 13. PLSR regression vector plot of FTIR spectroscopy spectra (3000–2700 cm−1 and
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In the literature, a collection of models created with the PLSR algorithm using MIR
and NIR spectral data have been successfully used to predict the concentration or amount
of ingredients and products used by the food industry [49,50]. A portable FT-MIR spectrom-
eter combined with multivariate analysis can be used for routine controls for authentication
of standardization of quality control of A. diaperinus and L. migratoria products both during
the fabrication process or at the end of the production line.

4. Conclusions

ATR-FT-MIR combined with multivariate analysis can be used as a rapid technique to
discriminate edible insect powders used as ingredients for doughs and 3D-printed snacks.
Moreover, using PLSR analysis, calibration models can be built up to easily predict the
concentration of insect powder present in doughs and snacks.

Further work needs to be carried out to determine the feasibility of this method for
detecting insect powders in other food matrices, either raw or cooked.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/foods10081806/s1, Figure S1: Particle size distribution of commercial and milled A. diaperinus powder;
and Figure S2: Particle size distribution of milled L. migratoria powder.
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