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Abstract: We investigate theoretically the near-field dynamics of the
scattering of a surface-plasmon polariton (SPP) pulse impinging normally
on a rectangular groove on an otherwise planar metal surface. Our formu-
lation is based on solving the reduced Rayleigh equation (derived through
the use of an impedance boundary condition) for every component of the
spectral decomposition of the incoming SPP pulse. Numerical calculations
are carried out of the time dependence of the near-field resonant scattering
effects produced at the rectangular groove. The scattering process is tracked
through the (time-resolved) repartition of the incoming SPP electromag-
netic energy into reflected and transmitted SPP pulses, and into pulsed
scattered light. Furthermore, we directly show evidence of the excitation
of single resonances, as manifested by the concentration of electric field
intensity within the groove, and its subsequent leakage, over the resonance
lifetime. The near-field formation of oscillations caused by the interference
between two adjacent resonances simultaneously excited is also considered.
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1. Introduction

There have been several theoretical studies of the scattering of surface plasmon polaritons by
isolated defects of various types on an otherwise planar metal surface [1, 2, 3, 4, 5, 6, 7, 8], as
well as several experimental studies of such scattering processes [2, 3, 9, 10, 11, 12, 13, 14, 15].
In all of this work continuous wave excitation of the incident surface plasmon polariton (SPP)
was assumed, i.e. the incident SPP was assumed to be monochromatic. This precluded the
observation of any dynamic effects associated with these scattering processes, such as delay
times associated with the resonant scattering of a SPP pulse from a localized surface defect.
Recent experimental time-domain studies on the transmission of pulsed light through small
apertures [16], and on SPP transport in a two-dimensional surface plasmon polaritonic crystal
[17] have been reported, demonstrating the feasibility of such measurements in contexts where
SPPs play a dominant role. On the theoretical side, the dynamics of the resonant scattering
of SPP pulses by isolated nanoscale defects were investigated through calculations of the time
dependence of the reflected and transmitted SPPs, and of the angular distribution of the intensity
of the scattered light [18]. The resonant nature of the scattering was manifested through the
exponential tails of the scattered SPPs, and by the delay time of the transmitted SPP pulse.

In this paper we investigate theoretically the near-field dynamics of the scattering of a SPP
pulse incident normally on a rectangular groove on an otherwise planar metal surface. The
choice of a rectangular groove instead of the Gaussian groove studied in [18] is due to the fact
that a rectangular groove possesses electromagnetic resonances that are spectrally denser and
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narrower, i.e. have longer lifetimes, than the resonances supported by a Gaussian groove of a
similar size or even deeper. However, for purposes of comparison we also present results for
the near electric field intensity close to the defect, calculated for the Gaussian groove stud-
ied in [18]. We calculate the time dependence of the SPP pulses reflected from and transmitted
through the rectangular groove, together with the time dependence of the field scattered into the
vacuum above the metal surface. We are particularly interested in these time dependences when
the central frequency of the incident SPP pulse is close to the frequency of one of the resonances
supported by the groove, or close to the frequencies of a pair of spectrally close resonances. We
also calculate the electric near-field intensity close to the rectangular groove under resonance
conditions. These results are obtained from a numerical solution of the reduced Rayleigh equa-
tion for the single nonzero component of the magnetic vector in the vacuum region, derived
through the use of an impedance boundary condition, for each component in the spectral de-
composition of the incident SPP pulse. They enable the frequencies of the resonances studied
to be determined, together with their lifetimes, among other features of the time dependence
of the scattering of SPP pulses from a surface profile line defect. Although our analysis is re-
stricted to one-dimensional defects, we emphasize that many of the resulting dynamical effects
can be qualitatively extrapolated to two-dimensional defects.

The outline of this paper is as follows. In Section 2 we formulate the problem of the scattering
of a SPP pulse by a surface defect and describe how it is solved. In Section 3 this formulation is
applied to the scattering of the pulse from a rectangular groove when the central frequency of
the pulse is close to the frequency of one of the resonances supported by the groove. The scat-
tering from the same rectangular groove of a pulse with a lower frequency and larger spectral
width that simultaneously excites two spectrally close resonances supported by the groove is
also investigated in this section. For the sake of comparison, in Section 4 the time dependence
of the near-field intensity for the resonant scattering of SPP pulse by a Gaussian groove with
parameters corresponding to the resonance studied in [18] is calculated. The conclusions drawn
from our calculations are presented in Section 5.

2. Pulsed SPP scattering model

x

x1

3i

S

T
R

Fig. 1. Illustration of the scattering geometry. The dashed rectangle shows the configuration
of the near-field region scanned in Figs. 3, 4, 7 and 9.

The scattering geometry is depicted in Fig. 1. A pulsed SPP propagating on a planar vacuum-

(C) 2004 OSA 8 March 2004 / Vol. 12,  No. 5 / OPTICS EXPRESS  885
#3513 - $15.00 US Received 12 December 2003; revised 27 February 2004; accepted 27 February 2004



silver interface (x3 = 0, the semi-infinite metal occupying the lower half-space) in the positive
x1 direction impinges from the negative x1 axis on a line defect characterized by its profile
function x3 = f (x1) (constant along the x2 axis) and located at the origin. The incident p-
polarized SPP pulse is characterized by its only non-zero component of the magnetic field in
vacuum,

H(i)
2 (x1,x3; t) =

∫ ∞

−∞
dωF(ω)exp[ik(ω)x1 −β0(ω)x3]exp(−iωt), (1)

F(ω) = exp[−(ω2 −ω2
0 )/(∆ω)2]/(

√
π∆ω), (2)

with a Gaussian spectral amplitude F(ω). k(ω) and β0(ω) are the SPP wave vector components
[19]; since we make use of the impedance boundary condition on a plane [20] in the theoretical
formulation of this problem, these components are given by:

k(ω) =
ω
c

(
1− 1

ε(ω)

)1/2

, β0(ω) ≡
(

k(ω)2 − ω2

c2

)1/2

=
ω
c

[−ε(ω)]−1/2, (3)

where ε(ω) is the metal dielectric function.
The time-dependent scattered field in the vacuum half-space can be written in the form of a

Rayleigh (plane wave) expansion:

H(sc)
2 (x1,x3; t) =

∫ ∞

−∞
dωF(ω)e−iωt

∫ ∞

−∞

dq
2π

R(q,ω)exp[i(qx1 + α0(q,ω)x3)], (4)

with α0(q,ω) ≡ (ω2/c2 − q2)1/2, and R(q,ω) the scattering amplitude for a monochromatic
wave of frequency ω . It is shown in Ref. [7], upon imposing the impedance boundary condition
on a plane, that the scattering amplitude can be written in the form

R(q,ω) = G0(q,ω)T (q,ω), (5)

where G0(q,ω) is the Green’s function of the SPP on the unperturbed surface

G0(q,ω) =
iε(ω)

ε(ω)α0(q,ω)+ i(ω/c)[−ε(ω)]1/2
≡C(q,ω)

(
1

q− k(ω)
− 1

q+ k(ω)

)
, (6)

where the matrix T (q,ω) satisfies the equation

T (q,ω) = V (q|k(ω))+
∫ ∞

−∞

dp
2π

V (q|p)G0(p,ω)T (p,ω), (7)

and the scattering potential V (q|p) is connected to the surface impedance s(x 1) through

V (q|p) ≡ β0(ω)ŝ(q− p), ŝ(Q) =
∫ ∞

−∞
dx1 e−iQx1 s(x1). (8)

At a sufficiently large distance from the defect on the interface, the resulting (incident plus
scattered) magnetic field, Eqs. (2) and (4), can be written in the form of reflected and transmitted
SPP pulses:

H2(x1,0; t) = H(i)
2 (x1,0; t)+ H(r)

2 (x1,0; t)

= H(i)
2 (x1,0; t)+

∫ ∞

−∞
dωF(ω)e−iωtρ(ω)exp[−ik(ω)x1 −β0(ω)x3], x1 � 0; (9)

H2(x1,0; t) = H(t)
2 (x1,0; t)

=
∫ ∞

−∞
dωF(ω)e−iωtτ(ω)exp[ik(ω)x1 −β0(ω)x3], x1 � 0, (10)
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where ρ(ω) and τ(ω) are, respectively, the monochromatic SPP reflection and transmission
amplitudes [7]:

ρ(ω) = iT (−kR(ω),ω) C(−kR(ω),ω) (11)

τ(ω) = 1+ iT(kR(ω),ω) C(kR(ω),ω), (12)

with kR(ω) denoting the real part of k(ω).
The time-dependent field scattered into the far field in the vacuum region can be calculated

from Eq. (4) with (x1,x3) ≡ (r cosθ ,r sinθ ) (where θ is the scattering angle) in the limit that
r � λ by means of the method of stationary phase. The resulting expression has the form of
propagating pulses of outgoing cylindrical waves:

H(s)
2 (r,θ ; t) =

e−i π
4 cosθ√
2πr

∫ ∞

−∞
dωF(ω)e−iωt

√
ω
c

R((ω/c)sinθ ,ω)exp
(

iω
r
c

)
, (13)

from which the following time-dependent angular distribution of the scattered intensity is de-
fined:

I(θ , t) ≡ r |Hs |2 . (14)

0 0.1 0.2 0.3
ω/ω
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Fig. 2. Spectral dependence of the monochromatic, SPP reflection (green curve) and trans-
mission (red curve) coefficients (RSPP and TSPP, respectively), and total radiated energy
S (blue curve) for a rectangular defect of half-width L = 789 nm. Solid curves: Groove,
h = −157 nm; Dashed curves: Ridge, h = 157 nm. λp = 2πc/ωp = 157 nm (Ag). The
spectral amplitudes (normalized to 1) of the SPP pulses considered below are superim-
posed (black curves).

The numerical calculations are based on solving the reduced Rayleigh equation (7), as de-
tailed in Ref. [7], for each spectral component of the incident SPP pulse. Then the correspond-
ing Fourier transforms yield the reflected and transmitted SPP pulses, Eqs. (9) and (10), and
also the time dependence of the scattered far field, Eqs. (13) and (14). The calculations of the
time evolution of the near field intensity are carried out on the basis of the electric field de-
rived (through the ∇×H Maxwell equation) from the (incident plus scattered) magnetic field,
Eqs. (2) and (4). In what follows, the metal substrate is assumed to be silver, its dielectric func-
tion given by Drude’s formula ε(ω) = 1−ω 2

p/ω2, with λp ≡ 2πc/ωp = 157 nm. It is well
known that for frequencies in the visible and near IR below the onset of the strong ohmic losses
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associated with interband transitions (at λ ∼ 400 nm for Ag), Drude’s free-electron approxima-
tion correctly describes the metal response. In addition, we neglect the absorptive contribution
to Drude’s formula, since the corresponding SPP inelastic mean free path � abs is much larger
than the defect size (e.g. �abs ∼ 24 µm for Ag at λ = 650 nm); thus no significant effects are
expected in the scattering process [5] other than dissipative losses in the SPP propagation.

3. Rectangular groove

Fig. 3. (308 KB) Movie of the time evolution of the near (electric) field intensity (log scale)
images in an area of 8λ × 4λ perpendicular to the Ag surface for a rectangular groove
(located at the bottom center, see Fig. 1) of half-width L = 785 nm and depth h =−157 nm.
The incident SPP pulse parameters are: ω0/ωp = 0.275 (λ0 = 571 nm) and ∆ω/ω0 = 0.02.
Front picture: t = 0 (incoming SPP pulse maximum at x1 = 0).

It has been shown that Gaussian grooves, unlike ridges, exhibit resonances that can be probed
in the far field through pulsed SPP scattering [18]. However, for the near field calculations
shown below, we use the surface defect impedance in the form of a rectangular groove of half-
width L and depth |h|,

s(x1,ω) =
1− ε(ω)

d(ω)ε(ω)
h[Θ(x1 + L)−Θ(x1−L)], (15)

where h < 0, d(ω) = c[ε(ω)]−1/2/ω is the skin depth, and Θ(u) is the Heaviside unit step
function. The frequency dependent factor in Eq. (15) is introduced, following Ref. [20], in
order to preserve the connection between surface impedance and actual corrugation to lowest
order in both the defect height and slope [21]. Rectangular grooves possess several resonances,
spectrally denser and narrower than those supported by Gaussian grooves of a similar size, or
even deeper.

This is evident from the spectral dependence of the SPP reflection and transmission coef-
ficients (RSPP ≡| ρ |2,TSPP ≡| τ |2), and of S, the total, normalized power carried away from
the surface in the form of volume electromagnetic waves (obtained by integrating over θ
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the differential reflection coefficient [7]), presented in Fig. 2 for h = −λ p = −157.1 nm and
L = 5λp = 785 nm. (Incidentally, the results corresponding to a rectangular ridge with identi-
cal parameters (h > 0), also shown here, reveal no evidence of resonances, with structureless,
monotonic spectral variations qualitatively similar to those of Gaussian ridges [18].) Resonant
frequencies are obtained from the behavior of both the SPP transmission amplitude τ(ω) and
the complex zeroes of the corresponding homogeneous reduced Rayleigh equation [Eq. (7)
without the independent term], exhibiting a complicated pattern that cannot be readily fitted to
a sum of well defined Lorentzians τ(ω) ∝ Γ/[ω − (ωR − iΓ)], but is still roughly attributable to
the transmission peaks in Fig. 2.

Fig. 4. (260 KB) Same as in Fig. 3 but for a rectangular ridge (h = 157 nm).

3.1. Single resonance

We now calculate the time dependence of the electric near-field intensity close to the defect at
resonant conditions. Thus we consider an incident SPP pulse with ω 0/ωp = 0.275 (λ0 =571
nm) and spectral width ∆ω/ω0 = 0.02 (FWHM∼ 60 fs) as shown in Fig. 2, where it is clearly
seen that the pulse spectral envelope covers (only) the resonance at ω 0/ωp = 0.275. Dynamic
near-field maps [22] are presented in the movie of Fig. 3 in a logarithmic scale. At negative
times, only the evanescent field of the approaching SPP pulse located to the left of the defect
is observed. At t = 0 (the peak of the incoming SPP pulse right at the center of the defect), the
signatures of the scattering process appear in several ways: a reflected SPP that interferes with
the incoming pulse and yields the observed fringes to the left of the defect; propagating waves
that are scattered into the vacuum with a characteristic angular pattern (discussed below); and
the evanescent field of the transmitted SPP seen to the right of the defect. These signatures
differ from one defect (or SPP central frequency) to another, revealing the peculiarities of the
scattering process for each case. At a certain positive time, the central parts of the reflected and
transmitted SPP, and also of the scattered light, are displaced towards their corresponding prop-
agation directions. Finally, all of them should be out of the range of the maps at t > x max/vSPP

[where the SPP group velocity is given from Eq. (3) by v SPP/c = (ω/(ck(ω)))3]. However, as
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Fig. 5. Pulse amplitudes for ω0/ωp = 0.275 and ∆ω/ω0 = 0.035 at a distance x = 400λ0
scattered from rectangular defects of half-width L = 785 nm and height h = ±157 nm:
Reflected (green curve) and transmitted (red curve) SPP, and radiated (blue curve) at θ =
θmax. (a) Groove, θmax = 46.6◦; (b) Ridge, θmax = 62.5◦. The freely propagating SPP pulse
is also shown (black curve).

a consequence of the excitation of the resonance in the rectangular groove (see Fig. 2), EM
energy is stored in the defect that leaks out, even long after the SPP incoming pulse is gone,
in the form of reflected and transmitted SPP (the reflected SPP is weak), and scattered light,
with typical decay times given by the resonance lifetime; as discussed below, the latter must be
longer than the SPP pulse width for this resonant leakage to be observable.

For the sake of comparison, we show in the movie of Fig. 4 the dynamic near-field maps
for a rectangular ridge with identical parameters (except that h > 0). Although the scattering
process at times t ≤ (∆ω)−1 is qualitatively similar to that in Fig. 3 (of course, with a different
energy balance for the outgoing channels), no resonance is excited at the defect, however. Thus
no particular features are observed in the near electric field intensity at times after the central
lobes of the reflected and transmitted SPP and of the scattered light leave the scene.

The corresponding reflected and transmitted SPP pulses at a distance d = 400 (2πc/ω 0)
from the defect are shown in Fig. 5 for both the rectangular groove and ridge; Also included is
the time-dependence of the scattered light amplitude r 1/2 |Hs | at the same distance and given
scattering angle θ = θmax (at which the corresponding angular distribution of scattered power
is maximum). In the case of the rectangular groove at resonance, Fig. 5(a), the negative expo-
nential tails of all the pulses quantitatively confirm the resonant scattering process described in
the movie of Fig. 3. By fitting the tails to exp(−tΓ), with linewidth Γ/ω0 = 8.7 ·10−3 ±10−5,
the resonance lifetime is obtained (time decay Γ−1 ≈ 35 fs). This value is in fairly good agree-
ment with the resonance HWHM as inferred from TSPP(ω). The resonance life time can be also
probed through the delay time of the transmitted SPP with respect to the freely propagating
SPP, more accurately determined by calculating the cross-correlation with longer pulses [18].

In addition to the resonant tails, there are other interesting features in Fig. 5(a) exhibiting the
complex, highly dispersive response of the rectangular groove. The transmitted SPP pulse is
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Fig. 6. Time dependence of the angular distribution of intensity scattered (for ω0/ωp =
0.275) from rectangular defects of half-width L = 785 nm and height h = ±157 nm. (a)
Groove; (b) Ridge.

slightly distorted but shows a fairly large, Gaussian central lobe at nearly the time determined
by the group velocity of the SPP, namely, tSPP = d/vSPP ≈ d/(0.89c) ≈ 450(2π/ω0). The re-
flected SPP and light scattered pulses are highly distorted, and present two lobes (advanced and
retarded) stemming from the dip of RSPP(ω) and S(ω) at ω/ωp = 0.275 [see Fig. 2(b)]. On the
other hand, the response of the rectangular ridge, see Fig. 5(b), is much simpler, as expected
from the fairly dispersion-less RSPP(ω),TSPP(ω), and S(ω) in Fig. 2, and in agreement with
the movie of Fig. 3. All the outgoing pulses preserve the Gaussian shape of the incoming SPP
pulse, rescaled by the corresponding coefficients, and with central lobes occurring at the ex-
pected times given either by the SPP group velocity (for the reflected and transmitted SPP) or
by the speed of light (for the scattered light).

Similar features are in turn observed in the time dependence of the entire angular distribution
of the scattered light, I(θ ,t). For the rectangular groove at resonance [see Fig. 6(a)], the entire
angular distribution, which consists of a diffraction-like fringe pattern, is distorted along its
time evolution; moreover, such distortion differs slightly from one scattering angle to another,
thus leading to qualitative changes in the angular distribution. In contrast, the fringe pattern
associated with the rectangular ridge [see Fig. 6(b)] evolves uniformly in time according to the
Gaussian pulse envelope, as expected.

3.2. Two resonances

An interesting phenomenon, similar to Rabi oscillations, takes place when the incoming SPP
simultaneously excites two spectrally close resonances. This is shown in the movie of Fig. 7
for the same rectangular groove but with different pulse parameters: ω 0/ωp = 0.247 (λ0 = 636
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Fig. 7. (328 KB) Same as in Fig. 3 but for different incident SPP pulse parameters: ω0/ωp =
0.247 (λ0 = 636 nm) and ∆ω/ω0 = 0.035.

nm) and ∆ω/ω0 = 0.035 (FWHM∼ 39 fs), which ensure that the pulse spectral envelope covers
the two resonances at, respectively, ω1/ωp = 0.253 and ω2/ωp = 0.241 (see Fig. 2). The near
field maps showing the approach of the incoming SPP and subsequent scattering, before the
reflected and transmitted SPP and the scattered light move away from the rectangular defect,
are similar to what is shown above for a single resonance. Nevertheless, at longer time steps,
the electric field intensity on the defect bounces back and forth from one end of the defect to
the other, simultaneously leaking out predominantly from the end with a higher concentration
of EM energy density. This is a manifestation of the interference between the two resonances
being excited [23].

400 500 600

t (2π/ω0)

10
-4

10
-2

10
0

|H
(t

)|

Fig. 8. Same as in Fig. 5(a) but for different incident SPP pulse parameters: ω0/ωp = 0.247
and ∆ω/ω0 = 0.035. θmax = 69.6◦.

To quantify the process properly, the time dependence of the magnetic field amplitude of the
outgoing pulses is shown in Fig. 8. The Rabi-like oscillations for the reflected and transmitted
SPP pulses, and for the scattered light at θmax, are neatly observed superimposed on negative
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exponential tails at longer times. Such tails provide information on the resonance linewidths
and shifts; assuming that both resonances have similar lifetimes, the exponentially decaying
envelope yields Γ1/ω0 ≈ Γ2/ω0 ≈ 0.012± 10−3, whereas the frequency of the oscillations
leads to ω1 −ω2 ≈ 0.05ω0 ≈ 0.012ωp, in good agreement with the values inferred from Fig. 2.

4. Gaussian groove

For the sake of completeness, and in order to make a comparison with results for grooves of
different shape, we present in the movie of Fig. 9 the time dependence of the near field intensity
for the resonant scattering of a SPP pulse by a Gaussian groove with parameters corresponding
to the resonance studied in Ref. [18] through far field scattering. Qualitatively, the near field
intensity behaves as for the single resonance, rectangular groove shown above. Nonetheless,
there are some quantitative differences that should be emphasized, which are easily understood
in light of the corresponding spectral response of the grooves (see Fig. 2 above and Fig. 1 in Ref.
[18]). First, for the Gaussian groove nearly total SPP transmission is observed (negligible SPP
reflection and scattered light), whereas a significantly larger percentage of the incoming SPP
energy is reflected and scattered (as light), at the expense of lower SPP transmission (though
still very large) for the rectangular groove. Second, the Gaussian groove resonance exhibits
smaller EM energy concentrations during a substantially shorter lifetime. This is an obvious
consequence of the lower-Q value of the excited mode of the Gaussian groove as compared
to that of the rectangular groove (at close frequencies), despite being deeper and narrower,
revealing the critical role played by the shape of the groove.

5. Conclusions

Fig. 9. (252 KB) Movie of the time evolution of the near (electric) field intensity (log scale)
images in an area of 8λ ×4λ perpendicular to the Ag surface for a Gaussian groove (located
at the bottom center, see Fig. 1) of 1/e-width a = 157 nm and height δ = −785 nm. The
incident SPP pulse parameters are: ω0/ωp = 0.239 (λ0 = 657 nm) and ∆ω/ω0 = 0.035.
Front picture: t = 0 (incoming SPP pulse maximum at x1 = 0).

We have presented a k-space formulation, based on the reduced Rayleigh equation, obtained
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by means of an impedance boundary condition, for every spectral component of the incoming
pulse, which enables us to study the dynamics of the scattering of a pulsed-SPP by a surface
profile line defect, both in the far field and in the near field. This formulation has been exploited
to investigate the time dependence of the near-field, resonant scattering effects produced at a
rectangular groove. The scattering process is tracked through the (time-resolved) repartition of
the incoming SPP EM energy into reflected and transmitted SPP pulses, and into pulsed, scat-
tered light. Furthermore, we directly show evidence of the excitation of single resonances, as
manifested by the concentration of electric field intensity within the groove during the reso-
nance lifetime and long after the incoming SPP pulse is gone (provided that the pulse width
is sufficiently shorter than this lifetime); and then by the subsequent leakage of electric field
intensity from the groove, on a time scale also controlled by the resonance lifetime, leading
in the far field to exponential tails of the reflected and transmitted SPP pulses, and also of
the time dependence of the angular distribution of scattered light. Simultaneous excitation of
two resonances is also considered, exhibiting the near-field formation of Rabi-like oscillations.
Interestingly, our formulation can be straightforwardly employed to study the near-field (and
far-field) dynamics for a finite number of line defects, arbitrarily distributed, which is of much
interest in SPP NanoOptics [24]. Extensions to oblique incidence and 2D defects are underway.
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