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EXECUTIVE SUMMARY

“Nothing in Biology makes sense except in the light of Evolution” 
Theodosius Dobzhansky (1973).

Evolution is a complex, multilevel process that operates at long time scales 
and can only be understood from a systems perspective. Though we have a 
considerable wealth of experimental data, the major challenge is to develop 
models and theoretical frameworks to understand empirical results and to 
pose better focused experimental questions. One of the first unsolved ques-
tions is how phenotypes arise from genotypes. The full picture is lacking, and 
modelling is limited to the dynamics of molecules, for instance RNA or pro-
tein folding, or to the emergence of simple molecular interactions —as regu-
latory motifs. A deeper understanding of the structure of genotype spaces 
might lead, among others, to a quantification of the relative roles played by 
neutral and adaptive mechanisms. This research program will have to inves-
tigate the effects of evolutionary innovation. Can complex biological func-
tions be constructed from previous simpler modules? How do regulatory cir-
cuits emerge? What are the limits to the design of robust and portable 
functional modules? Answers to these questions will assess the validity of re-
ductionist approaches, as opposed to viewing innovation as an emergent phe-
nomenon, arising from network-like distributed properties. In a broader 
framework, we should be concerned about the mechanistic origin of evolu-
tionary transitions, and on the role played by external forcing versus 
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contingent or stochastic phenomena in their generation. Evolution itself can 
be viewed as a tool for Synthetic Biology, since directed evolutionary selec-
tion is a way to attain desired functions. A major goal is to integrate design 
with a selection-driven exploration of phenotypic spaces. Advances will be 
conditional on the construction of large evolutionary platforms where exper-
imental evolution informed by design and theory can proceed en masse. The 
exploration of the possible phenotypes of engineered organisms at a large 
scale, as opposed to simple addition or deletion of a gene, calls for an urgent 
understanding of the plasticity and adaptability of new organisms and their 
traits of interest. An eventual commercial use of these organisms demands 
more research at the frontiers between evolutionary science, climate, and 
ecology: how will the ecosystem be affected by these organisms, but also, how 
will the organisms be affected by the ecosystem in a rapidly changing 
environment?

1. INTRODUCTION AND GENERAL DESCRIPTION

This question is at the core of Evolutionary Systems Biology (EvoSysBio), a 
new interdisciplinary research area that reconstructs fitness landscapes to pre-
dict (1) the fitness of individual organisms under state and environmental 
changes and (2) the evolutionary trajectories of populations across landscapes 
(Medina, 2005; Soyer and O’Malley, 2013; Loewe, 2016). EvoSysBio belongs to 
a broader trend in the biological sciences, i.e., the Modern Evolutionary Syn-
thesis, which has been constructing a coherent view of evolution since the 1920s 
(Mayr and Provine, 1998). EvoSysBio is an emergent field that takes knowledge 
currently dispersed over many research fields, from population genetics and 
biochemistry to ecology. EvoSysBio recognises that evolution is a complex, 
multilevel process operating at long temporal scales, which can only be under-
stood from a truly systemic perspective. Previous efforts attempted to explain 
evolutionary processes in the narrower context of individual genes and pro-
tein structures. However, complex organisms cannot be reduced to the work-
ings of their components in isolation. EvoSysBio addresses this goal by mod-
elling phenotypes as the outcome of evolving intracellular subsystems, e.g., 
signalling, regulation and metabolism, which are interacting with each other. 
EvoSysBio aims to synthesize and ultimately, predict, the complex multi-scale 
interactions between evolutionary processes and systemic properties (Fig. 1).

EvoSysBio has also been fuelled by the widespread adoption of quantitative 
and computational methods in the biological sciences. A clear exponent is 
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Systems Biology (SysBio), or the study of how organisms are organized by 
combining experimental data with mathematical modelling and comput-
er-aided analysis techniques (Ideker et al., 2001; Kitano, 2002). SysBio has 
traditionally oriented towards the modelling aspects of biological systems 
(“how” systems are implemented at the molecular level, see Boogerd et al., 
2007). Inevitably, overlooking the evolutionary component (“why” biological 
systems have those features) yields partial explanations of biological func-
tions. The combination of evolutionary and systems biology leads to a better 
understanding of complex biological features. The evolutionary aspect is what 
unifies the high diversity of methods employed by EvoSysBio researchers. By 

FIGURE. 1—The goal of EvoSysBio is to understand and predict genotype-phenotype maps in biological 
systems. Evolution is a multilevel process operating at a wide range of temporal scales. SysBio addressed 
this question by focusing on intracellular sub-systems (e.g. gene regulatory networks) while overlooking 
organism evolution. EvoSysBio extends the SysBio vision by including the ecological and evolutionary 
drivers of organismal complexity. Cellular networks determine species’ interactions with their 
environment and other species. Ecological interactions among species are responsible for the fitness of 
organisms. Evolutionary processes (e.g. neutral drift and adaptation) move populations of organisms on 
dynamic fitness landscapes by changing the features of intracellular networks.
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integrating the “how” and “why” questions under the same framework, we 
can better understand how biological systems work and why they function in 
that particular way.

EvoSysBio encompasses an integration of theoretical, empirical and computa-
tional approaches. A key component is the synthesis of universal “design prin-
ciples” in biology (Poyatos, 2012; Katsnelson et al., 2018). Achieving this long-
term goal crucially depends on identifying (and characterising) the universal 
principles that hold for large domains of life. For example, we have developed 
sophisticated empirical and computational tools that enable the detailed study 
of biological functions. It is however unknown to what extent the observed dy-
namics and organisation of any particular species, e.g., how signalling networks 
enable chemotaxis in Escherichia coli or the dynamics of osmoregulation in Sac-
charomyces cerevisiae (Alon et al., 1999; Klipp et al., 2005), can also explain the 
physiological responses in other species. Ignoring intermediate states of popu-
lation-level variation cannot fully explain the evolution of biological complex-
ity (Lynch, 2007). Complex features in biological systems can be adaptive (Kash-
tan and Alon, 2005), neutral (Wagner, 2003; Solé and Valverde, 2006) or a mix 
between functional and non-adaptive processes (Wagner, 2008). In this con-
text, evolutionary methods can support generalization of system properties, 
e.g., network patterns, beyond any specific biological model.

2. IMPACT IN BASIC SCIENCE PANORAMA AND POTENTIAL 
APPLICATIONS

Evolution itself can be viewed as a tool for Synthetic Biology (SynBio) since 
directed evolutionary selection is a way to generate and optimize desired func-
tions (Arnold, 2018). A major goal is to integrate design with a selection-driv-
en exploration of phenotypic spaces. Advances will be conditional on the con-
struction of large evolutionary platforms where experimental evolution 
informed by design and theory can proceed en masse. The exploration of the 
possible phenotypes of engineered organisms at a large scale, as opposed to 
simple addition or deletion of a gene, calls for a deep and reliable understand-
ing of the plasticity and adaptability of new organisms and their traits of in-
terest. An eventual commercial use of these organisms demands more re-
search at the frontiers between evolutionary science, climatology, agriculture, 
and ecology: how will the ecosystem be affected by these organisms, but also, 
the analysis and prediction of the emergence of new pathogens and their po-
tential epidemic spread.
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2.1 Modelling and Computer-Aided Simulation of Biological Systems
The interplay of mathematical modelling with experiments is one of the cen-
tral elements in SysBio. Model-building is therefore a key step, involving the 
reverse engineering (i.e., inference and identification) of equations that de-
scribe the biosystem, and their calibration to existing data (Klipp et al., 2005). 
Typically, these models can be either mechanistic (Stelling, 2004) or data-driv-
en (as in machine learning and statistics; Kell & Oliver, 2004). Although the 
latter can be useful in many applications, mechanistic models generally pro-
vide a better framework to distil knowledge and understanding from data. De-
spite the many advances in model building in SysBio during the last two dec-
ades, the evolutionary perspective is absent in most of these models. Thus, a 
general theoretical and computational framework for multiscale modelling 
in EvoSysBio remains as a core objective.

The real power of mathematical models is unleashed when exploited via meth-
ods for their computer aided simulation, analysis, optimization and control 
(Wolkenhauser and Mesarović, 2005; Sontag, 2005). Although these tools 
have been widely used in areas like biosystems and bioprocess engineering 
(Park et al., 2008), we are still missing the evolutionary component integrat-
ed across different scales. Thus, another core objective would be to exploit 
EvoSysBio models as the kernel of process systems engineering in the bio-in-
dustries (e.g., agri-food and industrial biotechnology), particularly in areas 
like metabolic engineering. A possible route towards such objective could be 
through the integration of evolutionary game-theoretic approaches with mul-
tiscale modelling. The same approach can be adapted and extended to key 
problems in areas like environmental engineering (e.g., dynamics of microbi-
al communities in bioremediation) and medicine (e.g., cancer evolution, or 
multiple microbial infections).

2.2 A first step towards understanding ecological complexity: 
modelling complex microbial communities
The last decades have witnessed the development of modelling approaches to 
describe cellular communities: from continuous to individual-based models 
of tissues and biofilms; from phenomenological ecological models to more 
mechanistic genome-scale approximations (Zomorrodi and Segrè, 2016). Still, 
their scope mostly restricts to “simple” systems (single or co-cultures), under 
steady-state or controlled extracellular environmental conditions. Also, evo-
lutionary aspects are barely considered. The integration of multi-species mul-
ti-scale dynamic models incorporating both ecological and evolutionary 
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mechanisms (Valverde et al., 2020) are required to fully realize the potential 
of multicellular systems in answering biological questions and applications.

Model-based optimally designed microbial mixed-cultures will enable meta-
bolically complex tasks by the division of labour and/or experimentally 
evolved cooperation (Harcombe, 2010; Hays et al., 2015; Thommes et al., 2019). 
As a result, bioprocesses will be more efficient, productive and stable than the 
current single-species bioprocesses and will allow for a broader range of 
products.

Similar approaches could be used to engineer the microbiome to generate po-
tential therapies against metabolic, inflammatory, and immunological diseas-
es, among others. The evolutionary dimension becomes fundamental to un-
derstand the dynamics of communities in which microbes and viruses coexist. 
In such systems, rapid co-evolution of viruses and microbial hosts (e.g. via ac-
quisition of spacers in CRISPR arrays) cannot be disentangled from ecologi-
cal processes, which has direct implications for the development of phage 
therapies and other virus-based microbiome engineering strategies.

2.3 Synthetic Biology: human design of non-biological constructs
In SynBio, we aim at using engineering principles of rational design to modi-
fy organisms, or to build new bio-artifacts (Purnick & Weiss, 2009; Cameron 
et al., 2014; Schwille et al., 2018). As in SysBio, SynBio can also exploit mod-
el-based approaches to guide the design, analysis, optimization and control 
of genetic systems (Marchisio et al., 2009). In addition to recent progress in 
genetic parts standardization and characterization (McLaughlin et al., 2018), 
in recent years we have also witnessed significant advances in the application 
of microfluidics, machine learning and automation to SynBio (Melin and 
Quake, 2007; Nielsen et al., 2016; Aoki et al., 2019; Carbonell et al., 2019). We 
are also already close to having programming languages to design computa-
tional circuits in living cells (Nielsen et al., 2016). These approaches open up 
new avenues for important applications, including biosensors (Gupta et al., 
2019), biotherapeutics (Ozdemir et al., 2018), metabolic engineering (Kea-
sling, 2012), biomanufacturing (Chen et al., 2020), and bioremediation (de 
Lorenzo et al., 2018).

However, with the exception of efforts in the field of directed evolution (Ar-
nold, 2018), we are still lacking a truly evolutionary approach to SynBio. In 
particular, although computer-aided methods can help us in the design of syn-
thetic parts in a similar way, as done in e.g. electronics, the unpredictability 
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and complexity created by the variability and evolvability of cell behaviour 
(Kwok, 2010) needs to be taken into consideration in order to achieve the en-
visioned engineering of biology. Finally, cell-free approaches (Hodgman and 
Jewett, 2012) will help us to improve our understanding of the design of 
evolved natural biosystems, and also to enable a novel kind of biomanufactur-
ing with more freedom of design and improved control.

3. KEY CHALLENGING POINTS

3.1 Multiscale theoretical framework
Though we have a considerable wealth of experimental data, a main challenge 
is to develop models and theoretical frameworks explaining these results and 
pose better-focused experimental questions. We currently lack a multi-scale 
modelling framework that captures the essential features of biological sys-
tems, from genome to metabolism. At the same time, we need models that are 
simple enough to provide useful answers and insights. An essential part of fu-
ture developments in EvoSysBio is the construction of a hierarchy of in silico 
tools and computational models that can guide experimental studies.

3.2 Evolution of Novelties
Ecosystems are highly nonlinear, complex dynamical systems (May and Leon-
ard, 1975; Clark and Luis, 2020). Competition, cooperation, or victim-exploit-
er dynamics, are density-dependent interactions that induce non-linear ef-
fects in population dynamics. This is particularly relevant when dealing with 
ecosystem’s responses to external perturbations, in particular, of anthropo-
genic origins (Lade et al., 2020). It has been conjectured these nonlinearities 
give rise to sharp shifts in the ecosystem composition, also known as “tipping 
points”, which are becoming an important subject or research in ecology (Ber-
dugo et al., 2020). Moreover, in SysBio, a tipping point driving population to 
extinction has been reported in yeast (Dai et al., 2012).

Sudden changes could be associated with large modifications. Interestingly, 
studies suggest that smooth alterations to the environment might also be re-
sponsible for such drastic shifts. Theoretical analyses of dynamical systems have 
interpreted these transitions as jumps along evolutionary optimization, where 
long periods without changes evidence the presence of high fitness barriers that 
the population cannot easily overcome (Huynen et al., 1996). This research pro-
gram will have to investigate the causes of these sudden shifts in the genetic 
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composition of populations. Explaining the mechanistic origin of evolutionary 
transitions, and the role played by external forcing versus contingent or sto-
chastic phenomena in their generation, will help understanding the effects of 
(and hopefully predict) evolutionary novelties (Wagner and Lynch, 2010).

3.3 Modelling and simulation of biological networks
Biological systems are composed of genes encoding the molecular machinery 
that provides the basic functions of life. Biological functions can be rarely re-
duced to specific components in isolation. Instead, they are the outcome of 
multiple interactions between different components. For example, networks 
of regulatory interactions specify how genes are expressed, with both operat-
ing on multiple, hierarchical levels of organization. Quantifying the structur-
al features of biological and artificial systems has been the target of Network 
Science (a branch of Statistical Physics and Complex Systems developed dur-
ing the last 25 years). SysBio has relied on the results of Network Science but 
we still do not understand the origin of structural regularities in biological 
networks, and how they shape function and evolution. This is particularly rel-
evant in one of the main open problems in SysBio, namely, how to define a ro-
bust approach to reverse engineering and systems identification in biological 
systems (Villaverde and Banga, 2014). What is needed is the cooperation of 
network scientists with EvoSysBio researchers for developing a rigorous, bi-
ologically-realistic, evolutionary theory of biological complexity.

Genome-scale models and optimality principles have shown their potential 
for application in generating mappings genome-phenotype in EvoSysBio, for 
example in the prediction of phenotypic outcomes of short-term adaptive evo-
lution or in the analysis of viability of mutant strains (Palsson, 2015). Howev-
er, developing its full potential for EvoSysBio requires the predictive capabil-
ities of these models to be improved in different ways. Clearly, the assumption 
of optimal growth in genome-scale metabolic models is not suitable for mu-
tants and not valid in many (time-varying) environmental conditions. Thus, 
alternative evolutionary objectives or trade-offs or game-theoretical ap-
proaches are to be explored. Expansions including protein structures, inte-
grated models of metabolism and protein expression (O’Brien et al., 2015) as 
well as hybrid modelling frameworks that incorporate explicit information 
on reaction rates are yet in progress. GSMs have also been expanded from sin-
gle populations of cells to simple microbial communities (Harcombe et al., 
2014), further developments are required to describe complex multi-species 
populations and changing environments (in time and space).
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3.4. Structure of fitness landscapes
To predict the evolutionary path from one species to another, we need first to 
understand the underlying configuration space, i.e., we need a ‘map’ where we 
can locate every possible intermediate species, for each environmental con-
dition (see Appendix C). Unfortunately, fitness landscapes are huge, they live 
in spaces of very high dimensionality, and are difficult to visualize. The tradi-
tional metaphor of the fitness landscape is based on a gradualistic perspective 
about organismal change and evolution. Evolution has been described as the 
diffusion of populations on a relatively smooth landscape, always climbing to-
wards regions of high fitness, which are eventually trapped in mountain peaks 
possibly separated by deep valleys of lower fitness (Wright, 1931). Due to con-
ceptual advances in our understanding about the molecular structure of pop-
ulations, we now know this picture is clearly incomplete and misses impor-
tant ingredients. The structure of fitness landscapes is not a smooth and 
continuous surface, but rugged (Kauffman and Levin, 1987). Instead, the struc-
ture of the space of genotypes is a network of networks (or multilayer net-
work) whose nodes (genomes) are mutually accessible through mutations. In 
the landscape, we can find regions with sharp discontinuities (signalling the 
presence of lethal and deleterious mutations) and long-range connections be-
tween distant regions of the landscape. EvoSysBio will help us understand 
(and characterise) landscape properties to obtain realistic models of adaptive 
fitness landscapes (in particular, through the development of models of gen-
otype-phenotype maps at different levels of the biological hierarchy, see be-
low), and validate these models with the reconstruction of empirical land-
scapes using network tools.

3.5. New constructions of genotype-phenotype (GP) maps
The mapping function between the instructions encoded in the genotypes and 
the structures and functions of the phenotypes is fundamental to every aspect 
of Biology. Given its importance, GP maps have attracted a lot of attention 
both from theoreticians and experimentalists (de Visser and Krug, 2014; Ah-
nert, 2017). As a result of these exercises, a number of universal properties 
shared by most GP maps have been derived. These properties are structural 
in the sense that they depend on the distribution of phenotypes across the 
network of genotypes. These properties include redundancy of genotypes 
(many encode for the same phenotype), a highly non-uniform distribution of 
the number of genotypes per phenotype resulting in a high phenotypic robust-
ness, and the capacity to explore the landscape efficiently, reaching very dis-
tant phenotypes throughout a quite limited number of genotypic changes. 

Copia gratuita / Personal free copy      http://libros.csic.es



118 Evolutionary System Biology

CSIC SCIENTIFIC CHALLENGES: TOWARDS 2030

Despite these advances, we still miss a coherent theoretical description of the 
GP maps that explain why all these properties emerge (Manrubia et al., 2020). 
Novel approaches such as modelling GP maps as a network of networks in 
which different nodes in the genotypic network level correspond to networks 
of neutral genotypes and these nodes map into similar networks in the phe-
notypic space (Aguirre et al., 2018), or the seascape metaphor, in which the 
landscape topology fluctuates as a result of changes in the biotic and abiotic 
composition (Mustonen and Lässig, 2009) seems promising. Still open ques-
tions exist. To name two of the most relevant ones: a) whether the GP map as 
an object evolves (Manrubia et al., 2020) and whether it does so by natural se-
lection or by neutral processes; b) how the GP map accommodates changes in 
genome size; in other words what are the consequences of making the geno-
typic network (of networks) growing or shrinking with evolutionary time? 
(see also Challenge 4).
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