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Abstract: Petrocoptis montsicciana and P. pardoi are two Iberian endemic taxa of Caryophyllaceae family
with an unclear taxonomic delimitation, being variously treated as independent species, subspecies
or even synonyms. In the present study, allozyme raw data obtained in the early 2000s have been
reused with improved tools to survey genetic structure, and complemented with modeling and niche
comparative analyses to shed light on species delimitation. Genetic structure was investigated using
four approaches: Bayesian clustering, Monmonier’s algorithm, Principal Coordinate Analysis (PCoA),
and Analysis of Molecular Variance (AMOVA). Ecological niche differences have been assessed
through Ecological Niche Modeling (ENM) using MaxEnt, and Principal Component Analysis using
both occurrence records and background climate (PCA-env). Genetic analysis confirms the distinction
between both taxa, and the scenario of a progenitor–derivative (P–D) is suggested. In agreement
with genetic data, niche analysis shows clear differences between their climate regarding species
occurrences and background spaces. Climate divergence could be explained, at least partially, by the
abundance of rocks where species live although differences at the microclimate instead of the regional
climate should be explored in future research. Given the genetic distinction between P. montsicciana
and P. pardoi, both taxa should be regarded as separate ‘Management Units’ (MUs).

Keywords: chasmophytic species; conservation; endemic species; genetic diversity; niche analysis

1. Introduction

Petrocoptis A. Braun ex Endl. (Caryophyllaceae) is one of the flagship genera of
higher plants of the Iberian Peninsula, given to a series of reasons that include: (1) its
alleged endemic status; (2) the conservation concerns of several of its members (some are
narrow endemics and highly threatened); and (3) the beauty of the plants and the habitats
where they grow (Figure S1). Petrocoptis is one of the 27 endemic genera in the Iberian
flora, with nine species [1], although it should be included within Silene L. according to
some authors [2]. However, recent molecular studies (based both on nuclear and plastid
sequences) have confirmed its independence from Silene [3], having probably diverged
approximately in Late Miocene, ca. 10.6 Mya [4]. Most of Petrocoptis taxa have restricted
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ranges with small, isolated populations, which are the main reasons for their inclusion in
red lists and red data books as well as protection catalogues ([4] and references therein).
In addition to stochasticity associated with the small size of populations, rock-climbing
also represents a very important threat for this genus [5]. Commonly known as clavel
de roca (rocky carnation in Spanish), Petrocoptis representatives are perennial herbs with
red, pink-purple or white pentamerous flowers that grow on rocky cracks and fissures in
calcareous vertical rock walls, overhangs, narrow gorges and caves (Figure S1).

The delimitation of species within Petrocoptis is unclear, with the number of species
ranging from four to 12 species depending on the taxonomical treatment (see Table 1
in [4]). The two easternmost-distributed taxa (Petrocoptis montsicciana O. Bolòs & Rivas
Mart. and P. pardoi Pau) are a good example of such taxonomic inconsistency, having been
treated as independent species (e.g., [6,7]), as two subspecies of P. crassifolia Rouy [8] or
even as synonyms, both under P. pardoi [9] or under Silene pardoi (Pau) Mayol & Rosselló
subsp. pardoi [2]. Petrocoptis montsicciana and P. pardoi are, indeed, morphologically hardly
distinguishable (Figure S1), with very small differences in the shoots and in the hairs
of the strophiole according to Flora iberica [7], or with slightly different size of the seeds
according to [6,8]. However, the most recent treatment of the genus, which is based only on
molecular markers, suggest that—pending additional studies to fully resolve infrageneric
relationships—both P. montsicciana and P. pardoi might deserve the rank of species [4]. These
two species were also the object of a full genetic diversity study using allozymes [10], which
suggested that P. montsicciana and P. pardoi were genetically close but different species,
likely constituting a progenitor–derivative species pair.

In cases where species delimitation is problematic, such as in the P. montsicciana/P. par-
doi pair, a multidisciplinary approach (also known as “integrative taxonomy” [11,12]) is
highly advisable, with the combination of morphological, molecular and ecological data
having provided notable success in several case studies (e.g., [13,14]). Herein for the first
time in this genus we are combining niche (including both modeling and niche comparative
analyses) with genetic analyses, to get additional insights into the relationships between
P. montsicciana/P. pardoi. The genetic analyses will consist of re-analyzing the raw allozyme
data of [10] because tools to survey genetic structure have improved significantly during
the last two decades, mostly thanks to the appearance of programs that employ Bayesian
clustering algorithms and edge detection techniques [15]. We have chosen a representative
of each of these two families of methods, as well as other additional approximations not
employed in [10], to estimate genetic divergence at the population level between the two
species. Reusability of data is a growing policy priority in science, often linked to the poli-
cies of data sharing and open data [16,17], and it is particularly helpful in the context of the
current COVID-19 pandemics, because field sampling and carrying new experiments could
be extremely difficult [18] even if field investigation remains crucial for the conservation of
threatened species, especially for those with a small distribution range [19,20].

2. Materials and Methods
2.1. Genetic Analysis

The spatial genetic structure for the pair P. montsicciana/P. pardoi has been assessed
using the same raw genetic data as that of [10]. These raw data are the genotype matrix of
a total of 223 individuals belonging to seven populations (Figure 1), four of P. montsicciana
(N = 140) and three of P. pardoi (N = 83), and using 16 allozyme loci (Aat, Aco-1, Aco-
2, Adh, Dia-2, Dia-3, Mdh-1, Mdh-4, Me, 6Pgd-1, 6Pgd-2, Pgi-2, Pgm-1, Pgm-2, Prx-1 and
Prx-2). Population genetic structure was investigated using four different approaches.
First, the Bayesian clustering method implemented in the software Structure v.2.3.4 [21]
was run assuming the admixture model with correlated allele frequencies. Based on
exploratory runs, we restricted the number of assayed clusters (K) to range K = 1–8 and
each K was estimated 20 times with a length of burn-in period of 105 iterations and 106

Markov chain Monte Carlo (MCMC) replications. The optimal number of clusters was
determined using the ∆K statistical approach by [22], with the aid of Structure Harvester
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v.0.6.94 [23]. Programs Clumpp v.1.1.2 [24] and Distruct v.1.1 [25] were used for the
post-processing of the results obtained from Structure. Second, the location of potential
genetic barriers between populations was explored through the Monmonier’s algorithm
implemented in Barrier v.2.2 [26]. The significance of barriers was tested for nSSR data by
bootstrapping 1000 Nei’s DA genetic distances [27] matrices that were previously obtained
with Microsatellite Analyzer (MSA) v.4.05 [28]. Third, GenAlEx v.6.1 [29] was used to
perform a Principal Coordinate Analysis (PCoA) based on codominant genotypic distances
both at the individual and population levels. Fourth, and last, an Analysis of Molecular
Variance (AMOVA) using the program ARLEQUIN v.3.11 [30] was performed. AMOVA
was carried under two hypotheses: (1) all populations belong to a single species; and
(2) taking into account the existence of two different species and therefore establishing
three hierarchical levels of analysis: among taxonomic groups, among populations within
species and within populations.
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Figure 1. Location of the seven studied populations of the pair Petrocoptis montsicciana (red
points)/P. pardoi (blue points) for the genetic analysis plus the rest of their occurrences used in
the niche analysis. (A) P. pardoi: PP-AGV, Aiguaviva rocks, Valencian Community, 40◦47′ N, 00◦09′ W,
N = 22; PP-BAR, Barranc de la Mare de Déu rocks, Valencian Community, 40◦44′ N, 00◦11′ W, N = 30;
PP-CBD, Cantal Badat rocks, Valencian Community, 40◦46′ N, 00◦10′ W, N = 31. (B) P. montsicciana:
PM-CAM, Camarasa gorges, Catalonia, 41◦53′ N, 00◦53′ E, N = 31; PM-MCO, La Móra Comdal
rocks, Catalonia, 42◦07′ N, 01◦21′ E, N = 42; PM-MRB, Mont-rebei pass, Catalonia, 42◦04′ N, 00◦40′ E,
N = 46; PM-TER, Terradets gorges, Catalonia, 42◦02′ N, 00◦53′ E, N = 21.

2.2. Niche Analysis

Ecological niche differences between P. montsicciana and P. pardoi have been assessed
both in geographical (G) and environmental (E) space. In G-space we performed an
Ecological Niche Modeling (ENM) using the maximum entropy algorithm implemented
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in MaxEnt v.3.3 [31], which requires presence data only. In E-space we used the approach
developed by [32], in which background climatic areas around occurrence records are
used to perform a principal component analysis (hereafter PCA-env). The georeferenced
occurrences were compiled from: (1) the maps of P. montsicciana and P. pardoi included
in [9] and which were drawn using personal, literature and herbarium records; (2) the
list of occurrences of P. montsicciana obtained during the elaboration of the Spanish Red
Book of threatened vascular flora [33]; (3) the map of P. montsicciana elaborated during the
project LIFE RESECOM [34]; (4) the list of occurrences of P. pardoi included in the Banc
de Dades de Biodiversitat de la Comunitat Valenciana (BDBV, http://www.bdb.gva.es/;
accessed on 29 December 2020); and (5) the records of P. pardoi included in [35]. All
occurrences were originally UTM (Universal Transverse Mercator) squares of 1 × 1 km and
have been transformed to geographic latitude and longitude coordinates. As we do not
know the datum of the source data, we transformed them using the midpoint of the UTM
square to minimize the datum effect. In total, after removing duplicate records within
each pixel [30 arc-sec (ca. 1 km)], 60 occurrences of P. montsicciana and 31 of P. pardoi were
used in the niche analyses (see Table S1 for the list of all occurrences and Figure 1 for the
map). A set of 19 bioclimatic variables was downloaded from the WorldClim website
(www.worldclim.org; accessed on 15 January 2021) under current climatic conditions (1970–
2000). Despite that both taxa are strictly rocky plants, this variable (rocky vs. non-rocky
substrates) has not been considered due to technical limitations; at the geographic scale
we are working (ca. 1 km), and given the nature of rocky outcrops (sometimes they are
just occupying a few dozen meters), it is not reliable to assign cells as of ‘rocky substrate’
or ‘non-rocky substrate’. Therefore, our estimation of the ecological niche of the two taxa
should be equated to their climate niches.

A pairwise Pearson correlation analysis using the “SDM Toolbox” extension for Ar-
cGIS [36] was conducted to retain only seven relatively uncorrelated climatic variables
(r < |0.85|): isothermality (bio3), minimum temperature of coldest month (bio6), tempera-
ture annual range (bio7), mean temperature of wettest quarter (bio8), mean temperature of
driest quarter (bio9), precipitation seasonality (bio15), and precipitation of coldest quarter
(bio19). For the variables selection we made a consensus to include the most influential
variables for both taxa based on their relative contribution to the models (percentage
contribution, permutation importance and jackknife of regularized gaining train), and an
exploration of curve response shape. For the final model (i.e., using only seven variables),
MaxEnt was run 100 times using the “subsample” method (with 25% of the localities
randomly selected to test the model). The AUC (area under the curve) values were used
as a metric to assess models’ performance. The resulting maps were modified and ex-
ported with ArcGIS v.10.2 [37] considering as cut-off value the maximum sensitivity plus
specificity threshold (MSS) as recommended by [38].

To perform the PCA-env we followed [39], where the background for each species was
selected from a minimum convex polygon (convex hull) with a buffer size of 0.1 degrees.
Original occurrences were smoothed using a kernel density function and then projected
in the 500 × 500 gridded environmental space. Niche differences between P. montsicciana
and P. pardoi were measured using the niche overlap metric of Schoener’s D [40,41], which
ranges from 0 (representing no overlap) to 1 (complete overlap). The E-space analyses
were performed using the original R code reported in [32] and later modified by [39], and
incorporating last modifications reported in [42]. Additionally, we extracted individual
values of the selected variables for the occurrences with ArcGIS, in order to compare the
species niche preferences through a boxplot representation and statistical test. First, the
Shapiro–Wilk test was performed to check the normality of variables. As all were not
normally distributed (p-value is less than alpha level, 0.05), the non-parametric analysis
Wilcoxon-Mann-Whitney was finally conducted. Both analyses were performed in R
v.4.0.3 [43] using the package stats v.4.0.3.

http://www.bdb.gva.es/
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3. Results
3.1. Genetic Structure and Divergence between Taxa

Based on the ∆K approach, K = 3 was the most likely number of genetic clusters after
running the software Structure, although K = 2 also provided good results (Figure 2A). In
the K = 2 grouping scheme, all populations of P. montsicciana (PM-CAM, PM-TER, PM-
MRB and PM-MCO; for population codes, see Figure 1) were merged in a single cluster,
whereas those of P. pardoi (PP-CBD, PP-BAR and PP-AGV) formed the second cluster
(Figure 2B). With K = 3, the cluster of P. montsicciana was split into two: one containing
the southernmost populations of the species (PM-CAM, PM-TER) and the other with the
northernmost ones (PM-MRB and PM-MCO), whereas all the populations of P. pardoi
remained in the same genetic cluster (Figure 2B). Barrier results also indicated the lack of
genetic differences between the populations of P. pardoi, while the largest barriers were
put between the two taxa (the barrier between PM-CAM and PP-AGV received up to 92%
bootstrap support; i.e. this barrier appeared in 920 out of 1000 matrices, Figure 3). The
PCoA analysis had relatively high values of percent of variance explained by first two
axes (68.63% and 56.12% at the population and individual level, respectively). The PCoA
plot at the population level showed a certain level of genetic divergence between the two
species, as populations of P. montiscciana and those of P. pardoi appeared in the right and
left quadrants, respectively (Figure 4A). Such pattern, however, was less clear when we
plotted all the studied individuals (because a few individuals of PM-MCO appeared at
the left side of the first PCoA axis; Figure 4B). Both assays of AMOVA (Table 1) revealed
that the maximum percentage of variation was found within populations irrespective if
considered together (55.49%) or as belonging to two species (50.87%). When sorting the
populations by species, the percentage of variation between P. montsicciana and P. pardoi
was 18.60% (Table 1).
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Figure 2. Results of Structure v.2.3.4 analysis for the pair Petrocoptis montsicciana/P. pardoi. (A) graph-
ical representation of ∆K values obtained from Structure Harvester v.0.6.94; (B) assignation of
individuals to genetic clusters at K = 2 and K = 3 after running Clumpp v.1.1.2 and Distruct v.1.1.
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PP-BAR and PP-CBD of P. pardoi (see Figure 1).
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Figure 4. Principal Coordinate Analysis (PCoA) performed from pairwise genotypic distances
between the studied populations of the pair Petrocoptis montsicciana/P. pardoi, at population (A) and
at individual (B) level. Codes PM-CAM (red), PM-MCO (yellow), PM-MRB (blue) and PM-TER
(green) are of populations of P. montsicciana, and codes PP-AGV (dark red), PP-BAR (light blue) and
PP-CBD (pink) of P. pardoi (see Figure 1).

Table 1. Analysis of molecular variance (AMOVA) in the pair Petrocoptis montsicciana/P. pardoi
considering (1) all population together (one group) and (2) that the populations belong to different
species (two groups).

Model Partitioning Variance (%) F-Statistic p

1 group Among populations 44.51 FST = 0.445 <0.001
Within populations 55.49

2 groups:
P. montsicciana—

P. pardoi

Among species 18.60 FCT = 0.186 <0.01
Among populations within species 30.54 FSC = 0.375 <0.001

Within populations 50.87 FST = 0.491 <0.001
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3.2. Climatic Niches of P. montisicciana and P. pardoi

Niche models produced with MaxEnt for both species had very high AUC (>0.99),
indicating good performance (Table 2). According to jackknife test and percentage contri-
bution to models, bio3, bio7 and bio9 were important for the two Petrocoptis taxa, although
for P. pardoi bio19 ranked first according to jackknife test (Table 2). The predicted areas
of suitable habitat for both taxa (Figure 5B) included their respective occurrence points,
although new suitable areas appeared: with few exceptions, these were located in the same
latitude that the occurrence records for P. montsicciana, while areas further south were
evidenced for P. pardoi (Figure 5). Therefore, neither of the distribution models was able to
predict the occurrences of the other species.

Table 2. Occurrences of Petrocoptis montsicciana and P. pardoi, model performance assessed by the area
under the curve (AUC ± standard deviation), threshold values as the maximum training sensitivity
plus specificity threshold (MSS), and importance of all variables based on jackknife analyses (in
parenthesis the percentage contribution to models).

Model Occurrences AUC ± SD Threshold Variables

P. montsicciana 60 0.994 ± 0.002 0.1355

bio7 (24.9) > bio9 (35.2)
> bio3 (24.9) > bio15

(0.3) > bio19 (5.2) > bio6
(2.7) > bio8 (3.5)

P. pardoi 31 0.998 ± 0.001 0.4936

bio19 (13.0) > bio9 (30.6)
> bio3 (31.7) > bio7 (17)
> bio6 (3.0) > bio15 (4.4)

> bio8 (0.4)
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taxa for the present time.

The first two components of the PCA-env explained 76.54% of the total climatic
variation (Figure 6). For both axes (PC1 = 55.47% and PC2 = 21.07%) the precipitation
variables bio15 and bio19 were the most informative factors (Figure S2). The 100% of
occurrence density showed non-overlap ranges between P. montisicciana and P. pardoi
(Figure 6), indicating divergence in climatic niches. Evidence also came from values of
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Schoener’s D index (D = 0, no overlap) and niche metrics (niches were non-stabilized,
totally unfilled, and in expansion) (Table 3). When analyzing the bioclimatic variables
individually, all showed significant differences (p-value < 0.05) in Wilcoxon-Mann-Whitney
test, although test values for bio 8 and bio9 are near to p-value (Table S2 and Figure 7).
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4. Discussion and Conclusions
4.1. Both Genetic and Ecological Data Confirm the Distinction between P. montsicciana and
P. pardoi

The re-analysis of the raw allozyme data of [10] with the four genetic structure approx-
imations (Structure, Barrier, PCoA, and AMOVA) confirms the conclusions presented in the
previous paper: P. montsicciana and P. pardoi are assigned to two genetically differentiated
clusters, although this differentiation is not large. In [10], the authors noted that their
genetic results were compatible with a scenario of a progenitor–derivative (P–D) species
pair, based on both the pattern of genetic structure and allele profiles. In contrast to the
classic allopatric mode of speciation, in a P–D species pair the derived (D) species buds off
and acquires new traits—or becomes fixed for features within the polymorphism of the
parental (P) species—while the P species remains largely unchanged [44–48]. Although the
D species may show a series of changes with respect to P that may include new morpho-
logical characters, a new breeding system, selection for a new habitat, and chromosomal
restructuring [45], these could not occur [48]. In such cases, genetic markers can be useful
tools for detecting P–D species pairs [48–50].

In the study of [10], ecological and morphological differences between P. montsicciana
and P. pardoi were not explored, as they were assumed to be minimal, if any. Because
they have also the same chromosome number, therefore, the allozyme patterns were the
only evidence for these authors to support the assignment as a P–D species pair. Certainly,
the allozyme data closely matched the expectations: (1) the spectrum of alleles observed
in P. pardoi (D species) was a subset of those found in P. montsicciana (P species), as the
latter had a higher number of alleles than the former (49 vs. 39) and very few unique
alleles were detected in the D species (only four, while the P species had 14); (2) levels
of within-population genetic variation observed in the D species were lower than in the
P species [P (percentage of polymorphic loci) = 56.3 vs. 70.3, A (mean number of alleles
per locus) = 1.9 vs. 2.2; and He (unbiased expected heterozygosity) = 0.192 vs. 0.239];
and (3); the two species showed high genetic similarities, as the interspecific values of
genetic identity (I) were only slightly lower than intraspecific ones (mean I = 0.724 between
populations of P. montsicciana and P. pardoi vs. mean I = 0. 809 between populations of
P. montsicciana and mean I = 0.870 between populations of P. pardoi).

The results of the ecological niche analyses performed here are in close agreement
with the diversity and genetic structure patterns; the two Petrocoptis species are showing
considerable differences regarding their climate niche. These differences are found both
in the G-space (as the niche models built using the occurrences of P. montsicciana are not
capable to predict the occurrences of P. pardoi, and viceversa; Figure 5B) and in the E-
space (there is no overlap in climatic space between the 100% of occurrence densities of
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P. montsicciana and P. pardoi; Figure 6). Mostly consequence of its much smaller range
compared to P. montsicciana, the climatic conditions in which P. pardoi grows are much
narrower with respect to the former regarding the studied variables (Figure 7); nevertheless,
signs of climatic divergence are clear, as P. pardoi populations occur either (1) in one of the
extremes of the range of variability of P. montsicciana (bio6, bio8, and bio9) or (2) outside
this range (bio3, bio7, bio15, and bio19).

A straightforward explanation for these signs of climatic divergence is that the two
taxa are distributed at different latitudes and therefore there is no overlap in the climatic
background space (Figure 6). In other words, the pattern of climate differentiation between
the two taxa of Petrocoptis would have been driven, among other factors, by type and abun-
dance of the substrate where the species are dwelling. Geologically, both taxa occur roughly
on the same kind of rocks (P. pardoi on calcareous conglomerates, P. montsicciana on either
calcareous conglomerates or limestone rocks). These kinds of habitats, though frequent
in NE Spain [51] are, however, isolated and scatteredly distributed—generally occurring
as outcrops or small ranges (Figure S1). Given that Petrocoptis spp. are edaphic specialists
instead of generalists, the availability of suitable substrates (rocks with cracks or fissures
with enough water supply) where the seeds of Petrocoptis can germinate and develop into
mature plants would have, thereby, contributed to delineate their current climate niches.
It should be noted that azonal vegetation as the one of rocky outcrops formed by plants
like Petrocoptis spp. depend on the microclimate instead of the regional climate. Rocky
habitats are presumed to be long-term persistent habitats that have offered opportunities
for conserving specific ecological niches [52]. In this sense, it would be highly advisable to
characterize the climatic niche of the two Petrocoptis taxa at the microclimatic scale (with
several data loggers monitoring the local conditions of the rocky outcrops for 1–2 years,
e.g., [53]). Such a design would be able to discern whether the niche differentiation at the
macroclimatic scale can be transferred to the microclimatic one.

Certainly, the isolated nature of rocky outcrops is playing a major role in population
differentiation in the Petrocoptis taxa studied here; populations would rarely exchange genes
because are geographically isolated and the species have very low dispersal abilities (seeds
are dispersed by gravity or by ants [54], with spider webs behaving as seed receptacles [55]),
as stated by many authors in rocky habitats in other European countries [56–58]. Many
rocky species show very high genetic divergence among populations (with values of
FST for nuclear markers typically around or over 0.5, as found in the present study),
including Aquilegia spp. from Sardinia [59], Begonia luzhaiensis from Guangxi Province of
SW China [60], Hypochaeris leontodontoides from Morocco [61], or Pitcairnia geyskesii from
French Guiana [62]. Petrocoptis montsicciana and P. pardoi are separated by about 150 km
and, in addition to this large distance (well enough to interrupt gene exchange), there
is also a widely-recognized biogeographical barrier between them, the Ebro River basin
(e.g., [63,64]).

Speciation at the genus level—which is likely also by geographic isolation [2] as all
taxa of Petrocoptis are chasmophytic—seems, however, to be incomplete given the small
morphological differences between the alleged species, although other factors might be
involved, such as morphological stasis or morphological plasticity. Despite many attempts,
the lack of solid diagnostic morphological characters for distinguishing taxa of Petrocoptis
(with polymorphism within taxa often exceeding interspecific boundaries [2]) would reflect
some degree of morphological stability in a genus that originated long time ago (Late
Miocene [4]). It is well known that long-term stability of habitat and climatic conditions (i.e.
homogenizing selective pressures) can lead to morphological stasis [65]. As some authors
recall (e.g., [66,67]), several Mediterranean disjunct rocky endemics show low levels of
morphological variation thanks to their persistence in stable habitats (cliffs and narrow
gorges served as glacial refugia in the Mediterranean Basin as they were buffered against
the harsh Pleistocene climatic conditions [68]) despite a long history of isolation. Further
studies covering all taxa of Petrocoptis and combining high-resolution molecular markers
(ideally including those revealing adaptive genetic diversity) will help to shed light on
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the actual reasons for the apparent delay in morphological differentiation with respect to
genetic and ecological niche data.

4.2. Conservation Implications

Whether P. monticciana/P. pardoi constitute different species cannot be stated with the
present results. The reusing of formerly published genetic data (allozyme banding patterns)
combined with the generation of new ones (climatic data) allows, however, to suggest
that the two entities should be managed independently regarding their conservation,
an important issue as both are of conservation concern: P. montisicciana is listed as ‘Near
Threatened’ (NT) and P. pardoi as ‘Vulnerable’ (VU) in the most recent version of the Spanish
Red List [69]. More importantly, they are protected by law in Aragon (both P. montsicciana
and P. pardoi [70]), in Catalonia (P. montisicciana [71]), and in the Valencian Community
(P. pardoi [72]). While whether the two taxa should be regarded as ‘Evolutionarily Significant
Units’ (ESUs) can be only confirmed by further genetic studies, the significant genetic
differences already detected in [10] and confirmed here clearly indicate that P. montsicciana
and P. pardoi must be regarded at least as separate ‘Management Units’ (MUs). For example,
translocation between MUs could be done only under special circumstances [73], as this can
lead to the breakdown of the co-adapted gene complexes and, subsequently, to outbreeding
depression [74,75].

A final conservation issue to be addressed is the usefulness of niche modeling to iden-
tify new populations of rare or endangered plant species, with many successful examples
around the world (e.g., [76–78]), without neglecting the crucial role of in situ and ex situ
conservation [79,80] especially for endemic and threatened taxa already known [81–83]).
Although the Iberian Peninsula is floristically relatively well known, new field work aimed
to discover new populations of Petrocoptis montsicciana/P. pardoi should be directed towards
the highest suitability areas (those painted with the darkest colors in Figure 5B) where
rocky outcrops are present.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d13050205/s1, Figure S1: General aspect of Petrocoptis montsicciana, P. pardoi and their
habitats. Figure S2 Contribution of each environmental variable to the spatial distribution of the PCA-
env and direction of the seven climatic variables to the first to PCA-env axes. Table S1. Occurrences of
Petrocoptis montsicciana and P. pardoi used in the niche analyses. Table S2. Comparison of average
(SD) of individual climatic values between Petrocoptis montsicciana (60 occurrences) and P. pardoi
(31 occurrences).
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