The invariant glutamate of human PrimPol DxE motif is critical for its Mn2+-dependent distinctive activities

Patricia A. Calvo¹, Guillermo Sastre-Moreno¹, Cristina Perpiñá, Susana Guerra, María I. Martínez-Jiménez, Luis Blanco

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain

ARTICLE INFO

Keywords:
Primase
Polymerase
Metal cofactor
Catalytic residues
Pre-ternary complex

ABSTRACT

PrimPol is a human primase/polymerase specialized in downstream repriming of stalled forks during both nuclear and mitochondrial DNA replication. Like most primases and polymerases, PrimPol requires divalent metal cations, as Mg2+ or Mn2+, used as cofactors for catalysis. However, little is known about the consequences of using these two metal cofactors in combination, which would be the most physiological scenario during PrimPol-mediated reactions, and the individual contribution of the putative carboxylate residues (Asp114, Glu116 and Asp280) acting as metal ligands. By site-directed mutagenesis in human PrimPol, we confirmed the catalytic relevance of these three carboxylates, and identified Glu116 as a relevant enhancer of distinctive PrimPol reactions, which are highly dependent on Mn2+. Herein, we evidenced that PrimPol Glu116 contributes to error-prone tolerance of 8oxodG more markedly when both Mg2+ and Mn2+ ions are present. Moreover, Glu116 was important for TLS events mediated by primer/template realignments, and crucial to achieving an optimal primase activity, processes in which Mn2+ is largely preferred. EMSA analysis of PrimPol:ssDNA:dNTP pre-ternary complex indicated a critical role of each metal ligand, and a significant impairment when Glu116 was changed to a more conventional aspartate. These data suggest that PrimPol active site requires a specific motif A (DxE) to favor the use of Mn2+ ions in order to achieve optimal incoming nucleotide stabilization, especially required during primer synthesis.

1. Introduction

In silico analyses of the primary sequence of human PrimPol indicate that it belongs to the archaeo-eukaryotic superfamily of primases (AEP) containing a diverged version of the RNA recognition motif (RRM) fold [1]. The AEP superfamily is highly heterogeneous as it encompasses conventional primases, PrimPols, and even RNA polymerases specialized in the nonhomologous end-joining (NHEJ) of double-strand breaks (DSBs) [2,3]. PrimPol harbors the conserved A, B, C motifs of the AEP superfamily and also a C-terminal subdomain containing a Zinc-finger motif, similar to that of herpesvirus UL52 primase and other AEP-like enzymes, which was shown to be essential for its primase activity [4–6].

PrimPol is the first DNA primase characterized in human cells, as it is able to start DNA chains with deoxynucleotides, with a unique active site for both DNA primase and DNA polymerase activities [7–9]. Human PrimPol provides different trans-lesion synthesis (TLS) alternatives when DNA replication is stalled: 1) PrimPol can synthesize DNA primers ahead of lesions, such as UV lesions and G-quadruplexes, to allow DNA replication to continue [4,10]; 2) PrimPol can realign primers ahead of “unreadable lesions” such as abasic sites and pyrimidine(6-4) pyrimidone photoproducts (6-4PPs), thereby skipping the lesion [11]; 3) PrimPol can incorporate nucleotides opposite DNA lesions such as 8oxodG, like a regular TLS DNA polymerase [7,11,12]; Cellular fractionation experiments have shown that PrimPol localizes to both the nucleus and mitochondria of human cells providing a new and more ergonomic solution for priming: the direct synthesis of DNA primers [4,7]. PrimPol primase activity was demonstrated to be relevant for reinitiating stalled forks after UV damage during nuclear DNA replication [4]. Besides, PrimPol primase activity was shown to be also required during mitochondrial DNA replication, by reinitiating synthesis after UV damage or in the presence of chain-terminating nucleotides [7,13].

Primase and DNA polymerases, despite the high degree of...
specialization, have common characteristics including a two-metal-ion mechanism of catalysis [14]. Metal ion A establishes interactions with the OH group of the 3′-end of the nascent DNA chain. This interaction facilitates the attack of the hydroxyl group on the α-phosphate of the incoming dNTP [15]. Both metal ions help to stabilize the intermediate that occurs during phosphodiester bond formation. Catalysis occurs through a chemical reaction transforming the intermediate Mn2+ activating metal ions. Whereas Mg2+ favors PrimPol fidelity Sulfolobus islandicus, which has DNA primase-polymerase activity [23].

Second carboxylate is not an aspartate residue, but a glutamate residue including human PrimPol, have a slightly different motif since the third metal stabilizes the formed pyrophosphate product, rather than help to catalyze the reaction [21]. Primases and DNA polymerases often require three carboxylates within the active site to coordinate the two metal cofactors and form a metal bridge between the two reacting substrates, the primer terminus remains an active area of debate, as it has been recently proposed that the third metal stabilizes the formed pyrophosphate product, rather than help to catalyze the reaction [21].

PrimPol or mutants E116D, D114 A, E116 A, D280 A providing dNTPs hybridized to a 28-mer DNA undamaged template (5′- AGAAGTGTATC -3′) incubated with 200 nM of either WT PrimPol or mutants E116D, D114 A, E116 A, D280 A providing dNTPs (1, 10, 100 μM) in the presence of 1 mM MnCl2. The reaction mixture (20 μL) contained reaction buffer (50 mM Tris-HCl pH 7.5, 1 mM di-thiothreitol (DTT), 4% glycerol, 0.1 mg/ml bovine serum albumin (BSA) and 2.5 nM of the template/primer DNA. After 30 min of incubation at 30 °C reactions were stopped by addition of formamide buffer (95% (v/v) formamide, 10 mM EDTA, 0.1% (w/v) xylene cyanol and 0.1% (w/v) bromophenol blue) and resolved by 8 M urea-20% polyacrylamide gel electrophoresis.

For “standing start” analysis of 8oxoG tolerance, a 5′- [32P] -labeled 15-mer DNA primer (5′-GATCACA GTGAGATC-3′) was hybridized to a 24-mer DNA template (5′- GTACCAGCTGATGGC3′-3′) and incubated with purified PrimPol WT or E116D mutant (200 nM) in the presence of 10 μM of either dATP or dCTP and the indicated concentrations metal cofactors MgCl2 or MnCl2. The reaction mixture (20 μL) contained reaction buffer and 2.5 nM of the template/primer DNA. After 30 min of incubation at 30 °C, primer extension was analyzed as described previously and band intensities were quantified by densitometry.

To evaluate the PrimPol capacity to induce distortions in the template or primer, a 5′- [32P] -labeled 15-mer DNA primer (5′- CTCGACGTAGCGC3′-3′) was hybridized to 5′-AGAATGTACTCTGTACCAGT CAG-3′. Assays were performed in reaction buffer 1 mM MnCl2, 2.5 mM of the DNA/primer, 200 nM PrimPol WT or E116D variant and the indicated type and concentration of deoxynucleotides. After 30 min of incubation at 30 °C, primer extension was analyzed as described previously.

For synthesis fidelity analysis a 5′-[32P]-labeled 15-mer DNA primer (5′-CTGGACGTGACGCCG3′-3′) was hybridized to a 34-mer DNA template (5′- GTACCAGCGTTCGCACTCGTGA3′-3′) and incubated with purified PrimPol wild-type or E116D mutant (200 nM) in the presence of each individual dNTP (10 μM) in the presence of 1 mM MnCl2 or 5 mM MgCl2. After 30 min of incubation at 30 °C, primer extension was analyzed as described previously.

2.2. Primary sequence alignments

Multiple alignments of the indicated amino acid sequence were performed using the MULTALIN server [30](http://multalin.toulouse.inra.fr/multalin/). Three-dimensional images and modeling of mutated residues were created with Swiss-PdbViewer (DeepView) program, developed within the Swiss Institute of Bioinformatics (SIB) at the Structural Bioinformatics Group at the Biozentrum in Basel, and using HoPrimPol PDB ID: 5L2X, which corresponds to the crystal structure of human PrimPol ternary complex [31].

2.3. DNA polymerization assays

For primer extension characterization of metal ligands residues, a 5′-[32P]-labeled 15-mer DNA primer (5′-GATCACA GTGAGATC-3′) was hybridized to a 28-mer DNA undamaged template (5′-AGAATGTACTCTGTACCAGT CAG-3′) and incubated with 200 nM of either WT PrimPol or mutants E116D, D114 A, E116 A, D280 A providing dNTPs (1, 10, 100 μM) in the presence of 1 mM MnCl2. The reaction mixture (20 μL) contained reaction buffer (50 mM Tris-HCl pH 7.5, 1 mM di-thiothreitol (DTT), 4% glycerol, 0.1 mg/ml bovine serum albumin (BSA) and 2.5 nM of the template/primer DNA. After 30 min of incubation at 30 °C reactions were stopped by addition of formamide buffer (95% (v/v) formamide, 10 mM EDTA, 0.1% (w/v) xylene cyanol and 0.1% (w/v) bromophenol blue) and resolved by 8 M urea-20% polyacrylamide gel electrophoresis.

2. Materials and methods

2.1. Protein, oligonucleotides and nucleotides

Human PrimPol and single point mutants E116D, D114 A, E116 A, D280 A were constructed (by site-directed mutagenesis), expressed and purified as previously described [4, 7].

Conventional DNA oligonucleotides were synthesized by Sigma Aldrich (St Louis, MO, USA). Oligonucleotides used in the in vitro DNA polymerization assays were purified by 8 M urea-20% polycrylamide gel electrophoresis. Oligonucleotides used as primers in those assays were 5′- labeled with [γ-32P]ATP (3000 Ci/ mmol) from Perkin-Elmer (Waltham, MA, USA) and the T4 polynucleotide kinase (New England Biolabs, Ipswich, MA, USA) for 45 min at 37 °C. Hybridizations were performed in 1X hybridization buffer (50 mM Tris-HCl pH 7.5 /0.3 M NaCl) for 10 min at 80 °C. Ultrapure dNTPs were supplied by GE (Fairfield, CT, USA). Radio labeled nucleotides [γ-32P]ATP, [α-32P] dGTP (3000 Ci/mmol,) were purchased from Perkin Elmer (Waltham, MA, USA).
2.4. DNA primase assay

DNA primase activity of WT PrimPol and E116D, D114A, E116A, D280A mutants was evaluated using a 29-mer oligonucleotide (5'-T₁₅CCTGT₁₀-3') as template [7]. The reaction mixture (20 μL) in buffer R (50 mM Tris pH 7.5, 5% Gly, 75 mM NaCl, 1 mM MnCl₂, 1 mM DTT and 0.1 μg/μL BSA), contained PrimPol (400 nM), [γ-³²P]ATP (16 nM) and increasing concentrations of dGTP (1, 10 and 100 μM). The reaction was incubated during 30 min at 30 °C. Dimer formation by WT PrimPol or E116D variant (400 nM) on 3’GTCA5’ (1 μM) sequence and 3’T20GTCCT365’ and increasing concentrations of dGTP (1 μM) were quantified by autoradiography. To obtain velocities, quantification of dimer formation by WT PrimPol or E116D variant (400 nM) on 3’GTCA5’ (1 μM) sequence, in the presence of 1 mM MnCl₂ or MgCl₂ (5 mM), was analyzed in a native 6% polyacrylamide gel run at 150 V for 120 min at 4 °C in Tris-glycine pH 8.3 buffer. After electrophoresis, the gel was dried and the mobility shift of free ssDNA was analyzed by autoradiography.

2.5. EMSA for enzyme:ssDNA binary complex

Enzyme:ssDNA binding was performed in buffer A [50 mM Tris-HCl pH 7.5, 40 mM NaCl, 2.5% (w/v) glycerol, 2.5% (w/v) PEG-4000, 1 mM DTT, 0.1 mg/ml BSA], using PNK-[γ-³²P]-labeled oligonucleotide 1 nM 3’T₃₀GTCT₃₆5’ and increasing concentrations of either WT PrimPol or E116D, D114A, E116A, D280A mutants (10, 20, 40, 80 nM) in the absence of metal. The reaction (in 20 μL) was incubated at 30 °C for 10 min. Subsequently, loading buffer (30% glycerol, 1 mM EDTA, 0.1% xylene cyanol and 0.1% bromophenol blue) was added and the reaction was analyzed in a native 6% polyacrylamide gel run at 150 V for 120 min at 4 °C in Tris-glycine pH 8.3 buffer. After electrophoresis, the gel was dried and the mobility shift of free ssDNA vs enzyme:ssDNA complex was analyzed by autoradiography.

2.6. EMSA for enzyme:ssDNA:dNTP preterary complex

Pre-ternary complex formation of WT PrimPol or E116D, D114A, E116A, D280A mutants (1 μM) and labeled nucleotide ([α-³²P])dGTP was evaluated in buffer B [50 mM Tris pH 7.5, 2.5% (w/v) glycerol, 40 mM NaCl, 1 mM MnCl₂, 1 mM DTT and 0.1 μg/μL BSA], supplemented when indicated with ssDNA 3’T₃₀GTCT₃₆5’ (0.5 μM; 60-mer), MnCl₂ (1 mM) and/or MgCl₂ (5 mM). Reactions (20 μL final volume) were incubated for 10 min at 30 °C. Then loading buffer was added and the reactions were analyzed as described above.

3. Results

3.1. Metal ligands of eukaryotic PrimPols involved in polymerization

Archaean-eukaryotic primasas (AEP) show a highly conserved motif DxD (motif A), involved in metal cofactor coordination [1]. Interestingly, the DxD motif is present in most members of the AEP superfamily including the conventional human primase Prim1, viral and bacterial and phage primases, and also in bacterial AEPs involved in NHEJ, as M5PDom (Fig. 1A). However some archaeal and most eukaryotic PrimPols have a variant DxE motif, as it has been described in PrimPol from pRN1 [32] and human PrimPol [7] (Fig. 1A). The human PrimPol catalytically-dead double mutant AxA (D114A/E116A) proved the importance of residues Asp¹¹⁴, Glu¹¹⁶ of DxD motif in both primase and polymerase activities, supporting the existence of a common active site [7,9]. Glu¹¹⁶, the distinctive amino acid of DxE motif in human PrimPol, is highly conserved among lower and higher eukaryotic orthologs, suggesting its functional relevance (Fig. 1B). Interestingly, two identified prokaryotic PrimPols, Bacillus cereus MCM (a member of the PrimPol family with helicase but also primase-polymerase activities) and Thermus thermophilus PrimPol are endowed with the conventional DxD motif (Fig. 1A). Notably, both BcMCM and TtPrimPol can operate more proficiently than human PrimPol using Mg²⁺ [33,34], which could suggest that human PrimPol distinctive Glu¹¹⁶ (DxE) could favor the use of Mg²⁺ ions. As expected, individual mutation to alanine of each putative metal ligand of human PrimPol (D114A, E116A, D280A), completely ablated Mn²⁺-dependent PrimPol primer extension activity (Fig. 2). However, mutation of Glu¹¹⁶ to the more conventional metal ligand aspartate (E116D) only slightly reduced primer extension activity (Fig. 2). Subsequently, the E116D variant was used to study the precise role of Glu¹¹⁶ during more specialized PrimPol activities.

3.2. Human PrimPol Glu¹¹⁶ stimulates dATP incorporation opposite 8oxodG

Previous studies demonstrated that PrimPol copies 8oxodG very efficiently, in fact as efficiently as a regular dG, although it prefers to incorporate dATP slightly over (1.5-fold) the error-free dCTP [7]. Those studies were conducted using Mn²⁺ (1 mM) as metal cofactor; however, a more recent work has demonstrated that Mg²⁺ (10 mM) favors dCTP incorporation (5.7-fold over dATP) opposite 8oxodG by PrimPol, thus increasing its accuracy during 8oxodG TLS [12]. Such a difference prompted us to study the effect of the metal concentration, and also the combination of Mn²⁺ and Mg²⁺ in PrimPol-mediated bypass of 8oxodG, which would be the most physiological scenario. As shown in Fig. 3, Mg²⁺ alone allowed a lower (3-fold) primer extension by PrimPol, compared to Mn²⁺, at all concentrations tested. In agreement with previous conclusions [12], Mg²⁺ favored dCTP incorporation over dATP at all concentrations tested (Fig. 3A). At low and more physiological Mn²⁺ concentration (below 100 μM), PrimPol was able to incorporate both nucleotides to similar extents, and clearly above the levels obtained at the optimal Mg²⁺ concentration (Fig. 3B). However, as previously described [7] the use of higher Mn²⁺ concentrations, close to 250 μM, promoted the preferential incorporation of dATP over dCTP (Fig. 3B). Next, to test the effect of the combination of both metal cofactors, we performed a similar experiment using variable Mn²⁺ concentrations and a fixed and physiological Mg²⁺ concentration (5 mM). Under these conditions, PrimPol incorporated dCTP with higher efficiency than dATP at Mn²⁺ concentrations below 50 μM (Fig. 3C), resembling the results obtained when Mg²⁺ was provided alone (Fig. 3A). Conversely, when Mn²⁺ concentration was higher than 50 μM, dATP incorporation opposite 8oxodG by PrimPol was more efficient than dCTP insertion (Fig. 3C).

Given the effect that the two alternative metal cofactors had on the efficiency and fidelity of nucleotide incorporation opposite 8oxodG by PrimPol, we sought to determine the possible involvement of the distinctive Glu¹¹⁶ residue on metal cofactor selection and on PrimPol-mediated TLS of 8oxodG. Interestingly, the E116D mutation did not affect dCTP incorporation at any Mn²⁺ concentrations tested compared to wild-type (WT) PrimPol, and modestly reduced dATP incorporation (Fig. S1A). Interestingly, in the presence of Mg²⁺, the E116D variant incorporated dCTP as WT PrimPol, but the mutation caused a significant decrease in dATP incorporation at 0.25, 0.5 and 1 mM Mg²⁺ (Fig. S1B). Consistently, when variable Mn²⁺ concentrations were combined with 5 mM Mg²⁺, the E116D mutant significantly decreased the dATP incorporation at all conditions tested, again apparently not altering dCTP incorporation (Fig. 3D, S1C).

Altogether these results suggest that PrimPol Glu¹¹⁶ residue directly contributes to the error-prone tolerance of 8oxodG, more markedly when both Mg²⁺ and Mn²⁺ ions were present (Figs. 3D, S1C). Notably, given that dATP incorporation opposite 8oxodG by PrimPol relies more on the presence of Mn²⁺ (Fig. 3), it is tempting to speculate that Glu¹¹⁶ residue is necessary for optimal Mn²⁺ coordination.
3.3. Human PrimPol Glu116 enhances Mn2+-dependent dislocation reactions

PrimPol displays a high degree of versatility to accept or induce distortions of both primer and template strands in the vicinity of the active site, creating diverse options of alignment based on DNA sequence microhomology [7,11]. Such a promiscuity of human PrimPol, which confers an alternative solution to skip unreadable template lesions, is strengthened by the use of manganese ions as metal activator [11]. We wonder if Glu116 residue could be implicated in these Mn2+-dependent dislocation reactions performed by human PrimPol; hence we compared the WT PrimPol and E116D mutant in different conditions.

Fig. 1. The DxE metal ligand motif is distinctive of eukaryotic/archaeal PrimPol and highly conserved through evolution. (A) Amino acid sequence alignment of the conserved active-site motif A and motif C of several AEP family members including: HsPrimPol (human PrimPol), pRN1/PrimPol (plasmid pRN1 ORF904 from Sulfolobus islandicus), BcMCM/PrimPol (helicase-primase from Bacillus cereus), TthPrimPol (Thermus thermophilus PrimPol), Vaccinia/D5 (vaccinia virus D5 primase), Hh/UL52 (herpes virus UL52 primase), HsPrim1 (catalytic subunit of the human RNA primase) and MtPolDom (LigD polymerase domain from Mycobacterium tuberculosis). Red arrows on the top indicate the metal binding residues (Asp114, Glu116, Asp280 of human PrimPol). (B) Multiple amino acid sequence alignment of PrimPol orthologs showing that the DxE metal ligand motif of human PrimPol is highly conserved through evolution. Residues that are either identical or conserved to those in human PrimPol are indicated in red or blue letters, respectively.

Fig. 2. Metal ligands of human PrimPol are involved in polymerization. Polymerization assay using 2.5 nM of a template/primer structure, 200 nM of either WT PrimPol or mutants E116D, D114A, E116A, D280A providing dNTPs (1, 10, 100 μM) in the presence of 1 mM MnCl2.

CTAGTGTCACACCATCATCTATGTGAAGA

GATCGAGTCAC

WT

<table>
<thead>
<tr>
<th></th>
<th>Motif A</th>
<th>Motif C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsPrimPol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRN1/PrimPol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BcMCM/PrimPol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TthPrimPol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinia/D5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV/UL52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HsPrim1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtPolDom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Sequence</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Taeniopygia guttata</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Alligator sinensis</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Xenopus laevis</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Apis mellifera</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Hyalella azteca</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Strongylocentrotus purpuratus</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Brugia malayi</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Acropora digitifera</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Ricinus communis</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Zea mays</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Oriza sativa</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Monosiga brevicollis</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Ciona intestinalis</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Phytophthora infestans</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
<tr>
<td>Leishmania infantum</td>
<td>YEVIPENAVCRKLFLELFLKPNF</td>
<td>100</td>
</tr>
</tbody>
</table>

3.3. Human PrimPol Glu116 enhances Mn2+-dependent dislocation reactions
sequence contexts, and in the presence of 1 mM Mn$^{2+}$ to maximize detection. Fig. 4A shows that E116D, in contrast to WT PrimPol, did not produce unscheduled expansion of the primer (Fig. 4Ab) when providing increasing concentrations of a single nucleotide (dGTP). PrimPol normally extends the primer strand by copying the first available templating base; however, when the correct nucleotide is not provided (or when the template contains a non-readable lesion), PrimPol can copy a next base by dislocating the invalid template, which is induced by the presence of the next incoming complementary nucleotide [11]. Fig. 4B shows that this type of reaction (a), and the subsequent mismatch extension (b), is about 5-fold less efficient for the E116D mutant.

In a different sequence context, Fig. 4C illustrates the selectivity to incorporate the correct/complementary nucleotide versus the other three "non-complementary" nucleotides, and how the result is influenced by each metal cofactor, and the presence of Glu116. When using 5 mM Mg$^{2+}$, only the correct incorporation (dC) is observed, at similarly low levels with both WT and E116D mutant PrimPol (Fig. 4C, left panels). When using 1 mM Mn$^{2+}$, the correct insertion (dC; see scheme at Fig. 4Ca) is strongly and similarly stimulated either with WT or E116D; conversely, both misinsertion of dT opposite dG (see scheme at Fig. 4Cc), and reiterative insertion of dG produced by primer realignment and expansion (see scheme at Fig. 4Cb), are now visible, but reduced in mutant E116D relative to WT PrimPol (Fig. 4C).

Unlike 8oxodG, certain DNA lesions such as AP sites, pyrimidine dimers and εA cannot be directly “read” by PrimPol. Under these circumstances, PrimPol is able to realign the primer beyond the damaged site, taking advantage of any microhomologies in the template and in the presence of Mn$^{2+}$ ions [7,11,29]. As previously shown, this peculiar capacity of PrimPol does not require the existence of a template lesion, and can be invoked by restricting the available nucleotides [4,11]. Thus, to evaluate a distant primer realignment event mediated by PrimPol, we used a labeled synthetic dsDNA molecule whose template strand has two tetranucleotide repeats (3’CTAC5’) separated by two nucleotides (TT), and a primer strand whose 3’-terminus fully complements the first of the two repeats (see the scheme at Fig. 4D). When using Mn$^{2+}$, wild-type PrimPol incorporated dATP (regular primer extension, Fig. 4D left panel) much more efficiently than dCTP (via primer realignment, Fig. 4D central panel) at all metal concentrations tested. In fact, dCTP incorporation required Mn$^{2+}$ concentrations higher than 250 μM, demonstrating that although PrimPol can promote primer realignment, it is kinetically challenging and, as expected, no dCTP insertion / primer realignment was observed at 5 mM Mg$^{2+}$ (Fig. 4D right panel). Interestingly, the E116D variant could also promote primer realignment (dCTP insertion, Fig. 4D central panel) in the presence of Mn$^{2+}$ ions, but with a 3-fold lower efficiency than WT PrimPol, whereas this mutation weakly affected regular primer extension (dATP incorporation, Fig. 4D left panel) in this substrate.

Despite we are using high Mn$^{2+}$ concentrations, distant from the physiological levels [35] to maximize detection of these dislocation events “in vitro”, our data demonstrate that PrimPol strictly requires Mn$^{2+}$ to insert nucleotides onto realigned primers. Moreover, these peculiar Mn$^{2+}$-dependent PrimPol TLS abilities are favored by Glu116, the distinctive aminoacid forming DxE motif in human PrimPol.
Fig. 4. Primer and template dislocation events mediated by PrimPol E116D variant. (A) Incorporation of increasing concentration (0.01, 0.05, 0.2, 1 μM) of dGTP, as the correct nucleotide opposite an undamaged template strand (2.5 nM) to produce +1 extension of the primer (a) and G expansion (b) by wild-type or E116D variant PrimPol (200 nM) in the presence of 1 mM MnCl$_2$. (B) Incorporation of increasing concentration (0.1, 0.4, 2, 10 μM) of dATP to produce template dislocation mediated by dNTP-selection (a), creating a dislocation error and mismatch extension of the primer (b) as a consequence by wild-type or E116D variant PrimPol (200 nM) in the presence of 1 mM MnCl$_2$. (C) Incorporation of each individual dNTP (10 μM) in front of an undamaged template (2.5 nM), providing 200 nM of either wild-type PrimPol or E116D variant in the presence of either Mn$^{2+}$ or 5 mM Mg$^{2+}$. (D) Comparatively insertion study of dATP (direct primer extension, black bars) or dCTP (primer realignment, grey bars) by wild-type PrimPol and E116D variant in the presence of either Mn$^{2+}$ (25, 50, 100, 250, 1000 μM) or Mg$^{2+}$ (5 mM).
(caption on next page)
3.4. Human PrimPol Glu116 is required for efficient primer synthesis

In addition to its DNA polymerase and TLS abilities, human PrimPol is featured with the ability to synthesize DNA primers ‘de novo’, in a reaction that is largely activated by Mn$^{2+}$ ions [7]. Primase activity can be tested by using ssDNA template containing a preferred priming site (3’GTCC5’), labeled ATP as the 5’-site nucleotide and dGTP (1, 10, 100 μM) as the 3′-site nucleotide, in the presence of 1 mM MnCl$_2$. Under these conditions, WT PrimPol produced 3pA$_{dG}$ dimers, 3pA$_{dG}$dG$_{ddG}$ trimers, and longer products due to reiterative dGTP insertion via slippage (Fig. 5A). As expected, individual mutation to alanine of each putative metal ligand of human PrimPol (D114A, E116A, D280A) completely ablated Mn$^{2+}$-dependent PrimPol primase activity (Fig. 5A). Strikingly, in clear contrast to the slightly reduced polymerase activity showed by mutant E116D (Fig. 2), this variant showed a large reduction in primase activity (Fig. 5A). When dimer formation (the initial and rate-limiting catalytic step during primer synthesis) was quantified as a function of time, the E116D variant showed 2.8-fold decrease compared to WT PrimPol (Fig. 5A, right panel).

3.5. Human PrimPol metal ligands are irrelevant for template binding

Recently we demonstrated the sequential steps and substrate preference during primer synthesis by human PrimPol and the relevance of the Zn-finger domain at each individual step [6]. Human PrimPol initially binds the ssDNA template (binary complex), then the 3′-site nucleotide to form a pre-ternary complex, followed by binding of the 5′-site nucleotide and subsequent elongation building-up a mature DNA primer [6]. To test the involvement of human PrimPol’s metal ligand residues (Asp114, Glu116, Asp280) on these sequential steps preceding dimer formation, we first evaluated their capacity to form the binary complex (PrimPol:ssDNA:sdDNA). Electrophoretic Mobility Shift Assays (EMSA) involving labeled ssDNA harboring the preferred priming site 3’GTCC5’ [7] were carried out in the absence of metal ions as they were shown to be irrelevant for this step [6]. As expected, a single retarded band corresponding to the binary complex was formed at a similar protein concentration when using any metal-ligand mutants E116D, D114A, E116A, or D280A (Fig. 5B left panel), implying that none of these residues (Asp114, Glu116, Asp280) of human PrimPol are implicated in ssDNA binding.

3.6. The three metal ligands of human PrimPol are required to form a stable enzyme:ssDNA:dNTP pre-ternary complex. A change of Glu116 to aspartate has a negative impact on this step

After formation of enzyme:ssDNA binary complex, human PrimPol firstly binds the 3′-site nucleotide (elongation site) forming the so-called pre-ternary complex (PrimPol:ssDNA:dGTP), which can be detected exclusively in the presence of Mn$^{2+}$ ions [6]. Moreover, it has been already demonstrated that elimination of the two carboxylates at motif A (mutant D114A/E116A) precludes binding of the incoming nucleotide at the 3′-site [6]. To test the importance of each single metal ligand of human PrimPol to form the pre-ternary complex, we used EMSA to assess the tripartite interaction of each individual mutant with the 3’GTCC5’-containing ssDNA template and labeled dGTP, in the presence of 1 mM MnCl$_2$. As shown in Fig. 5B (right panel), WT PrimPol formed a labeled band corresponding to the enzyme:ssDNA:dGTP pre-ternary complex, running at a similar position to that of the enzyme:ssDNA binary complex. Interestingly, the individual change of each putative metal ligand to Ala (D114A, E116A, D280A) impeded Mn$^{2+}$-dependent PrimPol primase activity (Fig. 5A). Furthermore, we evidenced that the E116D variant could form the pre-ternary complex although 2.8-fold less efficiently than WT PrimPol (Fig. 5B, right panel), in perfect agreement with its 2.8-fold lower ability to form the initial dimer (Fig. 5A, right panel).

These results emphasize the strict need of each carboxylate (Asp114, Glu116, Asp280) for a metal-dependent stabilization of the incoming nucleotide at the 3′-site of human PrimPol, very likely implying that the two metal ions are required to attain a stable and catalytically competent configuration of the pre-ternary complex, as it has been described in MtPolDom, a closely related member of the AEP superfamily [36].

3.7. Human PrimPol Glu116 is required for priming in the presence of two different metal ions

As shown here and in our previous work [6], a stable pre-ternary complex formed by PrimPol with ssDNA and the 3′-site nucleotide requires the presence of Mn$^{2+}$ ions, and it could not be detected in the absence of metal or by adding Mg$^{2+}$ ions. Nevertheless, the consequences of combining these metal cofactors, which would be the most physiological scenario for PrimPol-mediated reactions, had not yet considered. Moreover, the importance of the distinctive glutamate residue at motif A of eukaryotic PrimPol has to be evaluated also in this ‘two different metal ion’ context during pre-ternary complex formation and subsequent dinucleotide synthesis.

Firstly, we tested the effect of the combination of both Mg$^{2+}$ and Mn$^{2+}$ metal cofactors on the stabilization of the 3′-nucleotide, by evaluating the formation of the pre-ternary complex as an earlier intermediate of the primase reaction. As expected, Mg$^{2+}$ was not valid as a single metal to form the pre-ternary complex by either WT PrimPol or mutant E116D (Fig. 5C). Interestingly, the ability of 1 mM Mn$^{2+}$ to enhance pre-ternary complex stabilization by WT PrimPol experienced a 2-fold reduction in the presence of 5 mM Mg$^{2+}$ and 1 mM Mn$^{2+}$ (Fig. 5C). As shown before in this study, the E116D mutant could form the pre-ternary complex in the presence of 1 mM Mn$^{2+}$, although 2.8-fold less efficiently than WT PrimPol (Fig. 5C). Remarkably, the E116D mutation seems to affect even more the stabilization of the 3′-site incoming nucleotide in the presence of both metal cofactors (1 mM Mn$^{2+}$ and 5 mM Mg$^{2+}$), being the pre-ternary complex (E116D:ssDNA:dGTP) almost undetectable (Fig. 5C).

Next, we evaluated the combination of both metal cofactors during dimer synthesis with ATP and labeled dGTP, templated by ssDNA containing a unique 3’GTCA5’ priming site, and using variable Mn$^{2+}$ concentrations (0.1, 0.5, 1 mM) and a fixed Mg$^{2+}$ concentration.
(5 mM). Under these conditions, WT PrimPol primase activity (AG dimer formation) showed a general inhibitory effect by Mg\(^{2+}\) ions at all Mn\(^{2+}\) concentrations tested (Fig. 5D). As expected, neither WT nor E116D PrimPol was unable to form the dimer in the presence of Mg\(^{2+}\) (Fig. 5D). Notably, Glu\(^{116}\) mutation to aspartate reduced dimer synthesis in all conditions tested, more markedly when both metal cofactors were present (Fig. 5D).

Collectively, our data validate the strict requirement of Mn\(^{2+}\) ions to promote a stable binding of the 3′-site incoming nucleotide, required during primer synthesis by human PrimPol. These results also support the critical role of the distinctive carboxylate residue of the DxE motif (Glu\(^{116}\) in human PrimPol), most likely favoring the use of Mn\(^{2+}\) as the metal cofactor.

4. Discussion

A crucial aspect of the ‘two-metal-ion catalytic mechanism’ of polymerization shared by polymerases and primases is the precise interaction of two (identical or different?) metal ions with the three conserved catalytic carboxylates to allow the proper alignment of the attacking nucleophile and the alpha-phosphorus of the incoming nucleotide. Metal ion A promotes formation of the attacking nucleophile, and metal ion B binds to and facilitates the leaving of the β and γ phosphates [16,22]. The present study further emphasizes the importance of these metals and their ligands for overall catalysis, and their mutual collaboration to stabilize the incoming nucleotide at the 3′-site of human PrimPol. We showed here that substitution of each carboxylic residue (Asp\(^{114}\), Glu\(^{116}\), Asp\(^{280}\)) with alanine does not affect PrimPol’s binding to ssDNA, but abolishes its the stabilization of the 3´-nucleotide by forming the PrimPol:ssDNA binary complex, a pre-catalytic step required to initiate primer synthesis.

Thus, it is tempting to speculate that a precise network of interactions between the three carboxylates acting as metal ligands and the two metal ions (at sites A, B) is essential for the stabilization of the incoming nucleotide at the 3′-site of human PrimPol, as a crucial intermediate preceding dimer formation. Importantly, one of these metal-ligand carboxylates is invariantly a glutamate in eukaryotic PrimPol (motif DxE), unlike the more conventional aspartate found in other primases and polymerases. A mutation of Glu\(^{116}\) to Asp in human PrimPol strongly affected the formation of the pre-ternary complex, especially in the presence of both Mg\(^{2+}\) and Mn\(^{2+}\).

Recently, the crystal structure of the catalytic core of human PrimPol has been resolved in complex with a template/primer, one metal ion (Ca\(^{2+}\)) which occupies the metal B position, and dATP as incoming 3′-site nucleotide but, significantly lacking the second metal ion (A) at the active site [31]; see Fig. 6AB). Ca\(^{2+}\) does not support PrimPol’s catalysis [12], most likely not reflecting the proper coordination of metal ions at PrimPol’s active site. In spite of these caveats, the crystal structure shows that the invariant Asp\(^{280}\) of motif C does not make specific contacts with the incoming nucleotide (Fig. 6C), suggesting its catalytic role as a direct ligand of metal A (absent in this crystal), and its indirect contribution to the interacting network that stabilizes the 3′-nucleotide. Conversely, the invariant Asp\(^{114}\) of DxE motif A shows interactions with the 3′-site incoming nucleotide through its α and β phosphate groups (Fig. 6C), which would explain the adverse effects observed in this study for the D114A catalytically-dead mutant. On the other hand, the critical role of the invariant Glu\(^{116}\) of DxE motif, evaluated here in detail, is also supported by the direct interactions shown at the crystal structure. As shown in Fig. 6C, the distinctive residue Glu\(^{116}\) interacts with metal B and with the α and γ phosphate groups of the 3′-site incoming nucleotide, but also can establish interactions with two highly conserved PrimPol residues, Lys\(^{165}\)

![Fig. 6. Crystal Structure details of human PrimPol in complex with template/primer, dATP and Ca\(^{2+}\). (A) Ribbon representation of the quaternary complex of HsPrimPol:DNA:dATP depicting the interaction of PrimPol (white) with the dsDNA and dATP (yellow) by the catalytic residues Asp\(^{114}\), Glu\(^{116}\), Asp\(^{280}\) (red). DNA is colored orange for primer strand and green for templating strand. The metal ion is cyan (Me). (B) Electrostatic surface potential in the active site pocket of HsPrimPol. (C) A close-up view of the active site of HsPrimPol highlighting the catalytic residues and their specific interactions with the 3′-site incoming nucleotide and the metal cofactor colored as in (A). (D) Extrapolation of E116D variant (pink) and its different interactions. 3D images and modeling of mutated residues were created with Swiss-PdbViewer (DeepView) program, using HsPrimPol PDB ID: 5L2X, which corresponds to the crystal structure of human PrimPol ternary complex [31].](image-url)
and Ser167, which are also ligands of the γ phosphate of the 3′-site incoming nucleotide (see also Fig. 6B). Modeling of the E116D mutation (Fig. 6D) outlines the potential loss of some of these contacts (α phosphate, Lys165 and Ser167), in spite of the maintained interaction with metal B and γ phosphate of the 3′-site incoming nucleotide. Hence, our results corroborate the structural data concerning the critical role of the three catalytic carboxylates and emphasize the importance of Glu116 in promoting the use of Mn2+ to stabilize the pre-ternary complex.

Carboxylates coordinating metal ion B have been shown to be more sensitive to mutations than those coordinating metal ion A, as the B site is suggested to exhibit stronger metal ion preference than the A site [16,37,38]. Thus, in the absence of more precise structural information, we speculate that Glu116 residue (motif DxE) of human PrimPol may coordinate Mn2+ as metal ion B. Interestingly, isothermal titration calorimetry experiments (ITC) revealed that Mn2+ (but not Mg2+) significantly stimulates binding of nucleotides to human primase, in agreement with structural data of the ternary complex (p48AL:UTP:Mn2+) showing multiple stabilizing interactions between the metal ion, the incoming nucleotide and the enzyme [39]. It is commonly accepted that Mn2+ ions, which have more options of coordination than Mg2+, is the optimal ion to stabilize unconventional intrahelical conformations of the incoming dNTPs, as those occurring when dNTPs are inserted opposite damaged templates [23]. The structural basis for the enhanced catalytic activity of PrimPol in the presence of Mn2+ is presently unknown, but our biochemical data allow us to speculate that Mn2+ may allow greater flexibility of PrimPol active site to adopt an optimal conformation to stabilize the 3´-incoming nucleotide during TLS events mediated by primer/template realignments, especially during formation of the primase pre-ternary complex.

The biological relevance of Mn2+ as the metal cofactor for the in vivo function of primases and DNA polymerases remains elusive. In a recent paper [40], Zhao and coworkers used enzyme kinetic analyses and computer simulations to dissect the mechanism by which PrimPol transfers a nucleotide to a primer-template DNA, concluding that divalent cations alter the rate-limiting step of PrimPol-catalyzed DNA elongation. According to the authors, in the presence of Mn2+, a conformational transition step from non-productive to productive PrimPol-DNA complexes limits the enzymatic turnover, whereas, in the presence of Mg2+, the chemical step becomes rate limiting. Both kinetic data and simulations support the notion that Mn2+ can be a preferred metal cofactor for PrimPol, even under micromolar Mn2+ concentration [41]. As stressed by the authors, their conclusion can be extrapolated to the elongation stage of PrimPol-catalyzed priming, but further studies will be required to address the kinetic steps during dinucleotide synthesis and their dependence on Mn2+ ions.

The concentration of free Mn2+ is low and is tightly regulated in vivo by special metal ion binding proteins [41]; however, some studies point out the possibility that there is an intracellular increase of Mn2+ under oxidative stress conditions [42]. This increase is required to trigger a superoxide dismutase-dependent (using Mn2+ as a cofactor) antioxidant strategy, and to stimulate certain enzymes (such as PrimPol), whose active centers could have evolved to use Mn2+ to facilitate rate limiting synthetic reactions, where efficiency is more important than fidelity.

5. Conclusion

In this work we have explored the metal ligand residues at human PrimPol active site, to understand the preferential use of manganese to boost the most distinctive PrimPol reactions: DNA priming and TLS abilities. Our results explain why the conserved motif A (DxD in most primases belonging to the AEP superfamily) is modified in PrimPols to tolerate 8oxodG and is also relevant in TLS events mediated by primer/template realignments. Moreover, we showed that Glu116 is crucial for using Mn2+ ions to achieve optimal incoming nucleotide stabilization, a primary step required during initiation of primer synthesis.

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Funding

This work was supported by the Spanish Ministry of Economy and Competitiveness (BFU2012–3769 and BFU2015–65880-P) to L.B. P.A.C. was the recipient of a FPI-predoctoral fellowship from Spanish Ministry of Economy and Competitiveness. G.S.M. received a JAE-predoctoral fellowship from the Spanish Research Council (CSIC).

Acknowledgment

We thank Sara García-Gómez for initial work on the E116D mutant.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.dnarep.2019.03.006.

References

[17] T. Nakamura, Y. Zhao, Y. Yamagata, Y.J. Hua, W. Yang, Watching DNA polymerase

[37] V. Derbyshire, N.D. Grindley, C.M. Joyce, The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction, EMBO J. 10 (1991) 17–24.

