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Abstract

We consider supersymmetric scenarios in which the scale of SUSY breaking is low,
√
F =

O(TeV). Instead of studying specific models of this type, e.g., those with extra dimension
low fundamental scale, we follow a model-independent approach based on a general e
Lagrangian, in which the MSSM supermultiplets are effectively coupled to a singlet asso
to SUSY breaking. Our goal is to analyse the interplay between SUSY breaking and electr
breaking, generalizing earlier results. The conventional MSSM picture can be substantially mo
mainly because the Higgs potential contains additional effective quartic terms and resembles
two-Higgs-doublet models, with an additional singlet. Novel opportunities to achieve electro
breaking arise, and the electroweak scale may be obtained in a less fine-tuned way. A
Higgs spectrum can be strikingly changed, and the lightest state can be much heavier
usual supersymmetric scenarios. Other effects appear in the chargino and neutralino sector
contain the goldstino. Finally, we discuss the role of electroweak breaking in processes in wh
goldstinos could be emitted, such as fermion–antifermion annihilation and the invisible decayZ

boson or of neutral Higgs bosons.
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1. Introduction

The Minimal Supersymmetric Standard Model (MSSM) [1] has been for many y
the paradigm of phenomenologically viable supersymmetric (SUSY) theories. I
MSSM the observable matter content is minimal and the breaking of SUSY (���SUSY )
takes place in another sector of the fundamental theory and is then transmitted
observable sector through some mediation mechanism. As a result, one obtains
energy supersymmetric theory in which the MSSM multiplets are effectively coupl
the goldstino multiplet through non-renormalizable interactions,1 i.e., the effective Kähle
potential and gauge kinetic function are generically non-minimal. Well known exam
of mediation mechanisms are supergravity mediation and gauge mediation, wher
effective interactions arise at the tree-level and at the loop-level, respectively.

In the usual MSSM, once SUSY is broken, the effective theory is approximated
renormalizable one, in which the���SUSY sector has been decoupled, leaving as footp
a set of soft breaking terms that arise from the above effective interactions. In obt
these soft terms the superfields responsible for���SUSY play an external role, through th
expectation values of their auxiliary fields. The approximation that the soft terms e
all the effects of���SUSY in the observable sector is a good one when the scale of���SUSY
mediation,M, is very large. However, in scenarios whereM is low (not far from the TeV
scale) this picture might be not accurate enough, and the ‘hidden sector’ might be
hidden. This already happens to some extent in gauge-mediated scenarios (see e
where M ∼ O(10–103) TeV, and also, more characteristically, in scenarios of e
dimensions (more or less string-motivated) in which the fundamental scale is quit
typicallyO(TeV) (see, e.g., [3]). More generally, deviations from the conventional MS
picture appear whenever the low-energy supersymmetric effective theory is obtain
integrating out physics at energy scales not far from the TeV scale. Let us briefly summ
how this comes about.

In specific models, spontaneous���SUSY takes place in a sector where the auxili
components of a set of fields get non-vanishing vacuum expectation values (VEV
the simplest cases this sector can be parametrized by a single chiral superfieldT . Then,
the effective interactions betweenT and the MSSM superfields produce at the same ti
(i) SUSY breaking effects among the MSSM multiplets, as a consequence of the
vanishing〈FT 〉; (ii) specific interactions between the MSSM multiplets and the phys
degrees of freedom in theT multiplet, i.e., the goldstino and its scalar partners (see,
[4]). The form and size of these effects depend crucially on the relation betwee
mediation scale (M), the SUSY breaking scale (

√
F ) and the electroweak scale (MW ),

taking into account that the size of induced���SUSY masses,̃m∼ F/M, should beO(TeV).
In the case of a strong hierarchyM �√F �MW , type (i) effects reduce to the so-call
‘soft breaking terms’ [5] and type (ii) effects are negligible. This limit corresponds to
conventional MSSM. However, in the opposite case of mild (or no) hierarchy, i.e.,
M and

√
F are in the TeV range, novel type (i) effects emerge, such as the so-c

‘non-standard soft terms’ and ‘hard breaking terms’ [6,7]. These include, in partic
1 In a model with minimal particle content (besides the goldstino multiplet), if those effective interactions
were only of renormalizable type, the property STrM2 = 0 would hold and the spectrum would not be realistic.
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O(F 2/M4) contributions to quartic Higgs couplings, whose phenomenological im
was recently emphasized [7]. Moreover, type (ii) effects are no longer negligible and
important phenomenological consequences. For instance, goldstinos (or equivale
9], light gravitinos) can appear in the decays of MSSM superparticles already for mo
values of

√
F [10]. For sufficiently low values of

√
F , goldstinos can also be direct

produced in high energy collisions at non-negligible rates, either in association with M
superparticles [11–13] or even without them [14,15]. The scalar partners of the gol
(sgoldstinos) can be produced as well [12,16,17]. Moreover, goldstinos and sgoldstin
contribute to(g−2)µ [18] and to several flavour changing or flavour conserving transit
[19,20], and can also play a role in astrophysics and cosmology (see, e.g., [21]).

The main purpose of this paper is to further explore scenarios with low SUSY bre
scale and, in particular, to analyse the interplay between SUSY breaking and electr
breaking and to examine the Higgs sector. Since we work at the effective theory
the field content is very economical: the only addition to the supersymmetrized Sta
Model is a singlet fieldT (responsible for���SUSY ), coupled non-minimally to the MSSM
superfields. In Section 2 we recall some general aspects of the effective desc
of SUSY breaking and make more explicit some of the arguments presented
After recovering standard formulae for the MSSM mass parameters, we mention
effects expected in non-hierarchical scenarios. In Section 3 we focus on the Higgs
analyse the pattern of electroweak symmetry breaking showing that new option
possible, and discuss the general effective interactions between the Higgs superfie
the T superfield. In particular, we study how SUSY breaking effects can transform
conventional MSSM Higgs sector into a less constrained one, closer to that of gener
Higgs-doublet models. In Section 4 we make a convenient choice of field coordinat
give further details on the Higgs potential and the neutralino/chargino sectors. In Se
we give, for illustrative purposes, two simple examples of models with low���SUSY scale
that have a small number of parameters. In Section 6 we discuss the effective inter
involving two goldstinos and SM particles, and study how electroweak breaking a
such couplings. Finally, we summarize our results in Section 7. In Appendix A we di
the minimization of symmetric two-Higgs-doublet potentials.

2. Effective supersymmetry breaking

Throughout this paper we will describe SUSY breaking effects using an effe
Lagrangian description, without relying on a specific microscopic dynamics, i
approach analogous to [4]. More specifically, we will assume that, after integr
out some fundamental degrees of freedom, we are left with an effective glo
supersymmetric four-dimensional theory whose degrees of freedom are the MSSM
and a singlet chiral superfield associated with���SUSY . Before discussing this, however
is useful to recall some general properties of SUSY effective Lagrangians.

2.1. General effective Lagrangian
Let us consider a generalN = 1 globally supersymmetric theory in four dimensions,
with gauge groupG, vector superfieldsV = V ata and chiral superfieldsφi (see, e.g., [22]).
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The effective Lagrangian for such a theory has the general form

L=
∫

d4θ
[
K(φ̄, e2V φ)+ 2ξaV

a
]+ [∫

d2θ W(φ)+ h.c.

]

(2.1)+ 1

4

[∫
d2θ fab(φ)WaWb + h.c.

]
,

whereK(φ̄,φ), W(φ) andfab(φ) are the effective Kähler potential, superpotential a
gauge kinetic functions, respectively, and higher-derivative terms are neglected. The
Iliopoulos parametersξa can be non-vanishing for the abelian factors ofG and are shown
here only for completeness (we will assume that theξY vanishes). The effective Lagrangia
for the component fields2 can be obtained by a standard procedure [22]. In particular
scalar potential has the general expression

(2.2)V = VF + VD =WiK
ī �W̄ + 1

2

[
Ki(taφ)i + ξa

]
f ab
R

[
Kj (tbφ)j + ξb

]
.

Subscripts denote derivatives (Wi ≡ ∂W/∂φi , �W̄ ≡ ∂ �W/∂φ̄̄ ≡ (∂W/∂φj )∗, Ki ≡
∂K/∂φi, . . .), Kī is the inverse of the Kähler metricKı̄j ≡ ∂2K/∂φ̄ı̄∂φj and f ab

R is
the inverse of the metric(fR)ab ≡ Refab of the vector sector (i.e.,KīK̄" = δi" and
f ab
R (fR)bc = δac ). The order parameter for supersymmetry breaking, which will be

zero by assumption, is

(2.3)F 2≡ 〈V 〉 = 〈VF + VD〉 =
〈
F̄ ı̄Kı̄jF

j + 1

2
Da(fR)abD

b

〉
,

where the VEVs of the auxiliary fields are

(2.4)〈F i〉 = −〈Kī �W̄ 〉, 〈Da〉 = −〈
f ab
R

[
Kj (tbφ)j + ξb

]〉
.

We also recall that fermion mass terms have the form−1
2(λ

a,ψi)M(λb,ψj )T + h.c.,
where the matrixM is given by

(2.5)M=
( −1

2〈(fab)"F "〉 √
2〈K"̄j (taφ)

"̄ + 1
4(fac)jD

c〉√
2〈K"̄i(tbφ)

"̄ + 1
4(fbc)iD

c〉 〈Wij + F̄ "̄K"̄ij 〉
)
.

In particular, by using the extremum conditions of the scalar potential and g
invariance, it is easy to check that the mass matrixM has an eigenvector( 1√

2
〈Db〉, 〈Fj 〉)T

with zero eigenvalue, which corresponds to the goldstino state. This eigenvector sp
the components of goldstino field̃G contained in the original fieldsψi andλa , i.e., we
have

(2.6)ψi = 〈F
i〉

F
G̃+ · · · , λa = 〈D

a〉√
2F

G̃+ · · · ,

2 We decompose chiral superfields according toφi ⇒ φi + √2ψiθ + F iθθ + · · · and vector superfield
according toV a⇒Aa

µθσ
µθ̄ + (λaθ θ̄ θ̄ +h.c.)+ 1

2D
aθθθ̄ θ̄ , in the Wess–Zumino gauge. Notice that we direc

define asλa what is often introduced as−iλa and then redefined. Our space–time metric has signature(+−−−)

and we use two-component spinor notation, withσµ = (1, σA), σ̄ µ = (1,−σA), where σA are the Pauli
matrices.
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where the ellipses stand for other mass eigenstates.3 We also recall that, in the framewo
of local SUSY, the goldstino degrees of freedom become the longitudinal compone
the gravitino, which obtains a massm3/2 = F/(

√
3MP), whereMP is the Planck scale

When
√
F is close to the electroweak scale,m3/2 is much smaller than typical experimen

energies, which implies that the dominant gravitino components are precisely the go
ones [8,9].

2.2. High and low supersymmetry breaking scales

In order to make contact with the usual MSSM framework, let us assume tha
effective SUSY theory has gauge groupSU(3) × SU(2) × U(1)Y and chiral superfield
φi = (φα,T ), whereφα are the MSSM chiral superfields (containing Higgses, leptons
quarks) andT is a singlet superfield whose auxiliary field VEV〈FT 〉 breaks SUSY. Fo
small fluctuations of the fieldsφα , the expansions ofK, W andfab read

(2.7)K = k(T̄ , T )+ cᾱβ(T̄ , T )φ̄ᾱφβ + 1

2

[
dαβ(T̄ , T )φαφβ + h.c.

]+ · · · ,
(2.8)W =w(T )+ 1

2
µαβ(T )φαφβ + 1

3!hαβγ (T )φαφβφγ + · · · ,
(2.9)fab = fa(T )δab + · · · .

In the (zeroth order) vacuum defined by〈φα〉0= 0, we haveF 2� 〈V 〉0 = 〈|FT |2kT̄ T 〉0=〈|wT |2/kT̄ T 〉0, which by assumption is non-zero. The functionscᾱβ , dαβ,hαβγ , fa are
assumed to depend onT through the ratioT/M, whereM is some (not yet determined
scale. Then the induced SUSY-breaking mass splittings within theφα andV a multiplets
are characterized by a scalem̃∼ F/M. We also make the standard assumption thatµαβ , if
non-vanishing, has sizeO(m̃) rather thanO(M), i.e.,µαβ(T )∼ (F/M)µ̃αβ(T /M).

If we fix m̃ to beO(TeV), there is still much freedom in choosingM andF . Standard
scenarios are characterized by a strong hierarchyM�√F � m̃. In this limit the physical
components of theT multiplet (i.e., the goldstino and its scalar partners, the ‘sgoldstin
are almost decoupled from the other fields, and the effective theory for theφα andV a

multiplets is well approximated by a renormalizable one. The latter is characteriz
gauge couplingsg2

a = 1/〈Refa〉0, an effective superpotential̂W and a set of soft SUSY
breaking terms, whose mass parameters areO(m̃). This is the usual MSSM scenario [1
The MSSM parameters can be computed in terms of the functions appearing inK, W and
fab above. Let us consider for simplicity the case of diagonal matter metric, i.e.,cᾱβ =
cαδᾱβ , and rescale the fields in order to have canonical normalization:〈√cα 〉0φα→ φα ,
〈√Refa 〉0V a→ V a . The effective superpotential of the renormalizable theory is

(2.10)Ŵ = 1

2
µ̂αβφ

αφβ + 1

3! ĥαβγ φ
αφβφγ ,

3 The field G̃ appearing here is canonically normalized, whereas in general the fieldsψi andλa are not.
However, Eq. (2.6) can obviously be written in the same form also in terms of canonically normalized fe
and auxiliary fields, which are related to the original ones by the same rescaling:〈Kı̄j 〉(iψ̄ ı̄ σ̄ µ∂µψ

j + F̄ ı̄F j )→

(iψ̄ ı̄ σ̄ µ∂µψ

i + F̄ ı̄ F i ), 〈(fR)ab〉(iλ̄a σ̄µ∂µλ
b + 1

2D
aDb)→ (iλ̄a σ̄µ∂µλ

a + 1
2D

aDa). Taking this step into

account, one can invert Eq. (2.6) and expressG̃ in terms of canonically normalized fields.
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where

(2.11)µ̂αβ =
〈
µαβ + F̄ T̄ ∂T̄ dαβ

(cαcβ)1/2

〉
0
,

(2.12)ĥαβγ =
〈

hαβγ

(cαcβcγ )1/2

〉
0
.

Soft breaking terms are described by

(2.13)

Lsoft=−m̃2
α|φα|2−

[
1

2
(µ̂αβBαβ)φ

αφβ + 1

3! (ĥαβγ Aαβγ )φ
αφβφγ

+ 1

2
Maλ

aλa + h.c.

]
,

where

(2.14)m̃2
α =

〈−∣∣FT
∣∣2∂T ∂T̄ logcα

〉
0,

(2.15)Bαβ =
〈
−FT ∂T log

(
µαβ + F̄ T̄ ∂T̄ dαβ

cαcβ

)〉
0
,

(2.16)Aαβγ =
〈
−FT ∂T log

(
hαβγ

cαcβcγ

)〉
0
,

(2.17)Ma =
〈−FT ∂T log(Refa)

〉
0.

The above results agree with [4] and are compatible with a specific limit (MP →∞,
m3/2→ 0 with F =√3m3/2MP fixed) of supergravity results [23].

Notice that theT multiplet has played an external role in the previous derivatio
has only provided the SUSY breaking VEV〈FT 〉. Moreover, only the leading terms in a
expansion inF/M2 have been retained, because of the assumed hierarchy. Other
are strongly suppressed. However, if the scalesM andF are not much larger than th
TeV scale and the ratioF/M2 ∼ m̃/M ∼ m̃2/F is not negligible, the standard MSS
picture is corrected by additional effects and novel features emerge. For instanc
components of MSSM multiplets (φα andV a) can have novel non-negligible interactio
among themselves as well as non-negligible interactions with the physical compon
T (goldstino and sgoldstinos), as we have already recalled in the introduction. Mor
since some of theφα fields (i.e., the Higgses) have to obtain a VEV in order to break
gauge symmetry, in principle one should reconsider the minimization of the scalar po
taking into account bothT and such fields. In addition, theF components of the Higg
multiplets and theD components of the neutral vector multiplets could give non-neglig
contributions to SUSY breaking. In this case the goldstino could have components al
neutral fermions (̃T , Higgsinos and gauginos). One could even conceive extreme sce
in which theT field is absent and the Higgs fields alone are effectively responsibl
breaking both SUSY and the gauge symmetry (see, e.g., [4,24], where examples

type with singular superpotentials were given). In this paper we consider scenarios in which
bothT and the Higgs fields are present and show how unconventional features emerge.
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3. The Higgs sector

We now focus on the MSSM Higgs sector, made of twoSU(2) doublets(H1,H2). When
F/M2 is not negligible, some higher order terms in the expansions ofK, W andfab not
written explicitly in Eqs. (2.7), (2.8) and (2.9) can become important. We will explic
write all theO(H 4) terms inW andK, which will be sufficient for our purposes. A
anticipated in the previous section, the coefficient functions appearing inW andK will
depend on the fieldT and on some mass scales. Thus we write:4

(3.1)W =w(T )+µ(T )H1 ·H2+ 1

2M
"(T )(H1 ·H2)

2+ · · · ,

(3.2)

K = k(T̄ , T )+ c1(T̄ , T )|H1|2+ c2(T̄ , T )|H2|2+
[
d(T̄ , T )H1 ·H2+ h.c.

]
+ 1

2M2e1(T̄ , T )|H1|4+ 1

2M2e2(T̄ , T )|H2|4+ 1

M2e3(T̄ , T )|H1|2|H2|2

+ 1

M2e4(T̄ , T )|H1 ·H2|2+
[

1

2M2e5(T̄ , T )(H1 ·H2)
2

+ 1

M2
e6(T̄ , T )|H1|2H1 ·H2+ 1

M2
e7(T̄ , T )|H2|2H1 ·H2+ h.c.

]
+ · · · .

The Kähler potentialK is assumed to contain a single mass scaleM. Thus the coefficien
functionsci , d andei in K are in fact dimensionless functions ofT/M and T̄ /M while
k(T̄ , T )∼M2k̃(T̄ /M,T/M). On the other hand,W should contain, besidesM, the SUSY-
breaking scaleF (notice thatF ∼ 〈∂T W 〉). Although it is not possible to determine fro
first principles what is the precise dependence onM andF of the coefficient functions in
W , a reasonable criterion is to insure that each parameter of the component Lagran
theT –H1–H2 sector receives contributions of the same order fromK andW . An example
of this are the two contributions to the effectiveµ̂ parameter in Eq. (2.11). The plausibili
of this criterion is stressed by the fact that there is a considerable freedom to move
betweenK andW through analytical redefinitions of the superfields (see Subsectio
below). Consequently, we can assume5

(3.3)w(T )∼ FMw̃(T /M), µ(T )∼ F

M
µ̃(T /M), "(T )∼ F

M2
"̃(T /M),

where w̃, µ̃, "̃ are dimensionless functions of their arguments. The above depend
can be motivated by a brokenU(1)R symmetry under which the fieldsT ,H1,H2 and the
parameterM have zero charge, whileF hasR-charge 2 and acts as breaking parame
Also notice that any (M-dependent) non-linear field redefinition ofT ,H1,H2 obviously
respects this charge assignment.

4 The symbol· stands for theSU(2) product:H1 ·H2=H0
1H

0
2 −H−1 H+2 .

5 This digression refers to generic values of the ratioF/M2, in the spirit of the general discussion presented
far. It is clear that the assumed scale dependences are more meaningful forF/M2� 1 than forF/M2 ∼O(1).

However, having a scaling rule for generic scenarios can be a useful book-keeping device (e.g., to interpolate
different cases).
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For the expansion of the gauge kinetic functionsfab it is enough for our purpose to kee
O(H 2) terms. Before writing this expansion, we recall that the indices infab are saturated
with those of the super-field-strengthsWaWb, see Eq. (2.1). Thus the allowed irreducib
representations infab are those contained in the symmetric product of two adjoints.
theSU(2)×U(1) gauge group, such representations are singlet, triplet and fiveplet:

(3.4)fab = f
(s)
ab + f

(t)
ab + f

(f )
ab .

All these parts can be present, oncefab is allowed to depend onH1 andH2. The expansion
of the singlet partf (s)

ab reads6

(3.5)f
(s)
ab = δab

[
fa(T )+ 1

M2
ha(T )H1 ·H2+ · · ·

]
.

The triplet partf (t)
ab is associated with theSU(2)–U(1)Y cross-termWAWY , whereA

is anSU(2) index. Thus the non-vanishing components off
(t)
ab aref

(t)
AY = f

(t)
YA and their

expansion starts atO(H 2):

(3.6)f
(t)
AY =

1

M2
ω(T )

(
H1 · σAH2

)+ · · · .
In Eqs. (3.5) and (3.6) we have inserted appropriate powers ofM2 as before, and we ca
assume thatfa , ha andω are dimensionless functions ofT/M. Finally, the fiveplet par
f

(f )

ab has both indices inSU(2). We will neglect this part since its leading term isO(H 4).

3.1. Scalar potential and electroweak breaking

FromW , K andfab one can compute the component Lagrangian, and in particula
scalar potential, which is given by the general expression in Eq. (2.2). It is clear th
expanded form ofV will be similar to that ofK. More precisely,V has the same form a
in a two-Higgs-doublet model7 (2HDM), with T -dependent coefficients, i.e.,

V = V0(T̄ , T )+m2
1(T̄ , T )|H1|2+m2

2(T̄ , T )|H2|2+
[
m2

3(T̄ , T )H1 ·H2+ h.c.
]

+ 1

2
λ1(T̄ , T )|H1|4+ 1

2
λ2(T̄ , T )|H2|4+ λ3(T̄ , T )|H1|2|H2|2

+ λ4(T̄ , T )|H1 ·H2|2+
[

1

2
λ5(T̄ , T )(H1 ·H2)

2+ λ6(T̄ , T )|H1|2H1 ·H2

(3.7)+ λ7(T̄ , T )|H2|2H1 ·H2+ h.c.

]
+ · · · ,

where we have truncated atO(H 4). The parametric dependence of the coefficients inV is
m2

i ∼ O(F 2/M2) andλi ∼ O(F 2/M4)+O(g2). Explicit expressions form2
i (T̄ , T ) can

be deduced from the results of Section 2.2, whilst the form of the coefficientsλi(T̄ , T ) will
be discussed in detail in Section 4.2.
6 The singlet part is also present for the colour group, of course.
7 For a recent analysis of two-Higgs-doublet models, see, e.g., [25] and references therein.
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In general, for a given potential, one can try to perform either an exact minimizati
at least an iterative one, relying on the expansion of the potential in powers ofHi/M and
on the consistent assumption that the Higgs VEVs are smaller thanM, possibly through
some tuning. In the iterative approach, the starting point for the determination of the
are the zeroth order values of〈H 0

i 〉0 and〈T 〉0, where〈H 0
i 〉0= 0 and〈T 〉0 is the minimum8

of V0(T̄ , T ).
In Sections 4, 5 and 6 we will discuss in more detail the scalar potential, its minimiz

and other phenomenological implications, both in general and through specific exa
Here we note that the form of the Higgs potential in Eq. (3.7) already allows u
make some general observations on the possible patterns of electroweak breaki
us setm2

i ≡ 〈m2
i (T̄ , T )〉0 for brevity. There are two necessary conditions for electrow

breaking, which for a polynomial Higgs potential imply the existence of a non-tr
minimum.

The first condition regards the origin of Higgs-field space. This is a minimum, a s
point or a maximum, depending on the mass parametersm2

i :

(3.8)m2
1m

2
2−

∣∣m2
3

∣∣2 > 0, m2
1+m2

2 > 0 [Minimum],
(3.9)m2

1m
2
2−

∣∣m2
3

∣∣2 < 0 [Saddle point],
(3.10)m2

1m
2
2−

∣∣m2
3

∣∣2 > 0, m2
1+m2

2 < 0 [Maximum].
These equations define three regions in the{m2

1,m
2
2}-plane, labelled by ‘Min’, ‘Saddle

and ‘Max’ in Fig. 1. Such regions are separated by the upper and lower branches
hyperbolam2

1m
2
2− |m2

3|2= 0. Electroweak breaking can take place in the regions ‘Sad
or ‘Max’, while the region ‘Min’ is excluded.9

The second condition for proper electroweak breaking is the absence of unbo
from below directions (UFB) along which the quartic part of the Higgs potential
destabilized. As a matter of fact the complete Higgs potential is necessarily bo
from below since the full supersymmetric potential (2.2) is positive definite. How
this does not guarantee that the truncation ofV at O(H 4), i.e., Eq. (3.7), is positive a
well. If it is not, this means that the positivity of the potential is ensured by higher o
terms and the minima correspond to large values ofHi , which is not phenomenological
acceptable. UFB directions of this kind are normally prevented by quartic coupling
the MSSM the latter receive only contributions from D-terms, namelyλ1,2= 1

4(g
2+ g2

Y ),
λ3 = 1

4(g
2 − g2

Y ), λ4 = −1
2g

2, λ5,6,7 = 0. Then the potential is indeed stabilized by
quartic terms, except along the D-flat directions|H1| = |H2|. Consequently, it is require

8 We will assume thatV0(T̄ , T ) determines〈T 〉0 and givesO(F2/M2) masses to the associated sca
fluctuations. This situation, which can be regarded as generic, is also supported by naturalness considerat
We will not discuss the alternative possibility of constantV0(T̄ , T ). In this special case,T would be a modulus
at lowest order (even after the breaking of SUSY), and the minimization ofV (T ,H1,H2) should (or could)
simultaneously determine〈T 〉, 〈H1〉 and〈H2〉. This interesting situation is more delicate from the viewpoin
an iterative solution, although it could be dealt with in specific models.

9 Actually, electroweak breaking could occur even in the case in which the origin is a minimum, th

tunneling to a deeper non-trivial minimum. Models with such potentials have been considered in the literature,
see, e.g., [27], but we will not discuss this possibility.
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Fig. 1. Schematic representation of the different possibilities for electroweak breaking in a two-Higgs-d
model, depending on the values ofm2

1 andm2
2 (with the axes in units of|m2

3|). See text for details.

that the quadratic part ofV be positive along these directions:

(3.11)m2
1+m2

2− 2
∣∣m2

3

∣∣ > 0 [Potential bounded from below].
This condition appliesonly to the MSSM and corresponds to the region of Fig. 1 above
straight line tangent to the upper branch of the hyperbola. Since Eq. (3.11) is incomp
with Eq. (3.10), it follows that the MSSM conditions for electroweak breaking are g
by Eqs. (3.9) and (3.11), as is well known. In Fig. 1 the corresponding region is a sub
the region ‘Saddle’ and is labelled by ‘MSSM’: it is made of the (two) areas betwee
upper branch of the hyperbola and the tangent line.

However, when SUSY is broken at a moderately low scale, theλi couplings in (3.7)
can also receive sizeableO(F 2/M4) contributions, besides theO(g2) ones. Therefore
condition (3.11) is no longer mandatory to avoid UFB directions, since the bounde
of the potential can be ensured by imposing appropriate conditions on theλi parameters.10

Thus the presence of the latter parameters extends the parameter space, rela
constraints on the quadratic part of the potential and opens a lot of new possibiliti
electroweak breaking. In particular, both alternatives (3.9), (3.10) are now possible
means that most of the{m2

1,m
2
2} plane can in principle be explored: the whole regio

labelled by ‘Saddle’ and ‘Max’ in Fig. 1 are allowed, only the region ‘Min’ is exclud
This has several important consequences, that differ from usual MSSM results, and
we list below.
10 The requirement of unbroken electric charge also imposes constraints [28].
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(a) The universal casem2
1 = m2

2 is now allowed, unlike in the MSSM. Actually, in th
MSSM these mass parameters could be degenerate at high energy and rea
degenerate values radiatively by RG running (falling in the region ‘MSSM’ of Fig
typically with m2

1 > 0, m2
2 < 0). The fact thatm2

2 is the only scalar mass that ten
to get negative in this process is considered one of the virtues of the MSSM,
sense thatSU(2)×U(1) breaking is “natural.” Now, we see that even if the univer
condition holds at low-energy we can still breakSU(2)×U(1). This will be illustrated
in Section 5 with two examples, which correspond to points A and B in Fig. 1. We
also show thatm2

1=m2
2 does not necessarily imply〈|H1|〉 = 〈|H2|〉, i.e., | tanβ| = 1.

(b) Electroweak breaking generically occurs already at tree-level. Still, it is “natura
a sense similar to the MSSM. For example, if all the scalar masses are positiv
universal,SU(2)L × U(1)Y is the only symmetry that can be broken because (w
R-parity conserved) the only off-diagonal bilinear coupling among MSSM field
m2

3H1 · H2, which can drive symmetry breaking in the Higgs sector if condi
(3.9) is satisfied. This is just an example: we stress again that many unconve
possibilities for electroweak breaking are allowed, including those in which botm2

1
andm2

2 are negative andm2
3 plays a minor role.

(c) Finally, the fact that quartic couplings are very different from those of the MS
changes dramatically the Higgs spectrum and properties (which will be test
colliders, see, e.g., [29,30]). In particular, as illustrated by later examples, the M
bound on the lightest Higgs field does no longer apply. Likewise, the fact that
couplings can be larger than the MSSM ones may reduce the amount of
necessary to get the proper Higgs VEVs. Concerning the latter property, suppo
F 2/M2 is significantly larger than the phenomenologically required value ofv2. In this
case, as is well known in the MSSM, only one combination of them2

i is allowed to
be as large asO(F 2/M2), whereas two other combinations should be tuned to va
O(λiv

2), as a consequence of the minimization conditions. The interesting po
that theO(F 2/M4) contributions to the couplingsλi can exceed the familiarO(g2)

contributions, so the amount of fine tuning can be somewhat alleviated.

3.2. Derivative couplings and the ρ-parameter

In addition to modifications in the Higgs potential, the non-renormalizable term
the Kähler potential (3.2) generate derivative couplings. Explicitly, the generalized k
Lagrangian forH1,H2, T reads

Lkin = |DµH1|2
[
c1+ e1

M2
|H1|2+ e3

M2
|H2|2+

(
e6

M2
H1 ·H2+ h.c.

)]

+ |DµH2|2
[
c2+ e2

M2
|H2|2+ e3

M2
|H1|2+

(
e7

M2
H1 ·H2+ h.c.

)]
+ |∂µT |2

[
kT T̄ + (c1)T T̄ |H1|2+ (c2)T T̄ |H2|2+ (dT T̄ H1 ·H2+ h.c.)

]
e ∣ ∣ e
+ 1

M2
∣H †

1DµH1∣2+ 2

M2
|H †

2DµH2|2
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+ e3

M2

[
H

†
1DµH1(D

µH2)
†H2+ h.c.

]+ e4

M2

∣∣∂µ(H1 ·H2)
∣∣2

+
{[

e6

M2 (D
µH1)

†H1+ e7

M2 (D
µH2)

†H2

]
∂µ(H1 ·H2)+ h.c.

}
+ {

∂µT
∗[(c1)T̄ H

†
1D

µH1+ (c2)T̄ H
†
2D

µH2+ dT̄ ∂
µ(H1 ·H2)

]+ h.c.
}
(3.12)+ · · · ,

where|Xµ|2 ≡ X∗µXµ and ci , ei , k, d are theT , T̄ -dependent functions that appear
(3.2). Thus the Higgses and theT scalars also have derivative interactions, besides
non-derivative ones described by the scalar potential. Moreover, since the derivativ
gauge-covariant, non-renormalizable interactions between scalar and vector fields
as well.

One of the consequences of electroweak symmetry breaking [〈H 0
i 〉 = vi/

√
2, tanβ ≡

v2/v1, v2 ≡ v2
1 + v2

2] is that Lkin generates mass terms for the gauge bosons. Le
normalize the Higgs fields so that〈ci〉0 = 1, which implies〈ci〉 = 1+ O(v2/M2), and
assume real parameters for simplicity. We also temporarily neglect the non-singlet p
fab, so gauge couplings are defined by〈Ref (s)

ab 〉 = g−2
a δab. The gauge boson masses ar

(3.13)M2
W =

1

4
g2v̂2,

(3.14)M2
Z =

1

4

(
g2+ g2

Y

)[
v̂2+ v4

2M2

〈
e1c

4
β + e2s

4
β − 2e3s

2
βc

2
β

〉+ · · ·],
with

v̂2= v2
[〈
c1c

2
β + c2s

2
β

〉+ v2

2M2

〈
e1c

4
β + e2s

4
β + 2e3s

2
βc

2
β +

(
e6c

2
β + e7s

2
β

)
s2β

〉+ · · ·]
(3.15)= v2[1+O(v2/M2)

]
.

We see, first, that there is a small deviation of the Higgs VEVv from v̂ = 246 GeV (of
relative orderO(v2/M2), which we will ignore in the following), and, second, there i
non-zero contribution to<ρ (i.e.,ε1 or α<T ), given by

(3.16)<ρ =− v2

2M2

[
c4
β〈e1〉0+ s4

β 〈e2〉0− 2s2
βc

2
β〈e3〉0

]+O(v4/M4).

This combination of parameters is constrained to be small by electroweak pre
measurements [31], which could be used, for instance, to infer a lower bound on the
M, for given values of〈ei〉0 and tanβ , or to constrain the parameters〈ei〉0, for given
M and tanβ . Notice that a natural suppression of<ρ is obtained if the Kähler potentia
has an approximateSU(2)L × SU(2)R symmetry, since the latter implies the equa
e1= e2= e3, and also| tanβ| = 1 after electroweak breaking (see also Appendix A).

Another set of non-renormalizable interactions between scalar and vector
originate from the gauge kinetic terms, i.e., from the field dependence of the k
functionsfab(T ,H1,H2). In particular, theT dependence offab, which is responsible

for the leading contribution to gaugino masses [Eq. (2.17)] and to goldstino–gaugino–
gauge boson couplings, also induces interactions of theT scalar field with two gauge
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field strengths. The latter interactions are relevant, for instance, in the productio
decays ofT scalars at colliders [12,16,17]. Similarly, the dependence offab on H1 and
H2 could have interesting implications for the production and decays of Higgs boso
the latter case, the relevant part offab is probably the singlet partf (s)

ab , since the non
singlet parts are more constrained or suppressed. In particular, we recall that the
partf (t)

ab of fab, Eq. (3.6), produces a kinetic mixing between theSU(2)L and theU(1)Y
field strengths once the Higgs fields take VEVs. This effect modifies the expressions
gauge boson masses and couplings, and one obtains a contribution to theε3 parameter (or
αS) proportional tosβcβ〈ω〉0v2/M2, which is therefore constrained to be small. Fina
we note that contributions to theε2 parameter (orαU ) are automatically more suppresse
since they arise from the fiveplet partf

(f )
ab of fab and areO(s2

βc
2
βv

4/M4).

4. General results in normal coordinates

4.1. Coordinate choices

Theories with different expressions forK, W andfab have the same physical conten
they are related by analytic redefinitions of the chiral superfields. This well-known pro
is already clear, for instance, in the results for the MSSM mass parameters prese
Section 2: the spectrum only depends on specific combinations of the original param
The effectiveµ̂ parameter of Eq. (2.11) is a well-known example: its two ‘compone
(from W andK) can easily be moved into one another by a redefinition of theT field
that involves the Higgs fields. For instance, ifK ⊃ |T |2 − (βµ

M
T̄ H1 · H2 + h.c.

)
and

W ⊃ Λ2
ST , the redefinitionT = T ′ + βµ

M
H1 · H2 leads toK ⊃ |T ′|2 − |βµ|2

M2 |H1 · H2|2
andW ⊃ Λ2

ST
′ + βµ

Λ2
S

M
H1 · H2. Either coordinate choice leads to the same effectivµ̂

parameter.
Sometimes it is better to avoid such field redefinitions, in order to keep track

the different ‘sources’ of a specific effective parameter or coupling. At other times
convenient to exploit such redefinitions in order to reduce the redundant set of para
to a minimal set. For instance, one can try to remove as many terms as possible fr
superpotential and reduce it to a minimal one. In our case we could first shiftT so that its
zeroth order VEV vanish,〈T 〉0= 0, and then redefine the wholeW(T,H1,H2) to be just
the newT field, i.e.,W(T,H1,H2) = Λ2

ST
′, whereΛ2

S ∼ F (SUSY breaking scale). A
advantage of this coordinate choice is that all the parameters in the component Lag
automatically have a simple dependence onF and M, e.g., µ̂ ∼ F/M. An example
with such a minimal superpotential will be described in Section 5. Another possib
orthogonal to the previous one, is to remove as many terms as possible fromK. In general,
one can set to zero all the derivativesKĪJ1J2...Jn

(n > 1) and their conjugates around
given point [32] (Kählernormal coordinates). In our case we could first shiftT so that
〈T 〉0= 0 and then use normal coordinates around the origin.11 In the next subsections w
11 The elimination ofT̄ H1H2 from K illustrated above is a simple example of such a procedure.
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will make this choice and present explicit results on the scalar potential and the ferm
spectrum. Of course, it is also possible to employ intermediate coordinate choices, o
to make no coordinate choice at all, with equivalent results.

4.2. The scalar potential

The form ofW andK [see Eqs. (3.1) and 3.2)] expressed in normal coordinates
expanded in theHi andT fields reads

(4.1)

W =Λ2
S

(
T + 1

6M2
ρtT

3+ · · ·
)
+

(
µ+µ′ T

M
+ 1

2
µ′′ T

2

M2
+ · · ·

)
H1 ·H2

+ 1

2M

(
"+ "′

T

M
+ · · ·

)
(H1 ·H2)

2+ · · · ,

(4.2)

K =
(
|T |2− 1

4
αt

|T |4
M2 + · · ·

)

+ |H1|2
[
1+ α1

|T |2
M2 +

1

2M3

(
α′1T 2T̄ + ᾱ′1T T̄ 2)+ · · ·]

+ |H2|2
[
1+ α2

|T |2
M2 +

1

2M3

(
α′2T 2T̄ + ᾱ′2T T̄ 2)+ · · ·]

+
[
H1 ·H2

(
1

2
α3

T̄ 2

M2
+ 1

2M3
α′3T̄ 2T + · · ·

)
+ h.c.

]

+ 1

M2

{
1

2
|H1|4

[
e1+ 1

M
(e′1T + ē′1T̄ )+ e′′1

|T |2
M2
+ · · ·

]

+ 1

2
|H2|4

[
e2+ 1

M
(e′2T + ē′2T̄ )+ e′′2

|T |2
M2 + · · ·

]

+ |H1|2|H2|2
[
e3+ 1

M
(e′3T + ē′3T̄ )+ e′′3

|T |2
M2 + · · ·

]

+ |H1 ·H2|2
[
e4+ 1

M
(e′4T + ē′4T̄ )+ e′′4

|T |2
M2 + · · ·

]

+
[
|H1|2H1 ·H2

(
e′6

T̄

M
+ e′′6
|T |2
M2
+ · · ·

)
+ h.c.

]

+
[
|H2|2H1 ·H2

(
e′7

T̄

M
+ e′′7
|T |2
M2
+ · · ·

)
+ h.c.

]}
+ · · · .

It is not restrictive to takeΛ2
S real and positive. The coefficients of real invariants inK (e.g.,

αt ,α1, α2, . . .) are necessarily real. For the sake of generality we allow other param

to be complex, keeping in mind that they should be taken as real ifCP conservation
is imposed. The terms explicitly shown above are sufficient to compute all theO(T 2),
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O(H 2), O(T H 2), andO(H 4) terms of the scalar potential, which in turn are sufficien12

to evaluate VEVs and spectrum at lowest non-trivial order inv/M. Also notice that, to this
purpose, it is sufficient to keep the zeroth order part offab, i.e.,δab/g2

a . We postpone the
explicit expansion offab to the discussion of fermion masses below. It is also conven
to define the auxiliary quantity

(4.3)m̃≡ Λ2
S

M
,

which controls the typical magnitude of SUSY-breaking masses and appears freq
in what follows. In doing parametric estimates we will also apply Eq. (3.3), i.e., we
implicitly assumeµ,µ′,µ′′ =O(m̃) and", "′ =O(m̃/M).

The scalar potentialV = VF + VD can be computed from the general expression (
and expanded as in Eq. (3.7). The latter expansion can be further specialized us
above parametrization ofW andK. We obtain:

V =Λ4
S + αt m̃

2|T |2+ 1

2

(
ρt m̃

2T 2+ h.c.
)

+m2
1|H1|2+m2

2|H2|2+
(
m2

3H1 ·H2+ h.c.
)

+ (a1T + ā1T̄ )|H1|2+ (a2T + ā2T̄ )|H2|2+
[
(a3T + a4T̄ )H1 ·H2+ h.c.

]
+ 1

2
λ1|H1|4+ 1

2
λ2|H2|4+ λ3|H1|2|H2|2+ λ4|H1 ·H2|2

(4.4)+
[

1

2
λ5(H1 ·H2)

2+ λ6|H1|2H1 ·H2+ λ7|H2|2H1 ·H2+ h.c.

]
+ · · · .

The coefficients of theO(T 2) terms should satisfyαt > |ρt |, for consistency with the
condition 〈T 〉0 = 0. The two degrees of freedom of the complex fieldT have masse
m2

T1,2
= (αt ± |ρt |)m̃2, which areO(Λ4

S/M
2). The coefficients of theO(H 2) terms of

V are given by

(4.5)m2
1= |µ|2− α1m̃

2, m2
2= |µ|2− α2m̃

2, m2
3= µ′m̃,

and are genericallyO(m̃2)=O(Λ4
S/M

2). The coefficients of theO(T H 2) terms ofV are
given by

a1=− 1

M

(
α′1m̃2+ ᾱ3µm̃− µ̄µ′

)
, a3= 1

M
m̃µ′′,

(4.6)a2=− 1

M

(
α′2m̃2+ ᾱ3µm̃− µ̄µ′

)
, a4=− 1

M

[
α′3m̃2+ (α1+ α2)µm̃

]
,

and are genericallyO(m̃2/M)=O(Λ4
S/M

3). The origin of the different contributions t
these cubic couplings is traced back to the diagrams in Fig. 2, which carry self-expla

12 For instance, in these coordinatese5(T̄ , T ) ∼ e′′5T̄ 2/M2 + · · · is not shown because it gives higher-ord

corrections. Concerning the lowest order terms inW , notice thatΛ2
S
T is necessarily present in order to bre

SUSY. Once this is taken into account, the absence of theO(T 2) term is just a consequence of our coordin

choice and of the zeroth order minimization conditions. Indeed, the condition〈T 〉0 = 0 relates the coefficient of
theO(T 2) term inW to the coefficient of theO(T 2T̄ ) term inK , which is zero in normal coordinates.



st order
120 A. Brignole et al. / Nuclear Physics B 666 (2003) 105–143

Fig. 2. Diagrammatic origin of different contributions to the cubicH2T couplings (ai in Eq. (4.6)).

labels. Double lines represent auxiliary fields and crossed circles represent the lowe
VEV 〈FT 〉0=−Λ2

S .
Finally, the coefficients of theO(H 4) terms ofV (quartic in the Higgs fields withoutT )

receive two different types of contributions:

(4.7)λi = λ
(D)
i + λ

(F )
i .

Theλ
(D)
i arise fromVD as usual:

(4.8)λ
(D)
1 = λ

(D)
2 = 1

4

(
g2+ g2

Y

)
, λ

(D)
3 = 1

4

(
g2− g2

Y

)
, λ

(D)
4 =−1

2
g2,

whileλ
(D)
5 = λ

(D)
6 = λ

(D)
7 = 0. Theλ(F )

i are the direct contributions from theO(H 4) terms
in VF :

λ
(F )
1 = 1

M2

[
m̃2(2α2

1 − e′′1)− 2m̃(µ̄e′6+ h.c.)− 2|µ|2(e3+ e4)
]
,

λ
(F )
2 = 1

M2

[
m̃2(2α2

2 − e′′2)− 2m̃(µ̄e′7+ h.c.)− 2|µ|2(e3+ e4)
]
,

λ
(F )
3 = 1

M2

[
m̃2(2α1α2− e′′3)− m̃[µ̄(e′6+ e′7)+ h.c.] − |µ|2(e1+ e2+ 2e4)

]
,

λ
(F )
4 =− 1

M2

[
m̃2e′′4 + m̃[(e′6+ e′7)µ̄+ h.c.] + |µ|2(e1+ e2+ 2e3)− |µ′|2

]
,

λ
(F )
5 = "′m̃

M
,

λ
(F )
6 =− 1

M2

[
m̃2e′′6 + m̃[µ(e′1+ e′3+ e′4)+µ′α1]

]+ "µ̄

M
,

(4.9)λ
(F )
7 =− 1

M2

[
m̃2e′′7 + m̃[µ(e′2+ e′3+ e′4)+µ′α2]

]+ "µ̄

M
.
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Fig. 3. Diagrammatic origin of different contributions to the quartic Higgs couplings (λi in Eqs. (4.8) and (4.9))

Fig. 3 shows the diagrammatic origin of these terms, again with labels as appropr
identify different types of contributions. The parametersλ

(F )
i are genericallyO(m̃2/M2)=

O(Λ4
S/M

4). Note that these ‘hard-breaking’ terms do not spoil the stability of
electroweak scale since the cut-off of the effective theory is ofO(M). For completeness
we recall that quartic couplings also receive sizeable radiative corrections even
conventional MSSM scenario, as is well known [33].

As already mentioned, the terms ofV (T ,H1,H2) shown above are sufficient to compu
VEVs and masses at lowest orders in thev/M expansion. The general qualitative featu
of the results can be easily inferred. The minimization conditions ofV give constraints on
the Higgs VEVs13 and produce a small VEV forT , i.e., 〈T 〉 =O(v2/M), induced by the
O(T 2)+O(TH 2) terms ofV . The���SUSY scale isF 2 = 〈V 〉 =Λ4

S +O(λv4), whereλ
stands for eitherg2 or Λ4

S/M
4 = m̃2/M2. In the limit of CP conservation, the physica

spectrum contains a pair of charged Higgs bosons, threeCP-even neutral bosons and tw
CP-odd neutral bosons. TheT -H mixing angles of the neutral sectors are generic
O(v/M), so in each sector one mass eigenstate is mainlyT -like (singlet) whereas th

13 Equivalently, such constraints can be interpreted as tuning conditions on the mass parametersm2
i
, i.e., on the
parameters they contain. As mentioned in Subsection 3.1, the presence of sizeableO(Λ4
S
/M4) quartic couplings

can alleviate the required amount of fine tuning, for fixedm̃ > v.
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other(s) are mainly Higgs-like. The mass eigenvalues can be computed by pertu
diagonalization of the mass matrices and have the parametric formO(m̃2)+O(λv2)+· · · .
The leading termO(m̃2) is absent in at least one Higgs-like eigenvalue of the neutral s
(this is generic, see, e.g., [34]), and may be absent in other eigenvalues in specific m
TheO(λv2) terms arise from several sources, including kinetic normalization.14

It is worthwhile mentioning that the effects of theT field on the Higgs VEVs and mass
could also be studied by a slightly different (albeit essentially equivalent) approach
one can integrate out theT scalars from the beginning. This operation effectively redu
V (T ,H1,H2) to a simpler potentialV (H1,H2), a function of the Higgs doublets only. Th
potentialV (H1,H2) contains additional effective quartic terms, obtained by contract
of the originalO(T H 2) cubic terms through the exchange of the massiveT field. Thus
the coefficientsλi of O(H 4) terms receive additional effective contributionsδλ

(F )
i , whose

expression is:

δλ
(F )
1 = 1

(α2
t − |ρt |2)m̃2

[−2αt |a1|2+
(
ρ̄t a

2
1 + h.c.

)]
,

δλ
(F )
2 = 1

(α2
t − |ρt |2)m̃2

[−2αt |a2|2+
(
ρ̄t a

2
2 + h.c.

)]
,

δλ
(F )
3 = 1

(α2
t − |ρt |2)m̃2

[−αt (a1ā2+ a2ā1)+ (ρ̄ta1a2+ h.c.)
]
,

δλ
(F )
4 = 1

(α2
t − |ρt |2)m̃2

[−αt

(|a3|2+ |a4|2
)+ (ρ̄ta3ā4+ h.c.)

]
,

δλ
(F )
5 = 1

(α2
t − |ρt |2)m̃2

[−2αta3a4+ ρ̄t a
2
3 + ρta

2
4

]
,

δλ
(F )
6 = 1

(α2
t − |ρt |2)m̃2

[−αt (ā1a3+ a1a4)+ ρ̄t a1a3+ ρt ā1a4
]
,

(4.10)δλ
(F )
7 = 1

(α2
t − |ρt |2)m̃2

[−αt (ā2a3+ a2a4)+ ρ̄t a2a3+ ρt ā2a4
]
.

The diagrammatic origin of these terms is depicted in Fig. 4, with the blobs repres
theO(T H 2) couplings, as schematically given by Fig. 2. Notice that the parametersδλ

(F )
i

are formally of the same order as the parametersλ
(F )
i , i.e.,O(m̃2/M2)=O(Λ4

S/M
4). The

minimization of the reduced potentialV (H1,H2) gives the same conditions on the Hig

14 Kinetic normalization is easily deduced from Eq. (3.12). Incidentally, notice thatT –H kinetic mixing arises
atO(v/M) in general coordinates, hence it can contribute toO(λv2) mass terms. In normal coordinates, howev
such a mixing only arises atO(v3/M3), so it can be neglected. We add here another minor comment, conce
the O(λv2) corrections to theT mass eigenvaluesm2

T1,2
. Part of such corrections originate fromO(T 3) and

O(T 2H2) terms ofV . The full computation of these terms, which we have not presented, is straightfor

To this purpose, for completeness one should also take into account a few higher order terms ofK andW not
explicitly shown in Eqs. (4.1) and (4.2).
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Fig. 4. Diagrammatic origin of theT -exchange contributions to the Higgs quartic coupling (δλ
(F )
i in Eq. (4.10)).

The blob is defined by Fig. 2.

VEVs that are obtained by minimizing the fullV (T ,H1,H2), as it should, and the Higg
boson mass eigenvalues are approximately reproduced.15

To conclude this discussion, we note again that the limitm̃/M =Λ2
S/M

2→ 0, keeping
m̃=Λ2

S/M fixed, corresponds to a standard MSSM scenario with conventional soft t
and the fieldT decoupled from the observable matter. Here, however, we are interes
the opposite limit, in whichm̃/M =Λ2

S/M
2 is not negligible. In this case, as anticipate

the Higgs couplings deviate from the usual MSSM values, which can have a sign
impact for the SUSY Higgs sector phenomenology. It is important to stress also
although similar deviations have been reported previously in the literature (see, e.g
our analysis includes all the relevant effects, some of which have not been cons
by other studies. Indeed, it is common to treat the superfieldT simply as the sourc
of SUSY breaking, providing a non-zero〈FT 〉, which then generates different effec
whereas other contributions of comparable importance, which come from the degr
freedom associated toT , are often neglected. Examples of the latter effects, included in
analysis above, are the contributions to the Higgs potential that come fromFT exchange
or fromT exchange (i.e., equivalently, fromT –H mixing effects). Finally we recall agai
that, to compute the spectrum and the self-interactions of Higgs andT fields, both the
scalar potential and the derivative terms of Eq. (3.12) should be taken into account.

4.3. The neutralino/goldstino sector and the chargino sector

Another sector of the theory that changes with respect to the conventional MSSM
neutralino sector. In particular, the fermionic partner ofT can in principle mix with the
Higgsinos and gauginos after electroweak symmetry breaking. We will present he
neutralino and chargino mass matrices atO(v2), specializing the general expression (2
of the fermion mass matrix and taking into account kinetic normalization. Since we
already shown the explicit expansions ofK andW in normal coordinates, Eqs. (4.1) a
(4.2), we only need to add the analogous expansion offab, up toO(H 2). To this purpose
it is sufficient to expand inT the expressions off (s)

ab (singlet) andf (t)
ab (triplet) already

15 More precisely, the same results of the full approach are obtained for Higgs bosons whose mass i
than theT mass, e.g.,O(λv2) rather thanO(m̃2), or Higgs bosons of any mass that are not mass-mixed
T , e.g., the charged one and possibly some neutral one. On the other hand, if a neutral Higgs boson ha
O(m̃2) leading mass comparable to that ofT and mass-mixing withT , then theO(λv2) corrections to its mas

induced byT –H mixing are only approximately reproduced by this method. In the latter case, if one is interested
in thoseO(λv2) corrections, the fullV (T ,H1,H2) should be used.
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given in Eqs. (3.5) and (3.6):

(4.11)

f
(s)
ab =

δab

g2
a

[
1+ 2ηa

T

M
+ 2η′a

T 2

M2 + · · · +
(
ha + h′a

T

M
+ · · ·

)
H1 ·H2

M2 + · · ·
]
,

(4.12)f
(t)
AY =

1

ggY

(
ω+ω′ T

M
+ · · ·

)
H1 · σAH2

M2
+ · · · ,

where inverse powers of (zeroth order) gauge couplings have been inserted for
nience. As already mentioned, the fermionic kinetic terms are no longer canonica
electroweak breaking. The fermionic mass matrices we present below are already r
to the canonical basis, i.e., the symbolsλ, H̃ , T̃ will denote fields that are already cano
cally normalized. Moreover, for simplicity we will assume that all parameters inW , K and
fab are real.

The 5× 5 neutralino mass matrix, in the basis(λ0
B,λ

0
W , H̃ 0

1 , H̃
0
2 , T̃ ), reads

(4.13)

MN =




M1
κωv

2

2M2 −MZswcβ MZswsβ
gY ηB

4
√

2M
v2c2β

κωv
2

2M2
M2 MZcwcβ −MZcwsβ

−gηW
4
√

2M
v2c2β

−MZswcβ MZcwcβ
κ1v

2

2M2
µN

−µ2

√
2Λ2

S

vcβ

MZswsβ −MZcwsβ µN
κ2v

2

2M2

−µ2

√
2Λ2

S

vsβ

gY ηB

4
√

2M
v2c2β

−gηW
4
√

2M
v2c2β

−µ2

√
2Λ2

S

vcβ
−µ2

√
2Λ2

S

vsβ
µ3

2Λ4
S

v2s2β




,

where

(4.14)

Ma = ηam̃− v2

2M2

[
m̃

(
ηa

(
α1c

2
β + α2s

2
β

)+ 1

4
(2haηa − h′a)s2β + 2

(
η2
a − η′a

)
ξt

)

− 1

2
(µha +µ′ηas2β)

]
,

(4.15)

µN = µ− v2

2M2

[
µ

(
e1c

2
β + e2s

2
β +

3

2
(e3+ e4)

)
−µ′ξt − "Ms2β

+ m̃

(
1

2
(e′3+ e′4)s2β + 2

(
e′6c2

β + e′7s2
β

)+ α3ξt

)]
,

(4.16)κω =−1

2
µω+ 1

4
m̃

[
ω(η1+ η2)−ω′

]
s2β,

(4.17)κ1=−1

2
µ(2e1+ e3+ e4)s2β + "Ms2

β − m̃
(
e′1c2

β + e′6s2β
)
,

(4.18)κ2=−1

2
µ(2e2+ e3+ e4)s2β + "Mc2

β − m̃
(
e′2s2

β + e′7s2β
)
.
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The auxiliary parameterξt is defined by〈T 〉 = ξt v
2/2M and is related to the othe

parameters by the minimization condition〈∂T V 〉 = 0 of the potential of Eq. (4.4). At lowes
order:

(4.19)

ξt = 1

αt + ρt

{(
α′1c2

β + α′2s2
β +

1

2
α′3s2β

)
+ µ

m̃

[
1

2
(α1+ α2)s2β + α3

]

− µ′′

2m̃
s2β − µµ′

m̃2

}
.

We have also exploited the conditions〈∂T V 〉 = 0 and〈∂H0
i
V 〉 = 0 at lowest order16 to

simplify the T̃ –T̃ andH̃ 0–T̃ entries of the mass matrixMN above.
Among the five neutralinos, four are massive and one corresponds to the ma

goldstino. The leading terms inMN areO(m̃) and appear in the entriesλ0
B–λ0

B , λ0
W–

λ0
W andH̃ 0

1 –H̃ 0
2 , as usual. Therefore, the four massive eigenstates have dominant g

or Higgsino components, whereas the goldstino has a dominantT̃ component. At linea
order inv, we find terms of two types: the usualH̃ 0–λ0 mixing terms, which areO(MZ),
andH̃ 0–T̃ 0 mixing terms, which areO(vm̃/M)=O(vΛ2

S/M
2). Notice that the latter ca

be larger than the former if̃m/M =Λ2
S/M

2 is sizeable,17 i.e., Higgsinos could have large
mixing with T̃ than with gauginos. AtO(v2), other effects appear.

Let us now consider the approximate identification of the goldstino. IfMN were com-
puted exactly, it would have an exactly massless eigenvalue. In fact, it is straightforw
verify that the mass matrix (4.13) approximately annihilates the vector

(4.20)

(
gY

4
√

2
v2c2β, − g

4
√

2
v2c2β, − 1√

2
µvsβ, − 1√

2
µvcβ, −Λ2

S

)T

.

This is consistent with the general properties recalled in Section 2.1, since the ent
the vector (4.20) contain the lowest order VEVs of the (canonically normalized) aux
fields. Thus the explicit form of the goldstino field̃G is

(4.21)G̃�
(

1− µ2v2

4Λ4
S

)
T̃ + µv√

2Λ2
S

(
sβH̃

0
1 + cβH̃

0
2

)+ v2c2β

4
√

2Λ2
S

(−gY λ0
B + gλ0

W

)
,

up to an overall phase and up to higher order terms inv. Notice that the gaugin
combination in Eq. (4.21) is aZ-ino, and that its coefficient vanishes if theD-terms have
vanishing VEVs, i.e., for| tanβ| = 1.

The chargino sector contains the same degrees of freedom as in the MSSM (λ±, H̃±)
and the chargino mass matrix has the same form:

(4.22)MC =
(

M2
√

2MWsβ√
2MWcβ −µC

)
.

16 The conditions〈∂
H0
i
V 〉 = 0 imply (α1m̃

2 − µ2)cβ − µ′m̃sβ = O(v2) and (α2m̃
2 − µ2)sβ − µ′m̃cβ =

O(v2).

17 This is somewhat reminiscent of the situation in the scalar potential, where the couplingsλ

(F )
i

could be more
important than the usualλ(D)

i
couplings.
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The parameterM2 is the same one that appears in the neutralino mass matrix and is
by Eq. (4.14), whereas the parameterµC is different fromµN of Eq. (4.15), and is given
by

(4.23)

µC = µ− v2

2M2

[
1

2
µ

(
e1c

2
β + e2s

2
β + e3+ 2e4

)−µ′ξt − 1

2
"Ms2β

+ m̃

(
1

2
e′4s2β + e′6c2

β + e′7s2
β + α3ξt

)]
.

One of the main effects of electroweak breaking is to lift the zeroth order m
degeneracy of the three Higgsino-like states (two neutral and one charged). Part
lifting originates from the usual̃H–λ entries, which induceO(M2

Z/m̃
2) relative splittings.

On top of that, we see that the effective non-renormalizable operators generateO(v2/M2)

relative splittings, which could be comparable to the standard ones. In particular,µC is
split fromµN , and splitting effects arise also within the neutral sector, either fromH̃ 0

i –H̃ 0
i

entries (proportional toκi ) or fromH̃ 0
i –T̃ entries. These effects, which regard the Higgs

sector and are not related to Higgsino–gaugino mixing, can be compared with ana
ones that are generated at one-loop level in the MSSM (see, e.g., [35]). In the latte
the induced relative splittings scale asv2/m̃2, times a 1/16π2 loop factor.

5. Simple examples

For illustrative purposes we devote this section to present two simple examples, i.
models with a small number of parameters. For simplicity we choose both models
symmetric under exchange ofH1 andH2, in spite of which, vacua with tanβ �= 1 can still
be achieved, as we will explicitly show (of course, in models which are not symme
is trivial to obtain tanβ �= 1). Some general results concerning electroweak breaking i
case of symmetric potentials are collected in Appendix A.

5.1. Example A

Our first example is a model which can accommodate both tanβ = 1 and tanβ �= 1
(depending on the choice of parameters), even though there is a symmetryH1↔H2. The
model is written in normal coordinates, so we can specialize the general results obta
Section 4. The superpotential, gauge kinetic functions and Kähler potential are chos

(5.1)W =Λ2
ST +µH1 ·H2+ "

2M
(H1 ·H2)

2, fab = δab

g2
a

(
1+ 2

ηa

M
T

)
,

and

K = |T |2+ |H1|2+ |H2|2− αt

4M2 |T |4+
α1

M2 |T |2
(|H1|2+ |H2|2

)

(5.2)+ e1

2M2

(|H1|4+ |H2|4
)
,
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where all parameters are taken to be real, withαt > 0. We will sometimes use the auxilia
parameter̃m=Λ2

S/M.
We will analyse the model perturbatively in the Higgs VEVs, following the gen

discussion of the previous sections. We will only retain the first terms of the expan
which will be sufficient to illustrate the main qualitative features of this example.
results can easily be obtained by specializing the general formulae presented ab
equivalently, by direct computation.

At zeroth order, i.e., for vanishing Higgs VEVs, we have〈T 〉0 = 0, SUSY is broken
by 〈FT 〉0 = −Λ2

S , T̃ is the goldstino and the complexT field has massm2
T = αt m̃

2.
The effects of electroweak breaking start to appear at next order, i.e., when the po
V (T ,H1,H2) is minimized and the Higgses take VEVs. In particular, sinceV (T ,H1,H2)

containsO(T H 2) cubic terms,18 T receives a small induced VEV〈T 〉 = α1µv1v2/(αtΛ
2
S)

andT –H mass mixing appears. Instead of keeping the fieldT together with the Higgses
however, we find it more convenient to use the alternative method mentioned
previous section, i.e., to integrate outT and study a reduced effective potential for t
Higgs doublets only. This choice is also supported by the special fact that all Higgs
masses turn out to beO(λv2) in this model, i.e., naturally lighter than theT mass, which
is O(m̃2).

The Higgs VEVs and spectrum are determined by an effective quartic pot
V (H1,H2) with particular values for its mass terms:

(5.3)m2
1=m2

2= µ2− α1m̃
2, m2

3= 0,

and quartic couplings19

λ1= λ2= 1

4

(
g2+ g2

Y

)+ 2α2
1
m̃2

M2 ,

λ3= 1

4

(
g2− g2

Y

)+ 2

M2

(
α2

1m̃
2− e1µ

2),
λ4=−1

2
g2− 2

(
e1+ 2

α2
1

αt

)
µ2

M2 ,

λ5= 0,

(5.4)λ6= λ7= "µ

M
.

This example is represented by point A in Fig. 1, although now we are in the extrem
m2

1/|m2
3| → −∞ and this ratio is finite in the figure. A correct electroweak breaking

nevertheless be achieved. We can apply the general formulae given in Appendix A to
down the minimization conditions that givev2 and sin 2β , as well as the expressions of t
Higgs masses. Concerning the value of tanβ , we have the two possible solutions

(5.5)| tanβ| = 1,

18 Notice that the only non-vanishing coefficient ofO(TH2) terms in (4.6) isa4 =−2α1µm̃/M .

19 The only contribution induced byT -exchange is the term proportional to 1/αt in λ4, as can be checked from

the general formulae (4.10).
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and

(5.6)sin 2β = "µ/M

(g2+ g2
Y )/4+ 2ê1µ2/M2

,

where we usêe1 ≡ e1 + α2
1/αt . Both solutions are possible depending on the choic

parameters, as explained in Appendix A, and in both cases sgn(tanβ)=−sgn("µ/M). It
is not restrictive to take"µ/M < 0, so that tanβ > 0. Using this convention, the explic
expressions for the Higgs masses are the following:

tanβ = 1: m2
h = 2

(
α2

1
m̃2

M2 − ê1
µ2

M2 +
"µ

M

)
v2,

m2
H =

[
1

4

(
g2+ g2

Y

)+ 2ê1
µ2

M2 −
"µ

M

]
v2,

m2
A =−

"µ

M
v2, m2

H± =
[

1

4
g2+ (2ê1− e1)

µ2

M2 −
"µ

M

]
v2,

tanβ �= 1: m2
h =

[
1

4

(
g2+ g2

Y

)+ 2α2
1
m̃2

M2 +
"µ

M
s2β

]
v2,

m2
H =−

[
1

4

(
g2+ g2

Y

)+ 2ê1
µ2

M2

]
v2c2

2β,

(5.7)

m2
A =−

[
1

4

(
g2+ g2

Y

)+ 2ê1
µ2

M2

]
v2, m2

H± =−
(

1

4
g2
Y + e1

µ2

M2

)
v2.

We have used the general formulae of Appendix A, plus Eq. (5.6) to simplifym2
h in the

case with tanβ �= 1. Notice that acceptable solutions with tanβ = 1 can be obtained eve
if we sete1 = 0, which further simplifies the model. To obtain solutions with tanβ �= 1,
however, we neede1 < 0. Also notice that, in the phase with tanβ �= 1, the value of
tanβ is only determined up to an inversion (tanβ ↔ 1/ tanβ), which in fact leaves the
spectrum invariant. This is a consequence of the original discrete symmetry, and w
conventionally take tanβ � 1.

In Fig. 5 we show a numerical example where both phases of the model are v
We have fixedµ/M = 0.6, e1 = −1.3, m̃/M = 0.5, αt = 3.0, α1 � µ2/m̃2 + ε2 (with
0< ε2� 1) and vary". For each parameter choice, the overall mass scaleM is adjusted
so as to get the right value ofv = 246 GeV. The closerα1 is toµ2/m̃2 the largerM/v can
be. The figure shows the Higgs spectrum and the parameter tanβ (scaled by a factor 10 fo
clarity) as a function of the coupling". For" � "0, with

(5.8)"0≡ M

µ

[
1

4

(
g2+ g2

Y

)+ 2ê1
µ2

M2

]
,

the minimum lies at tanβ = 1, while for " > "0, tanβ increases with". For the choice
of parameters used in this figure,"0 � −0.49. The spectrum is continuous across

critical value"0, although the mass of the ‘transverse’ Higgs,H 0, goes through zero, as
was to be expected on general grounds for symmetric potentials. We see that, except in
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Fig. 5. Higgs spectrum of example A as a function of the superpotential parameter". Also shown is tanβ (scaled
by a factor 10).

the neighbourhood of"0 � −0.49 or for too negative values of", the Higgs masses a
sufficiently large to escape all current experimental bounds (which are also lowe
usual due to singlet admixture, although this is typically a small effect). There is e
region of parameters for whichh0 is the heavier of the Higgses, beyond the usual limi
mh0 � 200 GeV [36] that applies in generic SUSY models only when they are perturb
up to the GUT scale.

One may also be interested in findingO(v2) corrections to theT mass, which isαt m̃
2 at

leading order. To do this, we should reconsider the potential prior to the eliminationT ,
includingO(T H 2) andO(T 2H 2) terms. Taking also into account kinetic normalizati
we get

(5.9)m2
T = αtm̃

2− α1v
2

2M2

[
m̃2(3αt − α1)+µ2

(
1− 4

α1

αt

)]
.

In the neutralino sector, the goldstinõG is mainly T̃ . As a result of electrowea
breaking, G̃ also has small components along Higgsinos and (for tanβ �= 1) along
gauginos, see Eq. (4.21). The full 5× 5 neutralino mass matrix (including up toO(v2/M)

terms) is of the form (4.13) withκω = 0, κ1= "Ms2
β − e1µs2β , κ2= "Mc2

β − e1µs2β ,

(5.10)Ma = ηam̃

(
1− α1v

2

2M2

)
− η2

aα1µv
2

αtM2 s2β,

and (
e v2 )

"v2
(5.11)µN = µ 1− 1

2M2 +
2M

s2β.



sector.
ts are
g.

s

ite the
is not

ve form
In
tion
evious

e

ith
ss
130 A. Brignole et al. / Nuclear Physics B 666 (2003) 105–143

The chargino sector is like in the MSSM, with a mass matrix of the form (4.22) and

(5.12)µC = µ

(
1− e1v

2

4M2

)
+ "v2

4M
s2β.

5.2. Example B

Our general discussion and our previous example indicate thatT –H mixing effects
generically arise after electroweak breaking, both in the scalar and in the fermion
This does not exclude the possibility to construct models where such mixing effec
absent and the goldstino remains a pure singlet (i.e.,T̃ ), despite electroweak breakin
Here we present a simple model of this kind. We will see that whenm̃/M = Λ2

S/M
2 is

negligible, the model becomes a special version of the MSSM with tanβ = 1, and theh0

Higgs boson has vanishing tree-level mass. Whenm̃/M =Λ2
S/M

2 is sizeable, extra term
become important, which in particular makeh0 massive.

The superpotential, gauge kinetic functions and Kähler potential are chosen as

(5.13)W =Λ2
ST , fab = δab

g2
a

(
1+ 2

ηa

M
T

)
,

and

K = |T |2+ |H1|2+ |H2|2− αt

4M2 |T |4−
γ

2M4

(
|H1|2+ |H2|2− v2

2

)2

|T |2

(5.14)+ [|H1|2+ |H2|2− (H1 ·H2+ h.c.)
][βµ

M
(T + T̄ )− α

M2 |T |2
]
,

where all parameters are real. In this exampleW is minimal, whereasK is not. In fact,
here the fields do not correspond to normal coordinates. In principle, we could rewr
model in normal coordinates through field redefinitions, but such a coordinate change
convenient in this case. Indeed, the model has been specifically designed in the abo
in order to allow for a simple minimization ofV , simple VEVs and a simple spectrum.
particular, some coefficients inK have been adjusted in such a way that the minimiza
of V can be performed exactly, so the perturbative procedure sketched in the pr
sections is not necessary. The basic results can be summarized as follows:

(i) The minimum lies at〈T 〉 = 0 and〈H 0
1 〉 = 〈H 0

2 〉 = v/2, i.e., we have tanβ = 1. The
metric is canonical at the minimum: in particular, the components ofT and Higgs
supermultiplets have no kinetic mixing.

(ii) Supersymmetry is broken by the auxiliary component ofT , with 〈FT 〉 = −Λ2
S ,

whereas〈FHi 〉 = 0 and〈Da〉 = 0. The SUSY-breaking scale is simply
√
F =ΛS .

(iii) The gauge symmetry is broken by the Higgs VEVs, and theW andZ masses hav
the usual expressionsM2

W = g2v2/4,M2
Z = (g2+ g2

Y ) v
2/4.

(iv) In the fermion sector,T̃ does not mix with the other fields and coincides w
the goldstino. The Higgsinos have massµ = βµm̃ and the gauginos have ma

Ma = ηam̃. The breaking of the electroweak symmetry also generates mixed gaugino–
Higgsino terms as usual. It is convenient to use the symmetric and antisymmetric
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combinations of neutral Higgsinos, i.e.,̃H 0
A ≡ (H̃ 0

1 − H̃ 0
2 )/
√

2 and H̃ 0
S ≡ (H̃ 0

1 +
H̃ 0

2 )/
√

2. The fieldH̃ 0
S is a mass eigenstate and onlỹH 0

A is mixed with gauginos
because of tanβ = 1. The neutralino and chargino mass matrices have standard
apart from an extra zero eigenvalue corresponding toT̃ .

(v) In the spin-0 sector,T –H mixing is absent as well. The complex fieldT , i.e.,
the scalar partner of̃T , has massm2

T = αt m̃
2. The Higgs boson spectrum can

summarized as follows:

(5.15)G0= Im
(
H 0

1 + H̄ 0
2

) → neutral Goldstone,

(5.16)v + h0=Re
(
H 0

1 + H̄ 0
2

) → m2
h = γ v2m̃2/M2,

(5.17)A0= Im
(
H 0

1 − H̄ 0
2

) → m2
A = 2(α + 2β2

µ)m̃
2,

(5.18)H 0=Re
(
H 0

1 − H̄ 0
2

) → m2
H =m2

A +M2
Z,

(5.19)G− = (
H−1 − H̄−2

)
/
√

2 → charged Goldstone,

(5.20)H− = (
H−1 + H̄−2

)
/
√

2 → m2
H± =m2

A +M2
W,

where MSSM-type labels have been used. Forγ m̃2/M2→ 0, this would be just the
MSSM spectrum for tanβ = 1. In this limit the electroweak symmetry is broken alo
a flat direction and the associatedh0 boson is massless. Theγ term has been adde
just to lift this flatness and obtain a nonzeromh, which can easily be as large as∼ 500
GeV. Notice that the couplingγ m̃2/M2 plays the role of the couplingλ in the SM
Higgs potential, and we can obtain a realistic model ifm̃2/M2=Λ4

S/M
4 is sizeable.

It is straightforward to complete this model (and any other one) by introducing q
and lepton superfields, so that squarks and sleptons obtainO(m̃) masses. Also notice tha
we can easily obtain a smooth decoupling limit in this model by keepingv fixed and taking
ΛS andM large withΛS/M fixed: in this limit part of the spectrum becomes heavy si
m̃ becomes large and the low-energy theory is just the SM, since the light particles ar
the SM ones, plus the goldstino, which is decoupled.

Although the results we have obtained are exact, it is instructive to expand th
Higgs potential up toO(H 4)-terms to make contact with two-Higgs-doublet models. If
do this, we obtain the mass parameters

(5.21)m2
1=m2

2=
(
α + 2β2

µ

)
m̃2− 1

2
γ
m̃2

M2
v2, m2

3=−
(
α + 2β2

µ

)
m̃2,

where we neglectO(v4m̃2/M4) terms, and quartic couplings

λ1= λ2= 1

4

(
g2+ g2

Y

)+ [
γ + 2

(
α + 2β2

µ

)2] m̃2

M2 ,

λ3= 1

4

(
g2− g2

Y

)+ [
γ + 2

(
α + 2β2

µ

)2] m̃2

M2
,

λ4=−1

2
g2+ 2

(
α + 2β2

µ

)2 m̃2

M2
,

(5.22)λ5=−λ6=−λ7= 2
(
α + 2β2

µ

)2 m̃2

M2 ,
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where we neglectO(v2m̃2/M4) terms. This example would thus correspond in Fig
to point B. If we insert these expressions in the general formulae for the 2HDM H
spectrum (see Appendix A), we formally recover the results in Eqs. (5.15)–(5.20).

We conclude this section by showing an illustrative example of goldstino intera
with a Higgs–Higgsino pair. Although we have not discussed this topic before, we
that these couplings are in general present, i.e., they are not specific of the mode
consideration, and could be phenomenologically relevant for the decay of a Higgsin
a goldstino and a Higgs boson (see, e.g., [10]) or, vice versa, for the decay of a
boson into a goldstino–Higgsino pair (see, e.g., [37]). We use the above model o
check that such couplings have the standard (model-independent) form<m2/F [8], where
<m2 is the mass splitting of the fermion–sfermion pair under consideration.20 To avoid the
complications of mixing effects, we focus on the cubic interactions of the goldstino
T̃ ) with the Higgs bosonh0 and the HiggsinoH̃ 0

S , which are mass eigenstates and belon
the same supermultiplet, i.e.,(H 0

1+H 0
2 )/
√

2. The Lagrangian contains both non-derivat
and derivative interactions of that type. Using the fermion equations of motion we can
the derivative ones in non-derivative form and combine them with the other ones. On
is done, the effective on-shell interaction can be written in the simple form

(5.23)− 1√
2

m2
h −µ2

Λ2
S

h0H̃ 0
S T̃ + h.c.,

which is the expected result.

6. Electroweak breaking and two-goldstino interactions

The effective interactions ofone goldstino with a fermion–boson pair, which a
uniquely determined by supercurrent conservation, can be expressed in terms
corresponding masses (and mixing angles) and of the SUSY-breaking scale [8]. In t
example of the previous section we have checked that the model-independent form
couplings is respected also in the Higgs sector, where electroweak breaking takes pl
devote this section to study the impact of electroweak breaking on the effective intera
that involvetwo goldstinos. We recall that even if the available experimental energy i
sufficient to produce the SUSY partners of SM particles, SUSY can still be prob
processes involving SM particles and two goldstinos. Since the corresponding amp
are strongly constrained by general goldstino properties, by comparison with exper
one can obtain useful information on the SUSY-breaking scale [14,15,19]. We would
study how the coefficients of such interactions are affected by electroweak breaking.
purpose, we resort to the general framework of Section 2. So our starting point is a g
effective theory with linearly realized SUSY andSU(3)× SU(2)×U(1)Y gauge group.21

The chiral supermultiplets include the MSSM ones and singlets (in the simplest cas

20 In the case of mixed states,<m2 is replaced by a combination of mass eigenvalues and mixing angles

21 We also neglect non-singlet terms infab and a possible Fayet–Iliopoulos term forU(1)Y , and assume that

R-parity is conserved.
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oneT field). In the limit of unbrokenSU(2)×U(1), SUSY can only be broken by theF -
terms of the singlets: in this case, the goldstino and its bosonic partners belong to the
sector. UponSU(2)×U(1) breaking, SUSY breaking can receive additional contributi

from non-vanishing values of〈FH0
1 〉, 〈FH0

2 〉, 〈D3〉 and 〈DY 〉. If this is the case, als
the neutral Higgsinos and gauginos have components along the goldstino. Moreov
neutral Higgs bosons and theZ boson are (partly) bosonic partners of the goldstino. T
implies that such bosons can have non-vanishing on-shell couplings to goldstino bil
as we will check below. More precisely, in the following we will discuss the effec
interactions between two goldstinos and: (i) aZ boson; (ii) a Higgs boson; (iii) two SM
fermions (leptons or quarks).

We recall that the total amount of SUSY breaking is parametrized byF 2 ≡ 〈VF +
VD〉, as in Eq. (2.3). The indicesi, j, . . . below will run over electrically neutra
chiral supermultiplets, which can have non-vanishing VEVs in their lowest or aux
components (i.e.,T , H 0

1 andH 0
2 , which will be treated on the same footing). We a

emphasize that, in contrast to our approach in other sections, throughout our deri
below we will not expand the basic functions in powers of Higgs fields, both for the
of generality and for technical convenience.22

6.1. Z–goldstino–goldstino

A connection between theZ–goldstino–goldstino coupling and non-vanishing el
troweakD-terms was found in [15], in the framework of non-linearly realized SU
Here we present an alternative derivation of such a coupling, starting from a gene
fective Lagrangian with linearly realized SUSY. Let us consider the coupling of a ge
neutral gauge boson23 Aa

µ = {W3
µ,Bµ} to fermion bilinearsψ̄ ı̄ σ̄ µψj , where the fermi-

ons belong to electrically neutral chiral multiplets(ϕi,ψi,F i), with tai denoting the weak
isospin or the hypercharge. After selecting the goldstino components of the fer
(ψi ⊃ G̃〈F i〉/F ), we obtain

(6.1)− ga

F 2

〈
F̄ ı̄

(
Kı̄j t

a
j +Kı̄j"t

a
" ϕ

"
)
Fj

〉
Aa

µ
˜̄Gσ̄µG̃,

wherega ≡ 〈(Refa)−1〉 is the gauge coupling ofAa
µ. We recall that, upon electrowea

breaking, the goldstino can also have components along neutral gauginos, fo
vanishing〈Da〉. However, such components do not contribute to the coupling ofAa

µ

to goldstino bilinears.24 This could give the impression that theZ–goldstino–goldstino
coupling is only determined byF -breaking, with electroweakD-breaking playing no role
However, a closer inspection reveals that the coupling is non zero only if〈Da〉 �= 0. Indeed,
the VEVs〈F i〉 and〈Da〉 are related by the extremum conditions of the scalar poten
Using these conditions and the constraints from gauge invariance we can write the co

22 We will only approximate〈D3〉 and〈DY 〉 with their lowest order expressions after finding general resu
23 The symbolsAa

µ andDa correspond here tocanonically normalized fields.

24 Indeed, the interactionAa

µλ̄
bσ̄µλc does not involve neutral gauginos and the interactionFa

µνλ
bσµνψi

cannot contribute becausẽGσµνG̃= 0.
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above in terms of〈Da〉:

(6.2)
1

2F 2 〈Da〉M2
abA

b
µ
˜̄Gσ̄µG̃,

whereM2
ab is the gauge boson mass matrix and〈Da〉 = −ga〈Kj t

a
j ϕ

j 〉. Therefore, the
coupling of aZ boson to a goldstino pair is

(6.3)
〈DZ〉M2

Z

2F 2 Zµ
˜̄Gσ̄µG̃,

where〈DZ〉 = 〈cwD3− swD
Y 〉 � −(M2

Z/gZ)cos2β (with gZ ≡
√
g2+ g2

Y = e/(swcw)).
The associated decay width is

(6.4)Γ (Z→ G̃G̃)= 〈DZ〉2M5
Z

96πF 4
� cos2 2β

(
200 GeV√

F

)8

MeV,

in agreement with [15]. The on-shell equivalence of the operator (6.2) above to th

found in [15], i.e.,〈Da 〉
2F 2 F

a
µν∂

µ ˜̄Gσ̄νG̃+h.c., can also be checked through the goldstino
gauge boson equations of motion. By doing this, in fact, the latter operator can ea
converted into the operator (6.2).

6.2. Higgs–goldstino–goldstino

The coupling of a neutral scalar particle to two (on-shell) goldstinos can be derived
the field-dependent neutral–fermion mass matrix. We can take Eq. (2.5) without V
expand the coefficients ofλaλb, λaψj , ψiψj to linear order in the scalar fluctuation
(δϕi = ϕi −〈ϕi〉) and select the goldstino components of the fermion fields, Eq. (2.6)
resulting expression is quite involved: it depends on〈F i〉, 〈Da〉 and several derivative
of K, W and fab. However, by using once again the extremum conditions of
scalar potential and gauge invariance, the coefficients of the scalar–goldstino–go
interactions can be expressed in terms of the scalar masses and〈F i〉. The result reads:

(6.5)
1

2F 2 〈F i〉(M2
ī δϕ̄

̄ +M2
ij δϕ

j
)
G̃G̃+ h.c.,

whereM2
ī ≡ 〈Vī 〉 andM2

ij ≡ 〈Vij 〉 are the elements of the scalar mass matrix.25 Notice
the similarity of the boson–goldstino–goldstino interactions in (6.5) with those in (6.2
both cases the coefficients are proportional to the corresponding boson masses, to th
of the associated auxiliary fields and to 1/F 2. In the limit in which SUSY is only broken b
theF -term〈FT 〉 of a singlet superfieldT and theT -scalars have neither kinetic nor ma
mixing with the Higgses, then only theT -scalars couple to two on-shell goldstinos a
(6.5) reduces to known results [4,38]. Electroweak breaking, however, generically in

also non-vanishing values of〈FH0
i 〉 andT –H mixing, so also neutral Higgs bosons c

25 The scalar fields and the associated masses are not yet canonically normalized in (6.5). After ca

normalization through appropriate use of the Kähler metric〈Kı̄j 〉, the normalized version of (6.5) can be written
in an analogous form. It could also be written in terms of mass eigenstates and mixing angles.
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couple to goldstino bilinears. The typical size of such couplings isO(vµM2
H /F 2), where

MH denotes the Higgs boson mass. More specific expressions can be obtained in an
model. Thus a neutral Higgs boson can decay invisibly into a goldstino pair. We reca
in the limiting case of a sizeable invisible width, also the branching fractions of the v
channels are indirectly modified.

6.3. Goldstino interactions with matter fermions

We now consider (two goldstino)–(two fermion) effective interactions. We recall
although the leading energy- andF -dependence of such interactions is completely fix
the presence of (non-universal) model dependent coefficients is allowed by general
on non-linearly realized SUSY [39,40]. This has also been confirmed in specific
(brane) constructions [41]. In the framework of effective Lagrangians with linearly rea
SUSY, a possible source of such parameters is the presence ofD-type SUSY breaking
(besidesF -type SUSY breaking). Indeed, in this case the effective (two goldstino)–
fermion) interactions depend on the fermion quantum numbers under the gauge
with non-vanishingD terms, because of the exchange contribution due to the asso
massive gauge bosons [11,19,42]. A physically relevant example of such a situa
precisely the case of a SUSY effective Lagrangian with gauge groupSU(3)×SU(2)×U(1)
spontaneously broken toSU(3)× U(1)em, since the electroweakD-terms can have non
vanishing VEVs. Therefore, let us consider this case in more detail.

Let f denote a Weyl fermion in the lepton/quark sector, with isospint3f and electric
chargeQf . The (on-shell) interactions involving two goldstinos and twof -type fermions
arise from three sources: sfermion exchange,Z exchange and contact interaction.26 We
recall that the sfermion mass has two contributions (fromVF andVD):

(6.6)m̃2
f =

(
m̃2

f

)
F
+ (

m̃2
f

)
D
= 〈

F̄ ı̄ (− logKf̄f )ı̄jF
j
〉− gZ〈DZ〉QZ

f ,

whereQZ
f ≡ t3f −Qf s

2
w + 〈(logKf̄f )j t

3
j ϕ

j 〉 andKf̄f denotes the Kähler metric of th

supermultiplet(f̃ , f ). The relevant interaction terms, including the one in (6.3), are:[ 〈DZ〉m2
Z

2F 2
˜̄Gσ̄µG̃− gZQ

Z
f f̄ σ̄ µf

]
Zµ +

m̃2
f

F
(f̃ ∗f G̃+ h.c.)

(6.7)− (m̃2
f )F

2F 2 (f̄ σ̄ µf )
( ˜̄Gσ̄µG̃

)
,

where all fields are canonically normalized. An important consequence of the
connection between mass spectrum and goldstino couplings, which is manifest in Eq

26 Since we are interested here in light SM fermions, we neglect terms of the SUSY effective Lagr
that violate the associated chiral symmetries (for instance operators, that, upon electroweak breaking,
fermion mass termsmf ff

c or left–right sfermion mixing terms). We recall that, even if such terms are inclu
low-energy cancellations still take place. In this case, the cancellation mechanism also involves extra contr
from sfermion exchange and contact interactions, as well as additional contributions from the excha

the scalar partners of the goldstino [4,19]. The couplings in (6.5) are one of the ingredients that lead to such
cancellations.
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is that the different contributions to (two goldstino)–(two fermion) interactions ca
against each other at zero momentum, as they should. The first non-vanishing te
the momentum expansion (i.e., the leading terms for energies smaller thanMZ andm̃f )
contain two derivatives and have the form

(6.8)− 1

F 2

[(
f̄ ˜̄G)✷(f G̃)+ 1

2
cf (f̄ σ̄ µf )✷( ˜̄Gσ̄µG̃

)]
,

wherecf has the specific valuecf = gZ〈DZ〉QZ
f /M

2
Z �−(t3f −Qf s

2
w)cos2β . The result

in (6.8) is consistent with the general form allowed by non-linearly realized SUS27

If one is interested in (two goldstino)–(two fermion) interactions at higher ener
the local operators in (6.8) should be generalized to include the full effect off̃ and
Z propagators: this amounts to replace✷→ ✷(1+ ✷/m̃2

f )
−1 in the first operator and

✷→✷(1+✷/M2
Z)
−1 in the second operator.

Let us focus on the processf f̄ → G̃G̃ at s � m̃2
f and consider the effect of theZ

threshold. The cross section is

(6.9)

σ(f f̄ → G̃G̃)= s3

80πF 4

[
1+ 5

2

(
t3f −Qf s

2
w

)
cos2βA

(
s/M2

Z

)
+ 5

3

(
t3f −Qf s

2
w

)2 cos2 2βB
(
s/M2

Z

)]
,

whereA(y)≡ (1−y)B(y)≡ (1−y)/[(1−y)2+ε2y2] andε = ΓZ/MZ takes into accoun
the finiteZ width. When〈DZ〉 = 0 (i.e., cos2β = 0), only the first term in Eq. (6.9) (o
in (6.8)) is relevant and the cross section reduces toσ � s3/(80πF 4) [39]. For 〈DZ〉 �= 0,
however, this simple result only holds above theZ threshold, i.e., forM2

Z � s � m̃2
f ,

where the second and third terms in Eq. (6.9) are suppressed (A(y)∼−1/y andB(y) ∼
1/y2 for y � 1). On the other hand, such terms become dominant in the reso
region. Below resonance, all three terms in Eq. (6.9) contribute with comparable w
(A(0)= B(0) = 1). It is straightforward to extend these results to aSM fermionF with
both helicity components, i.e.,SU(2) doublet componentf and singlet component̄f c . The
unpolarized cross section forFF̄→ G̃G̃ is easily inferred from Eq. (6.9):

σunp(FF̄→ G̃G̃)= s3

N160πF 4

[
1+ 5

4
t3f cos2βA

(
s/M2

Z

)
(6.10)+ 5

6

(
1

4
− 2 t3fQf s

2
w + 2Q2

f s
4
w

)
cos2 2βB

(
s/M2

Z

)]
,

whereN = 1 (3) for charged leptons (quarks). We also recall that, in order to obta
visible signal at colliders, the goldstino pair should be accompanied, for instance
photon or a gluon, as ine+e−→ G̃G̃γ ,QQ̄→ G̃G̃γ ,QQ̄→ G̃G̃g (see, e.g., [14]). As a
alternative to a full computation, approximate expressions for the cross section of suc
particle processes can be obtained by convoluting the above four-particle cross secti
27 The normalization ofcf in (6.8) is related to other parametrizations through the relationscf −1= 1
4α[39]=

− 1
2Cff [40]=−C(f )[19].
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the radiator functions that describe initial state radiation. Then the kinematical variabs in
Eq. (6.10) would be related to the analogous quantityS of the five-particle process throug
s = S(1− x), wherex is the energy fraction taken away by the photon or the gluon.

7. Summary and conclusions

In recent years there has been an intense activity on supersymmetric models in
the scales of SUSY breaking (

√
F ) and mediation (M) are close to the electroweak sca

These include models of extra dimensions (warped or not) with low fundamental
and, more generally, scenarios in which the low-energy supersymmetric effective the
obtained by integrating out physics at energy scales not far from the TeV scale. In al
cases the usual MSSM, where the effects of SUSY breaking in the observable sec
encoded in a set of soft SUSY-breaking terms of sizeO(F/M), may not give an accurat
enough effective description. Additional effects can be relevant, in particular intera
of the goldstino sector with the observable sector and non-negligible contributio
‘hard-breaking’ terms, such asO(F 2/M4) contributions to quartic Higgs couplings.
fact, the latter contributions can compete with (and may take over) the usual (D-term
induced) MSSM quartic Higgs couplings, giving rise to a quite unconventional H
sector phenomenology, as already observed in [7]. The main purpose of this pap
been to study in detail the latter aspect, i.e., to perform a general analysis of the
sector and the breaking of SUSY and electroweak symmetry in this type of models.
this, we have used a model-independent approach based on a general effective Lag
in which the MSSM superfields are effectively coupled to a singlet superfield, assum
be the main source of SUSY breaking. Our main results can be summarized as follo

• Rather than the usual MSSM potential, the Higgs potential resembles that
two-Higgs-doublet model (2HDM), where the quadratic and quartic couplings
be traced back to the original couplings in the effective superpotential and K
potential. However, there are still some differences, e.g., the presence of der
couplings besides the non-derivative ones described by the scalar potential. Mo
the scalar sector also contains an extra complex degree of freedom, which come
the singlet supermultiplet. This scalar field can have non-negligible interactions
the Higgs fields, and could also mix with them as a result of electroweak breakin
• The presence of extra quartic couplings that may be larger than the usual ones

novel opportunities for electroweak breaking. The breaking process is effectively
gered at tree-level and presents important differences with the usual radiative m
nism. Electroweak breaking can occur in a much wider region of parameter spac
for values of the low-energy mass parameters that are normally forbidden. For ins
m2

H1
andm2

H2
are allowed to be both negative. Another unconventional situation,

allowed, is the case in whichm2
H1

andm2
H2

are equal and positive, and electrowe

breaking is driven bym2
3H1 ·H2. This breaking is natural, since the latter term is
only off-diagonal bilinear coupling among MSSM fields (with R-parity conserved), so
SU(2)L × U(1)Y is the only symmetry that can be broken when all scalar masses are
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positive. A further advantage of the extra quartic couplings is that their presenc
reduce the amount of tuning necessary to get the correct Higgs VEVs.
• The spectrum of the Higgs sector is also dramatically changed, and the usual M

mass relations are easily violated. In particular, the new quartic couplings allo
lightest Higgs field to be much heavier (� 500 GeV) than in usual supersymmet
scenarios. Moreover, this field could have a substantial singlet component, mod
its properties.
• Departures from the usual MSSM results also appear in the chargino and neu

mass matrices, where the effective operators induce some corrections after elect
breaking. Moreover, the neutralino sector also includes the goldstino. This is a s
in the limit of unbroken electroweak symmetry, but generically (although not ne
sarily) also acquires Higgsino and gaugino components after electroweak break
• After giving a general derivation and discussion of the above properties, we ha

lustrated them in two simple examples, analyzing in each case the Higgs pot
the electroweak breaking process, the Higgs masses and the neutralino and c
spectra.
• Finally, we have analysed the role of electroweak breaking in processes in whic

particles could emit a goldstino pair, such as fermion–antifermionannihilations an
invisible decays ofZ and Higgs bosons. We recall that such processes may off
important window to SUSY, especially if other superparticles are not experimen
accessible.

In conclusion, it is clear that many features of the conventional MSSM Higgs s
and related ones can be significantly changed in scenarios with low-scale SUSY br
(examples of this are the mechanism of the electroweak breaking and the mass
lightest Higgs). This potentially offers new ways to overcome traditional difficulties o
MSSM as well as new prospects for the detection of SUSY in future experiments.
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Appendix A

This appendix deals with a subclass of quartic two-Higgs-doublet potentials:
which have real parameters and are invariant under a symmetry that exchanges
doublets. The mass parameters and the quartic couplings of such a potential are su
the restrictionsm2

1=m2
2, λ1= λ2 andλ6= λ7, i.e., the potential has the form
V (H1,H2)=m2
1

(|H1|2+ |H2|2
)+m2

3(H1 ·H2+ h.c.)
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+ 1

2
λ1

(|H1|4+ |H2|4
)+ λ3|H1|2|H2|2+ λ4|H1 ·H2|2

(A.1)

+ 1

2
λ5

[
(H1 ·H2)

2+ h.c.
]+ λ6

(|H1|2+ |H2|2
)
(H1 ·H2+ h.c.).

A special case of symmetric potentials are those invariant underSU(2)L × SU(2)R. Such
potentials only depend on the quantities|H1|2+|H2|2 andH1 ·H2, so the further condition
λ1= λ3 holds for them.

If a symmetric potential of the form (A.1) admits a minimum with non-vanish
Higgs VEVs, such a minimum could either preserve (| tanβ| = 1) or break spontaneous
(| tanβ| �= 1) the discrete symmetry that exchanges the two doublets. We will
present the conditions under which the former or the latter case is realized, an
explicit formulae for the Higgs boson masses.28 We anticipate that, in the special case
SU(2)L × SU(2)R invariant potentials, only the case| tanβ| = 1 can be realized. For late
convenience, we introduce the following abbreviation:λ̃≡ (1/2)(−λ1+ λ3+ λ4+ λ5).

A.1. Minima with | tanβ| = 1

The conditions to have a minimum with tanβ = s =±1 are:

(A.2)m2
1+ sm2

3 < 0,

(A.3)λ1+ λ̃+ 2sλ6 > 0,

(A.4)(λ̃+ sλ6)m
2
1 > (λ1+ sλ6)sm

2
3,

(A.5)(λ5+ sλ6)m
2
1 > (λ1+ λ̃− λ5+ sλ6)sm

2
3,

(A.6)(λ4+ λ5+ 2sλ6)m
2
1 > (λ1+ λ3+ 2sλ6)sm

2
3.

The value ofv2≡ 2〈|H 0
1 |2+ |H 0

2 |2〉 is

(A.7)v2= −2(m2
1+ sm2

3)

λ1+ λ̃+ 2sλ6
.

The mass of the Higgs field along the VEV direction is

(A.8)m2
h = (λ1+ λ̃+ 2sλ6)v

2.

The remaining Higgs boson masses are:

(A.9)m2
H = 2m2

1+ (λ1+ sλ6)v
2=−2sm2

3− (λ̃+ sλ6)v
2,

(A.10)m2
A = 2m2

1+ (λ1+ λ̃− λ5+ sλ6)v
2=−2sm2

3− (λ5+ sλ6) v
2,

(A.11)

m2
H± = 2m2

1+
[

1

2
(λ1+ λ3)+ sλ6

]
v2

=−2sm2
3−

[
1

2
(λ4+ λ5)+ sλ6

]
v2.
28 Such formulae do not include the corrections from kinetic normalization, which should be added if required.
Notice, however, that these corrections are higher order effects for Higgs masses that areO(v2) at leading order.
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A.2. Minima with | tanβ| �= 1

The conditions to have a minimum with| tanβ| �= 1 are:

(A.12)m2
1−

∣∣m2
3

∣∣ < 0,

(A.13)λ3 > λ1 > 0,

(A.14)λ1λ̃ > λ2
6,

(A.15)λ̃ > λ5,

(A.16)λ6m
2
3− λ̃m2

1 >
∣∣λ6m

2
1− λ1m

2
3

∣∣.
The values ofv2≡ 2〈|H 0

1 |2+ |H 0
2 |2〉 and tanβ ≡ 〈H 0

2/H
0
1 〉 are determined by

(A.17)v2= 2(λ6m
2
3− λ̃m2

1)

λ̃λ1− λ2
6

, sin2β = λ6m
2
1− λ1m

2
3

λ6m
2
3− λ̃m2

1

.

The CP-even Higgs mass matrix, projected on the VEV direction (h‖) and on the
orthogonal one (h⊥), reads:

(A.18)
〈
h‖|M2|h‖

〉= (λ1+ λ̃sin2 2β + 2λ6 sin2β)v2,

(A.19)
〈
h⊥|M2|h⊥

〉= (λ̃cos2 2β)v2,

(A.20)
〈
h‖|M2|h⊥

〉= (λ̃sin 2β + λ6)cos2βv2.

These imply the following bounds on the masses of the CP-even Higgs bosons:

(A.21)min
{
m2

h,m
2
H

}
�

〈
h‖|M2|h‖

〉
� max

{
m2

h,m
2
H

}
,

(A.22)min
{
m2

h,m
2
H

}
�

〈
h⊥|M2|h⊥

〉
� max

{
m2

h,m
2
H

}
.

The CP-odd and charged Higgs masses are

(A.23)m2
A =

1

2
(−λ1+ λ3+ λ4− λ5)v

2= (λ̃− λ5)v
2,

(A.24)m2
H± =

1

2
(−λ1+ λ3)v

2=
[
λ̃− 1

2
(λ4+ λ5)

]
v2.

In particular notice that, in order to have a minimum with| tanβ| �= 1 and positive
m2

H± , a symmetric potential has to fulfill the conditionλ3− λ1 > 0. This is not satisfied
by SU(2)L × SU(2)R invariant potentials: in this case a non-trivial minimum necessa
has | tanβ| = 1. The same conclusion holds in those supersymmetric models in w
SU(2)L × SU(2)R is preserved by the Kähler potential (before inserting theU(1)Y vector

superfield) and is only broken by the hypercharge couplingg′: in such a caseλ3 − λ1 =
−g′2/2< 0, so a non-trivial minimum necessarily has| tanβ| = 1.
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