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Chapter 1

Introduction.

Since superconductivity was discovered by H. Kamerlingh Onnes (Leiden) in 1911
[1], it has been used for wide range of practical purposes. Among all the applica-
tions, the most notable ones rely on their use as zero-resistance elements to produce
strong magnetic fields (e.g. Large Hadron Collider at CERN), as ideal diamagnets
to levitate objects (e.g. Japan Maglev trains) and as precision detectors, either to
measure currents [2, 3] or magnetic fields with SQUIDs [4] (Superconducting QUan-
tum Interference Device).

Conventional superconductors with low Tc are very useful in the fabrication
of structures with sizes smaller than the characteristic coherence length (typically
micron-size). In recent decades, the great achievement in making high-quality con-
tacts between superconductors, normal metals, ferromagnets and insulators has al-
lowed the controlled building of nanostructures small enough to show quantum phe-
nomena.

New technologies focused on miniaturization of electronic solid-state circuits face
significant obstacles. Decreasing the size and increasing the speed of transistors,
leads to large ohmic dissipation and the associated heating. For that reason, there is
an increasing interest in the study of heat management and control at the nanoscale.
The branch of electronics that studies the coupling between the charge and heat cur-
rents is known as caloritronics. If one adds the spin degree of freedom, one talks
about spin caloritronics.

In properly biased hybrid nanostructures, the superconducting gap can be used as
an energy filter that cools down the adjacent material by selectively allowing high-
energy “hot” quasiparticles to tunnel to the superconductor. The flow of charge
current in normal metal - insulator - superconductor (N-I-S) tunnel junctions at a
bias voltage V is accompanied by a heat transfer from N into S. That heat transfer
through N-I-S junctions can be used for the realization of microcoolers [5, 6, 7].
We extend these studies by considering the use of spin filters in the junction and
Zeeman fields in the superconductor with the aim of increasing the cooling power.

In the present work, we explore the field of spin caloritronics by using supercon-
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ductors, normal metals, insulators and ferromagnetic insulators as building blocks.
To that end, in chapter 3 we first introduce the formalism used and present some
basic usage examples of it. In chapter 4 we present the concept of cooling power and
study it in a N-I-S structure. Replacing the insulating layer by a spin-splitting one,
we also reproduce some recent results [8] that suggest the enhancement of cooling
power in these configurations.

Finally, we devote chapter 5 to discuss some novel results obtained over the
course of this Master’s Thesis. We study how superconductors with a spin-split
density of states can be used to improve the cooling power and refrigeration at the
nanoscale. The spin-splitting can be achieved by an external magnetic field or by
the proximity of an adjacent ferromagnetic insulator. We show that on the one
hand, the spin-splitting opens the possibility of refrigerating the superconducting
electrode. This is not usually possible and, in addition to its fundamental interest
it might even be useful for some quantum applications. On the other hand, we
demonstrate that the maximum cooling power in a normal metal in contact with a
spin-split superconductor, is achieved at lower values of the bias voltage V . This
implies lower ohmic dissipation rates. As a result, the refrigeration of the metallic
sample is enhanced by a neighbouring spin-split superconductor when the volume
of the latter is comparable to that of the former. The results of this Master’s Thesis
are being discussed in an article which is in process [9].
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Chapter 2

Landauer-Büttiker Formalism.

In this chapter we review the Landauer-Büttiker formalism that is suitable for the
description of electronic transport in mesoscopic structures. This formalism will be
generalized in subsequent chapters for cases in which superconductivity is present
in the system. The formalism presented in this chapter was introduced for the first
time by Landauer [10, 11] for systems with only two terminals. Afterwards, Büttiker
et al. (among which Landauer was) extended it for more general cases [12].

(a)
(b)

Figure 2.1: (a) Cross section of a rectangular adiabatic QPC (either along y
or z direction) and (b) the effective potential energy due to the constriction. At
a given energy, E, only the transport levels (solid lines) are open.

The Landauer-Büttiker formalism describes the transport through a ballistic re-
gion attached to well-defined electrodes with zero resistances. For example, the
intermediate region can be, for example, a quantum point contact (QPC), which
was first studied by van Wees et al. in 1988 [13]. By means of their experimental
study, the verification of a big amount of previous theoretical works was enabled.
They consist in a narrow constriction between the two electrodes, with a width sim-
ilar to the electron wavelength. Therefore, this constriction will be translated into
a confinement, causing some appreciable quantum effects.
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The behaviour of electronic transport in a QPC can be studied as a free electron
gas traveling through a rectangular waveguide with a variable cross section that
confines it. In Fig. 2.1a the cross section of the structure along the direction of
propagation is represented in a schematic way. If the size of the cross section varies
over distances much larger than the electronic wavelength, we can calculate the con-
finement energy of the electron in each point along the propagation direction, x,
as an infinite rectangular potential of dimensions a(x) × b(x). The results of this
calculations are reflected in Fig. 2.1b, where the constriction in the quantum point
contanct behaving as a potential barrier can be seen.

This barrier has a direct consequence of great importance: not every electron
living in one of the electrodes will be able to travel through the structure. From a
conventional view, only those particles whose energy is greater than the one of the
potential barrier would be transmitted. However, this barrier depends on the con-
finement state level n, which are the quantum numbers of the rectangular potential
well that describes the transversal component of the electronic wavefunction). In
the quantum transport jargon, these are known as transmission channels. In Fig.
2.1b solid lines represent open conduction channels for a carrier of energy E, i.e.
possible rectangular potential eigenfunctions describing the electronic wavefunction
perpendicular to the x axis whose eigenvalues (the energy) are always lower than
E. Therefore, depending on carrier’s energy, more or less transmission channels will
be open modifying electronic properties in the nanostructure; specially its electric
conductance.

Taking into account that the velocity of propagation of a particle along the
direction x is given by ~vx = ∂E/∂kx, one can derive the current flowing along
a structure like the one in Fig. 2.1 biased with a potential V . To achieve that,
one writes the electric current through the contact as the normalized sum over the
whole momentum space of the multiplication of the velocity of the electron times
its probability of jumping from one electrode to the other one, i.e:

I = 2se
∑

n

∫ ∞
−∞

dkx
2π

vx(kx)
[
fL(kx)− fR(kx)

]
=

2se

2π~
∑

n:open

∫
dE
[
fL(E)− fR(E)

]
=

=
2se

h
Nopen(µL − µR) = G0NopenV. (2.1)

In these equations the notation 2s is used for the factor coming from spin de-
generacy, µ ≡ µL − µr = eV and G0 ≡ 2e2

h
≈ 7.75 × 10−5 S is the quantum of the

conductance. This result suggests that electric conductance is quantized, which was
experimentally verified in 1988 by the same Dutch group that first reported a QPC
[13] as well as by some others [14]. This derivation assumes a pure ballistic case, i.e.
when no impurities are present in the sample. The effect of scattering centers can
be included by assuming a finite transmission, 0 ≤ Tn ≤ 1, for each of the channels.
Thus, the complete Landauer formula [10, 11] reads:
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I =

[∑
n

Tn(µ)G0

]
V. (2.2)

This simple expression is a powerful tool to describe the electronic transport
in a mesoscopic region attached to electrodes, being all the information about the
structure stored in the transmission coefficients, Tn. In the case of normal (non-
superconducting) nanostructures Eq. 2.2 describes most of the transport features.
This is applied when the quasiparticles of the structure behaves as the real particles,
i.e. electrons. In the superconducting case, however, it is not the case.

Superconductors are macroscopically coherent quantum systems with a charac-
teristic electronic structure that distinguishes them from normal metals, insulators
or semiconductors. Regarding quantum transport, the opening of a gap, ∆ ∼ meV ,
in which Cooper’s pairs lives, is of great importance. This coherent condensate is
the origin of several effects, such as the Josephson effect or Andreev reflections.
Moreover, quasiparticles are a linear combination of electrons and holes.

These sort of effects, in which the phase coherence plays a crucial role, cannot be
described by Eq. 2.2. Thus, in the following chapter we will generalize the formalism
that this equation describes for the case in which superconducting correlations are
present.
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Chapter 3

Semiclassical Transport.
Introduction and Basic Examples.

In the previous chapter we have reviewed the Landauer-Büttiker quantum trans-
port formalism and discussed its limitations. At first glance, one could think about
using a full scattering-matrix formulation of any transport problem in order to go
beyond the Landauer-Büttiker approach. This would work for idealised structures
without any defect or impurity. However, in realistic systems, each impurity acts
as a scattering center, re-emitting incoming waves that have to be included in the
wave function, and turning the true quantum picture hopelessly complicated.

One can find a solution by renouncing to a full microscopic description and
adopting a semiclassical picture [15]. In such case, one describes electrons as a sta-
tistical ensemble of quasiparticles characterized by their (space-time) coordinates,
x, and (quasi)momenta, p, by means of a function. This approach can be justified
taking into account that for quasiparticles in a metal δp ≈ ~kF and substituting
it in Heisenberg uncertainty relation, δxδp ≥ ~/2. Therefore, the classical limit
is reached when the function characterizing the ensamble slowly depends on the
space-time coordinates (in particular when δr � k−1

F , where kF is the wavenumber
of quasiparticles at the Fermi surface).

However, a purely classical approach to transport, such as one based on Boltz-
mann or drift-diffusion equation, would disregard the coherence of electron waves
from the very begining, and thus, it is not useful for a description of quantum trans-
port. We need therefore a semiclassical rigurous formalism that preserves, at least
partially, this coherence. Such formalism is based on the semiclassical Green’s func-
tions.

In the present work we are not going to present the derivation of the semiclassical
Green’s functions’ formalism. We refer those readers interested in details to the book
by Zagoskin [16]. In the next section we will introduce the Green’s functions, set
the notation that we will use throughout the work and solve some basic training
problems.
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3.1 Basic Concepts

In this section we introduce the basic tools that are being used in subsequent chap-
ters. From now on, we set ~ = 1 and kB = 1 unless we explicitly write them.

3.1.1 One-particle Green’s Functions

Green’s functions are a powerful quantum field theoretical tool in many body prob-
lems. In this section we outline how they can be obtained, within the quasiclassical
approximation, to describe mesoscopic normal metal and superconducting systems.
We refer readers interested in details to the book in Ref. [16].

First, we write the Green’s function in Nambu space, which combine the particle
and hole space. Using pseudo-spinors as a compact notation, Ψ̂† = (Ψ†↑,Ψ↓), we can
express the time ordered GF as:

Ĝ = −i 〈T Ψ̂(x1)Ψ̂†(x′1)〉 =

(
G(x1, x

′
1) F(x1, x

′
1)

F †(x1, x
′
1) G†(x1, x

′
1)

)
, (3.1)

where x1 and x′1 represent sets of space and time coordinates. The Green’s function
present an anomalous component, the pair amplitude F = −i 〈TΨ↑Ψ↓〉, so charac-
teristic for superconducting systems. These functions satisfy Gor’kov equation of
motion [17],

(Ĝ−1
0 − ∆̂− Σ̂imp)(x1, x2) ∗ Ĝ(x2, x

′
1) = δ(x1, x

′
1), (3.2)

where ∗ includes a convolution over coordinates. These GFs oscilate as a function
of the relative coordinate |r− r′| on a scale of the Fermi wavelength λF . However,
this is much shorter than the characteristic lengths in superconducting problems,
given by ξ0 = vF/∆ and ξT = vF/2πT .

In the quasiclassical approximation we ignore the fast oscillations of Ĝ as a
function of |r− r′|. Moreover, we have to pay attention to the dependece of the
transport direction, i.e. on the direction of the velocity vF . Writing Ĝ(ξ,vF , r, E),

where ξ ≡ p2

2m
− µ depends on the magnitude of the momentum, the quasiclassical

Green’s functions are obtained:

G(r,vF , E) ≡ i

π

∫
dξĜ(ξ,vF , r, E). (3.3)

Finally, during this work we will always work in the diffusive (or dirty) limit. The
system has so many impurities that, from the point of view of one of its electrons,
it is isotropic in every direction. Hence, we average the quasiclassical GFs over all
the possible directions of their velocity vF :

G(r, E) ≡
∫
dΩG(r,vF , E). (3.4)

In this work, we use the quasiclassical Green’s functions in Eq. 3.4. In particular,
we mainly focus on the case where the system is considered infinite and homogeneous
and hence the GFs only depend on the energy.
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3.1.2 Spaces and Pauli Matrices

Green’s functions have a matricial structure that appears due to its symmetry that is
usually described via Pauli matrices in order to simplify future algebraic operations
thanks to their conmutation and anticonmutation relations,

[σ̂i, σ̂j] = 2iεijkσ̂k, {σ̂i, σ̂j} = 2δij. (3.5)

In the present work we study superconducting, magnetic, out-of-equilibrium sys-
tems. Therefore, the most generic matrix structure for the GF comprises the direct
(tensorial) product of three spaces:

Keldysh space. In order to describe non-equilibrium situations we use the
Keldysh formalism. This is defined in a two dimensional space in which Green’s
functions are triangular, with the retarded, GR, and advanced, GA, compo-
nents in the diagonal and a so called Keldysh component in the corner, GK ,
as follows: (

GR GK

0 GA

)
.

Nambu space. As we know from BCS theory, quasiparticle excitations in
a superconductor are described by linear combinations of quasi-electrons and
quasi-holes. Thus, for the description of superconducting correlations it is
convenient to extend the quasiparticle space to the one of the electron-hole. In
this work we describe this two dimensional Nambu space, using Pauli matrices
labeled by τ̂i.

Spin space. In situations in which ferromagnetism or external magnetic fields
are involved, the spin space must be taken into account. In this space, Pauli
matrices will be labeled by σ̂i.

3.1.3 Green’s Functions

In this section we present the quasiclassical GFs that are used in this work. They
can be obtained from the microscopic or Gor’kov Green’s functions. We refer those
readers interested in this derivation to the reference [16]. Firstly, it should be high-
lighted that in this section we do not take into account the effect of the magnetic field
and, hence, quasiclassical GFs will not present spin structure, such that Ğ = Ǧ⊗ σ̂0.
The way in which splitting fields affects to Green’s functions is discussed in following
chapters.

Green’s Function of a Normal Metal

Within the quasiclassical approach the spectrum of a normal metal is trivially flat.
This is manifested in the retarded and advanced GFs that, in the Nambu (electron-
hole) space are written as:

ĜR
N = τ̂3, ĜA

N = −τ̂3. (3.6)
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Moreover we have the Keldysh component,

ĜK
N = ĜR

N F̂ − F̂ ĜA
N , (3.7)

which contains information about the voltage and temperature dependant occupa-
tion of the states described by the symmetrized distribution function:

F̂ = 1
2

(
tanh E+eV

2T
+ tanh E−eV

2T

)
+ 1

2

(
tanh E+eV

2T
− tanh E−eV

2T

)
τ̂3 ≡ F++F−τ̂3. (3.8)

The normalized density of states (DOS) is defined via the GFs as follows:

N (E) ≡ 1
2
Tr
[
τ̂3

(
ĜR − ĜA

)]
, (3.9)

which in a normal metal equals the unity matrix. Another important identity that
can be checked is the relation of normalization of the Green’s function, i.e. Ǧ2

N = 1̌.

Green’s Function of a Superconductor

In conventional superconductors electrons with energies around the Fermi energy
form a condensate of pairs, the so called Cooper pairs. The description of these
states in terms of Green’s functions requires to include two particles correlations,
the Gor’kov or anomalous GFs, f . Furthermore, superconductivity is a macroscopic
quantum coherent state and, hence, its phase, ϕ, is a quantity of great importance
that explicitly appears on the Green’s functions:

ĜR
S = gRτ̂3 + ifR(τ̂2 cosϕ+ τ̂1 sinϕ),

ĜA
S = gAτ̂3 + ifA(τ̂2 cosϕ+ τ̂1 sinϕ), (3.10)

ĜK
S = ĜR

S F̂ − F̂ ĜA
S .

In the previous expressions g and f stand for the standard and anomalous Green’s
functions respectively and equals

gR/A(E) =
E ± iη√

(E ± iη)2 −∆2
, (3.11)

fR/A(E) =
∆√

(E ± iη)2 −∆2
, (3.12)

where ∆ is the modulus of the superconducting order parameter and η is known
as damping parameter that, besides moving the poles below or over the real axis,
modelizes impurity effects in the superconductor. In these expressions the branch
cut of the square root is unconventionaly chosen as the positive real axis (which is
rendered in the branch cuts shown in Fig. 3.1a for the roots in the denominators
of g and f) such that 3.9 is still fulfilled. The reduced density of states in the
superconductor reads:

NS(E) =
1

2

[
gR(E)− gA(E)

]
. (3.13)
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Figure 3.1: (a) Branch cuts positions for the square root expression in the
denominator of g(E) and f(E). (b) Broadening of the peaks in the reduced
density of states of a superconductor when damping parameter, η, is increased.

Therefore, the density of states depends on the paremeter η. In particular, when
this parameter is increased the characteristic peaks that can be seen in the borders
of the superconducting gap are lowered and broadened, as shown in: Fig. 3.1b.

It is important to notice that while the standard Green’s functions, g(E), reflect
the information of the electronic structure of quasiparticles, the anomalous ones,
f(E), are the ones that describe the structure of the superconducting condensate.
This can be deduced by observing that in the Green’s function of a normal metal the
Nambu space is diagonal (quasiparticles in the metal are well-behaved), whilst these
anomalous ones are off-diagonal (in superconductivity, quasiparticles are a linear
combination of electrons and holes). Furthermore, we can check that in the limit
where ∆ = 0 Green’s function of normal metals are recovered.

Regarding to the Keldysh component, as the insertion of a voltage in a super-
conductor leads to time dependant phases (AC Josephson Effect) that hamper the
algebra, in this work we avoid applying the voltage on the superconductor. Hence,
we work with F̂ ≡ τ̂0F0 = tanh E

2T
.

3.2 Usadel Equation and Current Matrix Formal-

ism

As we have previously discussed, the drift-diffusion equation disregards the coher-
ence of the superconducting phase from the very beginning. Nevertheless, there is
an analogous equation, which is valid at scales exceeding the mean free path, that
takes into account those quantum effects. It is known as Usadel equation and reads:

iD∇j̆−
[
Ĕ, Ğ

]
= 0; j̆ = Ğ∇Ğ, (3.14)
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where D stands for the diffusion constant, Ĕ ≡ ετ̂3 + 1
2
∆eiϕ(iτ̂2 + τ̂1) + 1

2
∆e−iϕ(iτ̂2−

τ̂1)
(

+ . . .
)

is the expression of the self energy of the system that varies between
normal metals, ferromagnets and superconductors, among others. In addition, the
quantity j̆ stands for the current matrix that plays an important role in quantum
transport, which in bulk systems is expressed by means of the GFs as shown in
Eq. 3.14. From this matrix we obtain the different currents of charge, energy and
spin by taking proper traces over theNambu×Spin space of the Keldysh component.

When instead of bulk properties, the goal is to obtain the current flow through a
barrier or scattering region between two electrodes, we have to add some boundary
conditions to the Usadel equation. This yields an expression for the current matrix
for any two electrodes, known as Nazarov equation [18]:

J̆ =
∑
n

2τn

[
Ğl, ĞR

]
·
[
4− τn

(
2−

{
ĞL, ĞR

})]−1

. (3.15)

In this equation the sum is performed over open conduction channels, τn is the
transmission of each channel, the subscripts are named L and R, which mean left
and right, and [·, ·] and {·, ·} stand for conmutator and anticonmutator respectively.
In the following examples it is ascertained how from the Keldysh component of this
matrix, currents of different electronic degrees of freedom can be described. The
most relevant currents are:

I = e
8h

∫
dE Tr[τ̂3J̌

K ] − Charge current

Q = 1
8h

∫
dE E Tr[J̌K ] − Energy current

S = 1
32π

∫
dE Tr[σ̂3J̌

K ] − Spin current

(3.16)

Each trace of the Nambu× spin space reflects one current symmetry. For exam-
ple, while electrons and holes contribute equally to the energy current, they certainly
do not do it in the same way to the electric one, as they have opposite charge. That
electron/hole or spin up/down contrary contribution to the charge is included mul-
tiplying the J̌K matrix by τ̂3 or σ̂3 respectively. Finally, charge current is given in
units of e (the electron charge), whereas the spin current is given in units of ~

2
for

the spin of electron-like fermions. The last ones are integrated over the energy to
obtain the whole current and divided by h to obtain the correct units.

3.3 Example 1: Ohm’s Law

Firstly, to exemplify how to apply Eq. 3.15-3.16 to transport situations we ana-
lyze the electronic transport through a metallic structure. Starting from Eq. 3.15,
we recover the Ohm’s Law of conduction. Obviously, there are much simpler ways
to obtain the Ohm’s law that do not involve Keldysh GFs. However, this simple
example will illustrate how to use the formalism that we apply in the subsequent
sections. As this is the first one it will be done step by step.
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NL
T 

 V=0

NR
T 

 V≠0

Figure 3.2: Resistive junction between two metallic infinite electrodes. Both
reservoirs are at the same temperature and the voltage is applied on the left.

We consider a junction composed by two normal metals at the same temperature.
A voltage bias, V , is applied across the junction. Per definition, electrodes have a
negligible electric resistance and therefore the voltage drop is assumed to happen at
the tunneling barrier (see Fig. 3.2). In order to apply the formalism described by
Eqs. 3.15-3.16, we write down the GFs of the electrodes, which in the normal case
have a simple form:

ĜR
L = ĜR

R = τ̂3,

ĜA
L = ĜA

R = −τ̂3,

ĜK
L = ĜR

L F̂L − F̂LĜA
L = 2τ̂3F0,

ĜK
R = ĜR

RF̂R − F̂RĜA
R = 2τ̂3 (F+ + F−τ̂3) ,

where F0 ≡ tanh E
2T

and F± ≡ 1
2
(tanh E+eV

2T
± tanh E−eV

2T
). The above GFs are used

to compute the current matrix in Eq. 3.15. In this case, as the anticonmutator
results to be {ĜL, ĜR} = 2, the denominator is the unit matrix multiplied by 4.
Introducing the above GFs into Eq. 3.15 we obtain the following Keldysh component
of the current matrix:

ĴK(E) =
∑
n

2τn (F+ − F0 + τ̂3F−) .

Now, we can substitute this expression in Eq. 3.16 obtaining the next charge current:

I =
e

4h

∫
dE Tr

[
τ̂3Ĵ

K
]

=
e
∑

n τn
2h

∫
dE

(
tanh

E + eV

2T
− tanh

E − eV
2T

)
=

=
∑
n

τn
2e2

h
V ≡

∑
n

τnG0V = GTV, (3.17)

where the factor 2 stems from the trace over spin, G0 ≡ 2e2

h
is the quantum of

conductance and GT =
∑

n τnG0 stands for the total conductance of the contact,
or the inverse of the contant resistance. Eq. 3.17 is nothing but the Ohm’s law.
Notice that the conductance is given by the sum of transmission of the different
conducting channels multiplied by the quantum of conductance, according to the
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Landauer-Büttiker formalism.

Moreover, it is easy to check that heat and spin currents are zero in the present
setup.

3.4 Example 2: Heat Transport and Wiedemann-

Franz Law

Now, we study a slightly different case in which we still have two metallic electrodes
but instead of being at different electric potential they are temperature biased (Fig.
3.3). This can be experimentally achieved with a dissipative electric current flowing
along an electrode placed next to the one that we want to heat up [19] or by putting
the electrodes in any temperature bath.

NL
T L

 V=0

NR
T R

 V=0

Figure 3.3: Resistive junction between two metallic infinite electrodes. Both
electrodes are at the same potential, but at different temperatures.

In this situation the Green’s functions read:

ĜR
L = ĜR

R = τ̂3,

ĜA
L = ĜA

R = −τ̂3,

ĜK
L = 2τ̂3 tanh E

2TL
≡ 2τ̂nF0L,

ĜK
R = 2τ̂3 tanh E

2TR
≡ 2τ̂nF0R,

where the only differences from the previous example lie on the distribution func-
tions. The substitution of these GFs in Eq. 3.15 yields to the following Keldysh
component of the current matrix,

ĴK =
∑
n

2τn (F0R − F0L) . (3.18)

Finally, we obtain from 3.16 that, whereas the electric current vanishes, the heat
or energy current flows through the juntion. The latter is given by
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Q =

∑
n τn
h

∫
dE E

(
tanh

E

2TR
− tanh

E

2TL

)
=
∑
n

τn
π2

3h

(
T 2
L − T 2

R

)
=

=
π2GT

6e2

(
T 2
L − T 2

R

)
, (3.19)

where the integral is done by parts and using the equality
∫∞
−∞ dx x

2 sech2x = π2

6
.

Recovering the Boltzmann constant multiplying the temperature that has been set
to one until now, and assuming a small temperature difference in Eq. 3.19, with
TR = T and TL = T + δT , we obtain:

Q =
π2GT

3

(
kB
e

)2

TδT ≡ KδT, (3.20)

where K is the thermal conductance of the junction. As the conductance in the
previous example, this quantity depends exclusively on the transmission coefficients,
τn. Now, the Wiedemann-Franz law can be obtained taking the ratio between the
electric and thermal conductance, cf. Eqs. 3.17 and 3.20:

K

GT

=
κ

σT
=
π2

3

(
kB
e

)2

T, (3.21)

where κ and σT are the thermal and electrical conductivity of the system respec-
tively. The proportionality constant, L ≡ π2

3
kB
e

, is known as the Lorenz number.
The realation shown in Eq. 3.21 is valid when T → 0, where the heat and charge
currents are mainly carried by quasiparticles. At higher temperatures, two mecha-
nisms produce a deviation of the ratio L: (i) other thermal carriers such as phonons
and (ii) inelastic scattering.

3.5 Example 3: Josephson effect

The previous examples ilustrated how to obtain Landauer-Büttiker equation for
the conductances from the more general equation 3.15. Though, the full power of
the formalism used in this work can be appreciated considering superconducting
element. Here we study a system composed by two phase biased superconducting
electrodes, i.e. we assume that there is a phase difference between the two electrodes
(Sec. 3.1.3), as shown in Fig. 3.4. We focus on the electrical current that may flow
through the junction in abscence of an applied voltage. This is the so called DC
Josephson effect that cannot be deduced from the Landauer-Büttiker formalism.

As there is not potential bias between the superconducting electrodes, the dif-
ference between their coherence phases will remain constant, so we can set one of
the phases to zero. In this case the Green’s functions read:

Ĝ
R(A)
L = gR(A)τ̂3 + ifR(A)τ̂2,

Ĝ
R(A)
R = gR(A)τ̂3 + ifR(A) (τ̂2 cosϕ+ τ̂1 sinϕ) ,

ĜK
L/R =

(
ĜR
L/R − ĜA

L/R

)
F0,
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SL
 φ1

 V=0

SR
 φ2

 V=0

Figure 3.4: Junction between two superconducting infinite electrodes with dif-
ferent coherence phases. Both electrodes are at the same potential and tempera-
ture.

where F0 = tanh E
2T

and the expressions of the standard, gR(A), and anomalous,
fR(A), GFs were given in Eq. 3.11-3.12. The substitution of these Green’s functions
into Eq. 3.15 results in a denominator that no longer behaves as a scalar and needs
to be inverted. However, the triangular structure of these matrices simplifies their
inversion, as from the matricial equation ǦǦ−1 = 1 it can be easily shown that

(
Ĝ−1

)R
=
(
ĜR
)−1

,(
Ĝ−1

)A
=
(
ĜA
)−1

, (3.22)(
Ĝ−1

)K
= −

(
Ĝ−1

)R
ĜK

(
Ĝ−1

)A
.

The final expresion of the current matrix’ Keldysh component gets way more
complex that in the previous examples. Nevertheless, as we only focus on the charge
current, only those components proportional to τ̂3 in ĴK contribute (see Eq. 3.16).
We obtain the following expression for the spectral current:

I(E) ≡ e
∑

n τn
4h

Tr
[
τ̂3Ĵ

K
]

=

= i
e

h

tanh E
2T

∑
n τn

2

[
(fR)2

1+(fR)2 sin2 ϕ
2

− (fA)2

1+(fA)2 sin2 ϕ
2

]
sinϕ =

= i
e

h

∆2
∑

n τn
2

[
tanh

E
2T

(E+iη)2−∆2(1−∆2 sin2 ϕ
2

)
− tanh

E
2T

(E−iη)2−∆2(1−∆2 sin2 ϕ
2

)

]
sinϕ. (3.23)

As it can be seen above, electric current in this system depends explicitly on re-
tarded and advanced anomalous Green’s functions, which immediatly suggests that
its existance is related to the superconducting condensate. In the normal case the
anomalous GFs are zero, fR(A) = 0, and hence the electric current vanishes, as is
expected in a zero voltage situation.

In order to obtain the total current we need to integrate Eq. 3.23 over the en-
ergy. This integral can be computed by using the residue theorem. One can see
that in Eq. 3.23 we have explicitly split the expression in square brackets in two
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Im[E]

Re[E]

E=iωn

E=±E0+iη

E=±E0-iη

Figure 3.5: (black) Contour along which the integral has been evaluated and
poles that appear (red) only in the ”retarded” integrand, (green) only in the
advances one or (blue) in both of them.

summands: one containing the retarded GFs, which will be named as FR(E) and de-
pends on (E+ iη), and the other containing the advanced ones, refered to as FA(E).

In these integrands, poles come both from the denominator and from the hyper-
bolic tangent for the following values of energy:

FR :

{
tanh → E = iTπ(2m+ 1) ≡ iωn

denominator → E = ±∆
√

1− τn sin2 ϕ
2
− iη ≡ ±E0 − iη

FA :

{
tanh → E = iTπ(2m+ 1) ≡ iωn

denominator → E = ±∆
√

1− τn sin2 ϕ
2

+ iη ≡ ±E0 + iη

where ωn are known as Matsubara frequencies. Residue’s value at these poles are
presented hereunder:

FR :

 Res
[
FR;E = E0 − iη

]
= Res

[
FR;E = −E0 − iη

]
=

tanh
E0

2T
2E0

Res
[
FR;E = iωn

]
= −2T

ω2
n+E2

0

FA :

 Res
[
FA;E = E0 + iη

]
= Res

[
FR;E = −E0 + iη

]
=

tanh
E0

2T
2E0

Res
[
FA;E = iωn

]
= −2T

ω2
n+E2

0

where the η → 0 limit is taken. Thus, the integral over the contour shown in Fig.
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3.5, excluding all the constants that do not enter in the integral, is evaluated as
follows:

∮
C

dE I(E) =

∫ ∞
−∞

dE I(E) +

∫
Γ

dE I(E) ∝ −2πi
tanh E0

2T

E0

. (3.24)

In the expression above the Matsubara poles coming from FR are cancelled by
the FA ones, and only poles coming from the denominator remain. Moreover, as
the integrator converges to zero at E → ∞ faster than 1

E
, the integral over the

semicircle Γ results in a zero-sum. Consequently, the total supercurrent that flows
along the juntion is given by:

I =
1

h

∑
n

τnπe∆
tanh

∆
√

1−τn sin2 ϕ
2

2T√
1− τn sin2 ϕ

2

sinϕ, ϕ ∈ [−π, π] . (3.25)

Usually, the Josephson effect is studied in the tunneling limit and expressed by:

I = IC sinϕ, (3.26)

where IC is known as the critical current and does not depend on the supercon-
ducting phase. However, Eq. 3.25 is valid for any transmission value τn and hence,
the current-phase relation is different. Taking the τn → 0 limit in Eq. 3.25 and
comparing it with Eq. 3.26 we deduce that the critical current is given by:

IC =
1

h

∑
n

τnπe∆ tanh
∆

2T
. (3.27)
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Chapter 4

Electron Cooling in N-S
Structures.

Heat currents and dissipation often limit the performance of electronic devices, espe-
cially at cryogenic temperatures. In general, cooling a device to lower temperatures
increases its sensitivity and decreases noise. Despite the fast progress in cooling
techniques without cryogens at the liquid phase, refrigeration to cryogenic tempera-
tures remains expensive and, typically, only feasible in specialized laboratories with
the proper infrastructure. Therefore, it is of interest to explore cooling techniques
that operate directly on a chip, even though they may be an option just in cases
of special applications, that could provide an economic and easy-to-use alternative
solution to the final stage of refrigeration.

Figure 4.1: Hot electrons (red) extracted from the normal metal using a super-
conductor. The superconducting gap acts as an energy filter allowing only high
energy electrons to be removed from the metallic electrode.

In this chapter, we focus on low temperature electronic on-chip coolers based
on superconducting hybrid devices. The basic principle of operation is shown in
Fig. 4.1. By applying a voltage bias just below the gap energy, the superconducting
gap acts as an energy filter that only lets to extract high energy electrons from the
metal; leading to cooling of the latter. This concept is also applicable to holes.
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This cooling technique was first proposed in the 90’s and since then, cooling
in normal metal - insulator - superconductor tunneling contacts had been widely
theoretically studied [20, 5, 6] and experimentally verified [21, 22, 7], which have
reported electronic refrigeration of normal metals from 300mK to about 100mK.
Many achievements in this area have been extensively covered and compiled in some
reviews [6, 23].

The aim of this chapter is to apply the current matrix formalism introduced in
Sec. 3.2 to the study of cooling in junctions between superconducting and metallic
electrodes separated by a normal insulating layer (sec. 4.1) or a spin polarizing one
(sec. 4.2). In doing so, some new concepts, such as cooling power and electron-
phonon coupling are introduced.

4.1 Cooling power in S-I-N junctions

SL
 TL

 V=0

NR
 TR

 V

{τ
n
}

Figure 4.2: Resistive junction between a metallic and a superconducting elec-
trodes with tuneable transmission. Both reservoirs are at the same temperature
but electrostatically biased by a potential V.

In this section we study the cooling power in a S-I-N structure (Fig. 4.2) in terms
of the barrier conductance, which is given as the sum of the transmissions of all the
N-S interface’s conducting channels, as discussed in Sec. 3.3. In order to apply Eq.
3.15 and calculate the charge and heat currents, we need the Green’s functions of
the normal (ǦL) and superconducting (ǦR) electrodes:

Ĝ
R(A)
L = gR(A)τ̂3 + ifR(A)τ̂3,

ĜR
R = −ĜA

R = τ̂3,

ĜK
L =

(
ĜR
L − ĜA

L

)
F0,

ĜK
R = 2τ̂3 (F+ + F−τ̂3) ,

where we set a gauge in which the superconducting phase is zero, such that GFs
of the superconductor do not depend on ϕ, and the algebra is simplified. The
substitution of these expressions in Eq. 3.15 yields a rather cumbersome Keldysh
component of the current matrix. In order to obtain the charge and heat current we
have to multiply this expression by τ̂3 and τ̂0 respectively, and take the trace (see
Eq. 3.16). Finally we obtain:
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I =
∑
n

τn
e

h

∫
dE

[
−(2− τn(1− gR))(gR − gA) + τnf

R(fR + fA)
]
F−

(2− τn(1− gR))(2− τn(1 + gA))
, (4.1)

Q =
∑
n

τn
h

∫
dE E

[
(2− τn(1− gR))(gR − gA)− τnfR(fR − fA)

]
(F+ − F0)

(2− τn(1− gR))(2− τn(1 + gA))
.

(4.2)

In the numerator of these equations we can distinguish two contributions to the
current. On the one hand, we have terms containing gR and gA that describes
quasiparticle transport happening at energies out of the superconducting gap, such
as 2(gR− gA) = 4NNNS and τn(1− gR)(gR− gA). The former equals four times the
multiplication of the density of states of the metal and the superconductor, whereas
the later is a second order contribution that describes quasiparticle interference
effects due to the coherent nature of the superconducting phase. On the other
hand, the terms containing anomalous GFs fR and fA describe transport efects
where the Cooper pairs condensate take part. They can be present for energies
inside the superconducting the gap, i.e. Andreev reflections, or outside of it. The
energies at which each term contribute can be seen in Fig. 4.4.

Figure 4.3: Andreev reflection in a N-S interface. An electron is backscattered
as a hole and a Cooper pair is formed in the superconductor.

Andreev reflections are scattering processes that take place in interfaces between
superconductors and metals in which an electron from the metallic electrode is
backscattered as a hole, and a Cooper pair is formed in the superconductor. Due
to this charge-transfer process, a normal current in the metal is transformed into a
supercurrent. This effect is lost when the junction is so resistive that quasiparticles
in the metal cannot interact with those in the superconductor; which can be verified
with Eqs. 4.1-4.2 in the tunnel limit (τn → 0). It can be easily verified as well that
setting gR/A = ±1 and fR = fA = 0 (i.e. converting the GFs of the superconductor
into those of a normal metal), Eq. 3.17 is obtained.

We analitically solved the integral of the charge current expression (Eq. 4.1) in
the tunnel limit and at zero temperature. Applying these conditions and substituting
the expressions for the normal GFs, gR/A, the charge current through the junction
reads:
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I =
∑
n

eτn
2h

∫
dE

(
E−iη√

(E−iη)2−∆2
− E+iη√

(E+iη)2−∆2

)
(θ(E − eV )− θ(E − eV )) =

=
∑
n

eτn
2h

∫
dE
(√

(E + iη)2 −∆2 −
√

(E − iη)2 −∆2
)

(δ(E + eV )− δ(E − eV )) =

=
∑
n

eτn
h

(√
(eV − iη)2 −∆2 −

√
(eV + iη)2 −∆2

)
=

=

{
0 |eV | < ∆

−sgn(eV ) GT

√
(eV )2 −∆2/e |eV | > ∆

, (4.3)

where θ(x) stands for the Heavyside step function and sgn(eV ) is the sign func-
tion. In the second step above integration by parts was performed, and in the last
one, previously defined branch cuts of the square root are taken into consideration.
There is a minus before the sign function in the last expression of Eq. 4.3 because we
are applying the voltage in the right electrode, whereas the currents are supposed to
be positive when they flow from the left electrode to the right one. In the following,
however, we might change the sign to the currents in order to deal with positive
values.

Figure 4.4: Spectral plots of the real and imaginary parts of the sum and sub-
straction between retarded and advanced superconducting normal and anomalous
GFs.
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Beyond the tunneling regime, the currents from Eqs. 4.1-4.2 are calculated
numerically. In Fig. 4.5 charge and heat current curves are plotted for a sin-
gle transport channel with different values of the transmission coefficient, τn, and
TN , TS → 0K. Both currents are normalized to τn in order to compare their shapes
in one single plot.

(a) (b)

Figure 4.5: Normalized (a) charge and (b) heat currents in terms of the
applied voltage through a single conducting channel with different transission
coefficients of a SIN junction, at TN , TS → 0K. In (a) dashed line shows the
electric current of a NIN junction.

By increasing the transmission of the contact one increases the probability of
the Andreev reflection. This leads to an increase of the subgap current as shown
in Fig. 4.5a. From this figure one can see that in perfectly transparent junctions
(τn = 1) the slope of the I(V ) curve, i.e. the conductance, for voltages inside the
gap doubles the one of a junction between two metals. As mentioned above, de-
creasing the value of the transmission coefficient turns off Andreev reflections up
to the point where there is no electric current inside the gap in the tunnel limit.
It is worth noticing that the current for eV � ∆ does not coincide with the I-V
characteristic of a normal junction (see dashed line in Fig. 4.5a). In particular for
finite values of τ the current at large voltages is larger than in the N case. This is
the so called excess current, which is defined as the difference between the current
at high voltages (eV → ∞) of a SN junction and a junction between two normal
metals. The easy measurement of this effect makes it really useful in experimental
studies, and it can be observed in Fig. 4.5a, comparing the current curve of the NIS
junction for τn = 1 with the one of the NIN junction (dashed line) at high applied
voltages.

Let us now analyze the heat transport in the junction. Eq. 4.2 describes the rate
of energy carried by quasiparticles from the left to the right reservoir. Though, it
does not contain all the heating contributions in the system. The bias voltage sets
a dissipative current that causes the Joule heating. Therefore, we define the cooling
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(a) (b)

Figure 4.6: Cooling power in the (a) metallic and (b) superconducting
electrodes in terms of the applied voltage and for different values of τn and
TN = TS = 0.5Tc. The metallic electrode can be cooled down, while the su-
perconducting one cannot.

power in each electrode,

Q̇S = Q, Q̇N = −Q+ IV, (4.4)

as the total ammount of energy flowing out the electrode per unit time. A positive
value of Q̇j means a cooling of the j electrode. In Fig. 4.6 both cooling powers of Eq.
4.4 are plotted for different values of τn and TN = TS = 0.5TC (TC ≈ 1.76∆ is the
critical temperature of the superconducting phase), showing that the normal metal
present a cooling regime, while the superconducting electrode does not. This was
expected from the discussion in the opening of this chapter, where we connected the
superconducting gap with an energy filter. We also found the optimum conditions
to achieve maximum cooling power in the normal metal,

Q̇max
N = Q̇N(τn ≈ 0.35, T ≈ 0.52TC , eV ≈ 0.68∆) ≈ 0.0009∆2/h ∼ 0.1µW, (4.5)

which, as will be explained, can be improved by substituting the insulating layer by
a spin filtering one that turns off Andreev currents.

4.2 Spin-filtering interface. S-sf-N Junction.

As discussed previously, the superconducting gap has been considered an energy
filter that allows the electronic cooling of the normal electrode in a properly biased
N-S junction (see Fig. 4.1). This image is valid in the tunnel limit, where the con-
duction is carried out exclusively by quasiparticles. However, when we set higher
transparencies of the junction (in order to maximize the cooling power), a second
order process, called Andreev current, appears to be a significant transport mecha-
nism. This effect increases the charge current (see Fig. 4.5a), hence increasing the
Joule heating term entering Eq. 4.4. This results in a drop of the cooling power.
Hence, suppression of Andreev reflections would enhance the cooling in the normal
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metal.

Given that Andreev currents involve an electron with spin up (down) and a hole
with spin down (up) (both spin polarizations) a spin-filtering device would suppress
them. In turn, Joule heating should be overcomed. In this section we study how
spin-filter barriers affect the cooling of a normal metal, Q̇N , in a S-sf-N structure.
The spin-filter barrier is characterized by its transmission coefficients, τn ∈ [0, 1],
and its efficiency in a given direction, p ∈ [−1, 1]. Ideal candidates for such barriers
are som Europium chalcogenides with spin-filter efficiency of almost 100% (p = 1)
[24].

SL
 TL

 V=0

NR
 TR

 V

sf

p

Figure 4.7: Metallic and superconducting electrodes separated by a spin-filtering
interlayer with filtering efficiency p.

In oder to provide a quantitive description of the heat transport, we consider a
system with a spin-filtering (or polarizing) barrier between a metallic and a super-
conducting electrode, as shown in Fig. 4.7. The current matrix in Eq. 3.15 can be
generalized for the case of a spin-filtering barrier. Focusing on the tunneling limit,
we can use the expression derived in [25],

J̆ =
∑
n

τn
2

[
Γ̌ĞSΓ̌, ĞN

]
. (4.6)

In the equation above, Γ̌ is a matrix that parametrices the effect of the spin-filter
as follows:

Γ̌ = t+ uτ̂3σ̂3, (4.7)

where the parameters t and u are given by,

t =

√
1+
√

1−p2
2

u =

√
1−
√

1−p2
2

 . (4.8)

As tunnel limit is considered, only quasiparticle processes would contribute to
the currents in Eq. 3.16. In order to consider Andreev reflection processes, we com-
pute the anomalous GFs that is induced in the normal metal due to the proximity
effect, i.e. the correction term that describes the penetration of the superconduct-
ing correlations in the normal metal, δfR(A)(x). In this case the GFs are space
dependant:
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Ĝ
R(A)
S = gR(A)τ̂3 + ifR(A)τ̂2,

Ĝ
R(A)
N = ±τ̂3 + iδfR(A)(x)τ̂2

ĜK
S =

(
ĜR
L − ĜA

L

)
F0,

ĜK
N = ĜR

N (F+ + F−τ̂3)− (F+ + F−τ̂3) ĜA
N .

We consider a quasi-1D situation and assume that δf only depends on the co-
ordinate x. The x = 0 reference point is set at the N-S interface and x is assumed
to be positive in the direction of the metallic electrode. The spacial dependance of
δf(x) can be obtained by solving the linearized Usadel equation 3.14,

∂xxδf
R(A) ± 2Ei

D
δfR(A) = 0, (4.9)

which results into different solutions for the retarded and advanced Green’s func-
tions:

δfR(x) = Âe(−1+i)
√
Ex (4.10)

δfA(x) =

{
B̂>e−(1+i)

√
Ex E > 0

B̂<e(1+i)
√
Ex E < 0

. (4.11)

Constants Â and B̂≷ may have non-trivial structure in the spin space. Using the
boundary conditions for the current in the tunnel limit shown in Eq. 4.6, and
identifying the current matrix with the one determined in Eq. 3.14, one gets the
condition

ĞN∂xĞN

∣∣∣∣
x=0

=
τn
2

[
Γ̌ĞSΓ̌, ĞN

]
x=0

, (4.12)

that can be used to determine the values of Â and B̂≷. Writing the retarded and
advanced components of the identity in the Eq. 4.12 and solving for the constants,
one gets

A =
τnf

R
√

1− p2

τngR + (1− i)
√
E
,

B≷ =
τnf

A
√

1− p2

±(1 + i)
√
E − τngA

.

As expected, as neither the spectrum of the metallic electrode nor the supercon-
ducting one depend on the spin, the proximity effect does not depend on it either.
Adding the proximity effect correction to the GFs of the metallic electrode and cal-
culating the current matrix using Eq. 4.6, charge and heat currents in Eq. 3.16
read,
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I =
e
∑

n τn
h

∫
dE

[
−gR−gA

2
+

√
1−p2
2

fR+fA

2
(A+B≷)

]
F−, (4.13)

Q =

∑
n τn
h

∫
dE E

[
gR−gA

2
−
√

1−p2
2

fR−fA
2

(A−B≷)

]
(F+ − F0). (4.14)

In the expressions above we have first and second order contributions to the
currents with respect to the transmission coefficient, τn. First order contributions
equal the current expressions in the tunneling limmit, so they can be rewritten as

1 · g
R − gA

2
= NN(E) · NS(E),

where NN/S(E) stands for the density of states of the normal metal/superconductor.
Second order contributions, i.e. those proportional to the constants A and B≷, de-
scribe effects related to higher order processes in tau (as the Andreev reflections).
They can be suppressed with a perfect spin-filter (p = 1). In Fig. 4.4 we show that
these currents contribute to the heat current at energies larger than the supercon-
ducting gap, whereas they contribute to the charge current at energies lower than
∆, i.e. Andreev reflections.

Figure 4.8: Cooling power in the metallic electrode of a S-sf-N junction with
aτn = 0.1 and for different polarizations of the spin-filter at TN = TS = 0.5TC.
Increasing the efficiency of the spin-filter Andreev currents are turned off, which
results into an enhancement in the cooling power.

Cooling power in the metal is obtained by substracting the Joule heating (ob-
tained from Eq. 4.13) to the heat current flowing out the metallic electrode (Eq.
4.14 with the opposite sign):

Q̇N = −(Q− IV ). (4.15)
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Integrals in Eqs. 4.13-4.14 are computed numerically and the cooling power in
the Eq. 4.15 is calculated and plotted in Fig. 4.8, where we have assumed that
T = 0.5TC . If we increase the efficiency of the spin-filtering barrier, p, the cooling
power in the metallic electrode Q̇N is largely enhanced. As it was discussed at the
begining of the section, spin-filters turn off Andreev currents, decreasing dissipative
currents in the metal, and, subsequently, increase its cooling power.

4.3 Heat Balance Equation and Calculation of the

Electron Temperature.

Figure 4.9: Schematic picture of the whole system considered in the calcula-
tions. The heat flows between considered systems are represented by arrows.

In previous sections we have mainly focused on the heat flow from one electronic
system to another. However, these currents by their own do not give the accurate in-
formation about the final temperature of the quasiparticles. In order to calculate it,
we must take into consideration not only the energy currents between the electronic
systems that we have considered untill now, but also all possible heat transmission
between the electrons and other constituents of the system, such a phonons.

Fig. 4.9 schematically shows a picture of the whole system. In the middle, we
have the electronic system that we want to refrigerate (which refers to lowering
the temperature, whereas cooling means keeping it at some desired value despite
heating effects) forming an island between two electrodes at temperature Tqp. Q̇
is the cooling power that we have calculated in previous sections. Still, we now
consider another system that coexists with the quasiparticles: the phonons. We
assume that phonos are thermalised with the substrate and have a temperature Tph.
Via electron-phonon coupling there is a heat current between both systems Q̇qp-ph.
Finally, phonons also interact with a thermal bath at a temperature Tbath that acts
as a reservoir. However, as the phonon system relaxation time is much faster than
the one of the rest, we consider that Tph = Tbath.

The final electronic temperature of the island is given by the quasiequilibrium
situation in which all the heat currents flowing out from the system cancel,
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Q̇+ Q̇qp-ph = 0. (4.16)

The rate at which quasiparticles can transfer energy to the phonons, Q̇qp-ph, relies
heavily on the spectral function of the system (i.e. whether it is a normal metal, a
superconductor, if it is spin-split, etc.). In a normal metal it is given by [26]:

Q̇qp-ph = ΣΩk5
B

(
T 5

qp − T 5
ph

)
, (4.17)

where Σ is a material dependent parameter that describes the coupling strength
and Ω is the volume of the system. Values of Σ for some materials can be taken
from [6].

Final temperature calculations in S-sf-N structures have been carried out in some
recent works such as [8]. The process followed for obtaining these results is the next
one:

1. Heat and charge currents are computed using Eq. 4.14 and Eq. 4.13 respec-
tively for a guessed value of Tqp.

2. Coling power in the normal metal is obtained following Eq. 4.15. Results from
the previous step are used in this one.

3. The heat current flowing from the quasiparticles to phonons is calculated using
Eq. 4.17. In a normal metal, this is a simple expression. However, we will see
that in a superconductor a double integral has to be numerically computed to
obtain Q̇qp-ph.

4. The heat balance condiction is checked from Eq. 4.16. If this identity is not
fulfilled, another value of Tqp is chosen and we go back to the first step.
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Chapter 5

Effects of spin splitting on cooling
in N-sf-S structures.

A superconductor responses to a magnetic field in two ways. On the one hand, the
field creates circulating currents (Meissner effect), that try to expel the field from
the bulk (diamagnetic response). By increasing the strength of the applied field,
superconductivity is gradually reduced. This mechanism dominates in bulk samples
or in thin films with the field applied perpendicular to the plane of the film.

On the other hand, the magnetic field may also try to align the spin of the
electrons (Zeeman effect), resulting a paramagnetic response. This mechanism also
leads to the suppression of superconductivit, and prevails with respect to the orbital
one in two cases: superconducting films with thicknesses smaller than the London
penetration length and magnetic fields applied parallel to the plane of the film. In
this case, the magnetic field penetrates uniformly in the film and its critical value
Hc‖ largely exceeds the critical value of a perpenciduclarly applied one Hc⊥[27, 28].
The paramagnetic effect in thin superconducting films leads to a Zeeman splitting
of the density of states (DOS), equal to 2µB|H| ≡ 2h as observed for the first time
by Meservey et al. [29] in alluminium films.

An alternative way of creating a spin-split density of states in a superconductor
is by means of the exchange field h induced by an adjacent ferromagnetic insulator
(FI). This may lead to a large spin-splitting, even without an externally applied
magnetic field. The first evidence of an exchange field induced in a superconductor
via the proximity was measured in a thin Al film in contact with EuO film [30] and
later on with EuS [31, 32].

The advantage of using a FI instead of an external magnetic field is that we avoid
the depairing effects and all complications caused by the need of applying magnetic
fields in superconducting devices. Moreover, FIs can also be used as spin-filtering
barriers [33], which will play a crucial role in the structures discused in subsequent
sections.

In this chapter we present novel results on the transport properties of hybrid
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Figure 5.1: Schematic picture of the effect that a spin-splitting h causes in
spin-filtered transport. The blue (red) line represents the reduced DOS of spin
up (down) quasiparticles. Assuming that the polarization of the spin-filter only
allows quasiparticles with spin up to be transmitted (blue shaded DOS), the spin-
splitting causes an effective bias in the superconductor, similar to the one an
applied voltage causes, but without dissipation effects.

structures that include spin-split superconductors, in particular SS-sf-N structures.
The combination of spin-splitting and filtering effectively biases the DOS in the
superconductor without any dissipative process (see Fig. 5.1 and its caption). In
Sec. 5.1 we obtain the expression of the cooling power for both the spin-split su-
perconductor and the normal metal in an island-like configuration, i.e. a normal
(superconducting) island between two superconducting (normal) electrodes. On the
one hand we show that it is possible to cool down a superconducting island with
a spin-split DOS (section 5.2). On the other hand we prove that refrigeration of a
normal island can be improved by using adjacent SS electrodes (sections 5.3.1 and
5.3.2).

5.1 The SS-sf-N Junction.

SSL
 TL

 h

NR
 TR

 V

sf

p

Figure 5.2: Metallic and spin-split superconducting electrodes separated by a
spin-filtering layer with filtering efficiency p.

We consider a spin-filtering barrier with spin-filter efficiency p between a metallic
and a superconducting electrode (see Fig. 5.2). The superconductor is spin-split
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with an Zeeman field h parallel to the polarizacion direction of the spin-filter. The
junction can be both temperature and potential biased. As we did in Sec. 4.2,
we apply a space dependent correction term, δfR(A)(x), to the Green’s functions to
describe the proximity effect. In this case, the GFs present some structure in the
spin space:

Ĝ
R(A)
S =

(
ĝ
R(A)
+ + ĝ

R(A)
− σ̂3

)
τ̂3 + i

(
f̂
R(A)
+ + f̂

R(A)
− σ̂3

)
τ̂2,

Ĝ
R(A)
N = ±τ̂3 + iδfR(A)(x)τ̂2,

ĜK
S =

(
ĜR
L − ĜA

L

)
F0,

ĜK
N = ĜR

N (F+ + F−τ̂3)− (F+ + F−τ̂3) ĜA
N ,

where
g±(E) ≡ 1

2
[g(E + h)± g(E − h)],

f±(E) ≡ 1
2
[f(E + h)± f(E − h)].

The spacial dependance of δf(x) can be obtained by solving the linearized Usadel
equation (Eq. 4.9), which varies from the retarded to the advanced GFs:

δfR(x) = Âe(−1+i)
√
Ex (5.1)

δfA(x) =

{
B̂>e−(1+i)

√
Ex E > 0

B̂<e(1+i)
√
Ex E < 0

. (5.2)

Constants Â and B̂≷ can be determined from the retarded and advanced com-
ponents of the identity in Eq. 4.12. In this case, following the spin-dependance of
the spectral functions of the system, the constants present some spin structure,

Â = A1 + A2σ̂3,

B̂≶ = B≶
1 +B≶

2 σ̂3,

where,

A1 = τn
2

gR−A2−
√

1−p2fR+
X

B≶
1 = τn

2

gA−B
≶
2 −
√

1−p2fA+
Y ≶

A2 = −
√

1− p2 τn
2

XfR−+ τn
2
fR+ g

R
−

X2−( τn
2
gR−)2

B≶
2 =

√
1− p2 τn

2

Y ≶fA−+ τn
2
fA+ g

A
−

(Y ≶)2−( τn
2
gA−)2

X = (−1 + i)
√
E − τn

2
gR+ Y ≶ = ∓(1 + i)

√
E − τn

2
gA+

.

The notation in the constant B̂≷ means that

B̂≷ =

{
B̂< if E < 0

B̂> if E > 0
.

As a perfect spin-filter turns down Andreev processes, when p = 1 is set, both
constants are supressed, Â = B̂≷ = 0. We can now obtain the Keldysh component
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of the current matrix in the tunnel limit from Eq. 4.6 and calculate the heat and
charge currents by using Eq. 3.16 that read:

I =
GT

4e

∫ ∞
−∞

dE

{
−(gR+ − gA+)F− +

√
1− p2

2
×
[
(A1 +B≶

1 )(fR+ + fA+ )+

+ (A2 +B≶
2 )(fR− + fA− )

]
F− − p(gR− − gA−)(F+ − F0)

}
, (5.3)

Q =
GT

4e2

∫ ∞
−∞

dE E

{
(gR+ − gA+)(F+ − F0)−

√
1− p2

2
×
[
(A1 −B≶

1 )(fR+ − fA+ )+

+ (A2 −B≶
2 )(fR− − fA− )

]
(F+ − F0) + p(gR− − gA−)F−

}
, (5.4)

where GT =
∑

n τnG0 is the conductance of the junction. In these expressions we
can distinguish the first order quasiparticle contributions to the currents, described
by standard GFs g, from the the second order Andreev-like ones, which are propor-
tional to the constants A1,2 B

≷
1,2 and can contribute at energyes larger or lower than

the superconducting gap (see Fig. 4.4).

(a) (b)

Figure 5.3: Cooling power in (a) the normal metal and (b) the spin-split
superconductor in a SS-sf-N junction in terms of eV and for different values of
the splitting field h. Perfect spin-filter, p = 1, and TS = TN = 0.5TC, where TC
is the transition temperature of the superconducting phase, is assumed.

From the expressions of the heat and charge currents above, the cooling power
in both the metallic and the superconducting electrodes, Q̇S/N , can be computed as
follows:

Q̇S/N = ±(Q− IVS/N), (5.5)

where VS/N is the voltage applied to the electrode, i.e. always zero in the supercon-
ductor and V in the normal metal. In Fig. 5.3 we numerically calculate the charge
and heat currents in Eqs. 5.3 and 5.4 respectively and use Eq. 5.5 to obtain the
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cooling power in both the metallic and the superconducting electrodes. These cal-
culations have been done for TN = TS = 0.5TC , where TC is the critical temperature
of the superconducting phase and supposing a perfect spin-filtering, p = 1.

In the case of the metallic electrode, the maximum value of the cooling power
is slightly enhanced, being as maximum at values of h ≈ 0.3∆. However, the most
important impact of the spin-splitting in the cooling power is the shift of its max-
imum value to lower values of V . This leads to lower dissipation effects, heating
less the enviroment and hence, improving the refrigeration of a metallic island when
non-infinite superconducting electrodes are considered.

The change in the cooling power of the superconducting electrode when it is
spin-split has much more interest. Contrary to the structures that we have studied
in chapter 4, in Fig. 5.3 a possibility to refrigerate a superconducting island via two
metallic electrodes is observed.

In subsequent sections we study the refrigeration of the normal metal and the
superconductor for different values of the Zeeman field h in island-like structures.

5.2 Refrigeration of a Spin-Split Superconductor

(N-sf-SS-sf-N).

In this section we study the refrigeration of a spin-split superconducting island
between two infinite-metallic electrodes. Both junctions are assumed to be equal
and very resistive, such that a potential drop V through the whole nanostructure
corresponds to a drop of V/2 in each of the junctions. Polarization directions of the
spin-filters of the junctions are opposited to the other to maximize the total cooling
power in the island. In this configuration, the quasiequilibrium condition for the
heat currents flowing out from the island in Eq. 4.16 reads,

2Q̇S + Q̇qp-ph = 0, (5.6)

where Q̇S is the one shown in Eq. 5.5 and Q̇qp-ph is the heat current flowing from
the electronic systems to the phonons in the superconductor. In a spin-split super-
conductor this current is calculated as follows [34]:

Q̇qp-ph =− ΣΩ

96ζ(5)k5
B

∫ ∞
−∞

dE E

∫ ∞
−∞

dω ω2 sgn(ω)LE,E+ω

{
coth

(
ω

2kBTph

)
×

(5.7)[
tanh

(
E

2kBTqp

)
tanh

(
E + ω

2kBTqp

)]
− tanh

(
E

2kBTqp

)
tanh

(
E + ω

2kBTqp

)
+ 1

}
,

where Σ is a constant describing the coupling strength, Ω stands for the sample
volume, ζ(x) is the Riemman’s function, h stands for the Zeeman splitting and
LE,E′ is the kernel of the integral, that reads:
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LE,E′ =
1

2

∑
σ=±

NS(Eσ)NS(E ′σ)

[
1− ∆(Tqp)

EσE ′σ

]
(5.8)

In the normal case, ∆ = 0, and absence of spin-splitting, h = 0, the collision
integral in Eq. 5.7 can be analitically solved, resulting into Eq. 4.17.

In order to simplify the notation when solving Eq. 5.10, we group all the param-
eters in a dimensionless one, which we defined as

Σ̃ ≡ ΣΩ∆3e2

GTk5
B

. (5.9)

Values of the coupling parameter, Σ, can be taken from [6]. To get a clear
picture of which are the involved magnitudes, taking values of the parameters for an
alluminium Ω ∼ µm3 volume island, a value of Σ̃ = 300 corresponds to a junction
with a resistance of RT ∼ 1kΩ.

(a) (b)

Figure 5.4: Final temperature of quasiequilibrium of the superconducting island
in terms of the voltage drop in the nanostructure for Σ̃ = 300 and (a) Tph = 0.3∆
and (b) Tph = 0.15∆.

In Fig. 5.4 the final temperature of the quasiparticles in the spin-split supercon-
ducting island is shown in terms of the applied voltage in the whole nanostructure,
for Σ̃ = 300 and for different splitting amplitudes. To do that we numerically cal-
culate charge and heat currents using Eqs. 5.3 and 5.4 respectively and inserted
them in Eq. 5.5 to obtain the cooling power. After that, we numerically compute
the heat current from the quasiparticles to the phononic system in a spin-split su-
perconductor (see Eq. 5.7) and check the heat balance condition in Eq. 5.10. This
is repeated untill we find the quasiequilibrium electronic temperature Tqp. Infinite
normal electrodes have been assumed, so the value of the quasiparticle-phonon colli-
sion integral (Eq. 4.17) is so high that the temperature of the quasiparticles in those
will be equal to the phonon’s temperature, TN = Tph. Phonons, on the other hand,
are in equilibrium with the thermal bath and hence present the same temperature
in the whole structure.
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In the absence of spin-spliting, the superconducting island cannot be refrigerated,
while an increase of h leads to an enhancement in its refrigeration. Moreover, this
refrigerating efficiency depends much on the reservoir’s (metallic infinite electrodes)
temperature. If the superconductor is suposed to be alluminium (∆ = 180µeV ), Fig.
5.4b would suggest, for a h = 0.5∆ splitting amplitude, a decrease in the temperature
of the quasiparticles from about 300mK to 200mK. In subsequent sections we see
that this refrigeration is comparable to the one observed in a metallic island with
the same parameter Σ̃ = 300 (see Fig. 5.5).

5.3 Normal Metal Refrigeration (SS-sf-N-sf-SS).

In this section we study the refrigeration of a metallic island between two spin-
split superconducting electrodes. Polarization directions of the spin-filters of the
junctions are opposited to the other to maximize the total cooling power in the
island. The structure is suposed to be perfectly symmetric, so the potential drop in
each junction, V/2, is the half of the total potential drop in the nanostructure V .
We consider two different situations: (Sec. 5.3.1) infinite superconducting electrodes
and (Sec. 5.3.2) superconducting electrodes with finite volume.

5.3.1 Infinite Electrodes

As the spin-split superconducting electrodes’ volume is suposed to be infinite (i.e.
many orders of magnitude larger than the metallic island’s), Σ̃S → ∞. There-
fore, the temperature of the quasiparticles will be the same as the phononic one,
TS = Tqp, which is constant due to the thermal bath. In this configuration, the
quasiequilibrium condition for the heat currents flowing out from the island in Eq.

Figure 5.5: Final temperature of the metallic island in terms of the potential
drop in the nanostructure for different values of h and a qp-ph coupling parameter
Σ̃N = 300.
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4.16 reads:
2Q̇N + Q̇qp-ph = 0, (5.10)

where Q̇N is described in Eq. 5.5 and Q̇qp-ph is the heat current flowing from the
electronic systems to the phonons in the normal metal, given by Eq. 4.17.

In Fig. 5.5 the final temperature of the quasiparticles in the metallic island is
shown for different values of h and in terms of the applied bias voltage to the nanos-
tructure. In the metallic island a parameter of Σ̃N = 300 is chosen.

When the spin-split superconducting electrodes are assumed to be infinite, the
enhancement in the refrigeration of metallic island with the splitting amplitude h
is negligible. The main effect of the splitting in the electrodes is the shift of the
minimum final temperature to lower values of bias voltage, i.e. to regions with
lower dissipation.

5.3.2 Finite Electrodes

As we have shown in the previous section, spin-splitting the superconducting elec-
trodes moves the maximum in refrigeration of the island to regions with lower Joule
heating, thus, decreasing the heating of the enviroment. We consider now a metallic
island connected to two finite spin-split superconducting electrodes through a spin-
filter. We choose a limit case where the coupling parameters are equal in the island
and the electrodes, Σ̃S = Σ̃S = 300. This is not quite a realistic setup, as in exper-
iments the electrodes are much larger than the islands, but it helps to understand
the behaviour of the refrigeration of the island when the electrodes connected to it
are not reservoirs.

In this case, the final temperatures of qusiparticles in both, the normal metal

Figure 5.6: Final temperature of the metallic island in terms of the potential
drop in the nanostructure for different values of h and qp-ph coupling parameters
Σ̃S = Σ̃N = 300.
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and the spin-split superconductor, must be computed. We have now an equation
system formed by two heat balance equations of Eq. 4.16 to obtain TS and TN ,{

2Q̇N + Q̇N
qp-ph = 0

Q̇S + Q̇S
qp-ph = 0

, (5.11)

where Q̇n/s are numerically calculated following Eq. 5.5 nad Q̇N
qp-ph and Q̇N

qp-ph are
obtained from Eq. 4.17 and Eq. 5.7 respectively.

In Fig. 5.6 the final temperature of the quasiparticles in the metallic island is
shown for different values of h and in terms of the applied voltage. We observe
that, when superconducting electrodes are finite, one can enhance the refrigeration
of the N island by spin-splitting the superconductors. This enhancement is due to
the lower dissipative currents flowing at the maximum of the cooling power, which
decreases the heating of the electrodes and hence, increases the cooling power in the
metal Q̇N(V, TN , TS).
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Chapter 6

Summary.

The present Master’s Thesis deals with the study of the electronic cooling of some
sections of junctions composed by normal metals and/or superconductors. Discussed
thermoelectric effects are originated from the coupling between charge and current.
We have described some novel results in normal metal - spin filter - spin-split super-
conductor structures (N-sf-SS). In particular, the spin-splitting opens the possibility
of cooling the superconductor and enhances the refrigeration of the normal metal.

In chapters 2 and 3, we present the main theoretical tool used in this work,
i.e. the quasiclassical Keldysh Green function formalism, and discussed its benefits
over the more used Landauer-Büttiker formalism. In addition, we also solve some
examples with a pedagogical purpose.

In chapter 4, we introduce the concept of cooling power by means of the widely
studied N-S structure and how it can be enhanced placing a spin-filter between the
electrodes to shut down the Andreev currents. We also present the collision integral
that describes quasiparticle-phonon coupling in normal metals and let us obtain its
final quasiequilibrium temperatures.

The chapter 5 summarizes the novel results obtained from the study of the N-
sf-SS system. The combination of the spin-splitting and the spin-filter effectively
biases the spectrum of the superconductor without any dissipative effect (i.e. with-
out changing the Fermi level). For each spin species the electron-hole symmetry is
broken.

The non-dissipative biasing technique has two effects in the cooling power of the
parts of the system. On the one hand, we can refrigerate the spin-split superconduc-
tor extracting hot carriers to the metal. This is impossible in other configurations, as
the superconductor is the element acting as an energy filter due to its electronic gap.
Furthermore, the drops in temperature obtained in the superconductor for splitting
fields of h ≈ 0.5∆ are comparable to those of the metal in N-sf-S structures. This
new refrigeration possibility, in addition to its fundamental utility, might result in
some interesting applications for quantum technologies.

40



On the other hand, the additional bias caused by the exchange field h, shifts the
maximum cooling power in the metal to lower values of applied voltage V , which
implies lower ohmic dissipation rates. As a result, the heating of the adjacent su-
perconducting sample is reduced, hence enhancing the refrigeration of the normal
metal. The more similar the volumes of the spin-split superconducting and metallic
samples are, the more remarkable is the improvement.

As further research we propose the study of the cooling power on spin-split
superconductor - spin-filter - superconductor (SS-sf-S’) structures. Some preliminary
calculations suggest that these structures may improve it. The maximum value of
the cooling power is present when the coherent peaks at the gap edges of both
superconductors are aligned. The cooling power around those voltages shows a
peak with a width and height that strongly depends on the damping parameter.
Further studies are being done in this direction.
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