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Introduction

The electronic structure of a solid can be generally approached from two
different viewpoints. In one of them, the atomic approach, electrons are
viewed as tightly bound to their parent atoms, interacting very weakly with
the rest of the solid. In such an approach, a natural basis for describing the
electron states is represented by the atomic orbitals, which are highly local-
ized around a given atom, with little extension to neighboring lattice sites.
In a diametrically opposite point of view, electrons can be considered as
largely delocalized throughout the solid, with no significant bounds to their
parents atoms. An extreme example describing this picture is represented
by a plane wave, eikr. This function, which is a solution of the Schrödinger
equation for a free particle, describes a completely delocalized electron state,
being the associated probability amplitude independent of the position.

The difference between these two approaches becomes even more clear
by considering a characteristic property of crystals, namely the periodicity.
Ideal solids are built by the periodic repetition of its unit cell in real space.
It follows from this periodicity alone that electron states acquire a factor
eikR when translated by a direct lattice vector R. Clearly, the above men-
tioned atomic orbitals do not fulfill such property due to their localization.
Therefore, these states are not eigenstates of the system and, consequently,
do not possess a definite energy. A plane wave, on the other hand, does sat-
isfy the above periodic property, and it is therefore a valid option for being
an eigenstate of the system. Thus, although this type of state is completely
delocalized in real space, it can possess a definite energy. Then, the choice
between atomic and delocalized viewpoints can be alternatively stated as
the choice between localization in real space or localization in energy.

In this thesis, we pay special attention to the first choice, namely the
localization in real space. For this, we make use of the concept of localized
Wannier functions introduced by Gregory Wannier in 1937 [1]. The essence
of this approach is to build functions that are highly localized in real space
starting from the eigenstates of a periodic system, generally known as Bloch
orbitals. The connection between these two set of functions, Wannier and
Bloch, is realized by unitary transformations that carry a large inherent ar-
bitrariness, i.e. Wannier functions are strongly non-unique. This problem
was considerably overcome in 1997, when Marzari and Vanderbilt [2] devel-
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6 INTRODUCTION

oped a well defined method for determining the set of Wannier functions
with minimum spread in real space. The outcome of this approach are the
so-called maximally localized Wannier functions (MLWFs), which are the
central tool of this thesis.

MLWFs find applications in many areas of condensed matter physics.
For instance, these functions represent a natural basis set for tight binding
models of periodic systems, where the localization in real space is needed in
order to justify the tight binding approach. These models allow to efficiently
interpolate several quantities in reciprocal space through the so-called ”Wan-
nier interpolation” scheme. This method is widely used in the solid-state
community as it allows to consider a very fine sampling of the Brillouin zone
at inexpensive computational cost. In metallic systems, for instance, this
feature is extremely helpful as integrals bounded by the Fermi surface usu-
ally need of a considerable number of k-points in order to be converged. In
different contexts, MLWFs also demonstrate a great potential. As an exam-
ple, MLWFs play an important role in many modern theories, such as the
current description of the electric polarization [3–5] and the orbital magne-
tization [6–10] of solids. Electron-phonon interactions [11–13] or molecular
dynamics [14, 15] are further examples in which MLWFs are also currently
applied.

In this thesis, we make use of MLWFs as a tool for calculating several
properties of diverse systems. In Chapter 2, we study the electronic proper-
ties of surfaces with strong spin-orbit interaction. In particular, we analyze
the low-energy excitations induced by a time-dependent electric field. The
associated transition matrix elements involve the position operator, which is
a troublesome quantity when dealing with periodic systems. Indeed, due to
the delocalization of the Bloch states, this operator is ill-defined in the Bloch
representation. To overcome this problem, we express the matrix elements
in the Wannier representation, allowing not only to compute the quantity of
interest, but also to efficiently interpolate the matrix elements into a fine k
mesh. The excitation rate calculated considering this method shows that the
spin-orbit interaction can have profound effects on the absorption properties
of surfaces.

In Chapter 3, we focus on analyzing the collective charge excitations,
plasmons, in an a priori simple metal, sodium, and their evolution with the
applied pressure. For this, we calculate the linear response of the system us-
ing the time-dependent generalization of the density functional theory. This
is a powerful approach that is able to accurately describe the rearrangement
of the electron gas under the influence of an external perturbation. However,
the accuracy of this method is accompanied by a heavy computational load,
as the formalism involves the contribution of several bands above the Fermi
level. Additionally, the Fermi surface of sodium requires a fine sampling of
the reciprocal space in order to accurately reproduce the excited properties
of the system. Therefore, ’brute-force’ calculations become very time de-
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manding, and some scheme for reducing the computational cost is almost
mandatory. In this context, we adopt the MLWFs formalism for express-
ing the electron response function, which is the central quantity in linear
response theory. Due to the properties of the MLWFs, the basis acquires a
trivial dependence on the momentum of the external perturbation, q, and
the evolution of the response function can be efficiently computed. Follow-
ing Chapter 2, the use of MLWFs allows to interpolate several k-dependent
quantities, such as the eigenvalues and eigenfunctions that build up the re-
sponse function, into a fine k mesh at inexpensive computational cost. The
fine sampling of the reciprocal space allows us to find an anisotropic in-
terband plasmon in an a priori simple fcc phase, reflecting an unexpected
departure of sodium from the free-electron-like behavior. Additionally, we
also find low-energy interband plasmons in the high pressure phases oP8
and tI19 of Na which induce a drastic drop in the reflectivity, in accordance
with recent high pressure neutron scattering experiments [16].

Finally, in Chapter 4, we apply the MLWFs for describing the proper-
ties of cold atoms trapped in two dimensional optical lattices. This is a
field in which MLWFs still have not fully exploited their potential, as they
were originally developed in the context of electronic structure of materials.
In this final chapter, we study tight binding models of several two dimen-
sional optical lattices in terms of the MLWFs. Again, due to their localized
character and the ability of incorporating the contribution of several bands,
MLWFs provide an ideal basis set for the tight binding models. In our
analysis, we find that the properties of the optical lattice are very well re-
produced in terms of a few tight binding coefficients calculated via MLWFs.
In particular, our model is able to accurately reproduce the band structure
details such as the so-called Dirac points. Therefore, this method is very
well suited to theoretically calculate the relevant experimental parameters
used in actual measurements, establishing a direct link between theory and
experiment.
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Chapter 1

The theoretical model

In this first chapter, we introduce the basic theoretical background that
will be used throughout the work. It is divided in two main parts. In
Sec. (1.1), we analyze basic properties of the electronic structure in solids.
We introduce basic concepts such as the notion of the crystal momentum
or Bloch orbitals. We also review current methods based on the density
functional theory for solving the Schrödinger equation associated to the
electrons in solids. In Sec. (1.2), we introduce the concept of Wannier
functions as an alternative approach for describing the electronic structure
of solids. We pay special attention to a particular class of Wannier functions,
the so-called maximally localized Wannier functions introduced by Marzari
and Vanderbilt [2]. We introduce the basic definition and properties of these
functions, and point out their main advantages and applications in current
fields of interest.

1.1 Basic electronic properties of solids

Solids are composed of ions and electrons. The ionic mass MI is typically of
the order of 103 times the mass of the electron, me, and, as a consequence,
the ionic motion is much slower than the electronic one. The classical theory
of the harmonic crystal, for instance, predicts ionic velocities of the order of
105cm/s, while typical electronic velocities are of the order of 108cm/s [17].
This difference between the ionic and the electronic velocities suggests that,
as a first approximation, ionic positions can be considered as fixed. Within
such approximation, the solid is formed by a static array of ions stacked
to their lattice sites while the electrons move throughout the system. The
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10 Chapter 1. The theoretical model

Hamiltonian corresponding to this situation is given by1

H = −1

2

N∑

i

p2
i −

N∑

i

Vext(ri) +
1

2

N∑

i "=j

1

|ri − rj |
+ EII , (1.1)

with ri the position variable of the ith electron. The first term in Eq. (1.1)
is the electron kinetic energy with pi = −i∇i the electron momentum oper-
ator. The second term in Eq. (1.1) contains the interaction of the electrons
with external sources. The electron-ion Coulomb interaction, for instance,
is considered an external source,

V C
ext(ri) =

NI∑

I

ZI

|ri −RI |
, (1.2)

with RI the parameters corresponding to the NI ionic lattice sites. Other
possible terms that would belong to Vext(ri) are the Zeeman coupling of
the electron spin to an external magnetic field or the relativistic spin-orbit
coupling. All these terms involve just one-body operators of the electron
position variable. In contrast, the third term in Eq. (1.1) is a two-body
electron operator that takes into account the electron-electron Coulomb in-
teraction. Finally, EII is a constant energy term coming from the ion-ion
Coulomb interaction of the fixed ionic lattice.

The usual way to proceed in quantummechanics is to solve the Schrödinger
equation associated to the Hamiltonian (1.1). Due to the two-body electron-
electron interaction term, however, there is no general solution for such an
equation, and one has to assume some approximation in order to proceed. In
this work, we consider the density functional theory (DFT) for such a task.
Within this approach, the interacting many-body problem represented by
Eq. (1.1) is substituted by a non-interacting one which can be more easily
solved.

1.1.1 Density Functional Theory

In 1964 Hohenberg and Kohn proved two basic theorems [18] regarding the
electron many-body problem of Eq. (1.1). They showed that the total
energy of the system is a functional of the electron density, n, and that the
minimum of this energy functional, E[n], corresponds to the exact ground
state density, n0. Furthermore, they proved that n0 uniquely determines any
external potential acting on the electrons. These theorems do not provide
a way to extract the electronic properties of the system, but they show
that the knowledge of the ground state density is sufficient for this. At
this point, the Kohn-Sham ansatz proves to be useful: an auxiliary system

1Unless otherwise stated, atomic units will be used throughout the work, so that e =
! = me = 4πε0 = 1.



1.1 Basic electronic properties of solids 11

made of non-interacting electrons can be defined whose ground state density
is equal to the ground state density of the interacting many-body system. In
other words, this ansatz states that one can define a fictitious system made
of non-interacting particles having the same ground state density as the real
interacting system, no matter how complicated the interaction is. The great
advantage of this approach is that it opens the way to substitute the difficult
many-body problem represented by Eq. (1.1) by an auxiliary system that
can be more easily solved.

The Schrödinger equation associated to this auxiliary system is named
the Kohn-Sham (KS) equation and contains only one-body operators, 2

(
−1

2
∇2 + Veff(r)

)
φα(r) = εαφα(r). (1.3)

The solution of this equation are the KS eigenvalues εα and eigenfunctions
φα(r), respectively, with α a set of quantum numbers that we will determine
in short. The potential Veff(r) in Eq. (1.3) is a one-body effective potential
that acts on each electron of the auxiliary system,

Veff(r) = Vext(r) + VH(r) + Vxc(r). (1.4)

Above, VH(r) is the so-called Hartree potential,

VH(r) =

∫
dr′

n(r′)

|r− r′| , (1.5)

which represents the classical Coulomb interaction among the electrons and
takes into account great part of the long ranged electronic interactions. The
third term in Eq. (1.4) is the so-called exchange-correlation potential. The
success of DFT lies on the ability of incorporating the main many-body
effects into this last term. By far, the two most common and widely used
methods for approximating the exchange and correlation effects are the Local
Density Approximation (LDA) [19] and the Generalized Gradient Approxi-
mation (GGA) [20]. The LDA is based on the electron density of the homo-
geneous electron gas (HEG) [21] and assumes that the exchange-correlation
effects are local in character, while the GGA incorporates the gradients of
the density evaluated at each point in real space, hence it is a semi-local
approximation. The reader is referred to [22] and references therein for a
full review of the different types of approximations for the exchange and
correlation effects.

1.1.2 Periodicity of the potential

An ideal solid is built by the periodic repetition of its unit cell, which is
defined by three real-space vectors, {a1,a2,a3}, the so-called direct lattice.

2From now on we use r as the position variable of any electron.
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As electrons are physically placed into this periodic structure, the potential
felt by the electrons is also periodic. This is reflected in the effective potential
entering the KS equation as

Veff(r) = Veff(r+R), (1.6)

where R is a lattice vector obtained through linear combinations of the
direct lattice vectors,

R =
3∑

i

liai, li ∈ Z. (1.7)

The periodic property of Eq. (1.6) alone is sufficient to infer valious
information about the electronic properties of solids. For instance, one can
prove that due to Eq. (1.6), the eigenfunctions of the KS equation (1.3)
must fulfill the so-called Bloch theorem,

φnk(r+R) = eik·Rφnk(r), (1.8)

where we have written the set of quantum numbers as α ≡ nk. We will find
useful to express the Bloch theorem in an alternative but equivalent form,

φnk(r) = unk(r)e
ik·r, (1.9)

with unk(r) = unk(r+R). Different proofs for the theorem can be found in
[17, 22].

The set of functions φnk(r) satisfying the properties above are known
as Bloch orbitals. These are characterized by quantum numbers k and n.
The first one is a vector that lays in the first Brillouin zone (1BZ), and
it is commonly known as the crystal momentum. In the case of an ideal
crystal, k is usually discretized by applying the periodic Born-von Karman
conditions which restrict its values to

k =
3∑

i

mi

Ni
bi. (1.10)

In Eq. (1.10), bi are the three primitive reciprocal vectors fulfilling ai ·bj =
2πδij , mi ∈ Z and Ni the number of lattice sites in the direction i.

The second quantum number appearing in Eq. (1.8), n, is the band
index. Following the new notation, eigenvalues of the KS equation are now
depicted as εn(k).

1.1.3 Plane wave basis

Eq. (1.8) shows that the values of the KS orbitals at points r and r + R
differ just by a phase factor eik·R. We note that this phase factor is a plane
wave, which in the Dirac’s notation is denoted as |k〉, with

〈r |k〉 = 1

V
eikr. (1.11)
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Thus, plane waves seem a natural basis for expanding the KS orbitals.
Working again in the Dirac’s notation, we can write this expansion as

|φnk〉 =
1√
V

∑

K

cnk−K |k−K〉 , (1.12)

with 〈r |φnk〉 = φnk(r) and V the total volume of the solid. In the above,
cnk−K are the expansion coefficients of the plane waves, beingK a reciprocal
lattice vector that fulfills

eiK·R = 1. (1.13)

The fact that the expansion in Eq. (1.12) only involves reciprocal vectors is
a consequence of the periodic property of the potential (Eq. (1.6)) [17].

The plane waves of Eq. (1.11) are the solutions of the Schrödinger equa-
tion for a free particle, and describe totally delocalized states. Thus, when
electrons are not tightly bound to the ions, we expect the plane wave expan-
sion of Eq. (1.12) to yield a good description of KS states including only a
few expansion coefficients. This is usually the case for metals, where conduc-
tion electrons practically lose their atomic character and become delocalized
throughout the solid. In many other systems, however, the electrons are sub-
stantially more localized around the ions than in metals. Even in this case,
the expansion in Eq. (1.12) can still be adequate since plane waves form a
complete set, therefore one can always add more coefficients in order to im-
prove the description of KS states. In practice, the number of plane waves
included in the expansion is determined considering the kinetic energy of
the plane waves,

1

2
|k−K|2 ≤ Ecutoff. (1.14)

The above quantity, Ecutoff, is called the cutoff energy.

1.1.4 Solving the Kohn-Sham equations

The KS equation can be numerically solved through an iterative method.
In Fig. 1.1 we schematically illustrate the steps involved in the process. At
first, an initial guess is made for the electron density from which the effective
potential is calculated. Then, the KS equation is solved in a discrete set of
k-points by diagonalizing in the plane wave basis
〈
k−K′

∣∣∣∣−
1

2
∇2 + Veff(r)

∣∣∣∣k−K

〉
=

1

2
|k−K|2δK′K+Veff(K

′−K), (1.15)

with

Veff(K
′ −K) =

1

V

∫
dre−i(K′−K)·rVeff(r) (1.16)

the Fourier transform of the effective one-body potential. If N(k) is the
number of K vectors used at point k, Eq. (1.15) represents a N(k)×N(k)
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Figure 1.1: Schematic representation of the self-consistent loop for the so-
lution of the KS equations.

matrix. In practice, this matrix can easily contain ∼ 105 elements, and,
therefore, it must be diagonalized by efficient computational algorithms. In
this work we use the QUANTUM-ESPRESSO [23] ab-initio package that
implements the LAPACK mathematical code [24] for this purpose.

The diagonalization of Eq. (1.15) yields the KS eigenvalues εn(k) and
eigenfunctions |φnk〉. The latter are used to compute a new density from

n(r) =
∑

n

1BZ∑

k

fnk|φnk(r)|2, (1.17)

with fnk the Fermi occupation factors. The above process is repeated until
the density converges. Once convergence is reached, several physical prop-
erties, such as the total energy, forces or KS wave functions are accessible.



1.1 Basic electronic properties of solids 15

0 1 2 3 4
r(a.u.)

3p
3s
2p
2s
1s

(a)

0 2 4 6
r(a.u.)

PP 3p
PP 3s
3p
3s

R
c

R
c

3s 3p

(b)

Figure 1.2: (a) Exact wave functions of Si, φ1s(r), φ2s(r), φ2p(r), φ3s(r) and
φ3p(r). r denotes the distance from the nucleus. (b) Exact and pseudo wave
functions φ3s(r), φ3p(r), φ

ps
3s(r) and φps

3p(r). The cutoff radius for 3s and 3p

is denoted by R3s
c and R3p

c , respectively.

1.1.5 The pseudopotential approximation

Before concluding this section, we will comment on a technique that is widely
used within the DFT formalism, the so-called pseudopotential (PP) approx-
imation [25–27]. This method takes advantage of the different roles that
core and valence electrons have inside a solid. While core electrons are
highly localized in the vicinity of the nucleus and contribute little to the
chemical properties of the system, valence electrons are usually much more
delocalized and free to interact with the environment, providing the main
electronic properties to the solid. Considering the above, the PP approxima-
tion assumes that the only electrons entering the KS equation (1.3) are the
valence ones. This obviously decreases the cost of solving the KS equation
since the states to be considered are significantly reduced.

A PP for a given element is built by considering an isolated atom of
that element. Then, the atomic Schrödinger equation is solved for all the
electrons (core and valence), obtaining the corresponding eigenfunctions and
eigenvalues, which are considered as exact. 3 As an illustrative example,
in Fig 1.2a we show the calculated wave functions for silicon. Clearly, the
3s and 3p electronic states show a much larger contribution far from the
nucleus (r = 0) than the rest. Therefore, it is sensible to consider these
states as the valence ones.

The next step is to calculate the so-called pseudo wave function, φps(r),
for each valence electron. An example of φps(r) for the 3s and 3p states of

3We notice that even the atomic Schrödinger equation for an isolated atom is a many-
body problem and, therefore, some approximation is needed for the exchange-correlation
energy of the atomic electrons.
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silicon is shown in Fig. 1.2b. As appreciated in the figure, a pseudo wave
function is required to be equal to the exact wave function beyond some
cutoff radius Rc, while for r < Rc it should smoothly vanish as r approaches
0. Once we make sure that the pseudo wave function fulfills these and other
sensible requisites [22], a PP, V ps(r), for each valence state is constructed
considering the Schrödinger equation of the pseudo wave functions,

(
−1

2
∇2 + V ps(r)

)
φps(r) = εφps(r). (1.18)

From the above equation, V ps(r) is numerically calculated at every point in
real space,

V ps(r) =
∇2φps(r)

2φps(r)
+ ε. (1.19)

Therefore, φps(r) should be nodeless (see Fig. 1.2b) in order to avoid nu-
merical problems in the denominator.

1.2 Maximally localized Wannier functions

The main outcome of the approach presented in Sec. 1.1 are the KS states
|φnk〉, which are an specific type of Bloch orbitals. In this section, we will
analyze how to construct a different set of functions through linear com-
binations of the |φnk〉. This method was originally introduced by Gregory
Wannier in 1937 [1] and has been extensively developed since then. The ba-
sis of this so-called Wannier representation are a set of Wannier functions
(WFs) defined as

|Rn〉 = 1

N

∑

k

e−ik·R |φnk〉 , (1.20)

with 〈r |Rn〉 = wnR(r). The above definition is basically a discrete Fourier
transform of Bloch orbitals from k-space to its reciprocal space, i.e. the real
space, hence the label R. The inverse relation is 4

|φnk〉 =
∑

R

eik·R |Rn〉 . (1.21)

Eqs. (1.20) and (1.21) establish a linear transformation between the Bloch
functions and the WFs. Both sets constitute in principle an equally accept-
able basis for the description of the electronic properties, even though the
WFs are not eigenstates of the Hamiltonian and, therefore, do not have a
definite energy. The latter may seem a disadvantage, but it is largely com-
pensated by a desirable property of the WFs not shared in general by Bloch
orbitals: the localization in real space.

4We follow the convention 〈φnk |φmk′〉 = Nδnmδkk′ , 〈Rn |R′m〉 = δnmδRR′ .
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Figure 1.3: Illustrative example of the gauge freedom characteristic of Bloch
orbitals. (a) and (b) show a Bloch orbital |φnk〉 obtained through an stan-
dard DFT calculation and its associated WF, respectively. (c) and (d) show
respectively the transformed function |φ̃nk〉, which is smooth in reciprocal
space, and the associated WF, which is highly localized in real space.

1.2.1 Gauge freedom

Bloch orbitals possess an inherent phase indeterminacy in k-space. To illus-
trate this point, we note that if |φnk〉 is a valid Bloch orbital for describing
the system, then

|φ̃nk〉 = eiϕ(k) |φnk〉 (1.22)

is an equally valid orbital provided that ϕ(k) is real and periodic in reciprocal
space. This is a ’gauge freedom’ characteristic of Bloch orbitals, and it
can be exploited in order to get WFs that are localized in real space. We
recall from the basic properties of Fourier transforms that the smoother a
reciprocal-space object, the more localized the associated real-space object,
and vice-versa. Thus, if we choose ϕ(k) in such a way that |φ̃nk〉 is smooth
in k-space, its Fourier transform, |Rn〉, will be well-localized in real space.

In order to visualize the phase indeterminacy more clearly, in Fig. 1.3a
we illustrate the shape of a Bloch orbital |φnk〉 obtained through an standard
DFT calculation. As it is clear from the figure, the function is characterized
by random spikes all over the reciprocal space. This shows that Bloch or-
bitals are not smooth per se, but one can impose the smoothness by exploit-
ing the gauge freedom. This is schematically illustrated in Fig. 1.3c, where
the phase ϕ(k) has been fixed in order to obtain a smooth transformed func-
tion |φ̃nk〉. The WFs associated to |φnk〉 and |φ̃nk〉 are respectively shown in
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Figs. 1.3c-d, the latter clearly showing a much higher degree of localization
in real space.

Eq. (1.22) nicely exemplifies the gauge freedom of the Bloch orbitals,
but it does not describe the most general case. Consider now a manifold of
M bands that remain separated by a gap from any other band all over the
1BZ. Then, one can generalize the gauge freedom of the Bloch orbitals to

|φ̃nk〉 =
M∑

m=1

Umn(k) |φmk〉 , (1.23)

with Umn(k) a M × M unitary matrix. We notice that Eq. (1.22) corre-
sponds to the special case of a diagonal Umn(k). In general, however, the
off-diagonal elements of Umn(k) mix the contribution of several Bloch or-
bitals, resulting in a transformed function |φ̃nk〉 that is not an eigenstate
of the Hamiltonian. Thus, the quantum number n in Eq. (1.23) cannot be
identified as a real band index, but corresponds to a mixture of bands.

As in the single-band case of Eq. (1.22), the goal is to construct smooth
transformed functions |φ̃nk〉 in order to get well-localized WFs from

|Rn〉 = 1

N

∑

k

e−ik·R |φ̃nk〉 =
1

N

∑

k

e−ik·R
M∑

m=1

Umn(k) |φmk〉 . (1.24)

For this purpose, the matrix Umn(k) should rotate the Bloch orbitals in or-
der to cancel out their inherent discontinuities. This, however, is more subtle
in the present multiband case. First, we note that degeneracies among the
M bands may occur for some k. At those points, the Bloch orbitals corre-
sponding to the degenerate bands are not analytic, so that taking the Fourier
transform may present problems. Second and most important, it is not at
all obvious how should one choose the matrix Umn(k) so that every trans-
formed function |φ̃nk〉 is smooth in k-space. We remind that Umn(k) mixes
the contribution of several bands. Therefore, trying to improve the smooth-
ness of a given band may worsen the smoothness of another one. Thus, we
see the need of defining a criterion for measuring the ’global smoothness’ of
all the Bloch orbitals, or, analogously, a criterion for measuring the ’global
localization’ of the associated WFs.

1.2.2 Marzari-Vanderbilt localization functional

In 1997, Marzari and Vanderbilt [2] developed a method for determining
the optimally localized set of WFs associated with a set of Bloch orbitals,
later generalized to the case of entangled bands by Souza, Marzari and
Vanderbilt [28]. This approach is based on the definition of a well-defined
localization criterion for the WFs,

Ω =
∑

n

[
〈
0n

∣∣ r2
∣∣0n

〉
− 〈0n | r |0n〉2] =

∑

n

[
〈
r2
〉
n
− r2n]. (1.25)
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The above quantity measures the sum of the quadratic spreads of the WFs
in the home unit cell R = 0, therefore Ω is commonly known as the spread
of the WFs.

The way to proceed within this approach is to minimize this spread with
respect to the unitary transformations Umn(k). For such a task, one needs
to compute the matrix elements of the position operator [2, 29],

〈0n | r |0n〉 = i
V

(2π)3

∫
dkeik·R 〈unk |∇k |umk〉 . (1.26)

This is achieved by using a finite difference formula for the k-space gradient,

∇k |umk〉 =
∑

b

cbb (|umk+b〉 − |umk〉) +O(b2). (1.27)

where b are reciprocal vectors connecting nearest neighbor k-points and cb
the associated weights. With the aid of the above expression, the needed
quantities to calculate the matrix elements of Eq. (1.26) can be expressed
in a compact matrix form,

Mmn(k,b) = 〈umk|unk+b〉, (1.28)

In practice, the above overlap matrix is calculated via an iterative process
whereby the rotation matrix Umn(k) is updated in each iteration in order
to minimize the global spread of Eq. (1.25). In this work, we make use of
the WANNIER90 postprocessing algorithm [30] for such a task.

The WFs obtained through this method are named maximally localized
WFs (MLWFs) and possess several desirable properties. First, they repre-
sent the set of WFs with highest degree of localization among all possible
sets. The MLWFs are exponentially localized, as it has been recently shown
by Panati and Pisante [31], and in most cases they are real; the exception
occurs when spin-orbit coupling is taken into account, in which case the
MLWFs are generally complex [32]. But, above all, this approach repre-
sents a well defined and versatile proccedure to fix the arbitrary phase of
the Bloch orbitals in a large variety of systems, which explains the success
of the MLWFs over other types of WFs.

1.2.3 Applications of MLWFs

The MLWFs are widely used in the solid state community due to their
diverse applications. The simplest application is the interpolation of k-
dependent quantities into fine k meshes. To illustrate this method, consider
a set of Bloch orbitals, |φnq〉, calculated ab-initio in a ’coarse’ reciprocal-
space mesh, denoted by q, and the associated MLWFs, |Rn〉. By virtue of
Eq. (1.21), one can transform back from the Wannier to the Bloch represen-
tation. Note however that in Eq. (1.21) there is no reference to the original
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reciprocal-space mesh. Thus, provided that the MLWFs are properly lo-
calized, one can accurately interpolate the Bloch orbitals into an arbitrary
k-point even if this was not included in the original coarse mesh,

|φ̃〉nk =
∑

R

eikR |Rn〉 . (1.29)

Performing the inverse Fourier transform of Eq. (1.29) has a negligible
computational cost compared to the ab-initio calculation of the Bloch or-
bitals. Therefore, this so-called ’Wannier interpolation’ procedure provides
an efficient way of considering very fine k meshes that would be inaccesible
otherwise.

The interpolated |φ̃nk〉 can be used to calculate other physical quanti-
ties of interest such as band energies. Consider the representation of the
Hamiltonian in the Wannier gauge,

HW
k,nm ≡ 〈φ̃nk|H|φ̃mk〉 =

∑

R

eikR 〈0n |H |Rn〉 . (1.30)

The use of the MLWFs means that 〈0n |H |Rn〉 is highly localized around
the home unit cell, hence the above expansion yields good results including
only a few R vectors. Then, the band energies can be interpolated into an
arbitrary k-point simply by diagonalizing the matrix HW

k,nm.
Apart from the interpolation scheme, MLWFs have applications in many

other areas. The modern description of the electric polarization in solids
[3–5], for instance, is given in terms of MLWFs. Indeed, MLWFs provide
a natural way to express the electric dipole matrix elements involving the
position operator, whereas in the Bloch representation this quantity is ill-
defined due to the delocalization of the Bloch orbitals. Analogously, the
recent description of the orbital magnetization of solids is also based on
the MLWFs [6–10], providing an alternative viewpoint to the Berry phase
formalism. In the context of the Hall effect, MLWFs have been successfully
applied to accurately calculate the anomalous Hall conductivity in diverse
magnetic systems [33]. Additionally, MLWFs demonstrate to be ideal basis
functions of large-scale systems due to their maximal localization [34, 35].
Finally, MLWFs also find applications in molecular dynamics [14, 15] or
electron-phonon calculations [11–13]. The reader is referred to [36] for a
full review about the role of MLWFs in these and more topics.



Chapter 2

Electronic properties of
surfaces with strong
spin-orbit interaction

Surfaces have become an ideal testing ground for investigating the nature
and effects of the relativistic spin-orbit interaction (SOI) in low dimensional
systems [37–39]. As pointed in the pioneering work by LaShell and co-
workers [40], the lack of inversion symmetry associated to surfaces allows for
a finite spin-splitting of the so-called surface states via the SOI. Notewor-
thy, the typical order of magnitude for this spin-splitting is ∼100 meV, i.e.
around two orders of magnitude bigger than in usual semiconductors [37].
This opens up a wide range of possible applications in the fast-growing field
of spintronics, where the spin of the electron governs the charge transport
and other dynamical properties [41–44].

Since the work by LaShell and co-workers, several studies performed
on diverse type of surfaces have revealed exceptional effects associated to
the SOI. The family of bismuth alloy surfaces, for instance, exhibits gi-
ant spin-splittings of nearly 400 meV [45, 46]. Other interesting examples
include the semiconducting surfaces Tl/Si(111) [47, 48], Tl/Ge(111) [49]
and Pb/Ge(111)−β

√
3 ×

√
3R30 ◦ [50], among others. In these systems,

bulk bands present a gap near the Fermi level, and thus electron trans-
port properties appear strongly influenced by spin-polarized metallic surface
states. Even surfaces with light element overlayers such as H/W(110) have
revealed extremely complex spin-polarization structures inherited from the
anisotropy of the SOI [51, 52].

In this chapter, we will provide an ab-initio analysis of several ground-
state and excited-state electronic properties of various surfaces. In Sec.
2.1, we will introduce the basic aspects of the electron structure in surfaces
together with the theoretical framework adapted to include the spin degree
of freedom into the DFT formalism. As an illustrative example, we will

21
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analyze the Tl/Si(111) surface via ab-initio calculations of the relativistic
band structure and the spin-polarization structure. Partial conclusions will
be included at the end of the section.

In Sec. 2.2, we will analyze the effect of a time-dependent electromag-
netic field in the low-energy electron-hole excitations at surfaces. For this
purpose, we will apply a formalism based on MLWFs for calculating the
transition matrix elements involving k-space derivatives of the Bloch func-
tions. This approach will allow to consider very fine k meshes needed
to accurately reproduce the details near the narrow Fermi surface associ-
ated to the surface states. We will apply the method to the Au(111) and
Pb/Ge(111)−β

√
3×

√
3R30 ◦ surfaces in Secs. 2.2.3 and 2.2.4, respectively.

Main conclusions will be drawn in Sec. 2.3.
Additional material has been distributed among several Appendices. In

Appendix A we include the technical details regarding how to construct
(and optimize) a slab structure for modeling a surface using computational
algorithms. In Appendix B we summarize the main features of the standard
Rashba model [53] for a two-dimensional (2D) free-electron gas. The pre-
dictions of this simple and elegant model will be frequently referenced for
comparing with our ab-initio results. In Appendix C we include the novel
approach of Wang and co-workers [54] for expressing quantities that involve
k-space derivatives of Bloch functions in terms of MLWFs. Finally, in Ap-
pendix D we include the derivation of the interaction Hamiltonian of Eq.
(2.13) as the main perturbation term of the general relativistic Hamiltonian.

2.1 Basic electronic properties of surfaces

We begin this section by analyzing a property of surfaces that is central
for this work, namely the absence of inversion symmetry with respect to
the surface plane. This symmetry breakdown makes the electronic struc-
ture of surfaces rather different from that found in the bulk. Indeed, the
potential near the surface reflects this inversion asymmetry and is there-
fore different from the bulk potential. This gives rise to certain electron
states that only appear near the surface, the so-called surface states. These
states, originally introduced by Tamm [55] and Shockley [56] in the 1930s,
are solutions of the Schrödinger equation with complex momentum along the
surface-perpendicular direction, z. As a consequence, surface states decay
exponentially as e− Im[kz ]z into the bulk and are therefore strongly localized
near the surface plane, as schematically illustrated in Fig. 2.1.

Another important consequence of the broken inversion symmetry of sur-
faces can be deduced from symmetry considerations on the electron eigenval-
ues. We first analyze the effect of space inversion r ←→ −r on the electron
energies εsn(k), where we explicitly consider the spin quantum number s.
Inversion symmetry reverses the sign of the crystal momentum while it does
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Figure 2.1: Schematic representation of the potential felt by the electrons
along the surface-perpendicular direction, giving rise to the surface states.

not affect neither n nor s quantum numbers:

Inversion symmetry: εsn(k) = εsn(−k). (2.1)

The other symmetry we consider here is time-reversal (TR). This sym-
metry is present in all nonmagnetic materials that do not support a net
magnetic field. Its effect on the electron eigenvalues is to exchange both,
the momentum and the electron spin, hence:

TR symmetry: εsn(k) = ε−s
n (−k), (2.2)

which is konwn as the Kramers degeneracy.
If a material possess both, inversion and TR symmetry, the combination

of Eqs. (2.1) and (2.2) imply:

Inversion+TR symmetry: εsn(k) = ε−s
n (k). (2.3)

The above means that electrons with a given momentum k and opposite
spin-state have the same energy, i.e. we say that the state is spin-degenerate.

The breakdown of the inversion symmetry relaxes the condition of Eq.
(2.3) and leaves only the Kramers degeneracy (Eq. (2.2)) connecting states
with opposite momenta. Thus, nonmagnetic surfaces are allowed to have
spin-split states at a given momentum k, while the total magnetic field must
still vanish due to TR symmetry. Noteworthy, we expect the spin-splitting
to be most prominent in the electronic structure of the surface states, since
these are the ones that feel most the inversion asymmetry of the surface.
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2.1.1 Spin-orbit interaction and spin-DFT

The first measurement of spin-split surface states was performed by LaShell
and co-workers in 1996 [40], who used angle-resolved photoemission spec-
troscopy (ARPES) techniques for analyzing the spectrum of the Au(111)
surface. Rather surprisingly at that time, they discovered a splitting of
∼100 meV in the surface state dispersion. Furthermore, the measured split-
ting was not constant but varied in size depending on the momentum of the
surface state. The authors interpreted the effect as a spin-splitting caused
by the strong SOI associated to the surface,

HSOI = − 1

4c2
σ · (∇V (r)× p) . (2.4)

Above, c is the speed of light, σ the Pauli spin-operator and V (r) the po-
tential acting on the electrons, which in the KS scheme of Sec. 1.1 is equal
to the effective potential Veff(r). The inversion asymmetry of surfaces enters
in the SOC term through the gradient of the potential, ∇V (r).

The SOI is a relativistic effect coupling the spin to the orbital motion,
obtained from a Taylor series expansion of the Dirac equation up to order
(v/c)2 [57]. As a consequence, the SOI is only large in materials constituted
by rather heavy elements (atomic number Z ! 70) such as Au, because only
in these elements do electrons attain relativistic speeds. In surfaces made of
heavy elements, the SOI induces spin-splittings of the order of 0.1 eV, i.e.
about two orders of magnitude larger than in light element systems such as
the semiconductors heterojunctions of silicon or germanium [37].

In order to incorporate the SOI into the DFT formalism of Sec. 1.1,
the KS equation 1.3 needs to be generalized to the noncollinear spin case.
This was first done by von Barth and Hedin [58], who showed that the KS
equation of a noncollinear spin system takes the following form,

∑

s′=±

(
−1

2
∇2δss′ + V ss′

eff (r)

)
|φs′

nk〉 = εsn(k) |φs
nk〉 , (2.5)

where we explicitly consider the spin quantum number. In this so-called
spin-DFT (SDFT) formalism, the |φ±

nk〉 entering the KS equation are spinor
coefficients, the full KS state being a spinor orbital,

|φnk〉 =
(
|φ+

nk〉
|φ−

nk〉

)
. (2.6)

In Eq. (2.5), the spinor coefficients |φ±
nk〉 are coupled due to the spin-

dependence of the effective potential, V ss′
eff (r), which is a 2 × 2 matrix.

The exchange-correlation potential entering V ss′
eff (r) is commonly approxi-

mated within SDFT either with the spin-LDA (SLDA) [59] or spin-GGA
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Figure 2.2: (a) Several exact wave functions of Tl: 5d5/2, 5d3/2, 6s1/2, 6p3/2
and 6p1/2 orbitals. (b) Exact (solid) and pseudo (dashed) wave functions
for the 6s1/2, 6p3/2 and 6p1/2 orbitals. The cutoff radius for each state is
marked by the vertical lines.

(SGGA) [60, 61]. Then, the way to proceed is analogous to the spin-
independent DFT formalism, i.e. the KS equation must be iteratively solved
with the aid of the density, which is a 2× 2 matrix,

nss′(r) =
∑

n

1BZ∑

k

fnkφ
s∗
nk(r)φ

s′
nk(r). (2.7)

The outcome of the self-consistent iterative process are the KS spinor or-
bitals and the associated eigenvalues.

Fully relativistic PPs

A common and widely used way to incorporate the contribution of the rel-
ativistic SOI into the SDFT formalism is the so-called fully relativistic PP
approximation [62–64]. This procedure shares common features with the
standard PP approximation reviewed in Sec. 1.1.5. The main difference
is that in the present case, the atomic Schrödinger equation contains all
relativistic effects up to order (v/c)2 [64], namely the mass-velocity, Dar-
wing and SOI terms. Precisely due to the last term, the eigenstates of the
atomic Schrödinger equation are eigenstates of the total angular momentum
j = l+s. Therefore, a fully relativistic PP must incorporate the dependence
on this quantum number. 1

As an illustrative example, in Fig. 2.2 we analyze the atomic electron
wave functions of thallium, a rather heavy element with atomic number Z =
81. Fig. 2.2a shows the exact wave functions for the 5d5/2, 5d3/2, 6s1/2, 6p3/2

1We comment on the existence of the so-called scalar-relativistic PPs, which include
all relativistic effects up to (v/c)2 except the SOI.
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and 6p1/2 atomic orbitals, where the subscript denotes the total angular
momentum j. While 5d5/2 and 5d3/2 are quasi-degenerate, the orbitals 6p3/2
and 6p1/2 show a large difference for r ! 2.5 a.u.. This feature reveals that
the SOI affects mainly the 6p orbitals, so these should be incorporated into
the PP. Fig. 2.2b shows the calculated pseudo wave functions for 6s1/2, 6p3/2
and 6p1/2, which match the exact ones above some cutoff radius Rc ∼ 2.5
a.u. and smoothly vanish as r → 0. As in the standard PP approximation,
the pseudo wave functions are required to be nodeless in order to avoid
numerical problems when constructing the PP (see Eq. (1.19)).

(a) (b) (c)

Figure 2.3: Diamond structure of bulk silicon. (a) Cubic unit cell with the
atoms that form the honeycomb layers connected by black lines. (b) The
three relative positions of the honeycomb layers are depicted by crosses,
rectangles and circles. (c) Bulk unit cell used in the calculations.

2.1.2 An illustrative example: the Tl/Si(111) surface

In this section, we will apply the SDFT formalism to analyze the ground
state properties of the Tl/Si(111) surface as an illustrative example. This
system consists of silicon as the substrate material and a single overlayer of
thallium covering the (111) termination. There are two main aspects that
make this surface a particularly well suited example. First, it exhibits strong
SOI effects associated to the large mass of thallium, Z = 81. Second, due to
the semiconducting nature of silicon and the corresponding bulk band gap,
the system contains 2D surface states located inside the bulk projected gap
throughout the entire 1BZ.

We begin the analysis by considering the properties of bulk silicon, which
crystallizes in the diamond structure as shown in Fig. 2.3a. This structure
can be seen as formed by honeycomb layers stacked one above the other
along the direction perpendicular to the cube diagonal, as illustrated in Fig.
2.3b. The 2D basis vectors corresponding to the honeycomb layer structure
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Figure 2.4: (a) Top view of the Tl/Si(111) surface. Big (gray) spheres
represent the Tl surface monolayer, while the small (blue) ones are the
Si substrate layers. The solid (black) lines denote the projection of the
surface unit cell. (b) and (c) Side view of the Tl/Si(111)A and Tl/Si(111)B
terminations corresponding to the T4 and H3 adsorbing sites, respectively.

are
a1 = aêx and a2 =

a

2
(êx +

√
3êy), (2.8)

with a = 7.3 a.u. for silicon. This geometry is symmetric under rotations of
120◦ around the z axis, commonly denoted as the C3 symmetry. The same
honeycomb layered structure is also found in hexagonal close packed (hcp)
geometries [17]. Since thallium crystallizes in hcp structure, the geometry
of Si(111) is a prime candidate to adsorb a thallium surface monolayer.

The Si(111) termination possesses three possible adsorbing sites for the
thallium monolayer, as depicted in Fig. 2.3b. In one of the possible con-
figurations, the Tl surface is on top of the first Si layer. As determined
by tensor low-energy electron diffraction (LEED) experiments [65], this ’on
top’ configuration is energetically unfavorable in comparison to the other
two possible configurations. Thus, we discard it from our analysis. The
other two adsorbing sites are the so-called T4 and H3 configurations, which
are schematically shown in Figs. 2.4b-c under the names of Tl/Si(111)A and
Tl/Si(111)B, respectively. Both LEED experiments and theoretical calcula-
tions [65, 66] indicate that the Tl/Si(111)A termination is the most stable,
but with a tiny energy difference of ∆Es - 10−3 Ry per Tl atom compared
to the Tl/Si(111)B structure. Thus, since the latter is an energetically com-
petitive structure, we have also considered it in our analysis.

Computational details

The ab-initio calculations for analyzing the ground state electron structure
of the two terminations have been performed within the SDFT framework as
implemented in the QUANTUM-ESPRESSO package [23]. The exchange-
correlation energy has been approximatted within the SGGA and an energy
cutoff of 50 Ry has been used for the plane wave expansion. The PP approx-
imation has been employed to include two 3s and two 3p valence electrons
in the case of Si and two 6s and one 6p in the case of Tl. Following Sec.
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Figure 2.5: Properties of the bare Si(111) surface. (a) Electronic band struc-
ture along Γ−K−M− Γ. Red and blue (dashed) lines indicate the scalar
and fully relativistic calculations, respectively. The bulk band projection is
represented by the black background while the Fermi level is indicated by
the horizontal black line. (b) SBZ corresponding to the honeycomb layered
structure. (c) Probability amplitude |φnk(z)|2 (arbitrary units) of the en-
ergetically lower surface band for k = K (see green dot in (a)) along the
surface-perpendicular direction; z = 0 marks the position of the overlayer.

2.1.1, we have built fully relativistic PPs in order to take into account the
effect of the SOI.

The k mesh considered for the integrations over the 1BZ has been 16×
16 × 4 in the case of the bulk Si (Fig. 2.3c) and a 32 × 32 × 1 division
for the surface unit cell, also called slab. The technical details regarding
how to construct and optimize an slab for modeling a surface are included
in the Appendix A. For the present example, we have considered an slab
consisting of 24 Si layers covered by a Tl overlayer. All ionic positions have
been obtained by geometry relaxation, optimizing the forces below 10−3 Ry
a.u.−1 per atom.

Bare Si(111) surface

Before analyzing the two terminations of the Tl/Si(111) surface, we first
concentrate on the bare Si(111) surface in order to gain insight on the un-
derlying structure. Although the Si(111) termination is not stable due to
the formation of dangling bonds [67], it is still a valid example for our com-
parative purposes.

In Fig. 2.5 we illustrate several properties associated to the Si(111)
surface. In Fig. 2.5b we have included the 2D surface Brillouin zone (SBZ),
corresponding to the basis vectors in Eq. (2.8). This structure is a regular
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hexagon and contains 4 high symmetry points denoted as Γ, M, K and K′.
2 The first two are TR protected points, i.e. TR symmetry imposes spin-
degeneracy at those points [68]. K and K′, on the other hand, are not TR
protected and spin-splitting is allowed at those points.

In Fig. 2.5a we show the calculated band structure of the bare Si(111)
surface along Γ − K − M − Γ. The red and blue-dahsed lines correspond
to a calculation performed with a scalar relativistic (SOI not included) and
a fully relativistic (SOI included) approach, respectively. The continuum
black background in the figure denotes the bulk band projection, which
covers all the energies that are allowed for the electron states in the bulk.
Thus, when the band structure of the Si(111) slab containing both, surface
and bulk atoms, is superimposed to the bulk band projection, we can identify
the contribution that comes exclusively from the surface as the bands lying
outside the projection. In Fig. 2.5 we find three bands lying outside the
bulk band projection in the -1.5 eV to 2.5 eV energy range. Consequently,
we identify these three bands as surface bands that correspond to three well
defined surface states. In order to confirm the origin of the surface bands,
in Fig. 2.5c we analyze the probability amplitude of the KS state associated
to the energetically lower surface band at K. The figure shows that the KS
state is highly localized near the surface, in contrast to usual bulk states
that are delocalized throughout the solid.

We notice that there is no appreciable difference between the scalar and
fully relativistic calculations in the band structure of Fig. 2.5a. Therefore,
we infer that the SOI is negligible in this system. This was to be expected
since Si is a relatively light element with unimportant relativistic effects.
Hence, even though the structure of Si(111) allows for the existence of surface
states, in practice these do not spin-split due to the weakness of the SOI in
this system.

The Tl/Si(111)A termination

After the introductory example, we now analyze the energetically most fa-
vored termination of the Tl/Si(111) surface, namely the Tl/Si(111)A termi-
nation (Fig. 2.4b). In Fig. 2.6 we illustrate the associated electron band
structure and density of states (DOS) defined as

N(ε) =
1

P

∑

n

SBZ∑

k

δ(ε− εn(k)), (2.9)

with P the number of k-points used in the calculation. The DOS has been
projected (PDOS) onto different angular momentum channels following the
proccedure described in [69].

2We use an overbar to distinguish the 2D high symmetry points from usual 3D ones.
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Figure 2.6: (Left) Band structure of the Tl/Si(111)A surface termination.
The scalar relativistic and fully relativistic bands are represented by solid
(red) and dashed (blue) lines, respectively. The continuous background
denotes the bulk band projection. Inset figures show the details of the
surface bands in the neighborhood of high symmetry point K. (Right) PDOS
for the Tl surface monolayer and the first two Si layers. np3/2, np1/2 and
ns1/2 orbitals (principal quantum number n = 6 for Tl, n = 3 for Si)
are represented by solid (green), dashed (violet) and dotted (orange) lines,
respectively.

The scalar relativistic calculation produces two surface states, labeled as
SA1 and SA2 (see Fig. 2.6), in contrast to the three surface states found in the
bare Si(111) surface. Our calculation predicts a semiconductor state with an
energy gap of approximately 0.2 eV, since neither SA1 nor SA2 bands cross
the Fermi level. In contrast, the fully relativistic calculation presents four
surface bands labeled as S↓

A1, S
↑
A1, S

↓
A2 and S↑

A2. These bands are interpreted
as originating from the spin-splitting of the scalar relativistic SA1 and SA2

bands as a consequence of the SOI associated to the Tl overlayer.
It is evident from Fig. 2.6 that the SOI induces a considerable pertur-

bation on the surface bands associated to the scalar relativistic calculation.
The spin-degeneracy of the surface bands at the Γ and M points is a con-
sequence of the combination of the C3 rotational and the TR symmetry of
the system [48]. In contrast, these symmetry considerations do not forbid a
finite SOI-induced energy shift at high symmetry point K. The inset figures
of Fig. 2.6 show the exact magnitude of the SOI close to the K point, finding
that the S↓

A1 and S↑
A1 bands are spin-split by approximately 0.25 eV, in good

agreement with ARPES measurements [47]. In an analogous way, the S↓
A2
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Figure 2.7: Spin-polarized structure through the entire SBZ. Arrows (black)
represent the in-plane spin-polarization component, while the background
reflects the surface-perpendicular component mz,i(k) (the scale ranges
[−0.5, 0.5]).

and S↑
A2 bands suffer a maximum splitting of ∼ 0.6 eV, an extraordinarily

large value for an SOI-induced energy shift. The energy band gap of this
termination reduces roughly from a value of 0.2 eV in the scalar relativistic
calculation to the 0.1 eV found in the fully relativistic bands.

In surfaces with such strong SOI, it is relevant to study the spin-polarization
structure of the surface states, which is defined as the expectation value of
the Pauli spin-operator,

mn(k) =
1

V

∫
φ∗
nk(r)σφnk(r)dr. (2.10)

The above quantity measures the k-dependence of the spin quantization axis
of the surface states, which due to the SOI possess a non-trivial structure.
In Fig. 2.7 we show the calculated results for the four spin-split states. As
depicted in the figure, a given surface state is spin-polarized in approximately
the opposite direction with respect to its associated spin-split state. Note
that the negligible spin-polarization around high symmetry points Γ and M
is consistent with the null spin-splitting observed in the band structure in
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Figure 2.8: The calculated spin-polarization components m
x,S↓

A2
(k),

m
y,S↓

A2
(k) and m

z,S↓
A2
(k) are represented along the high symmetry line

Γ − K − M − K
′
by dotted (red), dashed (blue) and solid (black) lines,

respectively.

these regions.

It is commonly accepted, on the grounds of the Rashba model [53] (cf.
Appendix B), that the spin-polarization of surface electrons is constrained
to lie parallel to the surface plane (Eq. (2.20)). Fig. 2.7 depicts an in-plane
rotational spin-polarization around the Γ point, qualitatively resembling the
Rashba picture. In addition, the figure reveals that close to K and K

′
symme-

try points, the spin-state of surface electrons becomes predominantly polar-
ized along the z direction, in agreement with recent spin-resolved ARPES
(SR-ARPES) measurements [47]. This characteristic property is a conse-
quence of the C3 rotational symmetry of the honeycomb layered structure
of the surface, as it was recently shown by Ming-Hao and Ching-Ray [48].

In Fig. 2.8 we present a quantitative analysis of the spin-polarization
components of the S↓

A2 band along the Γ−K−M−K
′
high symmetry lines.

These results show that in the neighborhood of high symmetry points K
and K

′
, the absolute value of the z component reaches almost the maximum

value, 0.5, while in-plane components become negligible. Furthermore, Fig.
2.8 indicates that electronic states around high symmetry points K and K

′

are spin-polarized in completely opposite directions. This shows that the
’valleys’ associated to K and K

′
possess different spin-dependent properties,

a feature that could be useful in the emerging field of ’valleytronics’ [70, 71].

The Tl/Si(111)B termination

We proceed now to analyze the electronic structure of the Tl/Si(111)B ter-
mination. Fig. 2.9 shows the calculated electron band structure, where
we find four spin-split surface bands (S↓

B1, S
↑
B1, S

↓
B2 and S↑

B2) crossing the
Fermi level. Consequently, the system acquires a Fermi surface, illustrated
in Fig. 2.10, which is formed exclusively by the spin-polarized surface states.
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Figure 2.9: (Left) Band structure of the Tl/Si(111)B surface termination
(different calculations are depicted as in Fig. 2.6). The inset figure con-

nected to the M point shows a complete spin-degeneracy of S↓
B1 and S↑

B1
bands. Inset figure connected to K point reveals a quasi-degenerate con-
figuration of S↓

B2 and S↑
B2 bands (∆Es ∼ 25 meV). (Right) PDOS for the

Tl surface monolayer and the first two Si layers as in Fig. 2.6. Note that
energy regions around −0.75 and −0.1 eV show non-negligible Tl 6s orbital
contribution.

Figure 2.10: Fully spin-polarized Fermi surface of the Tl/Si(111)B surface
termination. Solid (red) and dashed (blue) lines represent the Fermi crossing
points of scalar relativistic and fully relativistic surface bands, respectively.
The inner and outer electron pockets around K and K

′
points belong to S↑

B2

and S↓
B2 bands, while the inner and outer electron-hole pockets around the

Γ point belong to S↓
B1 and S↑

B1 bands, respectively.
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Figure 2.11: Charge distribution of S↓
B2 state at high symmetry point K.

Big (gray) and small (blue) spheres represent Tl and Si atoms, respectively.
(a) and (b) illustrate the side and top views of the charge density isosurfaces
corresponding to ρ = 0.6, 0.3 and 0.15 a.u. The shape of the charge distribu-
tion around Tl atoms shows a ’front lobe’ associated to a spz hybrid orbital
with a predominant s to pz ratio. An almost identical picture is obtained
for the S↑

B2 state.

The S↓
B2 and S↑

B2 bands form several spin-polarized electron pockets

around the high symmetry points K and K
′
. Additionally, the S↓

B1 and S↑
B1

bands are occupied all over the SBZ except around high symmetry point

Γ, where we find an electron-hole pocket of radius kF ∼ 0.46 Å
−1

(see Figs
2.9 and 2.10). Consequently, the Tl/Si(111)B termination exhibits a strong
metallic character entirely induced by the fully relativistic surface bands.
The S↓

B1 and S↑
B1 states are maximally spin-split close to K (∼ 0.25 eV).

These bands become spin-degenerate at M, as appreciated in the inset of
Fig. 2.9. Similarly, the overall spin-splitting for the S↓

B2 and S↑
B2 surface

bands is found to be of the order of 0.2 eV. Noteworthy, these bands become
quasi-degenerate close to the K point, where the magnitude of the splitting
diminishes to a negligible but finite value of ∼ 25 meV (inset of Fig. 2.9).

The s orbital character of the surface electronic wave functions is in-
dicative of a possible spin-degeneracy. The right panel of Fig. 2.9 shows
the PDOS for various orbital components. We find that the Tl 6s orbitals
represent the largest contribution to the PDOS at approximately −0.75 eV.
Similarly, we find a non-negligible contribution of these orbitals at around
−0.1 eV. These two energy regions with non-negligible Tl 6s contribution
coincide with the energy regions of the inset figures of Fig. 2.9.

In order to deepen in the analysis of quasi-degeneracy at K and the Tl
s orbital contribution, in Fig. 2.11 we illustrate several isosurfaces of the
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Figure 2.12: Spin-polarized structure through the entire SBZ. Arrows
(black) represent the in-plane spin-polarization component, while the back-
ground reflects the surface-perpendicular component mz,i(k). The Fermi
surface for each state is depicted by the dashed (blue) lines.

k-dependent charge density,

ρnk(r) = |φnk(r)|2, (2.11)

for n = S↓
B2 state at high symmetry point K. As demonstrated in the figure,

this surface state is highly localized within the first two layers of the slab,
where relativistic effects prevail. Close to Tl atoms, the charge distribution
shows a characteristic ’front lobe’ shape associated to an atomic spz hybrid
orbital. The relatively large isosurface volume of the ’front lobe’ indicates
that the s character predominates over the pz one. Interestingly, close to
the M point, very similar charge distributions are found for the S↓

B1 and S↑
B1

states. Therefore, we are in position to conclude that the Tl 6s character is
predominant in the spin-degenerate regions.

Following with the analysis of the surface state properties, in Fig. 2.12 we
present the calculated spin-polarization for the different surface states of the
Tl/Si(111)B termination, exhibiting a far more complex structure than in
the previous termination. In agreement with symmetry considerations, the
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spin is found to be 100% polarized along the surface-perpendicular direction
at high symmetry points K and K

′
, its orientation being reversed going

from one point to the other. We find an important contribution of the z
spin-polarized component over the entire SBZ, specially for the S↓

B2 and

S↑
B2 states. The calculated Fermi surface extends over regions where the in-

plane spin-polarization is combined with an important surface-perpendicular
contribution (see Fig. 2.12). Noteworthy, the spin-polarization reverses
its orientation over different electron pockets, providing the Tl/Si(111)B
termination with interesting transport properties.

2.1.3 Partial conclusions

In this section we have analyzed the main features of the ground-state elec-
tron properties of surfaces with strong SOI, using the Tl/Si(111) surface
as an illustrative example. The ab-initio calculations presented here have
shown the impact of this relativistic effect on the electronic structure of the
surface states. We have found that the SOI induces a spin-splitting as big
as 0.6 eV on the surface bands, a value comparable to nonrelativistic con-
tributions such as the kinetic or exchange-correlation energies. Similarly,
the analysis of the spin-polarization structure has also shown remarkable
effects associated to the SOI. In particular, we have found a predominant
contribution of the surface-perpendicular spin-polarization component in a
large area of the SBZ, a feature that completely departs from the standard
Rashba model. These results are in very good agreement with experimental
ARPES and SR-ARPES measurements [47], proving the adequacy of the
SDFT approach for the analysis of the SOI in surfaces.

2.2 Spin-flip excitations via time-dependent elec-
tric fields

In this section, we analyze the transitions induced by a time-dependent elec-
tric field on spin-split surface states. For this purpose, we combine ground-
state ab-initio calculations within the SDFT formalism and time-dependent
first order perturbation theory. The matrix elements associated to these
transitions involve k-space derivatives of the KS orbitals. As shown in Sec.
1.2, these type of orbitals possess an inherent phase indeterminacy in recipro-
cal space that make the k-space derivatives ill-defined in this representation.
To overcome this problem, we make use of the Wannier representation in-
troduced in Sec. 1.2, allowing the calculation and k-space interpolation of
the transition matrix elements.

This section is divided into four different parts. After the brief intro-
duction of Sec. 2.2.1, in Sec. 2.2.2 we present the formalism for calculating
the spin-flip excitations. In Secs. 2.2.3 and 2.2.4, we apply the formalism to



2.2 Spin-flip excitations via time-dependent electric fields 37

two different systems, the Au(111) and the Pb/Ge(111)−β
√
3×

√
3R30◦ sur-

faces, respectively. The former is considered as the realization of the Rashba
model, hence it serves as a test example. The Pb/Ge(111)−β

√
3×

√
3R30◦

surface, on the other hand, shows a much more complex structure, proving
the usefulness of the ab-initio approach.

2.2.1 Brief introduction

Due to the strong effects induced by the SOI in surfaces, these systems at-
tract a great deal of interest as potential candidates for spintronic devices,
where the spin of the electron governs the charge transport and other dy-
namical properties [41–44]. One particularly appealing aspect in this field
is the possibility of manipulating the electron spin by means of externally
applied electric fields [41]. The basic idea in this scenario is to control
the spin orientation by inducing spin-flip excitations among the spin-split
surface states [72]. In practice, this can be done using electric fields that
couple to the electron velocity, which becomes spin-dependent due to the
strong SOI of surfaces [73]. Given that electric fields can be easily created
and manipulated inside semiconductor devices, this mechanism offers great
perspectives for future applications.

2.2.2 Theoretical approach

We consider the effect of an external time-dependent electromagnetic field
(EMF) with frequency ω and wavevector q = qêz propagating along the
surface-perpendicular direction z. This EMF is described by the classical
vector potential field

A(α)
ext(r, t) = A(α)

0 eiq·re−iωt +A(α)∗
0 e−iq·reiωt. (2.12)

Above, α stands for the polarization of the external field and A(α)
0 is a vector

constrained to the (x, y) plane. Throughout the work, we will consider x

and y linearly polarized, A(x)
0 = A0êx and A(y)

0 = A0êy, as well as right (R)

and left (L) circularly polarized light, A(R,L)
0 = A0(êx ± iêy)/

√
2.

In surfaces with strong SOI, the leading term of the interaction Hamil-
tonian between an electron and the external field is [72],

Hint(t) = −1

c
v ·A(α)

ext(r, t), (2.13)

with v the electron velocity operator,

v =
∂r

∂t
= −i [r, H0] = ∇pH0, (2.14)
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andH0 the ground-state Hamiltonian that incorporates the SOI. The deriva-
tion of Eq. (2.13), known as the electric coupling, is included in the Ap-
pendix D. As it is also shown in this Appendix, the electron velocity operator
acquires a spin-dependent term as a consequence of the SOI,

v = p− 1

4c2
σ ×∇V (r), (2.15)

with p the usual canonical contribution. Due to the spin-dependence of v,
the interaction Hamiltonian of Eq. (2.13) can induce transitions between
spin-split surface states with opposite spin-polarization, i.e. spin-flip tran-
sitions.

The transition rate associated to this process can be calculated with
the aid of the Fermi’s golden rule. Considering the absorption of a photon

through the term A(α)
0 e−iq·re−iω·t in Eq. (2.12), and working in the electric

dipole approximation (q → 0 limit), the first order transition rate is given
by

γ(α)mn(ω) =2π

∫
(fmk − fnk) |C(α)

mn(k)|2

× δ(εn(k)− εm(k)− ω)
d2k

(2π)2
,

(2.16)

with the transition matrix elements

C(α)
mn(k) = −1

c
A(α)

0 · 〈φmk|v |φnk〉 . (2.17)

One possible way to proceed is to consider the expression of Eq. (2.15)
for the velocity operator and compute the above matrix elements. However,
this approach has an important drawback, namely that the calculated ma-
trix elements cannot be interpolated in reciprocal space as a consequence
of the phase indeterminacy characteristic of Bloch orbitals (cf. Sec. 1.2).
Therefore, this means that all quantities entering the integral of Eq. (2.16)
have to be calculated ab-initio at each k-point. This integral, however, is
very sensitive to the details of the Fermi surface structure associated to the
spin-split surface states. In order to contribute to this integral, one of the
states must be empty while the other must be occupied, as schematically
depicted in Fig. 2.13. Therefore, the k-space area contributing to the in-
tegral is rather small and, as a result, very fine k-point meshes are usually
required to yield converged results. The computational cost of this type of
fine mesh ab-initio calculation can be very demanding [33, 54, 74–76].

In order to overcome this problem, here we make use of the Wannier
interpolation scheme. Instead of using the expression of Eq. (2.15) for
the velocity operator, we proceed by expanding the commutator [r,H0] in
Eq. (2.14). Then, the matrix elements of Eq. (2.17) involving the position
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(a) (b)

Figure 2.13: Illustrative example of the k-space area where spin-flip excita-
tions between spin-split states are allowed, denoted by the grey background
in both figures. (a) Example of a typical band structure of spin-split sur-
face states, indicated by blue lines. (b) Fully relativistic Fermi surface of
Tl/Si(111)B, see Fig. 2.10. The blue lines indicate the cuts of the spin-split
states at the Fermi level.

operator can be cast into the following form (see Eq. (1.26)),

C(α)
mn(k) = −

(
εn(k)− εm(k)

)

c
A(α)

0 · 〈umk|∇k |unk〉 . (2.18)

The term 〈ukm|∇k |ukn〉 in the right hand side is the so-called generalized
Berry connection [77] associated to the spin-split states, which introduces
a k-space derivative that is ill-defined in the Bloch representation. This
problem can be fixed by expressing the matrix elements of Eq. (2.18) in
the Wannier representation. The details of this procedure are included in
Appendix C, following the novel approach by Wang and co-workers [54]. In
this formalism, the use of MLWFs assures the smoothness of the matrix
elements Cmn(k), so that they can be interpolated into a fine k mesh. This
process involves a routine application of the fast Fourier transform (FFT)
algorithm, which represents an inexpensive computational cost compared to
a full ab-initio calculation. Therefore, this approach is particularly appro-
priate for converging the integral of Eq. (2.16) that requires a large number
of k-points.

To conclude with the theoretical analysis, let us note that the gener-
alized Berry connection of Eq. (2.18) associated to the spin-split states is
not in general null due to the spin noncollinearity induced by the SOI, as
shortly illustrated in the next lines. Let us begin by considering a system
without SOI and subjected to a constant magnetic field along the z axis. In
these conditions, the spinor states would be collinearly polarized along the
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Figure 2.14: Top view of the Au(111) surface. [80] Gold atoms are repre-
sented by the spheres (yellow). The big (red) arrows denote the 2D direct
lattice.

z axis, i.e. we would have ukn(r) = gkn(r)

(
1
0

)
and ukm(r) = gkm(r)

(
0
1

)
.

Then, since the momentum operator ∇k is diagonal in the spin-basis, one
deduces that the matrix elements entering Eq. (2.18) vanish identically.
This is in contrast to the situation when a finite SOI is present. This inter-
action induces an explicit momentum dependence of the spinor wave func-

tion, uki(r) =

(
g+ki(r)
g−ki(r)

)
. In this case, the spinor ∇kukn(r) =

(
∇kg

+
kn(r)

∇kg
−
kn(r)

)

does not generally describe a spin orientation parallel to the original spinor
ukn(r). Therefore, an appreciable magnitude of the 〈ukm|∇k |ukn〉 matrix
elements entering Eq. (2.18) is a direct consequence of the spin noncollinear-
ity induced by the SOI.

2.2.3 A test example: the Au(111) surface

In this section, we will apply the approach presented in Sec. 2.2.2 to cal-
culate the spin-flip excitations induced by a time-dependent electric field in
the Au(111) surface. This system is considered as the paradigm of a 2D free
electron-like gas under the influence of a Rashba-type SOI term [53] (cf. Ap-
pendix B). Both theory and experiments show [37, 40, 78, 79] that ground-
state properties of the Au(111) surface states, such as the spin-splitting or
the spin-polarization structure, are well described in terms of the Rashba
model. Thus, this system represents an ideal test example for our purposes
as it allows the comparison of the calculated ab-initio results with model
predictions.

Ground-state electron structure

We have calculated the ground-state electronic properties of the Au(111)
surface using SDFT and a plane wave basis set as implemented in the
QUANTUM-ESPRESSO package [23]. The convergence of the plane wave
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Figure 2.15: (a) Electron band structure of the Au(111) surface. Red lines
represent the fully relativistic calculation, while the continuous background
denotes the bulk band projection. (b) Zoom of the band structure near the
Γ point where the metallic spin-split surface bands are located. The inset
shows the details of the SBZ. (c) and (d) Ab-initio momentum dependent
spin polarization associated to lower and higher spin-split sub-bands, respec-
tively. Arrows represent the in-plane spin-polarization component, whereas
the background color code indicates the surface perpendicular component,
mi,z(k). Dashed (blue) lines indicate the calculated ab-initio Fermi surface
associated with each surface sub-band. The radii of the circles in (c) and
(d) are k−F and k+F , respectively.

basis has been achieved with an energy cutoff of 55 Ry, and the integra-
tions over the SBZ have been performed considering a 32× 32 k mesh. The
exchange-correlation energy has been approximated using the SLDA, and
the effects of the SOI have been taken into account with a fully relativis-
tic PP for Au which includes the 5d and 6s electrons. We have modeled
the Au(111) surface following the repeated slab technique (cf Appendix A)
considering 21 Au layers. A top view of the honeycomb layered (111) ter-
mination is shown in Fig. 2.14. The 2D direct lattice vectors of the surface
unit cell are the same as for Tl/Si(111) (Eq. (2.8)), with lattice parameter
a = 5.49 a.u..

In Fig. 2.15a we present the calculated electron band structure of the
Au(111) surface. The relativistic bands correspond to the solid (red) lines,
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Figure 2.16: Comparison between the Rashba model prediction for the
energy dispersion (Eq. (2.19)) and the calculated ab-initio band struc-
ture of the surface states. The Rashba parameter αR has been fitted at

|k| = 0.145Å
−1

, indicated by the vertical line.

while the the bulk band projection is indicated by the background contin-
uum (black). The relativistic calculations present two spin-split metallic
surface bands in the neighborhood of high symmetry point Γ, as shown in
Fig. 2.15b. Overall, the spin-splitting is of the order of ∼100 meV. Away
from Γ, the surface bands gradually spin-degenerate as they approach the
bulk projection (continuum) and become resonance states. The calculated
binding energy at Γ is 420 meV, while the spin-splittings at the Fermi level
range approximately from 120 to 135 meV, corresponding to the Fermi wave

vectors k↑F = 0.145Å
−1

and k↓F = 0.175Å
−1

, respectively.
It is instructive to compare the calculated band structure of the surface

states with the Rashba model energy dispersion

ε±(k) =
k2

2m∗ ± αR|k|, (2.19)

where ± denote the spin-split states (cf. Appendix B). This equation pre-
dicts a spin-splitting that grows linearly with |k|: ∆E = 2|k|αR, with αR

the so-called Rashba parameter. An explicit value for this parameter can
be obtained by extracting ∆E and |k| from the ab-initio band structure.
Since we will be interested in the details close to the Fermi surface when
analyzing the spin-flip transitions, we use the calculated Fermi wave vec-

tor, |k| = k↑F = 0.145Å
−1

, and the corresponding spin-splitting, ∆E = 0.12
eV, to obtain αR = ∆E/2|k| = 0.419 eV·Å. This value is in good agree-
ment with recent ARPES experiments [78] measuring αR = 0.396 eV·Å.
Besides, we obtain an effective mass of m∗ = 0.23 (see Eq. (2.19)) from
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a parabolic fit to the band structure, which also agrees well with experi-
ments, m∗ = 0.25 [78]. Using the calculated values for αR and m∗, in Fig.
2.16 we compare the ab-initio band structure of the surface states with the
Rashba model energy dispersion (Eq. (2.19)). The figure shows a good

agreement for energies below the Fermi level. As expected, at |k| = k↑F the

ab-initio and Rashba model energies coincide exactly. For |k| > k↑F , the
ab-initio band structure ceases to grow linearly and, furthermore, it starts
decreasing, clearly deviating from the Rashba energy dispersion.

We now analyze the spin-polarization structure (Eq. 2.10) of the sur-
face states, illustrated in Figs. 2.15c and 2.15d. Both surface states are
spin-polarized in practically the opposite direction in agreement with spin-
resolved ARPES measurements [40, 78], and describe a circular spin struc-
ture around the Γ point following the Rashba model,

m±(k) = ±1

2




sinϕ

− cosϕ
0



 . (2.20)

Our calculations confirm that mi(k) is almost parallel to the surface for
|k| " k+F , which is the region where the Rashba model is expected to properly
describe the properties of the surface states. Instead, the calculated surface-
perpendicular component (mz,i(k)) acquires a finite value for |k| ! k+F , in-
dicating a departure from the Rashba model in this region. As shown by
Henk et al. [81], this feature is a consequence of in-plane components of the
potential gradient associated with the real surface structure. In our calcu-
lations, we find that at k+F , the surface-perpendicular component represents
the 3% of the total magnitude of the spin polarization.

Spin-flip excitations

We come now to analyze the spin-flip transitions induced by a time-dependent
EMF on the spin-split surface states, following the approach of Sec. 2.2.2.
For this purpose, in Fig. 2.17 we present the calculated spin-flip transition
probability associated to the surface states,

P (α)
mn (k) ≡

|C(α)
mn(k)|2

|A(α)
0 |2

, (2.21)

where the C(α)
mn(k) are the transition matrix elements of Eq. (2.18). We

notice that the transition probability as defined in Eq. (2.21) is independent
of the external field intensity A0 (see Eq. (2.17)). Figs. 2.17a-b illustrate the
results corresponding to x and y linearly polarized light, respectively, while
Figs. 2.17c-d correspond to R and L circularly polarized light, respectively.

Our results confirm a qualitative agreement between the ab-initio cal-
culations and the Rashba model prediction. For the R and L circularly



44
Chapter 2. Electronic properties of surfaces with strong spin-orbit

interaction

Figure 2.17: Spin-flip transition probability associated with the spin-split
surface states. (a), (b), (c) and (d) show the calculated results for α =
x, y,R and L polarized light, respectively. The solid contour lines indicate
the degree of localization of the probability distribution. The dashed lines
(black) denote the Fermi surface associated to the spin-polarized states.

polarized light (Figs. 2.17c and 2.17d), the calculations predict equal and
highly isotropic angular distribution, i.e. our results do not show a signifi-
cant dependence on ϕ apart from a slight hexagonal-like shape. This feature
is in agreement with the Rashba model, which predicts a constant and equal
transition probability,

P (R,L)
−+ =

α2
R

2c2
. (2.22)

For x and y linearly polarized light (Figs. 2.17a and 2.17b), the spin-flip
transition probability is also in qualitative agreement with the sinusoidal
functions predicted by the Rashba model,

P (x)
−+(ϕ) =

α2
R

c2
sin2 ϕ, (2.23)

P (y)
−+(ϕ) =

α2
R

c2
cos2 ϕ. (2.24)

Interestingly, our ab-initio calculations show a clear deviation from the
Rashba model in one important aspect; the dependence of the calculated
spin-flip transition probability on the momentum magnitude |k|. This fea-
ture is particularly evident for x and y linearly polarized light (Figs. 2.17a
and 2.17b), but it is also present in the case of R and L circularly polar-
ized light (Figs. 2.17c and 2.17d). In the four cases, the spin-flip transition
probability diminishes with increasing momentum. This is understood as
the surface bands approaching the bulk continuum lose gradually their sur-
face character, and is in clear contrast with the Rashba model predicting a
transition probability independent of |k|.

In Figs. 2.18a and 2.18b we analyze the probability distribution for x
and y linearly polarized light along circular paths centered at high symmetry
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Figure 2.18: (a) and (b) Respectively, calculated P (x)
mn(k) and P (y)

mn(k) (units
of 10−5 a.u.) along various circles centered at Γ, each with different radius
|k| (see inset, values in units of 2π/a). The solid (black) line depicts the
Rashba model prediction, which is independent of |k|.

point Γ. The figures show the calculated results for several magnitudes of the

momentum |k|. We observe that the calculated P (x)
mn(k) and P (y)

mn(k) closely
follow the dipole-like functional shape of the Rashba model (sin2 ϕ, cos2 ϕ),

specially for small momenta, |k| " k↑F . The results in this regime differ
from the Rashba model basically because the parameter αR was fitted by
considering the ab-initio data at k↑F . We find that even though the order of
magnitude coincides for all |k|, the calculated spin-flip transition probability
shows a remarkable modulation with respect to the Rashba model result near
k↑F .

In Fig. 2.19 we present the absorption rate associated to spin-flip exci-
tations,

Λ(α)
mn(ω) =

ω · γ(α)mn(ω)

P , (2.25)

where γ(α)mn(ω) is the spin-flip transition rate (Eq. (2.16)) and P = |A0|2ω2/πc

the optical power per unit area of the incident field. Therefore, Λ(α)
mn(ω)

measures the percentage of the total irradiated light absorbed in spin-flip
processes. In the present example, the absorption rate has been obtained
integrating the contribution of 1000×1000 interpolated k-points, which has
allowed us to consider a very fine Gaussian width of 4 · 10−4 eV for the inte-
gral. The calculated results (α = x, y,R, L) are shown as colored lines in the
figure. The grey line represents the analytic Rashba model prediction (Eq.
(B.17)) which is independent of both, the external field polarization and the
Rashba parameter αR. We have also applied the same broadening to this
analytic result (dot-dot-dashed black line) in order to reflect the accuracy
of the integration.

Fig. 2.17e shows that light is absorbed in the 120-135 meV energy range,
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Figure 2.19: Integrated spin-flip absorption rate for the Au(111) surface.
Super-imposed dashed (red), dotted (blue), dot-dashed (green) and dot-
dash-dashed (purple) lines represent the calculated results corresponding to
the x and y linear and R and L circularly polarized light, respectively. The
constant solid (grey) and dot-dot-dashed (black) lines denote respectively
the Rashba model prediction without and with broadening.

corresponding to the spin-splitting of the surface states at the Fermi level.
Our calculations confirm that the absorption rate is practically independent
of the external field polarization, in qualitative agreement with the Rashba
model prediction. The spatial isotropy between x and y directions of Fig.
2.17e is expected since the surface states in Au(111) are mainly composed
of s, pz and dz2 orbitals [78]. The equality in the absorption of R and L
circularly polarized light, on the other hand, is imposed by the TR symmetry
of the system [10, 71].

Fig. 2.17e reveals that the Rashba model underestimates the maximum
magnitude of the spin-flip absorption rate by approximately 30% compared
to our ab-initio results. This is a consequence of the Fermi surface struc-
ture depicted in Figs. 2.17a-d. In the k-space area where electron spin-flip
excitations are allowed (k↑F < |k| < k↓F ), the calculated values for the tran-
sition probability matrix elements are ∼ 1-1.5 times larger than the ones
predicted by the Rashba model. This feature leads to the enhancement of
the calculated spin-flip absorption rate depicted in Fig. 2.17e.

2.2.4 The Pb/Ge(111)−β
√
3×

√
3R30◦ surface

In this section, we apply the formalism of Sec. 2.2.2 to calculate the spin-
flip excitations in the Pb/Ge(111)−β

√
3×

√
3R30◦ (

√
3Pb/Ge(111)) surface.

This system presents two well defined spin-split surface states crossing the
Fermi level as measured by recent ARPES measurements [50], while the
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Figure 2.20: Top view of the
√
3Pb/Ge(111) surface [80]. The small (gray)

spheres symbolize the Ge substrate layers, whereas the big (green) spheres
represent the Pb surface monolayer. The solid (red) parallelogram indicates
surface unit cell.

bulk substrate remains semiconducting. Thus, we face a problem involving
a completely spin-polarized 2D electron gas which is essentially decoupled
from the bulk, i.e. an optimum scenario for studying surface spin-flip tran-
sitions. Another interesting feature about this surface is that it does not
follow the Rashba model prediction. This is so because the surface bands
are located far from high symmetry point Γ, whereas the Rashba model is
expected to work at low values of the momentum. Therefore, the ab-initio
approach is specially useful in this case.

Ground-state electron structure

We have calculated the ground-state electronic properties of the
√
3Pb/Ge(111)

surface using SDFT and a plane wave basis as implemented in the QUANTUM-
ESPRESSO package [23]. The convergence of the plane wave basis has been
achieved with an energy cutoff of 40 Ry, and the integrations over the SBZ
have been performed considering a 27×27 kmesh. The exchange-correlation
energy has been approximated using the SLDA, and the effects of the SOI
have been taken into account by a fully relativistic PP for Pb which includes
the 6s and 6p electrons. The

√
3Pb/Ge(111) surface has been simulated by

the repeated slab technique (cf. Appendix A) containing 14 Ge layers. In
Fig. 2.20 we include a top view of the surface. The 2D direct lattice vectors
conforming the surface unit cell are (a = 21.92 a.u.)

a1 =
a

2
(êx +

êy√
3
), a2 =

a

2
(−êx +

êy√
3
). (2.26)
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Figure 2.21: Electron structure of the
√
3Pb/Ge(111) surface. (a)Electron

band structure of the
√
3Pb/Ge(111) surface. The scalar and fully rela-

tivistic bands are represented by dashed (red) and solid thick (blue) lines,
respectively. The continuous background is the bulk band projection. The
fully relativistic metallic surface states are labeled as S and S′. (b) and
(c) Momentum dependent spin-polarization structure associated to the S
and S′ surface states, respectively. Arrows represent the in-plane spin-
polarization component, whereas the background color code indicates the
surface-perpendicular component of the magnetization, mz(k). The Fermi
surface of each state is indicated by solid (blue) lines.

Fig. 2.21a shows the calculated band structure of the
√
3Pb/Ge(111)

surface. While the scalar relativistic calculation (dashed) shows a single
spin-degenerate surface band crossing the Fermi level, fully relativistic cal-
culations present two spin-polarized surface bands labeled as S and S′. The
SOI has a huge impact on the electron structure close to the Fermi level,
such that this term cannot be treated perturbatively. Its contribution is
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even more important than some non-relativistic DFT terms, such as the
exchange-correlation energy. In this context, the SOI completely determines
the metallic character of the S and S′ surface states, which exist as surface
states only outside the area close to the Γ point, where S and S′ become
resonances entering the bulk projection (continuum in Fig. 2.21a). Outside
this region, the SOI-induced spin-splitting is in overall of the order of 100
meV, reaching a maximum of 300 meV near the high symmetry point M.
The calculated Fermi wave vectors along the high symmetry direction Γ−M,
kSF - 0.41 Å−1 and kS

′
F - 0.37 Å−1, are in very good agreement with recent

ARPES experiments reporting kSF = 0.40 Å−1 and kS
′

F = 0.36 Å−1 [50].
In Figs. 2.21b and 2.21c we present the calculated spin-polarization

structure (Eq. 2.10) for the S and S′ surface states in the entire SBZ. These
figures demonstrate that the S and S′ states are spin-polarized in almost the
opposite direction, in agreement with recent SR-ARPES measurements [50].
The negligible spin-polarization around Γ is consistent with the overlap of
the surface bands with the bulk projection (see Fig. 2.21a). In this area,
the electron states become resonances with a large penetration, so that any
surface effect, such as the enhancement of the SOI, is almost completely
absent.

The anisotropic character of the SOI is evidenced by the highly non-
collinear structure of the calculated spin-polarization for S and S′. We ob-
serve that the spin-state is polarized mainly along the surface-perpendicular
direction, a phenomenon that extends to a significant area around the high
symmetry points M and M

′
. Such an important contribution of the out-

of-plane spin-polarization is a consequence of strong in-plane gradients of
the ionic potential, as in the case of the Tl/Si(111) surface. Our calcu-
lations further identify an important area of almost pure in-plane circular
spin-polarization around high symmetry point K.

Spin-flip transitions

We come now to analyze the spin-flip transitions between the S and S′

surface states. In Fig. 2.22 we show the calculated spin-flip transition
probability as defined in Eq. (2.21) for linearly polarized light. The matrix
elements have been interpolated into a fine 300×300 k-point mesh using the
Wannier interpolation scheme.

We begin by analyzing the result for x linearly polarized light (Fig.
2.22a). Consistently with the band structure, the spin-flip transition proba-
bility is practically null in the neighborhood of the Γ point. In contrast, we
find a very high localization of the spin-flip transition probability in several
’hot spots’ close to the high symmetry point K. In comparison, the magni-
tude of the transition probability in these regions is two orders of magnitude
larger than in the Au(111) surface (see Fig. 2.17). In order to understand the
origin of these hot spots, in Fig. 2.22c we superimpose the spin-flip tran-
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Figure 2.22: (a) and (b) show the calculated spin-flip transition probability
for x and y linearly polarized light, respectively. The dashed lines indicate
the Fermi surface associated with the surface states. In (c) and (d), we have
respectively superimposed the transition probability shown in (a) and (b)
as contour lines to the spin polarization of the S′ state.

sition probability to the spin-polarization structure of the S′ state. This
figure shows that the hot spots are localized in the boundaries separating
the surface-perpendicular and surface-parallel spin-polarized regions in the
SBZ. Furthermore, we notice that the boundaries are perpendicular to the x
direction, which is the direction of polarization of the incident light. In the
case of y linearly polarized light, we find a similar situation: the transition
probability is also distributed in several hot spots (Fig. 2.22b) that corre-
spond to the boundaries of different spin-polarization regions (Fig. 2.22d).
These boundaries are almost perpendicular to the y direction.

The above analyzed distribution of the hot spots is consistent with the
expression of the transition matrix elements of Eq. (2.18). The k-space
derivative entering this equation evaluates the variation of the wave function
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Figure 2.23: Calculated spin-flip absorption rate in
√
3Pb/Ge(111) and

Au(111). Solid (black), dashed (green), dotted (red) and dashed-doted
(blue) lines represent the results corresponding to the R and L circularly
polarized and x and y linearly polarized light, respectively.

in reciprocal space. Since the spin-polarization is also a measure of the wave
function through Eq. 2.10, it is sensible that the regions where the spin-
polarization experiences a sudden rotation correspond to high values of the
transition probability. As a further remark, this interpretation also serves
to explain the dependence of the hot spots on the external field polarization.

Fig. 2.23 illustrates the calculated absorption rate (Eq. (2.16)) associ-
ated to the spin-split surface states in the

√
3Pb/Ge(111) surface. As shown

in the figure, the absorption spectrum is bounded in the 0.1-0.3 eV energy
range, corresponding approximately to the spin-splitting at the Fermi level.
The spectrum presents a prominent peak close to 0.17 eV, where the spin-
flip absorption rate reaches a remarkable maximum value of 6%. This result
demonstrates that a significant part of the incoming light is dissipated exclu-
sively in spin relaxation phenomena. In comparison to the Au(111) surface
(Fig. 2.19), the spin-flip absorption in

√
3Pb/Ge(111) is one order of mag-

nitude larger.

It is noteworthy that the bare spin-flip contribution to the absorption
rate in

√
3Pb/Ge(111) is almost three times higher than the total absorp-

tion of a graphene layer (2.3%), where the electron spin does not play any
significant role [82, 83]. Therefore, the a priori weaker relativistic SOI in√
3Pb/Ge(111) exceeds the effect of the usually predominant non-relativistic

terms such as the electric dipole mechanism. The reason why the spin-flip
contribution in this system is so important is that the hot spot matrix ele-
ments (Figs. 2.22a-b) lie inside the SBZ area where the S state is occupied
while S′ state remains empty. In this way, the Fermi occupation factors
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allow electron transitions precisely where the matrix elements are maximal.
From the discussion above we can conclude that a large anomalous feature
associated to the enhanced spin-flip excitation mechanism should be acces-
sible by infrared optical spectroscopy in the 0.1− 0.3 eV energy range.

2.3 Conclusions

Throughout this chapter we have analyzed several electronic properties as-
sociated to surfaces with strong SOI. The results presented here have shown
a very good agreement with available ARPES and SR-ARPES experimen-
tal data, proving the adequacy of the SDFT approach for studiyng surface
phenomena. The two main ground-state electron properties, namely the rel-
ativistic band structure and the spin-polarization structure, have provided
useful information about the nature of the SOI in surfaces. We have seen,
for instance, that surface states acquire a finite spin-polarization component
perpendicular to the surface due to the strong in-plane gradients of the sur-
face potential. This is a nice example of how the details of a surface can
induce complex effects, and the need to employ approaches that go beyond
simple standard models. The calculations presented in this chapter have
also shown that the SOI can have a large impact on the energy dispersion
associated to the surface states. Indeed, a spin-splitting as big as 0.6 eV
has been predicted by the calculations, an extraordinarily large amount for
a relativistic effect.

In the second half of this chapter we have analyzed the low-energy spin-
flip excitations induced by a time-dependent EMF. The associated transition
matrix elements have been calculated employing a technique based on the
MLWFs, which has enabled to consider fine integration k meshes in order to
reliably account for the details close to the Fermi level. Using this approach,
we have investigated the role of the SOI on the light absorption rate of the
Au(111) and

√
3Pb/Ge(111) surfaces. In Au(111), the magnitude of the ab-

sorption rate is similar to the prediction of the standard Rashba model (cf.
Appendix B). In contrast, the calculations for the

√
3Pb/Ge(111) surface

have revealed that the spin-flip transitions capture as much as 6% of the to-
tal incident power, representing an enhancement of one order of magnitude
in comparison to Au(111). These results have shown that a substantial part
of the low-energy absorption spectrum in

√
3Pb/Ge(111) is dominated ex-

clusively by the spin-flip excitations associated to the spin-polarized states.
We have seen that the origin of such a huge absorption rate is closely related
to the strong anisotropy exhibited by the spin-polarization structure in this
surface, which is one of the most important results presented in this Chap-
ter. In conclusion, we have predicted that a clear fingerprint of the spin-flip
absorption mechanism should be accessible in the infrared range, a feature
that may be worth verifying experimentally.



Chapter 3

Plasmon dispersion in
sodium under pressure

Pressure can be effectively used to tune the properties of materials. A clear
example is provided by materials which, even though at ambient pressures
do not possess remarkable superconducting properties, they become good su-
perconductors at high pressures. This is the case, for instance, of lithium and
calcium. These simple alkalies are bad superconductors at ambient pressure,
with a critical temperature, Tc, of the order of mK. Under compression, how-
ever, this quantity can be raised by almost five orders of magnitude, reaching
remarkable values of the order of 10 K [84, 85]. But superconductivity is not
the only phenomenon emerging at high pressures. Structural phase transi-
tions to less compact structures [86, 87], metal-insulator transitions [88, 89]
or anomalous melting curves associated to phonon instabilities [90–92] are
other interesting phenomena that arise when pressure is applied to a priori
simple metals.

Within this context, sodium represents an interesting example. At ambi-
ent pressure, this element is one of the closest realizations of the free-electron
gas that can be found in solid-state materials. Under compression, however,
the simple metal behavior of Na is considerably modified by the non-free-
electron-like features of its band structure, which are mainly associated to
the increasing electronic hybridization of the chemical bondings and the
strong non-local character of the pseudopotential, among other causes [93].
As a consequence, sodium under pressure develops a variety of unexpected
processes including phase transitions to extremely complex structures [94],
loss of the metallic character [88] or anomalies in the optical response [16, 95].
These remarkable phenomena challenge the classical viewpoint that pressure
should make simple metals even simpler.

According to room temperature X-ray diffraction experiments [16, 88,
94–96], sodium undergoes a series of structural phase transformations from
0 to ∼180 GPa before it experiences a metal-insulator transition that sup-

53
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presses its metallic properties. Over this wide pressure range, sodium first
adopts the bcc structure (0 to 65 GPa), followed by the fcc (65 to 105 GPa),
the cI16 (105 to 118 GPa), the oP8 (118 to 125 GPa) and the tI19 (125
to ∼180 GPa) configurations [97]. Similar to what happens in lithium and
calcium, the metallic properties of sodium at high pressures are strongly
modified. In particular, the high and uniform reflectivity (characteristic of
good metals) of the bcc, fcc and cI16 phases has been measured to drop
drastically in the high pressure phases oP8 and tI19, accompanied by a de-
crease of the metallic character [16, 95]. The origin of such a behavior is
closely related to the emergence of low-energy interband plasmons arising
from the increasing localization of the valence electrons [98], as it is the case
of Li and Ca [92, 99].

In this chapter, we will perform an ab-initio analysis of the electronic
response properties of Na in a pressure domain ranging from 0 to 180 GPa,
covering all the metallic phases of sodium. With this aim, we have con-
sidered the linear response theory within time-dependent DFT (TDDFT),
introduced in Sec. 3.1. This formalism goes beyond the first-order time-
dependent perturbation theory applied in Sec. 2.2 since TDDFT is a self-
consistent approach that is able to describe the rearrangement of the elec-
trons under the influence of an external perturbation. However, the aimed
higher accuracy is also computationally more demanding, as the contribu-
tion of several bands above the Fermi level must be taken into account in
order to yield converged results. Additionally, the Fermi surface associated
to the different metallic phases of Na requires a fine sampling of the recip-
rocal space in order to fully capture the excited properties of the system.
Therefore, ’brute-force’ calculations are very time demanding, and some
scheme for reducing the computational cost is advisable.

To overcome the computational bottleneck, in Sec. 3.2 we will consider
MLWFs as the basis for expanding the electron response function. In this
formalism, the basis has a trivial dependence on the momentum of the ex-
ternal perturbation, q. Therefore, the evolution of the response function
as a function of q can be efficiently computed, since the MLWFs basis is
calculated just once. Additionally, this approach has the advantage that the
response function, as well as other k-dependent quantities, can be interpo-
lated into a fine k mesh thanks to the localization properties of the MLWFs.
This way, integrations over the 1BZ are rapidly converged, reducing enor-
mously the cost of the calculations.

The method will be applied to analyze the response properties of Na
in Sec. 3.3. In Sec. 3.3.2, we will cover the 0-105 GPa range studying
simple bcc and fcc phases, while in Sec. 3.3.3 we will analyze the 105-180
GPa range, where sodium adopts more complex structures. Summary and
conclusions will be presented in Sec. 3.4.
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3.1 Linear response within TDDFT

In this section we will review the linear response theory within TDDFT [100,
101]. In particular, we will pay special attention to the formalism for analyz-
ing collective electronic charge excitations, commonly known as plasmons.

We begin analyzing the electronic response to an external time-dependent
perturbation characterized by a frequency ω and momentum q. To this end,
it is useful to consider the retarded (non-interacting) KS response function,
which in terms of the ground-state KS orbitals is defined as [102]

χKS
q (r, r′,ω) =

∑

n1,n2

1BZ∑

k

fn1k − fn2k+q

ω + εn1(k)− εn2(k+ q) + iδ

× φ∗
n1k(r)φn2k+q(r)φ

∗
n2k+q(r

′)φn1k(r
′), (3.1)

where δ is an infinitesimal positive parameter ensuring causality. In general
terms, the above quantity measures the variation induced by the external
perturbation on the electron density of the non-interacting system. In par-
ticular, it contains information about the electronic excitations between KS
orbitals differing in energy ω and in momentum q.

The KS response function of Eq. 3.1 does not describe the response of
the real interacting system, which should also take into account the rear-
rangement of the electron density as a consequence of the external perturba-
tion, i.e. it must be a self-consistent response function. This more complex
quantity is related to χKS

q by a Dyson integral equation [103],

χq(r, r
′,ω) = χKS

q (r, r′,ω) +
1

V

∫
dr1

1

Ω

∫
dr2

× χKS
q (r, r1,ω)Kq(r1, r2,ω)χq(r2, r

′,ω). (3.2)

In the equation above, the kernel Kq(r, r′,ω) takes into account electron-
electron effective interactions,

Kq(r, r
′,ω) =

1

|r− r′| + fxc
q (r, r′,ω). (3.3)

The first term in Eq. (3.3) is the bare Coulomb interaction associated to the
electronic charge, while fxc

q (r, r′,ω) contains the exchange and correlation
effects. In the present work, we go a step beyond the random phase approx-
imation (RPA) [104], fxc

q (r, r′,ω) = 0, and use the LDA parametrization for
the exchange-correlation kernel [19, 105],

fxc
q (r, r′,ω) = δ(r− r′)

[
d2(nεhomxc (n))

dn2

]

n(r)

, (3.4)



56 Chapter 3. Plasmon dispersion in sodium under pressure

with εhomxc (n) the energy density of the homogeneous electron gas. Here, we
follow the parametrization given by Perdew and Zunger in [106] for this
quantity.

The interacting response function defined in Eq. (3.2) is a central quan-
tity in the linear response theory, providing a direct link to experimentally
measurable properties. For instance, it is directly connected to the dielectric
function, εq(r, r′,ω), which contains diverse information about the response
properties of materials, such as the screening of electrons or collective ex-
citations. The inverse of the dielectric function is related to the response
function as

ε−1
q (r, r′,ω) = δ(r− r′)δ(ω) +

∫
dr′′Kq(r

′′, r′,ω)χq(r
′′, r′,ω). (3.5)

It is useful to project the above quantity into the K = 0 plane wave com-
ponent,

ε̂−1
q (ω)00 =

〈
0
∣∣ ε−1

q (r, r′,ω)
∣∣0

〉
(3.6)

In the current description, the peaks of the imaginary part of the above
function, Im ε̂−1

q (ω)00, serve to identify the collective electronic charge ex-
citations, i.e. the plasmons. These are a type of quasiparticles resulting
from the quantization of the electron plasma oscillations [104]. The analysis
of plasmons is a relevant issue when characterizing the response properties
of a material, specially in the case of metals, as they play a central role in
determining the optical properties.

Another relevant quantity is the so-called dynamical structure factor,
which is related to the inverse dielectric function by the fluctuation-dissipation
theorem [102, 103, 107],

S(q,ω) = − |q|2

4π2
Im ε̂−1

q (ω)00. (3.7)

In practice, the above quantity can be accurately measured by inelastic
neutron or X-ray scattering experiments [22, 108], providing valuable infor-
mation about the plasmon dispersion.

3.2 MLWFs as basis set for the KS response func-
tion

Having introduced the basics of TDDFT, in this section we will construct
an appropriate basis set for calculating χKS

q (r, r′,ω) in terms of the MLWFs
following the approach by Rousseau, Eiguren and Bergara [109]. We begin
by considering the relationship between the KS states and MLWFs of Eq.
(1.24),

wnR(r) =
1

N

∑

k

e−ikR
M∑

m=1

Umn(k)φmk(r). (3.8)
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With the aid of the above expression, the products between KS states en-
tering Eq. 3.1 can be expressed as

φ∗
n1k(r)φn2k+q(r) =

∑

m1,m2

∑

R1,R2

eiq·R2eik·(R2−R1)

× Un1m1(k)w
∗
m1R1

(r)wm2R2(r)U
†
m2n2

(k+ q). (3.9)

Then, by defining the following bare basis functions

BI,q(r) = V
∑

R′

eiq·(R
′−r)w∗

m1R′−R(r)wm2R′(r), (3.10)

with I ≡ {m1,m2,R}, the non-interacting response function of Eq. 3.1 can
be cast into the following form,

χKS
q (r, r′,ω) =

∑

IJ

[
BI,q(r)

]
χKS
IJ (q,ω)

[
BJ,q(r)

]∗
, (3.11)

with J ≡ {m3,m4,R′}. We notice that the bare basis of Eq. (3.10) has
a trivial dependence on the external momentum q, as it only enters in the
exponential factor. Thus, once the product w∗

m1R′−R(r)wm2R′(r) is calcu-
lated and stored, the bare basis for different momenta is straightforwardly
obtained. This allows to efficiently map the evolution of the response func-
tion as a function of q, which is of critical importance when analyzing the
dispersion of plasmons.

The coefficients χKS
IJ (q,ω) entering Eq. (3.11) do not explicitly depend

on the MLWFs, but only on the unitary matrices,

χKS
IJ (q,ω) =

1

V

1BZ∑

k

eik·(R−R′)
∑

n1,n2

fn1k − fn2k+q

ω + εn1(k)− εn2(k+ q) + iδ

× Un1m1(k)U
†
m2n2

(k+ q)U †
m3n1

(k)Un2m4(k+ q).

(3.12)

In practice, we have collected all the k-dependent quantities into the above
coefficients, being the bare basis functions BI,q(r) k-independent. Notewor-
thy, all the ingredients in Eq. (3.12) can be calculated on a fine k mesh
using the Wannier interpolation scheme, allowing a very fine sampling of
χKS
IJ (q,ω).
We notice that in contrast to the bare basis, the dependence of χKS

IJ (q,ω)
on the external momentum is not trivial as it involves terms like Umn(k+ q),
εn(k+ q) and fnk+q. In principle, these terms should be calculated ab-initio
for each different q. However, if the point k+ q lies inside the interpolated
grid, then the q-dependent quantities of Eq. (3.12) are directly available.
In practice, Wannier interpolation allows to consider such fine k meshes so
that choosing q inside the interpolated grid does not represent a limitation.
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From the computational point of view, it is of practical interest to express
the central equation describing the interacting response function (Eq. 3.2)
as a matrix equation. Let us consider the kets |BI,q〉 associated to the bare
basis functions and represent the KS response function as

χ̂KS
q =

∑

IJ

|BI,q〉χKS
IJ (q,ω) 〈BJ,q| . (3.13)

In this way, Eq. 3.2 can be written as a matrix equation,

χ̂q =
(
1̂− χ̂KS

q · K̂q

)−1
· χ̂KS

q . (3.14)

Obviously, this matrix equation must be truncated into a finite size problem
in order to be solved numerically. Given that the bare basis functions are not
linearly independent [109], it is suboptimal to compute all the coefficients
χKS
IJ (q,ω) independently. Instead, it is convenient to establish a minimal

basis set that describes the essential physics of the problem.

Crystal local field effects

We have already mentioned that plasmons are described as peaks in Im χ̂q(ω)00
(Eq. (3.6)). Therefore, it is sensible to explicitly include the plane wave |0〉
into the minimal basis set. In addition, crystal local field effects (CLFE)
often play an important role in determining the plasmon dispersion; usu-
ally, wave vectors other than q are needed for describing the spatial vari-
ation of external fields inside the solid due to the inhomogeneity of the
system [102, 104]. Generally, the use of a finite number of K vectors prop-
erly describes the CLFE [103, 110]. Therefore, we include plane waves into
the minimal basis set; as in the case of the plane wave expansion of the KS
orbitals (Eq. 1.12), the number of K vectors to include is a parameter to be
converged.

Therefore, the minimal basis is conformed by the functions

|gi〉 ∈ {|0〉 , {|K〉}} . (3.15)

In this way, the self-consistent Eq. (3.14) regarding the interacting response
function can be solved by projecting the relevant functions into the minimal
basis set,

[χ̂q]ij -
∑

l

[(
1̂− χ̂KS

q · K̂q

)−1
]

il

[
χ̂KS
q

]
lj
, (3.16)

where [ ]ij ≡ 〈gi | | gj〉.
Similarly, we can write the projection of the inverse dielectric function

(Eq. (3.5)) too,

[
ε̂−1
q

]
ij
- δij +

∑

l

[
K̂q

]

il
· [χ̂q]lj . (3.17)
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Since we explicitly included the |0〉 function into the minimal basis set, the[
ε̂−1
q

]
00

term is precisely the one carrying information about plasmon modes.

3.3 Electron response properties of sodium under
pressure

In this section we present the calculated electronic properties of sodium using
the formalism introduced in Sec. 3.1. Our calculations cover a pressure range
from 0 to 180 GPa. We divide the analysis in two different parts, namely
the 0-105 GPa range, analyzed in Sec. 3.3.2, and the 105-180 GPa range,
analyzed in Sec. 3.3.3. In the first one, sodium adopts the bcc and fcc
structures, which are considerably simpler than the ones arising above 105
GPa. All these structures are illustrated in Fig. 3.1. The computational
details are described below.

3.3.1 Computational details

The DFT calculations for the ground state eigenvalues and eigenfunctions
have been performed using the QUANTUM-ESPRESSO package [23], with
plane waves as the basis set for the expansion of the KS orbitals. The cutoff
energy used to determine the size of the plane wave basis has been 120 Ry.
The exchange-correlation energy has been approximated within the LDA
parametrization [19, 106] and the 1BZ has been sampled on a 12× 12× 12
k-point mesh [111].

The electron-ion interaction has been modeled considering a non-relativistic
PP for Na generated with the OPIUM code [112] and tested with all-
electron calculations performed with the ELK code [113]. We have included
2s22p63s1 states in the valence in order to properly describe short range
effects induced by pressure.

The postprocessing step for obtaining the MLWFs has been done using
the WANNIER90 code [30]. We have taken into account all bands up to
35 eV above the Fermi level. Once the MLWFs have been constructed,
the necessary ingredients for calculating the interacting response function,
namely eigenvalues, occupation factors and rotation unitary matrices, have
been interpolated on a fine 80 × 80 × 80 k-point mesh. Regarding CLFE,
the use of 3 reciprocal lattice shells has yielded converged results in all the
phases.

The effects of compression have been simulated by reducing the lattice
parameter. For the bcc and fcc configurations, we have used the experi-
mental parameters extracted from the equation of state of sodium at the
corresponding pressures [114]. For the cI16 and oP8 phases, we have consid-
ered the lattice parameters reported in high pressure experiments [16, 94].
For the tI19 phase, sodium adopts an incommensurate host-guest configu-
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Figure 3.1: Sketch of the different structures that sodium adopts from 0
to 180 GPa. (a) and (b) illustrate the simplest structures: bcc (0-65 GPa)
and fcc (65-105 GPa). (c) shows the cI16 structure (105-118 GPa), which
contains 8 atoms per unit cell in a bcc-like structure [94]. (d) illustrates the
distribution of Na atoms in the oP8 (118-125 GPa) configuration, which is
a simple primitive orthorhombic structure with 8 atoms per unit cell [94].
(e) and (f) correspond to two different viewpoints of the tI20 conmensurate
structure considered to simulate the inconmensurate tI19 structure (125-180
GPa).

ration with 16 host atoms distributed in a tetragonal bcc structure [94]. We
have modeled this incommensurate phase by the closely related commensu-
rate tI20 structure, containing 20 atoms per unit cell [16]. Due to the wide
stability pressure range of tI19 (125 to 180 GPa), we have analyzed the evo-
lution of its electronic properties at different pressures. As for this structure
there is no accessible experimental lattice parameters at the present time,
we have used the theoretically calculated ones: a = 6.59, 6.46, 6.34 a.u. and
c = 3.65, 3.54, 3.42 a.u. for 125, 150 and 180 GPa, respectively.

3.3.2 Simple phases of sodium

The bcc phase (0-65 GPa)

We begin by analyzing the electron-hole and collective excitations of bcc
Na at ambient pressure. In Fig 3.2a, we show the calculated dynamical
structure factor, while the electron-hole excitation spectrum is analyzed in
Fig. 3.2b through the calculated KS response function, Im χ̂KS

q (ω)00.
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Figure 3.2: (a) and (b) show the dynamical structure factor and imaginary
part of the KS response function of bcc Na at ambient pressure along the
ΓP direction, respectively. In (a), dashed (green) line depicts the plasmon
dispersion in the RPA free-electron model (Eq. (3.18)), while in (b) it repre-
sents the boundary q2/2meff+qvF of the intraband electron-hole excitations.

Fig 3.2 shows a quantitative agreement between our calculations and the
predictions of the free-electron model. For low values of the momentum, the
calculated plasmon dispersion (Fig. 3.2a) follows the classical expression in
the RPA [104],

Ep(q) = ωp +
αRPA

meff
q2, (3.18)

with meff the effective electron mass, αRPA = 3
5

EF
meffωp

a dimensionless dis-

persion constant, EF the Fermi energy and ωp =
√
4πn/meff the intraband

plasmon energy in the free-electron model, where n is the valence electron
density. At ambient pressure, the free-electron-like intraband plasmon for
q → 0 is expected to be located around Ep(q → 0) = ωp - 5.8 eV, in good
agreement with the calculated value ∼ 5.7 eV.
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Figure 3.3: Plasmon dispersion Ep(q2) of bcc Na for various pres-
sures. Squares represent our ab-initio results, with the calculated plasmon
linewidth indicated by the markers. The full lines are simple guides to the
eye. Circles denote experimental EELS data taken from Ref. [115], while
triangles denote experimental IXS data taken from Ref. [16]. In the latter
case, we have included the available experimental linewidth. The experi-
mental energy resolutions are 0.16 eV and 0.6 eV for the EELS [115] and
the IXS [16] data, respectively.

Fig. 3.2a displays a smooth parabolic dispersion of the plasmon until it
decays into the electron-hole continuum at around 6.3 eV. This is clear from
Fig. 3.2b, where the border of electron-hole continuum can be inferred from
the free-electron model prediction,

ω ≤ q2

2meff
+ qvF , (3.19)

with vF =
√
2EF /meff the Fermi velocity. The above dispersion is shown

as a solid blue line in Fig. 3.2b, matching very well the calculated border.
In Fig. 3.3 we present the calculated plasmon dispersion at 0, 8, 16 and

43 GPa extracted from the position of the peaks in the energy-loss function
at these pressures. We have plotted the plasmon energies as a function of
q2, since we expect the parabolic dependence of Eq. (3.18). Overall, we find
that the dispersion is indeed very close to parabolic at all pressures, though
the results at 0 and 43 GPa show a slight slope change at q2 ∼ 40 nm−2 and
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q2 ∼ 65 nm−2, respectively. As revealed by the calculated linewidth, which
increases up to ∼2 eV at the mentioned momenta, the change of slope is due
to the damping of the plasmon, which ceases to be a well defined collective
excitation at those points.

For comparison, in Fig. 3.3 we have included experimental data obtained
by electron energy-loss spectroscopy (EELS) at ambient pressure [116] and
inelastic X-ray scattering (IXS) at higher pressures [16]. As it can be appre-
ciated, our results are essentially in agreement with the experimental data.
In the case of 0 and 8 GPa, both the calculated energies and dispersion
slopes are practically identical to the experimental ones. At 16 and 43 GPa,
the calculated peaks are slightly overestimated by ∼ 0.3 eV with respect
to the measured ones. This is barely larger than the standard error of the
IXS experimental data, which had an energy resolution of 0.6 eV [117]. Fur-
thermore, the agreement between the calculated and experimental slopes at
these two pressures indicates the adequacy of our calculations for describing
the collective electronic properties of the system at different pressures.

The fcc phase (65-105 GPa)

At 65 GPa sodium undergoes a phase transformation from the bcc to the fcc
structure. Unlike the rest of alkali metals, the Fermi surface of Na remains
spherical up to ∼ 105 GPa [118] and, furthermore, the plasmon dispersion
retains the features of the free-electron model [119]. Therefore, fcc Na can
be regarded as a simple metal. Our ab-initio calculations verify both the
spherical shape of the Fermi surface and the free-electron-like plasmon dis-
persion of Na over all the stability pressure range of the fcc phase. However,
we also characterize an anisotropic interband plasmon along the ΓL direc-
tion that indicates a significant departure of fcc Na from the simple metal
behavior.

In Fig. 3.4a we display the calculated dynamical structure factor of
fcc Na at 75 GPa along ΓL, showing an intraband plasmon with parabolic
dispersion that emerges at around 9.5 eV, in reasonable agreement with
IXS experiments measuring ωp - 9.25 eV [119]. Remarkably, we also find
a (weaker) second plasmon branch which does not follow at all the free-
electron-like parabolic dispersion (see inside the dashed circle). The analysis
of the energy-loss function (Fig. 3.4b) shows that this second branch emerges
and disappears at finite values of the momentum, |q| ∼ 0.2 · 2π/a and
|q| ∼ 0.5 · 2π/a, respectively. Furthermore, the vanishingly small plasmon
linewidth of Fig. 3.4b indicates that the associated collective excitation is
practically undamped.

In order to identify the nature of this plasmon, we have performed an
analysis of the energy-loss function along different directions, and we have
not found any similar peak of − Im ε̂−1

q (ω)00 in any other direction. This
fact reveals a strong anisotropy of the system. In accordance, the electronic
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Figure 3.4: (a) and (b) show the dynamical structure factor and energy-loss
function of fcc Na at 75 GPa along the ΓL direction, respectively. In (a), the
dashed (green) circle encloses the area where the anisotropic interband plas-
mon emerges. In (b), the values of the momentum considered are depicted
in the inset (units of 2π/a).

band structure of fcc Na (Fig 3.5) displays important anisotropic features.
Specifically, the free-electron-like band presents a gap at significantly dif-
ferent energies for different directions; the gap opens at ∼ 1 eV along ΓL,
while for the rest of directions it starts around 3 to 4 eV. As shown in the
next paragraph, the band structure has a direct impact on the electron-hole
excitations and is the origin of the anisotropic plasmon that we have found.

In Fig. 3.6 we display the real and imaginary parts of the dielectric
function along ΓL and ΓX for various values of the momentum. Whereas
for a given direction the calculations for different q’s share similar features,
the results along ΓL and ΓX exhibit important differences. We first analyze
the results along ΓL (Fig. 3.6a). Focusing on |q| = 0.25 · 2π/a, we observe
a decrease of Im ε̂q(ω)00 until it completely vanishes at ∼3.0 eV. This value
coincides approximately with the energy at which intraband excitation along
ΓL vanish due the opening of a band gap (see inset of Fig. 3.5). The
absence of electron-hole excitations remains up to ∼3.6 eV, where interband
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Figure 3.5: (Left panel) Electronic band structure of fcc Na at 75, 87 and
97 GPa. The inset shows the details of the band gap around high symmetry
point L at 75 GPa. The Fermi level is indicated by the horizontal solid
(black) line. (Central panel) Total DOS (states/eV). (Right panel) 1BZ of
the fcc structure.

transitions begin; again, this energy coincides with the end of the band
gap along ΓL. The strength of interband excitations is evidenced by the
prominence of the peak at ∼3.7 eV in Im ε̂q(ω)00. Due to Kramers-Kronig
relations [103], the peak in the imaginary part drives the real part to the
positive side, passing through zero at ∼3.6 eV. This has a direct impact in
the energy loss function through the relation

Im ε̂−1
q (ω)00 = − Im ε̂q(ω)00

(Re ε̂q(ω)00)2 + (Im ε̂q(ω)00)2
. (3.20)

As appreciated in Fig. 3.6a, the vanishing value of Re ε̂q(ω)00 and Im ε̂q(ω)00
at ∼3.6 eV induces a peak in Im ε̂−1

q (ω)00 at this energy, giving rise to the
so-called interband plasmon.

The above described situation remains very similar for |q| =0.30, 0.34
and 0.38·2π/a, the only relevant difference being an overall shift of all the
features to higher energies, including the plasmon peak (see Fig. 3.6a). For
even higher momenta (results not shown), we find that the intraband and
interband excitations overlap so that Im ε̂q(ω)00 does not completely vanish
in the intermediate energy region, leading to a significant broadening and
weakening of the plasmon peak. Finally, for |q| < 0.2 · 2π/a the interband
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Figure 3.6: Real (dashed lines), imaginary (dotted lines) and inverse imagi-
nary part (solid lines) of the dielectric function of fcc Na at 75 GPa along ΓL
(a) and ΓX (b). Note the different scale for − Im ε̂−1

q (ω)00. Shown results
are for |q| = 0.25, 0.30, 0.34 and 0.38 (units of 2π/a).

transitions are not sufficiently strong for driving Re ε̂q(ω)00 to the positive
part and, therefore, we do not find any plasmon peak in the energy-loss
function.

The calculated results along ΓX, illustrated in Fig. 3.6b, display two
major differences with respect to the ones in Fig. 3.6a. First, the intra-
band excitations end at significantly higher energies than in Fig. 3.6a due
to the absence of band gaps in the band structure up to ∼3 eV from the
Fermi energy (see Fig. 3.5). As a consequence, the intraband and inter-
band excitations overlap even for |q| = 0.25 · 2π/a, preventing Im ε̂q(ω)00
from vanishing. The second major difference resides in the strength of the
interband excitations, which is much weaker along the ΓX direction and is
reflected by the relative decrease of the interband peak of Im ε̂q(ω)00 as
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Figure 3.7: Dynamical structure factor of cI16 Na along ΓP at 105 GPa.

compared to that along ΓL. As a consequence, Kramers-Kronig relations do
not drive Re ε̂q(ω)00 to the positive part in the 3-7 eV energy range. Thus,
unlike along ΓL, we do not find any interband plasmon along this or any
other high symmetry directions.

We have performed the same analysis at 87 GPa and 97 GPa, verifying
that the anisotropic plasmon along ΓL persists at these pressures as well.
This is consistent with the associated band structures (see Fig. 3.5), which
share very similar features as pressure increases in the fcc structure, includ-
ing the band gap along ΓL at ∼1 eV above the Fermi level. Therefore, our
calculations suggests that besides the free-electron-like plasmon at ∼ 10 eV,
fcc Na should present an additional interband plasmon at ∼3.5-5.5 eV all
over its stability pressure range.

3.3.3 Complex phases of sodium

As characterized by several high pressure experiments [88, 94, 96], sodium
adopts considerably more complex structures than the previous bcc and
fcc phases above 105 GPa. Additionally, it exhibits clear fingerprints of
pressure-induced complexity in this regime. As an example, the reflectivity
of Na has been measured to drastically drop at low frequencies [16], indi-
cating a clear departure from the expected free-electron-like behavior. The
connection between the reflectivity and the dielectric function of a material
is given by

R(ω) =
(1− n(ω))2 + κ2(ω)

(1 + n(ω))2 + κ2(ω)
, (3.21)

with n(ω) = Re
√
ε̂q(ω)00 and κ(ω) = Im

√
ε̂q(ω)00. In this section, we will

analyze the evolution of this quantity as a function of pressure, allowing to
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Figure 3.8: The reflectivity spectrum of sodium in the phases cI16 (105
GPa), oP8 (120 GPa) and tI19 (125, 150 and 180 GPa). The inset addresses
the 0-0.5 eV range.

confirm and extend the experimental measurements.

The cI16 phase (105-118 GPa)

From 105 to 118 GPa, sodium adopts the cI16 structure. Interestingly, we
have not found any anisotropic interband plasmon in this pressure range.
This is exemplified in Fig. 3.7, where the calculated dynamical structure
factor along the ΓP direction shows a single intraband plasmon at around 9.7
eV, which is ∼ 15% lower than the one predicted by the free-electron model.
Furthermore, our calculations indicate that the evolution of the plasmon
with respect to the momentum is not parabolic; in fact, Fig. 3.7 describes an
almost momentum-independent plasmon dispersion all along ΓP. Therefore,
pressure significantly modifies the free-electron nature of sodium in the cI16
phase.

In Fig. 3.8 we show the calculated reflectivity (Eq. (3.21)) for cI16 Na.
Our results indicate an almost complete light reflection from 0 to 3 eV. This
property is in reasonable agreement with recent experiments [16] measuring
a constant reflectivity R(ω) - 0.85 over the same frequency range. At 3 eV,
the reflectivity starts a smooth decrease that ends at around 10 eV, where
R(ω) is practically suppressed as a consequence of the intraband plasmon.

The oP8 phase (118-125 GPa)

Beyond 118 GPa, after a phase transformation favoring the oP8 struc-
ture [94], sodium exhibits an anomalous behavior associated to its optical
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Figure 3.9: Dielectric function of oP8 Na at 120 GPa. Top panel: Im ε̂q(ω)00
and Re ε̂q(ω)00 are depicted by solid and dashed lines, respectively. Bottom
panel: − Im ε̂−1

q (ω)00. In both panels, results are shown for |q| =0.02, 0.04
and 0.06 · 2π/a. Both insets illustrate the 0-0.5 eV range.

Figure 3.10: Imaginary part of the KS response function of oP8 Na at
120 GPa. The dashed (blue) line indicates the boundary of the intraband
excitations. Note the logarithmic scale of Im χ̂q(ω)00 (right).

response. This fact is clearly exemplified by Fig. 3.8, where the calculated
reflectivity (Eq. (3.21)) of oP8 Na shows a sudden dip at around 0.25 eV,
vanishing almost completely. This behavior is in agreement with recent
X-ray diffraction experiments showing a drop of the reflectivity to 0.05 at
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Figure 3.11: (Left panel) Electronic band structure of oP8 Na at 120 GPa.
Red arrows depict the interband transitions responsible for the emergence of
the low-energy plasmon. The Fermi level is indicated by the horizontal solid
(black) line. (Central panel) Total DOS (states/eV). (Right panel) 1BZ of
the oP8 structure.

practically the same energy [16]. At higher energies, the reflectivity of oP8
Na increases, but around 2 eV it starts a smooth decrease until ∼ 7 eV,
where it becomes almost zero (see Fig. 3.8).

In Fig. 3.9 we analyze the various components of the dielectric function
of oP8 Na. This figure reveals that the anomalous behavior of R(ω) in
the optical range originates from a low-energy plasmon emerging at around
0.25 eV. This plasmon shares common features with the one theoretically
predicted in calcium under pressure [99], which also induces a dip in the
calculated reflectivity. It is essentially undamped since both Im ε̂q(ω)00
and Re ε̂q(ω)00 become almost zero at ω - 0.25 eV, making the plasmon
linewidth vanishingly small at this energy. For increasing values of the
momentum, the linewidth of the low-energy plasmon starts broadening until
|q| = 0.06 · 2π/a, where the peak in the energy-loss function is practically
suppressed. At higher energies, our calculations evidence the existence of
an intraband plasmon at around 6−8 eV that coincides with the final loss
of reflectivity depicted in Fig. 3.8.

The interband nature of this low-energy plasmon is analyzed in Fig.
3.10, where we present the KS response function of oP8 Na. For |q| < 0.04
2π/a, our calculations evidence a gap (∼0-0.6 eV) between the intraband
and interband excitations, where Im χ̂KS

q (ω)00 completely vanishes. As ap-
preciated in the top panel of Fig. 3.9, this gap is also present in Im ε̂q(ω)00.
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Figure 3.12: Dielectric function of tI19 Na at 125, 150 and 180 GPa for |q| =
0.03 · 2π/a along ΓX. Top panel: Im ε̂q(ω)00 and Re ε̂q(ω)00 are depicted
by solid and dashed lines, respectively. Bottom panel: − Im ε̂−1

q (ω)00.

Driven by the Kramers-Kronig relations, the gap and the subsequent inter-
band excitations contributing to the imaginary part (ω > 0.6 eV) force the
real part of the dielectric function to become positive at ω - 0.25 eV, giving
rise to the low-energy interband plasmon at that energy.

The relevant interband excitations contributing to Im ε̂q(ω)00 in the
q→0 limit are characterized in the band structure of oP8 Na depicted in Fig.
3.11, alongside with the calculated DOS, which reproduces the weakening of
the metallic character at the Fermi level reported in other works [16, 95]. As
indicated by the red arrows in Fig. 3.11, there exist quasi-parallel occupied-
unoccupied bands separated by 1-2 eV along various directions in recip-
rocal space: ZT, ΓZ, XS and ΓY, among others. The energy difference
between these bands coincides with the interband excitations contributing
to Im ε̂q(ω)00 for ω ! 1 eV (see top panel of Fig. 3.9), and are therefore
directly responsible for the emergence of the low-energy plasmon.

The tI19 phase (125-180 GPa)

At 125 GPa sodium adopts the tI19 structure [94]. As in the oP8 phase, we
have also characterized a very low-energy plasmon, shown in Fig. 3.12, that
induces a sudden dip on the optical reflectivity at around 0.25 eV (see Fig.
3.8), in qualitative agreement with X-ray reflectivity measurements [16].
We find two major differences between the reflectivity spectrum of the oP8
and tI19 phases. First, the minimum of R(ω) ranges from ∼ 0.4 to ∼
0.2 throughout the stability pressure range of the tI19 phase, whereas in
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Figure 3.13: (Left panel) Electronic band structure of tI19 Na at 125, 150
and 180 GPa. Red arrows depict the interband transitions responsible for
the emergence of the low-energy plasmon. The Fermi level is indicated by
the horizontal solid (black) line. (Central panel) Total DOS (states/eV).
(Right panel) 1BZ of the oP8 structure.

the oP8 phase R(ω) - 0 at the dip. Second, unlike in the case of oP8
Na, the reflectivity of tI19 Na is almost totally recovered in the infrared
regime, i.e. R(ω) ≥ 0.6 for ω > 0.75 eV. These experimentally supported
features [16] indicate that tI19 Na shows better metallic properties than oP8
Na, excluding a possible metal-insulator transition between the two phases.

We have performed an analysis of the dielectric response function through-
out the stability pressure range of tI19 Na from 125 to 180 GPa, as shown in
Fig. 3.12. We find that the low-energy plasmon persists over all the studied
domain. Moreover, our calculations indicate that the plasmon becomes un-
damped as pressure is increased, i.e. its linewidth decreases with increasing
pressure (see Fig. 3.12b). As shown in the inset of Fig. 3.12a, Im ε̂q(ω)00
does not completely vanish in the ∼ 0.2 − 0.5 eV range, where Re ε̂q(ω)00
becomes vanishingly small. As a consequence, the resulting plasmon ac-
quires a finite linewidth; since Im ε̂q(ω)00 decreases (approaches zero) with
increasing pressure, so does the plasmon linewidth.

In Fig. 3.13 we show the calculated electronic band structure and DOS
of tI19 Na at 125, 150 and 180 GPa. The electronic excitations contributing
to Im ε̂q(ω)00 in the 0.5−1.0 eV range (see Fig. 3.12a) are characterized by
the red arrows, evidencing, as in the oP8 phase, the interband nature of the
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low-energy plasmon. Another important detail revealed by Fig. 3.13 is that
tI19 Na develops two hole-pockets, one around high symmetry point P and
the other one halfway between Γ and X. Low-energy intraband excitations to
these hole-pockets are the reason why Im ε̂q(ω)00 does not completely vanish
in the ∼ 0.2−0.4 eV energy range. Furthermore, Fig. 3.13 indicates that the
area of the hole-pockets diminishes with increasing pressure, yielding weaker
low-energy excitations at high pressures. We conclude that the behavior of
the low-energy plasmon revealed by Fig. 3.12b is directly associated to the
evolution of the hole-pockets under pressure.

3.4 Conclusions

In this chapter, we have presented ab-initio calculations describing the elec-
tronic dielectric response of sodium in its five known metallic phases from
0 to 180 GPa. We have applied a formalism based on Wannier interpo-
lation that provides an accurate sampling of reciprocal space and allows
the resolution of sharp features associated to the dielectric function. In
this way, we have found a low-energy plasmon in the high pressure phases
oP8 and tI19 that explains the anomalous behavior of the optical reflectiv-
ity recently measured in X-ray experiments [16], which is also reproduced
by our calculations. The combined analysis of the KS response function
and the electronic band structure reveals the interband nature of this low-
energy plasmon, which is associated to electron-hole transitions between
quasi-parallel bands. Additionally, our calculations have characterized an
anisotropic interband plasmon along the stability pressure range of the fcc
configuration (65 to 105 GPa), revealing an unexpected departure of fcc Na
from the free-electron-like behavior. This plasmon is found exclusively along
the ΓL direction due to an anisotropic non-free-electron-like band structure
effect. Therefore, the calculations presented in this Chapter provide a clear
fingerprint of pressure-induced complexity in sodium.
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Chapter 4

Tight binding models for
optical lattices

The experimental realization of Bose-Einstein condensates through laser
cooling and evaporative cooling of atoms has become a routine procedure
since it was first achieved in 1995 by three different groups [120–122]. Nowa-
days, the study of cold atoms trapped in 2D periodic optical lattices is a
versatile alternative to study electrons in crystal structures [123]. In fact,
optical lattices possess a number of advantages over crystals, such as a great
control over the relevant parameters that determine the properties of the
periodic structure (shape and strength of the light potential), the absence of
lattice defects or other type of effects that destroy the quantum coherence.

As a consequence, optical lattices are widely used to emulate diverse
properties of electrons in solids. As an example, Mott insulating phases
have been achieved through the accurate control of atomic interactions [124,
125], providing a better understanding of the strongly correlated regime
of materials. Similarly, the relativistic properties of electrons in systems
such as graphene can also be accessed and simulated by trapping atoms in
honeycomb optical lattices [126–132]. The versatility for studying diverse
phenomena makes the field of cold atoms of growing interest in the condensed
matter community.

In general, potentials describing optical lattices can be expressed in
simple analytic forms as the combination of a number of sinusoidal func-
tions [127, 131]. However, from the theoretical point of view it is often more
convenient to describe the system by means of a tight binding (TB) approach
on a discrete lattice. In fact, the potential intensity can be tuned to suffi-
ciently high values in order to localize the atoms in the lowest vibrational
states of the potential wells, i.e. the potential minima. This localization
justifies a description of optical lattices in terms of tunneling coefficients
related to the hopping between neighboring sites [123].

A crucial ingredient for the connection between the continuous and dis-

75
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crete versions of the system Hamiltonian is the existence of a basis of func-
tions localized around the potential minima. This is important not only
conceptually - in order to justify the TB expansion - but also from the prac-
tical point of view, as a precise knowledge of the basis functions is needed to
connect the TB coefficients with the actual experimental parameters [133].
In the simple case of optical lattices with a 2D cubic-like arrangement con-
taining a single well per unit cell, for instance, this basis is provided by the
exponentially decaying WFs first discussed by Kohn [123, 134, 135], from
which one can derive analytic expressions for the TB coefficients [136]. In
general, however, this approach fails when the potential has more than one
well per unit cell. For example, in the case of a 2D potential with two
degenerate minima in the unit cell, the Kohn-Wannier function cannot be
associated to a single lattice site, as it occupies both minima for symmetry
reasons [137, 138]. This 2D case was recently analyzed by Lee and co-
workers [127], who applied a semiclassical approach to analytically calculate
localized WFs and the associated TB coefficients.

In the context of complex optical geometries containing more than one
minimum per unit cell, a powerful approach is based on the MLWFs, as
they can incorporate the contribution of several bands. In this regard,
Modugno and Pettini [133] showed how to construct analytic MLWFs for
one-dimensional periodic potentials with a double-well per unit cell. The
corresponding TB coefficients allowed to accurately reproduce the exact
spectrum, proving the usefulness of the MLWFs as TB basis functions in
this context. However, applications of MLWFs to optical lattices are rather
scarce, partly because they were originally developed in the context of the
electronic structure of solids. Only very recently a number of works [139–
141] have analyzed TB models of 2D optical lattices in terms of the MLWFs,
with successful results.

In this Chapter, we analyze how to construct TB models for ultracold
atoms in a variety of 2D optical lattice structures by means of the MLWFs.
In Sec. 4.1 we present the general formalism to calculate the tunneling coeffi-
cients of interest via the MLWFs.In Secs. 4.2 and 4.3 we apply the formalism
to the honeycomb and strectched-honeycomb optical lattices, respectively.
The first one serves as a basic test example, while the second one will allow
to consider several optical geometries by varying the optical parameters. In
both cases, we provide explicit calculations of the MLWFs and the tunneling
coefficients. We also discuss the degree of accuracy of different TB approxi-
mations in reproducing the exact Bloch spectrum. These results show that
TB models based on MLWFs are successful in reproducing the properties
of the experimentally accessible optical lattices in a broad parameter range,
using only a relatively small number of tunneling coefficients.
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4.1 Tight binding models using MLWFs

When cold atoms are trapped in the potential wells of an optical lattice, their
state is usually described by the lowest vibrational level. In such cases, a
description of the system in terms of non-interacting particles is adequate.
Therefore, we consider the following single particle Hamiltonian,

H0 = −1

2
∇2 + V (r), (4.1)

where V (r) represents the one body 2D optical potential induced by the laser
beams. For formal derivations, it will be useful to consider the Hamiltonian
density associated to Eq. (4.1) in the language of second quantization,

H0 =

∫
dr ψ†(r)H0ψ(r), (4.2)

where ψ(r) denotes the field operator of the cold atoms. The above Hamil-
tonian density can be conveniently mapped onto a TB model defined on
the discrete lattice corresponding to the potential minima of V (r). This
is achieved by expanding the field operator in terms of a set of functions
wnR(r) localized at each minimum, as

ψ(r) ≡
∑

n

∑

R

anRwnR(r). (4.3)

In 2D, the cell label contains two components, i.e. R = (R1, R2). In Eq.

(4.3), a†nR (anR) represent the creation (destruction) operators of a single
particle in the cell R.

As already mentioned in the introduction, we consider MLWFs for com-
posite bands introduced in Sec. 1.2 as the basis functions, wnR(r) = 〈r |Rn〉.
The optical potentials V (r) that we analyze throughout this work contain
two potential minima per unit cell. Thus, we construct a basis of MLWFs
by considering the two lowest Bloch bands of the system, which we name A
and B. We calculate the mentioned Bloch bands using a modified version
of the QUANTUM-ESPRESSO package [23], intended to solve the single
particle Schrödinger equation associated to Eq. (4.1). The technical details
regarding the procedure are included in Appendix E. As a next step, we
compute the MLWFs considering the approach implemented in the WAN-
NIER90 program [30], which follows the steps outlined in Sec. 1.2.

The approach of including two Bloch bands is the so-called minimal ap-
proximation, corresponding to the generalization of the usual single band ap-
proximation for cubic-type lattices [123]. In this approximation, the Hamil-
tonian density of Eq. (4.2) can be written as

H0 -
∑

nn′=A,B

∑

RR′

a†nRan′R′〈Rn|H0|R′n′〉 ≡ Htb
0 , (4.4)
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where we have restricted the sum over states to the two lowest states, A and
B.

In Eq. (4.4), 〈Rn|H0|R′n′〉 are the tunneling coefficients between neigh-
boring lattice sites, and play a central role in determining the quality and
usefulness of the TB approach. In general, it is desirable to achieve a good
compromise between accuracy and simplicity if a TB model is to be useful.
The accuracy is measured by the ability of the model to reproduce the prop-
erties of the optical lattice, such as the band structure, while the simplicity
is related to the number of coefficients contained in the model; the fewer
coefficients, the simpler is the model.

Due to the maximal localization of the MLWFs, we expect that the
expansion of Eq. 4.4 may be truncated including only a few tunneling coef-
ficients around a given site R,

TR−R′

nn′ ≡ −〈Rn|H0|R+R′n′〉. (4.5)

In other words, we expect the TB models in terms of MLWFs optimize ac-
curacy and simplicity. In the above coefficient, we distinguish the dominant
terms in the expansion, i.e. the onsite energies,

εonsn ≡ 〈Rn|H0|Rn〉. (4.6)

In general, the rest of the tunneling coefficients that should be included
into the model depends on the geometry and properties of the system un-
der study. In the examples that we will analyze throughout the next two
sections, we will describe the accuracy of different levels of the TB approx-
imation including different number of coefficients.

4.2 The honeycomb potential

As a first example, we consider the 2D graphene-like lattice discussed by
Lee and co-workers [127]. This lattice is generated by the interference of
three co-planar laser beams whose wavevectors differ by an angle of 2π/3
but have equal frequency, strength and linear polarization (see [142] for a
detailed explanation). The 2D potential generated by superimposing these
laser beams is

V (r) = sER



3 + 2 cos [(b1 + b2) · r] + 2
∑

i=1,2

cos (bi · r)



 . (4.7)

The reciprocal basis vectors are

b1 =
√
3kL

êx −
√
3êy

2
, b2 =

√
3kL

êx +
√
3êy

2
, (4.8)
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Figure 4.1: (a) Structure of the potential of Eq. (4.7) for s = 5. Hot and
cold colors denote high and low values, being the potential maximum (red)
nine times higher than the minimum (blue). (b) Sketch of the honeycomb
lattice structure and the diamond-shaped elementary cell with basis A and
B. The length of each side of the hexagon is a = 4π/(3

√
3kL). Arrows

indicate different tunneling coefficients of type A defined in the text.

where kL is the modulus of the laser wavevectors and s in Eq. (4.7) repre-
sents the potential amplitude in units of the recoil energy,

ER =
k2L
2
. (4.9)

In Fig. 4.1a we illustrate the real space structure of the potential of (4.7),
where the minima of the potential are distributed in a honeycomb structure,
similar to the distribution of carbon atoms in a graphene layer. The cor-
responding real-space Bravais lattice is generated by the two fundamental
vectors,

a1 = Λ
êx −

√
3êy

2
, a2 = Λ

êx +
√
3êy

2
, (4.10)

with Λ = 4π/3kL the common length of the Bravais primitive vectors, being
Λ =

√
3a, with a the length of each side of the hexagon in the honeycomb

lattice.

4.2.1 Band structure and MLWFs

Before constructing the TB model, we first analyze the properties of the
two lowest states associated to the honeycomb potential of Eq. (4.7). The
calculated ab-initio band structure of the two lowest states, EA/B(k), is
shown in Fig. 4.2b for various values of the potential amplitude s. These
two bands are characterized by so-called Dirac points at kD = K,K′ (note
that we have fixed EA/B(kD) = 0). At these points, the local dispersion of
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Figure 4.2: (a) 3D band structure of the lowest two bands for s = 6. The
hexagon represents the SBZ. (b) Plot of the band structure along the path
Γ−K− Γ−M for various values of the potential amplitude s.

the band structure is linear, resembling the dispersion of relativistic mass-
less particles. Furthermore, the two bands are degenerate at K and K′, a
situation known as a semi-metal or a zero-gap semi-conductor state. In Fig.
4.2b, the existence of the Dirac point is not affected since varying s does
not change the symmetry of the potential. However, the band dispersion
decreases significantly as s is raised, revealing the stronger localization of
the associated Bloch orbitals.

Once the band dispersion of the two lowest Bloch bands has been de-
scribed, we focus now on the associated MLWFs, which have been calculated
following the procedure outlined in Sec. 4.1. We have performed calcula-
tions for the potential amplitude s ranging from 0 to 30. In all the cases, we
have found that the converged MLWFs are real and exponentially localized
around one of the potential minima. The typical shape of the calculated ML-
WFs is shown in Fig. 4.3. The strong localization of |wn0(r)|2 (n = A,B)
around sites A and B, and their exponential decay are clearly visible in
panel (a). Panel (c) shows the distribution of |wA0(r)|2 around the home
unit cell R = 0. The figure reveals an appreciable overlap of the MLWF
with neighboring B and A sites, indicated respectively by yellow and red ar-
rows in Fig. 4.1. In addition, the MLWFs are characterized by the presence
of nodes in passing from site A to B.

4.2.2 Tunneling coefficients

Considering the exponential localization of the MLWFs shown in Fig. 4.3,
we expect that a TB description of the system incorporating only a few
tunneling coefficients in the expansion of Eq. (4.4) will capture the main
properties of the system. Thus, we have included up to third-nearest neigh-
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bors in Eq. (4.5), i.e. R′ ≡ (0,±1; 0,±1) in units of the direct lattice defined
in Eq. (4.10). Note that the tunneling coefficients depend only on the rel-
ative distance owing to the uniformity of the lattice. As we explain below,
these coefficients can be divided in three classes, as shown in Fig. 4.1b for
the case n = A.

(i) Terms corresponding to the overlap between A(B) and the three near-
est neighbors of type B(A), yellow arrows in Fig. 4.1. We will use the
following notation based on Eq. 4.5,

t0 = T (0,0)
AB . (4.11)

Figure 4.3: Example of the calculated MLWFs for s = 15. (a) Profile of
|wA0(r)|2 (solid, blue) and |wB0(r)|2 (dashed, red) along the line joining the
A and B sites (y = 0) in the original unit cell. (b) Profile of wA0(r) and
wB0(r) along the same path as in (a) with a zoom into the small values of the
MLWFs. Note that wA0(r) (wB0(r)) becomes negative in the neighborhood
of site B (A). (c) Contour plot of the function log |wA0(r)|2. The solid
and dashed lines depict the original unit cell and the honeycomb lattice,
respectively.
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Figure 4.4: Evolution of the various tunneling coefficients as a function of
the lattice intensity s. The lines are the result of a fit of the numerical data,
and those for t0 and t1 coincide with that extracted from a fit of the Bloch
spectrum (see text).

Above, (0,0) is the difference between the real-space Wannier indexes
of the two sites, i.e. R−R′ = (0, 0) (see Eq. 4.5).

(ii) Terms corresponding to the overlap between sites of the same type (A
or B) within neighboring cells, as indicated by red arrows in Fig. 4.1,

t1 = −T (1,0)
nn , n = A,B. (4.12)

We notice that the sign in Eq. (4.12) is chosen so that t1 is positive
defined. This sign is a consequence of the MLWFs nodes analyzed
in Fig. 4.3b, which make diagonal and off-diagonal terms of opposite
sign.

(iii) Terms corresponding to the overlap between A(B) and B(A) at oppo-
site corners of the hexagon, as indicated by blue arrows in Fig. 4.1,

t2 = T (1,1)
AB . (4.13)

The behavior of the different tunneling coefficients as a function of the
lattice intensity s is shown in Fig. 4.4. In order to extract an analytic
expression from the numerical values, we have considered a fit of the type
ti = Asαe−β

√
s (i = 0, 1, 2), in the range s > 3, with A, α, and β as fitting

parameters. For t0 we find

t0 = 1.16s0.95e−1.634
√
s. (4.14)
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Figure 4.5: (b,c) Band structure for ky = 0 and kx = 0, respectively (blue,
solid lines). The latter are compared with the prediction of the full TB
model (red dashed line), that with t0 and t1 (black dotted line), and with
just t0 (magenta dot-dashed line). Note the asymmetry of the two bands.

For the other two terms we get

t1 = 0.78s1.85e−3.404
√
s, (4.15)

t2 = 1.81s2.75e−5.196
√
s. (4.16)

4.2.3 Accuracy of the tight binding model

A convenient way to check the regime of validity of a given TB approxi-
mation is to compare its prediction for the energy spectrum with the exact
Bloch spectrum. The procedure for deriving the TB spectrum in terms of
the tunneling coefficients has been included in Appendix F. Here we show
an specific example of the TB spectrum in Figs. 4.5b-c for a particular value
of the potential amplitude, s = 5. The figure shows that the TB model with
just t0 is not sufficient to reproduce the band structure, and at least the
inclusion of the coefficient t1 is needed. In particular, it is clear that the
latter is necessary to account for the band asymmetry.

A further way to test the quality of the TB approximation is to analyze
the overall mismatch between the TB and exact bands. Here, we evaluate
this mismatch using the following expression,

δεn ≡ 1

∆En

√∑

k

[En(k)− εn(k)]
2, (4.17)

with ∆En the n−th bandwidth (n = 1, 2), and En(k) and εn(k) the exact
(ab-initio) and approximate (TB) eigenvalues, respectively.

The results for the mismatch are shown in Fig. 4.6. This figure shows
that the TB model with up to third-nearest neighbors accurately reproduces
the band structure for s ! 3, with an error below 1%. In fact, this is a range
of the potential intensity where one would expect the MLWFs to localize



84 Chapter 4. Tight binding models for optical lattices

10
-4

10
-3

10
-2

10
-1

10
0

 0  5  10  15  20  25  30

δ
ε

n

s

(a)

   

   

   

   

   

 0  5  10  15  20  25  30

  
s

(b) t0,t1,t2

t0,t1

t0

Figure 4.6: Energy mismatch, δεn, for the first (a) and second (b) band,
considering different levels of approximation of the TB model.

strongly around each minimum (that is, a proper TB regime). While the
inclusion of t2 provides only a minor correction, the model with just the
nearest neighbor tunneling coefficient, t0, is clearly less accurate, reaching
the level δεn " 1% only for high values of the potential intensity, s ! 15.
This may be particularly relevant for the range of parameters of current
experiments since they are performed in a regime of relatively low potential
amplitudes (s " 5).

4.2.4 First conclusions

In this section, we have analyzed the 2D honeycomb optical lattice with
two minima per unit cell, an example that allows to mimic the physics of
graphene as it contains so-called Dirac points. We have shown that MLWFs
are a powerful tool for determining the parameters of TB models describing
the optical lattice. In particular, the TB model in terms of the three closest
nearest neighbor coefficients calculated with the aid of the MLWFs has ac-
curately reproduced the features of the exact system, with an overall error
below 1% in the regimes of practical interest.

4.3 Stretched-honeycomb potential

In this section we will analyze the potential reproduced experimentally in
Ref. [131] by Tarruel and co-workers,

V (x, y) =− VX cos2(kLx+ θ/2)− VX cos2(kLx)

− VY cos2(kLy)− 2α
√

VXVY cos(kLx) cos(kLy) cos(ϕ),
(4.18)
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Figure 4.7: (a) Bravais lattice associated to the potential in Eq. (4.18) for
the stretched honeycomb configuration. Black and white circles refers to
minima of type A and B, respectively. The elementary cell is highlighted in
gray. The various diagonal and off-diagonal tunneling coefficients of our TB
expansion are indicated for the site of type A in the central cell. (b) The
associated 2D BZ. The high symmetry points of interest are indicated.

where all the parameters can be controlled and tuned in the experiment. In
particular, by varying the laser intensities VX , VX and VY , several structures
can be realized by continuous deformations, ranging from chequerboard to
triangular, dimmer, honeycomb, and square lattices, including 1D-chains
(see Figs. 4.8(a-c) for three examples). Additionally, tuning the angle θ
away from π allows to break the degeneracy between the two potential min-
ima contained in the associated unit cell. Thus, the present case, generally
referred as the stretched-honeycomb potential, allows for an ample degree
of freedom compared to the ideal honeycomb potential analyzed in the pre-
vious section. The aim of this section is therefore to test the validity of the
MLWFs as a TB basis in a more general case.

The Bravais lattice associated to the potential in Eq. (4.18) is generated
by the following basis vectors

a1 =
π

kL
(êx − êy), a2 =

π

kL
(êx + êy). (4.19)

The associated real space structure is shown in Fig. 4.7a, which contains
two basis points, denoted as A and B.

The corresponding basis vectors in reciprocal space are

b1 = kL(êx − êy), b2 = kL(êx + êy), (4.20)

obtained from ai · bj = 2πδij . The associated 2D BZ is represented in Fig.
4.7b.
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Figure 4.8: (a-c) Examples of the three potential types that can be obtained
by varying VX from 1 to 8 with fixed VX = 0.28 and VY = 1.8 in the sym-
metric case (θ = π, ϕ = 0). (a) Dimmer, VX = 1. (b) Stretched-honeycomb,
VX = 4.5. (c) 1D-chain, VX = 8. Red and blue colors denote high and low
values of the potential, respectively. The unit cell is represented by solid
black lines. (d-f) Representation of the calculated MLWFs (sublattice A)
for the same potential setup as in (a-c) .

To begin our analysis of the potential of Eq. (4.18), we first focus on the
non-degenerate (symmetric) case obtained by setting θ = π, ϕ = 0. This
is the most interesting configuration due to the presence of Dirac points, as
will be shown in the following section. The effect of parity breaking (θ /= π)
generates a gap at the Dirac point, and will be covered in Sec. 4.3.4. In
the rest of the section, we will set kL = 1 without loss of generality. This
corresponds to measuring lengths in units of 1/kL and energies in units of
the recoil energy, ER (see Eq. (4.9)).

4.3.1 From the dimmer configuration to the 1D-chain regime

As in the reference experiment by Tarruel and co-workers [131], we will
restrict our analysis to the structures obtained by varying the potential
parameter VX from 1 to 8, while we maintain fixed the values VX = 0.28
and VY = 1.8, with symmetric configuration (θ = π, ϕ = 0). In this range,
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Figure 4.9: Band structure of the two lowest bands for various values of VX .
The first two panels (VX = 1 and 2) correspond to the dimmer regime, the
second two panels (VX = 3.38 and 4) to the stretched honeycomb regime
and the last two panels (VX = 8 and 30) to the 1D-chain regime.

the potential of Eq. (4.18) covers three different regimes, as exemplified in
Figs. 4.8a-c. These are the dimmer regime (VX ∼ 1), the 1D-chain regime
(VX ∼ 8) and the stretched-honeycomb regime (intermediate values). As
shown in Fig. 4.8a, the dimmer structure is characterized by a relatively
low value of the potential in the region between A and B sites within the
same unit cell. On the opposite, in the 1D-chain regime (Fig. 4.8c) the
potential is small along the y direction connecting different minima, while
it presents a high barrier between A and B sites of the same unit cell.
The stretched-honeycomb regime (Fig. 4.8b) represents an intermediate
configuration between these two limits.

Band structure

In order to gain insight on the properties of the different regimes, in Fig. 4.9
we analyze the band structure of the two lowest bands for selected values
of VX . The path along which the energy dispersion is shown includes the
points Mx = (1, 0) and My = (0, 1), where the most interesting features
are expected [131]. We begin by considering the lowest value VX = 1,
corresponding to the dimmer regime. At this value, the two lowest bands
are separated by a gap all along the path. As VX is increased, the gap
decreases until VX = 3.38, where the two bands intersect at Mx and My. It
is noteworthy that while around My the band dispersion is parabolic, the
bands intersect linearly at Mx, a Dirac point. From now on, we will refer to
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this configuration as the merging point.
As the potential VX is further increased, we observe different behaviors

along Γ − Mx and Γ − My. First, we will focus in the Γ − Mx direction.
For VX > 3.38 we find that a gap opens all along the line, leading to the
disappearance of the Dirac point. This gap continuously increases as VX
is further raised. Finally, at very high values of VX (VX >> VX , VY ), we
find no dispersion of the bands along this direction. This feature reflects
that lattice sites hardly interact along the x direction, consistently with the
shape of the calculated MLWFs in this regime, which resemble 1D-chains
along the y direction (Fig. 4.8a).

The situation is significantly different along the Γ−My line. For VX >
3.38, we find a band-crossing that changes its location with VX . Noteworthy,
the location of the band-crossing approaches My/2 ≡ M′

y = (0, 1/2) as VX
increases. At very high values of VX (VX >> VX , VY ), the two bands cross
at M′

y, and the dispersion is equal from Γ−M′
y to M′

y −My. Note also that
the dispersion around Γ and My is completely parabolic.

The situation explained above can be interpreted again considering the
1D-chain-like structure of the potential. Indeed, considering the 1D-chain
limit as an ideal 1D structure, the associated direct and reciprocal lattices
would have the following vectors, respectively:

a′1 = 2πêy, (4.21)

b′
1 = êy, (4.22)

with êy the unit vector along the y direction. In this effective 1D system,
the 1D BZ is a line from −0.5êy to +0.5êy. For positive ky, the end of this
line would be precisely M′

y, which is halfway from Γ to My, as depicted in
Fig. 4.7b. With this in mind, the band-crossing at M′

y depicted in the last
panel of Fig. 4.9 would be analogous to the band-crossing of a free-electron
band at the zone boundary, and My would correspond to the high symmetry
point Γ at the second BZ.

MLWFs

As we have done in the case of the honeycomb potential analyzed in Sec.
4.2, in the present case we can also calculate the MLWFs considering the
two lowest Bloch bands. The resulting MLWFs for different values of VX are
illustrated in Figs. 4.8 (c-d) (results are shown for sublattice A). In all the
cases, MLWFs are exponentially localized around the A site of the central
unit cell, but present a non-negligible contribution around the neighboring
potential minima too. As shown in the figure, the structure of the potential
determines the shape of the MLWFs. For VX = 1, see Fig. 4.8d, we find a
large contribution of the MLWF around the B site of the central unit cell,
consistent with the dimmer structure of the potential. The situation is very
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Figure 4.10: Spread (units of k2L) of the MLWFs as a function of VX , in the
regime of the experiment [131] (VX = 0.28, VY = 1.8, symmetric case).

different for VX = 8 (Fig. 4.8f), which shows a MLWF highly localized along
the y axis, resembling the 1D-chain structure of the potential. The stretched-
honeycomb regime represented by Fig. 4.8e constitutes an intermediate
stage between the two limits.

In order to analyze the degree of localization of the MLWFs, in Fig. 4.10
we show the spread Ω of the MLWFs (Eq. (1.25)) as a function of VX . The
figure shows that increasing VX , Ω rapidly decreases in the regime of low
VX , while it almost saturates in the opposite limit. This indicates that the
TB approach is expected to work better for the stretched-honeycomb and
1D-chain regimes than for the dimmer case.

4.3.2 Tunneling coefficients

We now focus on the tunneling coefficients associated to the MLWFs. For the
present example, we have truncated the TB expansion of Eq. (4.5) including
all possible tunneling coefficients between neighboring cells, as indicated in
Fig. 4.7a. We distinguish between diagonal and off-diagonal terms in the
band index.

(i) Diagonal terms connecting the minima located at points of the same
type n = A or n = B, red arrows in Fig. 4.7a. We use the following
notation based on Eq. (4.5):

jn1 ≡ T (1,−1)
nn = T (−1,1)

nn , (4.23)

jn2 ≡ T (1,0)
nn = T (0,1)

nn = T (0,−1)
nn = T (−1,0)

nn , (4.24)

jn3 ≡ T (1,1)
nn = T (−1,−1)

nn . (4.25)
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Figure 4.11: Evolution of various tunneling coefficients as a function of VX ,
covering the whole range from the dimmer to the 1D-chain structures. (a)
Experimental regime, VX = 0.28, VY = 1.8 [131]. (b) Proper TB regime,
VX = 0.56, VY = 3.6.

In the symmetric case θ = π, ϕ = 0, we further have that

jAi = jBi ≡ ji, i = 1, 3. (4.26)

(ii) Off-diagonal terms connecting the minima located at points of different
type, blue arrows in Fig. 4.7a. We redefine the tunneling coefficients



4.3 Stretched-honeycomb potential 91

as

t0 ≡ T (0,0)
nn′ , (4.27)

t1 ≡ T (1,0)
nn′ = T (0,1)

nn′ , (4.28)

t2 ≡ T (−1,−1)
nn′ , (4.29)

t3 ≡ T (1,−1)
nn′ = T (−1,1)

nn′ , (4.30)

with n, n′ = A,B and n /= n′.

The behavior of the tunneling coefficients in the considered range for VX
is shown in Fig. 4.11a. We first focus on the value VX - 1. We find that the
ratio between the two dominant coefficients t0/t1 is # 10. This reflects the
dimmer structure of the potential, since t0 connects sites A and B (see Fig.
4.7a). Noteworthy, t2 is by far the next largest coefficient, comparable in
magnitude to t1. The importance of t2 reveals that the tunneling between
neighboring dimmers in the x direction is considerable (see t2 in Fig. 4.7a).
The rest of the coefficients have a significantly lower value compared to t0,
t1 and t2.

As VX is increased, the various tunneling coefficients evolve in two dif-
ferent ways. Most of them decrease in magnitude, reflecting the stronger
localization of the MLWFs as we approach a more TB regime. This could
be considered a ‘normal’ behavior, as it was also observed for the tunneling
coefficients of the perfect honeycomb lattice covered in the previous section
(see Fig. 4.4). However, two of the coefficients, namely t1 and j1, increase
in magnitude as VX is increased. This apparently ‘inverse’ behavior reflects
the evolution of the potential of Eq. (4.18) from the dimmer to the 1D-
chain structure, as these coefficients connect potential minima inside the
1D-chains. Owing to this ‘inverse’ behavior, t1 becomes the dominant co-
efficient for VX ! 4.5. Similarly, j1 becomes larger than j3 and even t2 for
VX ! 7.5. It is therefore clear that varying the potential amplitude can also
modify the role of the different tunneling coefficients.

4.3.3 Accuracy of the tight binding model

We proceed now to test the validity of the TB model in terms of the calcu-
lated tunneling coefficients. With this aim, in Figs. 4.12a-f we compare the
exact energy dispersion with the TB spectrum (cf. Appendix F) in the three
regimes. We consider two different TB approximations, one including just
t0, t1 and t2 (corresponding to the universal Hamiltonian of Ref. [143]), and
that including all the coefficients in Fig. 4.11a The figures show that the
main features, including the band-crossing along the ky direction in Figs.
4.12e-f, are well reproduced by both approximations, though the TB model
with just t0, t1 and t2 is not capable of approximating the exact bands with
sufficient accuracy.
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Figure 4.12: Cuts of the exact energy bands (black solid line) compared to
two TB approximations: one with just t0, t1 and t2 (red dotted line), and
the other with all the coefficients in Fig. 4.7a (blue dashed line). Panels
(a-f) show the results for the experimental parameter setup of Tarruel and
co-workers: VX = 0.28, VY = 1.8 [131], while panels (g-l) correspond to
VX = 0.56, VY = 3.6. Panels (a-c) show cuts along kx (ky = 0) for VX = 1
(dimmer regime), VX = 4.5 (stretched-honeycomb regime) and VX = 8 (1D-
chain regime), respectively. Panels (d-f) show cuts along ky (kx = 0) for the
same parameters as in (a-c). Panels (g-l) are organized as panels (a-f), but
with VX = 4.5 (dimmer regime), VX = 8 (stretched-honeycomb regime) and
VX = 12 (1D-chain regime).
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Figure 4.13: Calculated energy mismatch δEn for the two bands including
the two TB approximations discussed in the text. (a) and (b), respectively,
show the results for the experimental and TB regimes.

In order to test further the accuracy of the TB model, in Fig. 4.13a we
analyze the calculated mismatch between the exact and approximate energy
spectra (Eq. 4.13) as a function of VX . We find that even the approximation
including all the coefficients considered yields a mismatch above 1% in all the
parameter regime. This is significantly greater than the mismatch of the TB
model for the ideal honeycomb potential (Fig. 4.6), which produces an error
below 1% in a broad parameter regime. The quality of the approximation
could be improved by considering more coefficients in the TB model, but
this would make the approach much less simple and practical.

At this point, we consider a different set of values for the potential pa-
rameters that correspond to a well defined TB regime, while keeping the
same potential structure. In particular, we have considered the parameter
values VX = 0.56, VY = 3.6 and VX ranging from 4 to 12, corresponding
to twice the values of Tarruel and co-workers [131]. The aim is to obtain a
better compromise between the accuracy and simplicity of the model than in



94 Chapter 4. Tight binding models for optical lattices

the experimental parameter setup. The calculated tunneling coefficients are
illustrated in Fig. 4.11b, showing the same general structure as the ones in
Fig. 4.11a, except for minor differences regarding the smallest coefficients.
The corresponding energy dispersion is shown in Figs. 4.12(g-l) in the dim-
mer, stretched-honeycomb and 1D-chain regimes. In this case, already the
lowest order approximation with just the coefficients t0, t1 and t2 provides
a remarkable agreement with the exact data. The approximation including
all the coefficients yields almost indistinguishable results compared to the
exact dispersion. This is also reflected in the calculated mismatch for this
parameter regime, shown in Fig. 4.13b. We find that the mismatch δεn

Figure 4.14: Asymmetric structure corresponding to θ = π + 0.1, with po-
tential parameters VX = 0.56, VY = 3.6, VX = 6.94 (merging point). (a)
illustrates the structure of the potential for this configuration, showing a
deeper minimum at sublattice B than in A (color code as in Fig. 4.8). (b)
and (c) show one dimensional profiles of |w0A(x, y = 0)|2 (solid, blue) and
|w0B(x, y = 0)|2 (dashed, red) in the central unit cell. Note the different dis-
tributions of the two MLWFs, as a consequence of the parity breaking. This
is evident also from the two dimensional plots of |w0A(r)|2 and |w0B(r)|2, in
(d) and (e), respectively.
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Figure 4.15: Splitting of the diagonal coefficients as a function of the angle
θ (at the merging point: VX = 0.56, VY = 3.6, VX = 6.94). Note that
|EA − EB| = 2|ε|, see Eq. (F.9).

is overall one order of magnitude smaller than in the experimental regime
(Fig. 4.13a). It is noteworthy that the best approximation in Fig. 4.13b has
an error below 1% in all the range of VX . Therefore, the setup VX = 0.56,
VY = 3.6 corresponds to a proper TB regime, accurately reproducible by
TB models based on the MLWFs.

Before concluding this section, it is worth to mention the two different
trends observed in the behavior of the mismatch. Focusing on Fig. 4.13a, we
find that for VX " 4.5, δεn decreases as VX is increased. This evolution could
expected since in this parameter regime, the MLWFs become much more
localized as the potential is raised (see Fig. 4.10). For VX ! 4.5, in contrast,
the mismatch increases with increasing VX . We recall from Fig. 4.11 that
some tunneling coefficients corresponding to sites inside the 1D-chains grow
as VX is increased (see t1 and j1 as an example). When approaching the
1D-chain limit, some of these coefficients that are not considered in our TB
model become relevant, so that the quality of the approximation decreases.

4.3.4 Breaking parity

In this final section we analyze the effect of the asymmetry introduced in
the potential of Eq. (4.18) by letting θ /= π. For simplicity, we will restrict
the analysis to the proper TB parameter regime VX = 0.56, VY = 3.6. For
θ /= π, the two potential minima in the unit cell become non-degenerate
[131]. In Fig. 4.14a we exemplify this situation by illustrating the structure
of the potential for θ = π + 0.1 at the merging point, which in this regime
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Figure 4.16: Cuts of the energy bands around the merging point My = (0, 1)
for different values of the parity breaking angle θ. The exact Bloch bands
(dots) are compared to the full TB model (solid line), as a function of ky (at
kx = 0) (a), and of kx (at ky = 1) (b). The picture refers to the TB regime
VX = 0.56, VY = 3.6, VX = 6.54 .

happens at VX = 6.54. The figure shows a deeper minimum at site B than
in A. Correspondingly, the associated MLWFs exhibit a higher localization
around B than around A, as illustrated in Figs. 4.14 b-e.

As a consequence of the parity breaking, the degeneracy of the diagonal
coefficients is also broken, for both the onsite energies En (Eq. (4.6)) and
the diagonal tunneling coefficients jni , n = A,B (Eq. (4.25)). In Fig. 4.15
we illustrate the splitting between the A and B terms for these coefficients
for small deviations from θ = π. 1 As shown in the figure, the deviations
grow as θ deviates from π, reflecting the asymmetry of the potential, which
strongly affects the energy dispersion. Indeed, as shown in the experiment
by Tarruel and co-workers [131], a gap can be opened at the Dirac points
by breaking the invariance under parity. Here we show that the variation of
the tunneling coefficients shown in Fig. 4.15 is able to accurately reproduce
the exact dispersion law and, in particular, the opening of the mass gap at
the Dirac points. With this aim, in Fig. 4.16 we compare the exact and TB
band dispersion for different values of θ /= π at the merging point. As shown
in the figure, even small deviations from θ = π give rise to a appreciable gap
at the Dirac point, which is accurately reproduced by our model.

1The off-diagonal tunneling coefficients are weakly affected in these range of values of
θ.
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4.4 Conclusions

In this chapter we have considered MLWFs as a basis for TB models of
optical lattices. We have described how to calculate the tunneling coeffi-
cients that connect the continuous and discrete systems in different lattice
geometries.

As the first example, in Sec. 4.2 we have analyzed the perfect honeycomb
optical lattice with close connections to the graphene physics. The TB model
in terms of just three nearest neighbor coefficients calculated with the aid of
the MLWFs has accurately reproduced the features of the continuous system.
In particular, the characteristic Dirac point has been very well reproduced
by our model, with an energy mismatch much below 1% in the regimes of
practical interest. The results presented in this section have demonstrated
the power of the MLWFs in determining the parameters of TB Hamiltonians
describing ultracold atoms in optical lattices.

After analyzing the ideal honeycomb lattice, in Sec. 4.3 we have applied
the method to a tunable honeycomb optical lattice [131]. This more complex
example has allowed us to consider several lattice geometries, such as the
dimmer, stretched-honeycomb and 1D-chain structures. We have derived
the corresponding TB models, and calculated the MLWFs and tunneling
coefficients for different lattice configurations. The results have shown that
the energy spectrum, including the position of Dirac points, can be accu-
rately reproduced also in these cases. Furthermore, the present example
has allowed us to study the effect of the asymmetry introduced by breaking
the degeneracy of the two potential minima contained in the unit cell. The
massive Dirac points that accompany such parity breaking have been very
well reproduced by our TB model, showing that MLWFs successfully adapt
to complex and variable optical lattice geometries.
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Chapter 5

Final conclusions

Throughout this work, we have applied an ab-initio approach based on DFT
and MLWFs for calculating several properties of diverse systems, including
spin-flip excitations in surfaces with strong spin-orbit interaction, plasmon
dispersion under pressure in a simple metal, sodium, and tight binding mod-
els for 2D optical lattices. The analysis of this rather wide variety of topics
has been possible thanks to the ability of the MLWFs for successfully adapt-
ing to diverse systems.

In the context of surfaces with spin-orbit interaction, we have analyzed
the Tl/Si(111), Au(111) and Pb/Ge(111)−β

√
3×

√
3R30 ◦ structures. The

calculations based on the generalization of the DFT to the noncollinear
spin case have accurately described their ground state properties, show-
ing in all cases a very good agreement with state-of-the-art ARPES and
SR-ARPES measurements. Additionally, we have analyzed the low-energy
excitations induced by an external electromagnetic field between spin-split
surface states. The use of MLWFs has allowed to consider very fine k meshes
needed to study such excitations. With this technique, we have found that
the spin-orbit interaction can play an important role in the light absorption
spectrum of surfaces, which is one of the main results of this work.

The properties of sodium, a simple metal, have also been the focus of at-
tention in this work. As it is the case of similar elements such as lithium and
calcium, sodium exhibits interesting phenomena when pressure is applied to
it. We have performed an exhaustive ab-initio analysis of the ground and
excited state properties of sodium under pressure. MLWFs have been used
as the basis for calculating the linear response function within TDDFT, a
powerful approach that has allowed us to study the collective charge exci-
tations, known as plasmons. Our analysis has predicted the existence of an
anisotropic interband plasmon in the fcc phase that emerges and disappears
at finite values of the momentum, indicating an unexpected departure of
sodium from the free-electron-like behavior. Additionally, we have found
very low-energy plasmons in the high pressure phases oP8 and tI19 (above
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125 GPa), which explain recent measurements of a drastic drop of reflectiv-
ity in these phases. In conclusion, the calculations presented in this work
have provided clear fingerprints of pressure-induced complexity in sodium.

In the last chapter of this work we have applied the MLWFs in a context
in which they have not been fully exploited yet; the context of cold atoms
trapped in 2D optical lattices. We have constructed tight binding models
of several 2D optical lattices, allowing to map the continuous system into a
discrete one in terms of a few tunneling coefficients. Noteworthy, our tight
binding models have accurately reproduced the properties of the continuous
system, such as the energy spectrum and the so-called Dirac points, with
an energy mismatch much below 1%. Therefore, The results presented in
this work have demonstrated the power of the MLWFs in determining the
parameters of tight binding models describing cold atoms in optical lattices.
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Appendix A

Slab representation of a
surface

Computational algorithms that implement the DFT or SDFT based on plane
waves are usually adapted to the periodicity of solids. In practice, one defines
the crystal unit cell in real space, which is to be repeated in the directions
corresponding to the three direct lattice vectors that define the unit cell. In
the case of a surface, however, periodicity is lost along the direction per-
pendicular to the surface. In order to apply these algorithms, the surface
must be represented by the so-called repeated slab technique. This consists
on introducing a sufficiently large slab along the surface perpendicular di-
rection that resembles an entire surface. This means that the slab must
contain enough atoms in order to reproduce both, the properties of the bulk
and the surface. Also, it needs to contain enough vacuum along the surface
perpendicular direction so that when repeated, the two sides of the slab do
not spuriously interact among themselves. Along the plane parallel to the
surface, on the other hand, the usual unit cell is maintained.

An important point when building an slab is to determine the minimum
number of atoms that it needs to contain in order to properly emulate the
properties of the bulk and the surface. This optimization process is based
on the following energy considerations. Let En represent the total energy
of the surface slab with n atoms and εbulk the energy of a single bulk atom
obtained from a standard bulk calculation. We note that due to the different
environments, εbulk is different from the energy of an atom located near the
surface. Taking εthr as the energy threshold determining the accuracy of the
minimization, when |En+1 − En − εbulk| < εthr, it is safe to conclude that
n atoms are enough to model the surface since adding the n + 1th atom
increments the total energy by εbulk, meaning that this atom plays the role
of a bulk atom; therefore, the surface is already well approximated.

A schematic illustration of a surface slab is included in Fig. A.1. This
slab is meant to represent the Tl/Si(111) surface, consisting of silicon bulk
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Figure A.1: Schematic representation of the Tl/Si(111) surface slab with a
hydrogen overlayer covering the opposite side of the slab. Grey, blue and
green balls denote Tl, Si and H atoms, respectively.

atoms, which crystallize in the diamond structure, and a thallium overlayer
covering the (111) termination (cf. Sec. 2.1.2). At the opposite side of
the slab, we have introduced a hydrogen overlayer in order to saturate the
dangling bonds of the corresponding Si(111) termination. This is a common
and safe procedure, since electron states associated to the hydrogen overlayer
lie always well below the Fermi level and, therefore, have no effect in the
chemical properties of the surface in which we are interested. In the present
example, after the optimization process, we have found that 24 Si atoms are
enough to approximate the surface.



Appendix B

Rashba model

In this appendix we review the basic aspects of the Rashba model [53] for
a 2D free-electron-like gas, which is broadly considered as the standard
model for analyzing the properties of surface states under strong spin-orbit
interaction (SOI) [37]. Within this model, electrons are considered as free
particles under the action of a simplified SOI term,

HR = αR(σ × p)z, (B.1)

with αR the so-called Rashba parameter that controls the strength of the
SOI. The subscript z in Eq. (B.1) means that only this component of the
vector product σ × p must be kept.

The so-called Rashba SOI term of Eq. (B.1) contains two major simpli-
fications compared to the general SOI term (Eq. (2.4)). First, it assumes
that the only finite component of the potential gradient is along the surface-
perpendicular direction z, which is why we only keep the z component of
the vector product. Physically, this gradient constrains the electrons to the
2D (x, y) plane. Second, it assumes that the potential gradient is constant,
i.e. independent of r, making the Rashba SOI term also independent of the
position. Thanks to these simplifications, the Rashba model is analytically
solvable.

With these considerations in mind, the full Hamiltonian in the Rashba
model is given by

H0 =
p2

2m∗ + αR(σ × p)z, (B.2)

with m∗ the electron effective mass. For an in-plane Bloch vector k =
(kx, ky) = k(cosϕ, sinϕ), the spinor eigenfunctions of the above Hamiltonian
are

φk,±(r) =
eik·r

2π

1√
2

(
ie−iϕ/2

±eiϕ/2

)
. (B.3)

Above, ± denotes the ’spin-up’ and ’spin-down’ states with respect to the
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Figure B.1: Schematic illustration of the energy spin-splitting in the Rashba
model: solid lines denote the energy dispersion of Eq. (2.19), while the
dashed lines denote the original free-electron-like dispersion (without the
linear Rashba term).

spin-polarization axis

m±(k) = 〈φk,± |σ |φk,±〉 = ±1

2




sinϕ

− cosϕ
0



 ⊥ k. (B.4)

The above equation predicts that the spin-polarization is independent of the
momentum magnitude and perpendicular to both, the surface-perpendicular
direction z and the electron momentum k. Furthermore, it predicts opposite
spin-polarization for the spin-split states.

Besides the kinetic contribution, the energy dispersion in the Rashba
model contains a term linear in momentum,

ε±(k) =
k2

2m∗ ± αR|k|. (B.5)

Therefore, the effect of the Rashba SOI is to break the original two-fold
spin-degeneracy through the term αR|k|, with the exception of the high
symmetry point k = 0. The results of this spin-splitting is schematically
depicted in Fig. B.1.
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The electron velocity operator is easily calculated using the relation v =
∇pH0 (Eq. (2.14)),

vx =
px
m∗ − αRσy, (B.6)

vy =
py
m∗ + αRσx. (B.7)

With the above expressions, the transition matrix elements between the
φ±k(r) states (Eq. (2.17)),

C(α)
−+(k) = −1

c
A(α)

0 · 〈φk,−|v |φk,+〉 , (B.8)

are readily accessible.
We first note that the spin-diagonal part of the velocity operator (the

canonical contribution p/m∗) yields null contribution to C(α)
−+(k) since the

states φk,±(r) are orthogonal in spin-basis. With this in mind, we find the
following expressions for different light polarizations:

C(x)
−+(ϕ) =

A0

c
〈φk,−|αRσy |φk,+〉 = i

A0

c
αR sinϕ, (B.9)

C(y)
−+(ϕ) = −A0

c
〈φk,−|αRσx |φk,+〉 = −i

A0

c
αR cosϕ, (B.10)

C(R,L)
−+ (ϕ) =

A0√
2c

〈φk,−|αRσy ∓ iαRσx |φk,+〉 = ± A0√
2c

αRe
∓iϕ. (B.11)

Therefore, the transition matrix elements only depend on the direction of
the momentum ϕ, but not on the magnitude |k|.

The associated spin-flip transition probabilities, P (α)
−+(k) ≡ |C(α)

−+(k)|2/|A
(α)
0 |2,

are straightforwardly obtained from the above expressions,

P (x)
−+(ϕ) =

α2
R

c2
sin2 ϕ, (B.12)

P (y)
−+(ϕ) =

α2
R

c2
cos2 ϕ, (B.13)

P (R,L)
−+ =

α2
R

2c2
. (B.14)

The last equation shows that the transition probabilities for R and L polar-
ized light are equal and independent of ϕ, i.e. constant for all momenta.

Finally, we are in position to compute the spin-flip absorption rate (Eq.
(2.25)),

Λ(α)(ω) =
ω

P 2π

∫
dk

(2π)2
(fk,− − fk,+)|C

(α)
−+(ϕ)|2δ(ε+(k)− ε−(k)− ω)

=
1

2c|A0|2ω

∫ 2π

0
dϕ|C(α)

−+(ϕ)|2
∫

dk(fk,− − fk,+)kδ(2αRk − ω),

(B.15)
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where in the last step we have used P = |A0|2ω2/πc and the fact that the
occupation factors only depend on the momentum magnitude, but not on
ϕ.

The integration of the angular part in the above equation yields the same

result for all light polarizations,
∫ 2π
0 dϕ|C(α)

−+(ϕ)|2 = |A0|2πα2
R/c

2. Thus, we
finally obtain,

Λ(α)
−+(ω) =

π

4c

(
fω,− − fω,+

)
, (B.16)

with fω,± =

(
exp

(
ω2/2± αRω − EF

kBT

)
+ 1

)−1

and EF the Fermi level.

The spin-flip absorption rate in the Rashba model turns out to be inde-
pendent of the external field polarization. Furthermore, it is almost indepen-
dent of the Rashba parameter αR, which enters only through the occupation
factors. Indeed, for T → 0 we have

lim
T→0

Λ(α)
−+(ω) =






π

4c
∼ 0.57% if ω2

2 + αRω − EF > 0

and ω2

2 − αRω − EF < 0,
0 otherwise.

(B.17)

Therefore, αR does not affect the amount of light absorbed at a given fre-
quency, but only the range of frequencies in which light is absorbed.



Appendix C

Gauge transformation

In this Appendix we briefly review the formalism introduced by Wang and
co-workers [54] to express the matrix elements involving k-space derivatives
of the Bloch functions in terms of matrix elements involving MLWFs.

We assume that we have M MLWFs per unit cell, denoted as |Rn〉.
Then, we recast the expression of the periodic part of a Bloch-like function
in terms of the MLWFs ,

|u(W )
nk 〉 =

∑

R

e−ik·(r−R) |Rn〉 . (C.1)

The above states are not in general eigenstates of the Hamiltonian, and we
will refer to them as belonging to the Wannier gauge (W ). The usual Bloch
states that are eigenstates of the Hamiltonian are obtained by a unitary
rotation,

|u(H)
nk 〉 =

∑

m

|u(W )
mk 〉Umn(k). (C.2)

We refer to the above as the Hamiltonian gauge (H).
The connection between the two gauges is given by the rotation matrix

U(k), which is therefore referred as a gauge transformation. Let us analyze
the properties of this matrix by considering the reduced Hamiltonian,

H(H)(k) = e−ik·rH(k)eik·r, (C.3)

where H(k) is the full single particle Hamiltonian of the system. The above
reduced Hamiltonian H(H)(k) is a M ×M matrix in band indexes fulfilling

〈u(H)
nk |H(H)(k)|u(H)

nk 〉 = δnmεn(k). (C.4)

This is why we refer to the |u(H)
nk 〉 as belonging to the Hamiltonian gauge

(H), because precisely in this gauge the Hamiltonian is diagonal. Then,
we can construct the following reduced M ×M Hamiltonian matrix in the
Wannier gauge,

H(W )
nm (k) =

〈
u(W )
nk

∣∣∣H(k)
∣∣∣u(W )

mk

〉
. (C.5)
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The above matrix is not in general diagonal, and one finds the unitary matrix

U(k) precisely by diagonalizing H(W )
nm (k),

H(H)(k) = U †(k)H(W )(k)U(k). (C.6)

Derivatives in reciprocal space

Next, we analyze how a matrix A(j)(k) with the following elements

A(j)
nm,i(k) =

〈
u(j)nk

∣∣∣ ∂i
∣∣∣u(j)mk

〉
(C.7)

transforms between the j = H and j = W gauges, with ∂i ≡ ∂/∂ki a k-
space derivative along the direction i. Note that this object is precisely the
Berry connection entering the transition matrix element of Eq. (2.18). This
quantity is ill-defined in the Hamiltonian gauge due to the inherent phase
indeterminacy of the Bloch states, whereas in the Wannier gauge it is well
defined as the phase is fixed via the MLWFs.

In the case of an ’ordinary’ operator, such as the Hamiltonian, one can
transform between the Wannier and Hamiltonian gauges just by operating
on the left and right by the rotation matrix (see Eq. (C.6)). However,

quantities such as A(j)
nm,i(k) in Eq. (C.7) introduce an extra term in the

transformation as a consequence of the explicit k-space derivative:

A(H)
i = U †A(W )

i U + U †∂iU, (C.8)

where we have omitted the k-dependence for the sake of simplicity. Thus,
the extra term U †∂iU takes into account the k-space variation of the rotation
matrix. This term may be obtained from perturbation theory for variations
in k-space (so-called k·p method [22]),

(U †∂iU)nm =






(U †H(W )
i U)nm

εm − εn
if n /= m

0 if n = m,
(C.9)

with H(W )
i ≡ ∂iH(W ) the k-space derivative of the reduced Hamiltonian in

the Wannier gauge. Since H(W ) is smooth in reciprocal space, its k-space
derivative is well defined. We notice that the gauge choice implicit in Eq.
(C.9) is (U †HW

i U)nn = 0, the so-called parallel transport gauge.

The final step is to express A(H)
nm,i in terms of MLWFs matrix elements.

The needed quantities are

H(W )
nm (k) =

∑

R

eikr 〈0n |H |Rm〉 , (C.10)

H(W )
nm,i(k) =

∑

R

ikeikr 〈0n |H |Rm〉 , (C.11)

A(W )
nm,i(k) =

∑

R

eikr 〈0n | ri |Rm〉 . (C.12)
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which follow from combining Eqs. (C.1), (C.6) and (C.7).
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Appendix D

Effect of a time-dependent
EMF in surfaces with strong
SOI

We consider the effect of an external time-dependent EMF with frequency
ω and wavevector q = qêz propagating along the surface-perpendicular di-
rection z. It is always possible to find a gauge where the scalar potential
associated to the EMF is null, i.e. Φext(r, t) = 0; this corresponds to the
so-called temporal or Weyl gauge [144]. Within this gauge, the external
EMF is fully described by the vector potential [145]

A(α)
ext(r, t) = A(α)

0 eiq·re−iωt +A(α)∗
0 e−iq·reiωt. (D.1)

Above, α stands for the polarization of the external field, and A(α)
0 is a

vector constrained to the (x, y) plane.
The expression for the electric field associated to the EMF through

Maxwell’s equations is

E(α)
ext(r, t) = −1

c

∂A(α)
ext(r, t)

∂t

= i
ω

c
A(α)

0 eiq·re−iωt − i
ω

c
A(α)∗

0 e−iq·reiωt.

(D.2)

In this gauge the electric field is parallel to the vector potential, in contrast

to the magnetic field, B(α)
ext(r, t) = ∇×A(α)

ext(r, t), which is perpendicular.
The full Hamiltonian containing the interaction with the EMF is de-

scribed up to order (v/c)2 by [57]

H =

(
p− 1

c
A(α)

ext(r, t)

)2

2
+ V (r) + Vsc(r)−

1

2c
σ ·

(
∇×A(α)

ext(r, t)
)

− 1

4c2
σ ·

(
∇V (r)×

(
p− 1

c
A(α)

ext(r, t)

))
,

(D.3)
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Above, it is assumed that the potential Vsc(r) contains the scalar relativistic
mass-velocity and Darwin contributions, which are unimportant for our pur-

poses here. Safely omitting the term quadratic in A(α)
ext(r, t) too, the general

Hamiltonian of Eq. (D.3) can be decomposed into smaller pieces of different
orders of magnitude,

H0 =
p2

2
+ V (r)− 1

4c2
σ · (∇V (r)× p) (D.4)

H1(t) = −1

c

(
p ·A(α)

ext(r, t)−
1

4c2
σ ·

(
∇V (r)×A(α)

ext(r, t)
))

(D.5)

H2(t) = − 1

2c
σ ·

(
∇×A(α)

ext(r, t)
)

(D.6)

The dominant term, H0, is the ground-state Hamiltonian containing, among
other contributions, the relativistic SOI. H1(t) includes the coupling of the
external vector potential to the momentum as well as to σ×∇V (r). Finally,
H2(t) is the Zeeman term, coupling the spin to the external magnetic field.

Simple analysis of the order of magnitude of H1(t) and H2(t) per-
turbation terms

Usually, the first order relativistic Zeeman term dominates over the H1(t)
term, which includes a first order and a third order relativistic correction.
In surfaces with strong relativistic effects, however, the magnitude of ∇V (r)
can be so large that the H1(t) term can dominate over the H2(t) term. Con-
sidering only the spin-dependent part of H1(t), we compare the magnitude
of the two terms, ∣∣∣∣

H1(t)

H2(t)

∣∣∣∣ ∼
∣∣∣∣
∇V (r)

2c2q

∣∣∣∣ , (D.7)

where we have used ∇×A(α)
ext(r, t) ∼ q ·A(α)

ext(r, t) (see Eq. (D.1)). Next, we
estimate the magnitude of potential gradient considering the spin-splitting
∆E induced by the SOC,

∣∣∣∣
1

4c2
σ · (∇V (r)× p)

∣∣∣∣ = ∆E. (D.8)

Solving the above equation for ∇V (r) and inserting it in Eq. (D.7), we
obtain that ∣∣∣∣

H1(t)

H2(t)

∣∣∣∣ ∼ 2

∣∣∣∣
∆E

p · q

∣∣∣∣ . (D.9)

In surfaces analyzed in this work, ∆E is of the order of 0.1 eV∼ 10−3 a.u.,
and |p| ∼ 1 − 10−1 a.u.. Finally, considering the typical magnitude of the
wave vector of an external optical field, |q| ∼ 10−3 − 10−4 a.u., we obtain
the following comparative order of magnitude,

∣∣∣∣
H1(t)

H2(t)

∣∣∣∣ ∼ 100 − 102. (D.10)
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This is the reason why throughout the text we have assumed that H1(t)
is the main perturbation term and have omitted the H2(t) term from our
considerations.

Velocity operator

The general expression of the velocity operator from the Erhenfest theorem
is given by

v =
∂r

∂t
= −i [r, H0] = ∇pH0. (D.11)

Using H0 as defined in Eq. (D.4), the associated velocity operator is given
by

v = p− 1

4c2
σ ×∇V (r). (D.12)

With the aid of the above equation, the expression for the main pertur-
bation H1(t) (Eq. (D.5)) can be written as the coupling between the velocity
operator and the vector potential of the EMF,

H1(t) = −1

c
v ·A(α)

ext(r, t). (D.13)

In our approach, this is the main interaction Hamiltonian appearing in Eq.
(2.13) with H1(t) ≡ Hint(t). As the vector potential is parallel to the electric
field (Eq. (D.2)), the above term is sometimes identified as the electric
coupling, to distinguish from the more common magnetic Zeeman coupling
H2(t).
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Appendix E

2D optical lattices using
plane waves

The QUANTUM-ESPRESSO package [23] used throughout the work is a
code for electronic-structure calculations that implements the DFT using
plane waves as the basis set, as presented in Chapter 1. The central equation
solved by the program is the one body KS equation (1.3), which we repeat
here, (

−1

2
∇2 + Veff(r)

)
φnk(r) = εnkφnk(r), (E.1)

the main outcome being the KS eigenfunctions and eigenvalues. As a post-
processing step, these quantities play the role of input quantities for the
WANNIER90 code [30], which calculates the associated MLWFs. We have
taken advantage of the link existing between these two packages in order
to calculate the MLWFs corresponding to a 2D optical lattice. For this,
we have adapted the QUANTUM-ESPRESSO package in order to include
the single particle optical potential into the effective potential Veff(r). In
accordance, the Hartree, the PP and the exchange-correlation contributions
have been left out from Veff(r) (see Eq. (1.4)), as we are only interested in
the 2D optical (external) potential.

The QUANTUM-ESPRESSO package is implemented in 3D, whereas
the optical lattices are regarded as 2D systems. We overcome this problem
by inserting a confining harmonic potential along the direction perpendicular
to the 2D plane, which we take as the z axis. The total potential inserted
in 3D is therefore

Veff(r) = Vopt(x, y) +
1

2
ω2z2, (E.2)

with V (z) = ω2z2/2 the harmonic oscillator and Vopt(x, y) the actual 2D
optical potential (see Eqs. (4.7) and (4.18) for the two specific examples
analyzed in the work). The eigenfunctions Ψnmk(r) of the Schrödinger
equation associated to the potential of Eq. E.2 are of the separable form
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Figure E.1: (a) Band structure corresponding to the ideal honeycomb po-
tential (analyzed in Sec. 4.2) along a 3D path. The black and green lines
show the energy dispersion of the two lowest states of the 2D potential with
harmonic quantum number m = 0 and m = 1, respectively. The blue lines
denote the first excited state of the 2D potential with m = 0. (b) BZ associ-
ated to the 3D unit cell, with b3 the reciprocal lattice vector perpendicular
to the 2D plane in which b1 and b2 are defined (Eq. (4.8)).

Ψnmk(r) = φnk(x, y)ϕm(z), with ϕm(z) the eigenfunctions of the 1D har-
monic potential, V (z), whose spectrum is

εm = (
1

2
+m)ω, m ∈ N. (E.3)

In practice, the value of the frequency ω is chosen so that the energy differ-
ence between the two lowest harmonic levels, ε1 − ε0 = ω, is much bigger
than the maximum energy separation between the two lowest Bloch bands,
EA(k)−EB(k), associated to the eigenstates φAk(x, y) and φBk(x, y) of the
2D potential.

A helpful illustration is included in Fig. E.1, where we show the disper-
sion of the bands corresponding to the ideal honeycomb potential analyzed
in Sec. 4.2 along a 3D path in reciprocal space. The black lines denote
the two lowest Bloch bands of the honeycomb potential with the harmonic
quantum number m = 0, whereas the green lines also correspond to the two
lowest Bloch bands but with harmonic quantum number m = 1. This is why
the dispersion of the black and green lines is identical, the only difference
being an overall energy shift. The value of this energy shift is precisely ω,
which has been chosen much bigger than the maximum energy separation of
the two lowest bands, EA(k)−EB(k) (see the figure). With this procedure,
it is possible to isolate the two bands of interest (the blcak ones) from the
rest, reproducing the energy dispersion of the 2D lattice. We also notice the
null dispersion along the z direction (see band structure along Γ.Z-Γ and
M-M.Z), meaning that the Bloch states do not overlap along this direction.
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Finally, we mention that the blue lines of the band structure correspond to
the first excited states of the 2D honeycomb potential, which lie much above
than the lowest two.
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Appendix F

Tight binding spectrum

In this Appendix we derive the general tight binding spectrum valid for any
configuration with two minima per unit cell following [133] (the minima are
not necessarily assumed to be degenerate). We employ the notation used in
Sec. 4.3 for the tunneling coefficients, since it is more general than the one
used in Sec. 4.2, which in fact is a particular case of the previous.

We begin by defining the operator

bnk =

√
V

2π

∑

R

e−ik·RanR. (F.1)

Then, the tight binding Hamiltonian Htb
0 (Eq. (4.4)) can be written as

Htb
0 =

∑

nn′=A,B

∑

k

hnn′(k)b†nkbn′k (F.2)

with

hnn′(k) =
∑

R

eik·RTR
nn′ . (F.3)

The above equation can be expressed in a matrix form separating the
diagonal and off-diagonal terms in the band index,

hnn′(k) =

(
εA(k) z(k)
z∗(k) εB(k)

)
. (F.4)

The two lowest energy bands are then given by the eigenvalues of (F.4),

ε±(k) = ε+(k)±
√
ε2−(k) + |z(k)|2, (F.5)

with

ε±(k) =
εA(k)± εB(k)

2
. (F.6)
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Let us start by considering the diagonal terms. By fixing an arbitrary
energy offset, we can write

εA(k) = ε+ FA(k) (F.7)

εB(k) = −ε+ FB(k) (F.8)

with

ε =
EA − EB

2
(F.9)

and

Fn(k) = 2jn1 cos (k · (a2 − a1))

+4jn2 cos

(
k · (a2 − a1)

2

)
cos

(
k · (a1 + a2)

2

)

+2jn3 cos (k · (a1 + a2)) . (F.10)

This expression is valid for a generic structure with two potential minima
per unit cell. When the two minima are degenerate, as it is the case of the
examples analyzed in Sec. 4.2 and in Sec. 4.3 when θ = π, we have that

FA(k) = FB(k) ≡ F (k), (F.11)

and the eigenvalues in Eq. (F.5) take the following simple form

ε±(k) = F (k)± |z(k)|. (F.12)

We focus now on the off-diagonal matrix element z(k). Its analytical
form is given by

z(k) ≡ −
[
t0 + t1(e

−ik·a1 + e−ik·a2)

+t2e
−ik·(a1+a2) + 2t3 cos(k · (a2 − a1)

]
. (F.13)

The above is valid both for degenerate and non-degenerate cases since the
definition of the off-diagonal terms is not affected by parity breaking.

Ideal honeycomb lattice

The particular (more symmetric) case of the ideal honeycomb lattice consid-
ered in Sec. 4.2 with only the closest nearest neighbors would be recovered
with the following substitutions,

t0 = t1 → t0, j1 = j2 → t1, t2 = t3 → t2, j3 = 0. (F.14)

Then, the expression for the diagonal term simplifies to

F (k) = 2t1



cos (k · (a1 − a2)) +
∑

i=1,2

cos (k · ai)



 . (F.15)
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Similarly, the off-diagonal term takes the following form,

z(k) = t0Z0(k) + t2Z2(k), (F.16)

with

Z0(k) = 1 + e−ik·a1 + e−ik·a2 ,

Z2(k) = e−ik·(a1+a2) + e−ik·(a1−a2) + e−ik·(a2−a1). (F.17)

Finally, the expression for the spectrum takes the following compact form

ε̄±(k) = t1F (k)± |t0Z0(k) + t2Z2(k)|+ 3t1, (F.18)

where the last term has been added in order to make the energy vanishing
at the Dirac points.

It is worth mentioning that the parameter values of t0+ t2 and t1 can be
extracted from a fit of the Bloch spectrum at k = 0 by using the expression
of Eq. (F.18). In fact, we obtain that

t0 + t2 =
ε̄+(0)− ε̄−(0)

6
, (F.19)

t1 =
ε̄+(0) + ε̄−(0)

18
. (F.20)

Also, since t2 is negligible in comparison to t0 (see Fig. 4.4), Eq. (F.19) can
be used as an accurate estimate of t0. Notably, these estimates coincide with
the calculated tunneling coefficients, representing an independent check for
the approach in terms of the MLWFs.
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