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Temperature effect on acoustic plasmons
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The presence of several kinds of carriers at the Fermi surface results in interesting complex dielectric properties
of the bulk Pd in the low-energy excitation range. A most spectacular manifestation of this is the presence of
a collective electronic excitation characterized by a soundlike dispersion, termed acoustic plasmon (AP). Due
to the characteristic dispersion reaching zero energy in the long-wavelength limit, the question of the thermal
stability of the excitation spectrum arises. In this work we explore this problem investigating the thermal effect
on the electronic excitation spectrum in this material, tracing how the AP properties vary with the temperature
increase. The main effect consists in the gradual destruction of AP in the energy range corresponding to the
temperature.
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I. INTRODUCTION

In metallic systems the Fermi surface crossing by several
energy bands with different Fermi velocities may result in
a strong modification of dielectric properties as compared
with those obtained for simple metals within a model of the
homogeneous electron gas. One of the consequences may be
the absence of an energy threshold for the collective electronic
excitations [1–3], in contrast to a conventional free-electron
three-dimensional gas model [4–6]. In particular, a collective
excitation in which the slow carriers are dynamically screened
by the fast ones can be realized [2]. Such a mode has a
soundlike dispersion similar to that of the acoustic phonons,
i.e., its energy decreases linearly to zero as the momentum
goes to zero. Because of this peculiar dispersion this mode
is frequently called acoustic plasmon (AP). During a long
time the possibility of the existence of AP in real metals
and its implications in physical phenomena such as super-
conductivity were continuously discussed [7–13], however,
firm experimental or theoretical (taking into account full band
structure effects) evidence of its existence was not presented.
The key problem is that in metals the numerous intra- and
interband single-particle electron-hole excitations may be very
efficient in the destruction of such kind of collective electronic
excitation in comparison with dilute electron systems in semi-
conducting heterostructures [14]. Consequently, a simplified
theory like those employed for the description of collective
electronic excitation in the near-free electron-gas systems
cannot provide a definite proof of existence of AP in metals.
Only recently, the detailed numerical calculations taking fully
into account the realistic band structure predicted such kind of
collective excitation in a variety of metal systems possessing
several kinds of bulk carriers at the Fermi surface. In particular,
it was predicted in elemental metals Pd [15,16] and Pb [17] and
some layered materials like MgB2 [18], intercalated graphite

CaC6 [19], and transition-metal dichalcogenide NbSe2 [20].
Nevertheless, still such mode in bulk materials was not
observed in energy-loss experiments, although a similar mode
resulting in a two-component electron system at metal surfaces
was detected [21–26].

The case of the AP in Pd is a particularly remarkable
example. Calculations performed at zero temperature show
that in this material, due to the presence [27–29] at the
Fermi level of both the s-p- and the d-like energy bands (see
Fig. 1) with distinct Fermi velocities, the AP should be a
true three-dimensional feature characterized by a soundlike
dispersion along all three main symmetry directions, spanning
the energy interval from zero to about 1 eV [15]. The absence of
a low-energy threshold for its excitation poses an interesting
question: how the AP properties may be affected by raising
electronic temperature. It would be interesting to theoretically
investigate this issue, in particular, in conjunction with the
pump-probe optical experiments, since upon a pump pulse
the electronic system may be quickly driven to a rather high
temperature maintaining the ion lattice at low T [30], and it is
not clear whether AP mode would survive to be detected by
the probe pulse.

In this paper we perform a detailed investigation of how
the AP properties are varied upon the temperature change.
In particular, we trace how the temperature modifies the real
and imaginary parts of the dielectric function and observe
the corresponding variations in the AP loss peak shape. In
general, our calculations show that the increase of temperature
results in the gradual degradation of the AP properties and
its full destruction at high temperatures. At the same time,
surprisingly, we find that the AP mode is a rather robust
phenomenon against temperature increase and may exist even
at rather elevated electron temperatures.

The rest of the paper is organized as follows. In Sec. II
we describe details of the ab initio calculation of the
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FIG. 1. Band structure of Pd in the vicinity of the Fermi level,
EF , set to zero. The energy bands of the s-p and the d character are
shown by dashed and solid lines, respectively.

frequency- and momentum-dependent dielectric function in
bulk solids at finite temperature. Results and their discussion
are presented in Sec. III. The main conclusions of the present
work are given in Sec. IV. Unless otherwise stated explicitly,
atomic units (� = e2 = me = 1) are used throughout the paper.

II. CALCULATION METHOD

We evaluate the excitation spectrum in Pd considering a
fcc lattice with the lattice parameter ac = 7.3512 a.u. The
central ingredients of its derivation—the one-particle energies
εnk and wave functions ψnk(r)—were obtained from the self-
consistent solution of the Kohn-Sham equations using the band
structure code [31]. The LDA exchange-correlation potential
of Ref. [32] was employed. For the description of the electron-
ion interaction we employed a nonlocal norm-conserving ionic
pseudopotential [33].

A probability of the momentum q and energy ω transfer
to the system is determined [5] by the imaginary part of the
inverse dielectric function Im[ε−1(q,ω)], which in a periodic
system takes a matrix form. Its evaluation was performed
in the framework of the time-dependent density-functional
theory [34,35], where the dynamical density-response function
χ (r,r′,ω) for interacting electrons obeys the integral equa-
tion χ = χ0 + χ0(υ + Kxc)χ , χ0(r,r′,ω) being the density-
response function for noninteracting electrons and Kxc(r,r′,ω)
accounting for dynamical exchange-correlation effects. Since
in Pd, like in other transition metals [36], the low-energy
excitation spectrum at small q’s is insensitive to the shape
of Kxc [15,16], in this work for its description we employed
the random-phase approximation, i.e., setting Kxc = 0. Having
evaluated the matrix χGG′(q,ω) constructed over the plane
waves with 51 reciprocal vectors G, the inverse dielectric
function matrix ε−1

GG′(q,ω) was obtained as

ε−1
GG′(q,ω) = δGG′ + υG(q)χGG′(q,ω), (1)

where υG(q) = 4π/|q + G|2 is the Fourier transform of the
Coulomb potential.

The expression for the imaginary part of the χ0 function
has the form

Im
[
χ0

GG′(q,ω)
] = 2




BZ∑

k

∑

nn′
(fnk − fn′k+q)〈ψnk|e−i(q+G)·r

× |ψn′k+q〉〈ψn′k+q|ei(q+G′)·r|ψnk〉
× δ(εnk − εn′k+q + ω), (2)

where the factor 2 accounts for spin, sum over wave vectors k
is performed in the first Brillouin zone (BZ), n and n′ are the
energy-band indices, and fnk are the temperature-dependent
Fermi occupation factors. The real part of χ0 was obtained
from Im[χ0] via the Kramers-Kronig relation by numerical
integration. For this purpose we calculated the Im[χ0] matrices
on a discrete mesh of energies from 0 to 10 eV with a step of
2 meV using our homemade code [37]. The δ function in Eq. (2)
was represented by a Gaussian with a broadening parameter
of 5 meV. Although up to 51 G vectors were included in the
expansion of χ0, χ , ε, and ε−1 (in such a way including the
local-field effects [38,39]), the final results for the calculated
loss functions in the energy-momentum phase space of interest
here are almost identical to the case when the local-field effects
are neglected. In order to properly describe the fine details in
the evaluated quantities, we employed a dense 240 × 240 ×
240 k mesh for summation in Eq. (2) over the BZ. Such mesh
allowed us to trace the AP dispersion down to an energy of
≈30 meV.

III. CALCULATION RESULTS AND DISCUSSION

For a collective plasmon mode to occur in an electron
system with the given transfer of the momentum q and the
energy ωp, the energy-loss function

−Im
1

ε(q,ω)
= −Im ε−1

G=0G′=0(q,ω) (3)

must exhibit a maximum at ω = ωp, which means that the
dielectric function ε(q,ωp) should (exactly or approximately)
satisfy the equation

ε(q,ω = ωp) = 0. (4)

Whereas in a free-electron-gas model Eq. (4) has a solution
for real energies ω in a certain momentum region [5], in real
materials this almost never can be fulfilled exactly, but rather
can hold approximately by both the real and imaginary parts
of the dielectric function approaching zero. In such way, for a
collective mode to exist at a certain energy ωp, the following
three conditions should be fulfilled in the energy interval in
the vicinity of ωp: (a) a clear peak in the loss function must
be present, (b) Re[ε] should become or approach zero, and (c)
a local minimum in Im[ε] must be reached. In the subsequent
analysis we will follow this scheme.

In Fig. 2 we present the imaginary part of the cal-
culated normalized inverse dielectric function, L(q,ω) ≡
−Im[ε−1

G=0G′=0(q,ω)]/ωq, for the momentum transfers along
three main symmetry directions. These data are obtained for
zero temperature. In the figure the dominant peaks which have
a soundlike linear dispersion at small q’s and represent the
AP modes are highlighted by solid lines. In the 〈100〉 and
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FIG. 2. Calculated normalized loss function, L(q,ω), in Pd at T = 0 versus the energy ω and the momentum transfer q along three main
symmetry directions: (a) 〈100〉, (b) 〈110〉, and (c) 〈111〉. Red solid lines highlight the dispersion of the AP modes. Blue dashed lines mark
features corresponding to an enhanced number of single-particle excitations. A prominent feature in the upper-left corner in each panel [denoted
as “BP” in (a)] corresponds to a low-energy tail of the bulk plasmon peak [40–43].

〈111〉 directions one can observe a single AP peak. Its origin
is explained by the presence, as seen in Fig. 1, of the s-p- and
d-like energy bands crossing the Fermi level with very different
Fermi velocities [15]. As a result, an incomplete dynamical
screening of the slow carriers in the d-like energy bands by
the faster ones in the sp-like band leads to the appearance of
such kind of collective excitation [1,3,11,12]. On the contrary,
as seen in Fig. 2(b), along the 〈110〉 direction there are two
such modes dispersing with different group velocities. The
presence of two AP modes instead of the expected one was
explained by the existence of three groups of carriers (instead
of two groups) at the Fermi level, moving with different Fermi
velocities in this direction [15].

In this work the excitation spectrum of Pd was calculated
for several values of the electronic temperature T entering
Eq. (2) through the temperature-dependent Fermi distribution
function fnk = 1/(e(εnk−μ)/T + 1), where μ is the chemical po-
tential determined self-consistently by keeping the number of
particles for each temperature at the band-structure-calculation
level. In Fig. 3 we compare the dielectric function ε and the
loss function Im[ε−1] calculated for T = 0, 50, 100, 200,
and 500 meV at q = 0.021 a.u. along the 〈100〉 symmetry
direction. In accord with the previous calculations [15,16],
here one can observe that at T = 0 in this energy range Im[ε]
consists of two dominant peaks I1 and I2 centered at the
energies of 27 and 160 meV, which are separated by a wide
deep valley at energies between 90 and 140 meV, the latter
marked by an arrow. The origin of such a shape of Im[ε], as
mentioned above, is linked to the presence at the Fermi level
of two kinds of carriers moving in the 〈100〉 crystal direction
with very different group velocities [15]. As a result of such
two-peak structure of the imaginary part of ε, its real part
presents a characteristic behavior with crossing the zero axis
three times, in contrast to the conventional one-component
free-electron-gas (FEG) picture [5] where such zero crossing
occurs only once in this energy region. The first and third
zero crossings of Re[ε] almost coincide in energy with the
peak positions in Im[ε] resulting in an overdamping of the
corresponding collective modes as occurs in the FEG model.
On the contrary, since [as shown by an arrow in Fig. 3(b)] the
second zero crossing of Re[ε] occurs at 105 meV, i.e., at an
energy where Im[ε] has a shallow local minimum [highlighted

by an arrow in Fig. 3(a)], a well-defined sharp peak denoted as
AP appears in the corresponding loss function in Fig. 3(c) at
nearly the same energy. The presence of such a peak in the loss
function signals that the corresponding mode is a well-defined
collective excitation. In the particular case of T = 0, the
linewidth of the loss peak is about 3 meV corresponding to the
mode lifetime of about 220 fs. In combination with the group
velocity of this mode of about 0.184 a.u. [15], the propagation
length of such an excitation may be as large as 1700 a.u.,
i.e., more than ten times larger than its wavelength of about

FIG. 3. Calculated (a) imaginary and (b) real parts of ε and (c) loss
function, Im[ε−1], versus the energy ω at q = 0.021 a.u. along the
〈100〉 symmetry direction. Solid, dash–long-dashed, dashed, dash-
dotted, and dotted lines stand for the data calculated for T = 0, 50,
100, 200, and 500 meV, respectively.
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150 a.u. at this q. These estimations confirm that such
collective electronic excitation in Pd is a well-defined quantity.

In Fig. 3 one can observe how the increase of the electronic
temperature results in the modification of Im[ε], consisting in
lowering the peak amplitudes and smearing out of the valleys
between them. Obviously, the main effect is observed on the
lower-energy side, although even at T = 50 meV a visible
reduction of the height of the upper I2 peak in Im[ε] can be
noticed. The reduction of the peak’s height is accompanied by
the transmission of spectral weight to the higher-energy side,
in order to fulfill the f -sum-rule condition. Such evolution of
Im[ε] produces the corresponding gradual smoothing of the
peak structure in Re[ε] as well. In particular, the height of the
peak R2 at 150 meV reduces very quickly upon the T increase,
whereas this effect becomes clearly visible in the height of the
lower-energy peak R1 at temperatures above 50 meV.

One can notice in Fig. 3 that the reduction of the height of
the two main peaks I1 and I2 in Im[ε] with the temperature
increase is accompanied by a blue shift of its energy positions.
On the contrary, the position of the first peak R1 in Re[ε]
is anchored at ω = 0 at all the temperatures. The same
insensitivity to the temperature is observed for the energy
position of the peak R2 in Re[ε] in Fig. 3(b) up to T =
200 meV. Only at T = 500 meV one can see how this peak
shows a shift toward higher energies by about 25 meV in
comparison with the T = 0 case. An opposite trend is observed
for a negative part of Re[ε] which has a local minimum at
low temperatures around ω ≈ 90 meV, which lifts up upon a
temperature increase. Such trend results in that at a certain

FIG. 4. Calculated (a) energy and (b) linewidth of the AP peak at
some values of momentum q directed along the 〈100〉 axis.

temperature the two lowest-energy zero crossings of Re[ε]
cease to occur. In this particular case these no zero crossings
are observed in the case of curves calculated at T = 500 meV.
As seen in Fig. 3(c) this leads to a dramatic reduction of
the strength of the AP peak in the loss function signaling that
this mode becomes overdamped, decaying very efficiently into
incoherent electron-hole pairs. However, even at such elevated
temperature, the peak in the loss function in Fig. 3(c) is still
visible at ω = 145 meV. On the other hand, the heating up
to 200 meV does not change the collective nature of this
mode at this q, although the width of the loss peak at T =
200 meV is increased by a factor of 10. From this observation,
we conclude that the AP can be a well-defined collective
excitation with energies notably lower than the temperature
at which the electronic system is maintained.

It is corroborated by Figs. 4(a) and 4(b) where the energy
and linewidth, respectively, of the AP peak at some momentum
q values along the 〈100〉 symmetry direction are reported.
For instance, at T = 0 the linewidth ranges from 3 meV at
q = 0.021 a.u. to 96 meV at q = 0.107 a.u., whereas the
energy of this mode varies from 107 to 520 meV. Since the
linewidth is significantly smaller than its energy, this mode can
be considered as a well-defined collective excitation. On the
other hand, in Fig. 4 it is seen how upon the temperature
increase the AP mode energy experiences the blue shift
accompanied by a gradual linewidth increase. As a result,
at T = 500 meV the linewidth becomes comparable with

FIG. 5. Calculated (a) imaginary and (b) real parts of ε and (c) loss
function, Im[ε−1], versus energy ω at q = 0.085 a.u. along the 〈100〉
symmetry direction. Solid, dash–long-dashed, dashed, dash-dotted,
and dotted lines stand for the data calculated for T = 0, 50, 100, 200,
and 500 meV, respectively.
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FIG. 6. Calculated normalized loss function, L(q,ω), in Pd at T = 100 meV versus the energy ω and momentum transfer q along three
main symmetry directions: (a) 〈100〉, (b) 〈110〉, and (c) 〈111〉. Red solid lines highlight the dispersion of the AP modes. Blue dash lines mark
features corresponding to the enhanced number of single-particle excitations.

the energy and, consequently, the AP mode ceases to be a
well-defined collective excitation.

Observing Fig. 3, one can notice that a mere fact of presence
of two separate peaks in Im[ε] does not guarantee the existence
of a collective mode in the in-between energy interval. For
instance, in Fig. 3(a) one can see two peaks in Im[ε] even
at T = 500 meV. However, the shape and positions of these
peaks are not favorable to force Re[ε] to cross the zero axis in
the energy interval between these two peaks. Consequently, at
this temperature only a very broad peak at ω = 145 meV in the
loss function can be detected, which cannot be interpreted as a
collective mode. It consists mainly of the incoherent electron-
hole pair excitations.

A similar mechanism of disappearance of the AP mode is
observed at T = 0 upon the momentum increase. Thus, as seen
in Fig. 5(b), at q = 0.085 a.u. along the 〈100〉 direction the real
part of ε after dropping below zero at ω = 320 meV quickly
jumps to the positive values, crossing zero the second time at
400 meV. As a result, even at T = 0, the AP peak width in the
loss function is significantly enhanced in comparison with the
case of q = 0.021 a.u. of Fig. 3(c). In Fig. 5(a) one can observe
that the increase of temperature smears out a two-peak I1-I2

structure in Im[ε]. This is accompanied by an upward shift in
energy of the plasmon AP peak in the loss function of Fig. 5(c)
together with its increasing broadening due to decay into the

electron-hole pairs. If the magnitude of q increases more, the
AP becomes quickly overdamped and loses completely its
collective nature at q > 0.12 a.u. as shown in Fig. 2(a) by a
dashed line.

Additionally, in Fig. 3(a) at zero temperature one can notice
a weak peak at ω = 80 meV. However, its strength is not
sufficient to produce a well-defined separate peak in the loss
function at lower energies. Instead, a broad weak feature is
seen in the loss function of Fig. 3(c) around ω = 65 meV.
This single-particle peak can be observed as a dispersing
feature in the lower part of Fig. 2(a). Upon the temperature
increase, this peak quickly loses its intensity in accord with the
disappearance of a separate peak in Im[ε], seen in Fig. 3(c).
A similar effect can be observed in the upper-energy side
of the AP peak. At temperatures below 200 meV, one can
discern a peak in the loss function at the energy of 250 meV.
At higher temperatures it shifts to larger energies. Its origin
can be traced to the presence of the shallow weak peak in
Im[ε] at ω ≈ 265 meV, which also shifts to higher energies
upon the temperature increase. However, since the real part of
the dielectric function does not cross zero in the vicinity of
this peak, the corresponding mode does not have a collective
nature. Indeed, this weak peak in Im[ε−1] persists at all small
q’s and its dispersion is shown by the upper dashed line in
Fig. 2(a).

FIG. 7. Calculated normalized loss-function, L(q,ω), in Pd at T = 200 meV versus the energy ω and momentum transfer q along three
main symmetry directions: (a) 〈100〉, (b) 〈110〉, and (c) 〈111〉. Red solid lines highlight the dispersion of the AP modes. Blue dashed lines mark
features corresponding to an enhanced number of single-particle excitations.
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FIG. 8. Calculated normalized loss function, L(q,ω), in Pd at T = 500 meV versus the energy ω and momentum transfer q along three
main symmetry directions: (a) 〈100〉, (b) 〈110〉, and (c) 〈111〉. Blue dashed lines mark features corresponding to the enhanced number of
single-particle excitations.

As was found in Refs. [15,16], along the 〈110〉 direction two
AP modes are presented. The corresponding peaks in the loss-
function are highlighted in Fig. 2(b) by solid lines. A careful
analysis of the character of the lower AP1 mode confirms that
it has a collective nature up to the energy of about 0.6 eV,
whereas the upper AP2 mode is well defined up to energies
well above 1 eV [16].

Comparing Fig. 2(a) with Fig. 2(c), one can observe that
the AP mode has initial group velocity in the 〈111〉 direction
very similar to that in the 〈100〉 direction. However, at the
momentum transfer exceeding 0.05 a.u. in the 〈111〉 direction,
the dispersion of this mode starts to deviate from the linear
law significantly. At the same time it maintains its collective
behavior within a more extended momentum transfer interval,
being a well-defined collective feature up to q = 0.2 a.u. in
contrast to the case of Fig. 2(a), where the AP mode loses its
collective nature at q’s beyond q ≈ 0.12 a.u.

Figures 6–8 present the normalized loss function of Pd eval-
uated at T = 100, T = 200, and T = 500 meV, respectively.
Again, as in Fig. 2, well-defined AP peaks are highlighted by
solid lines and prominent single-particle peaks by dashed lines.
From comparison of the data for the 〈100〉 and 〈111〉 directions,
one can deduce that the increase of temperature results in the
destruction of the AP peak starting from the upper-energy
part, in contrast to our expectation. For instance, at T as high
as 200 meV, the AP mode can be distinguished in Figs. 7(a)
and 7(c) down to ∼30 and ∼50 meV, respectively. Clearly,
the temperature increase results in the AP peak broadening as
demonstrated in Figs. 3 and 9 for small q’s along the 〈100〉
and 〈111〉 directions, respectively. How the energy and the
linewidth of the AP peak for q directed along the 〈111〉 axis
evolve with temperature variation can be seen in Fig. 10. The
existence of the AP mode at energies significantly lower than
the temperature can be explained by the fact that the carrier
velocities in Pd are joined in the well-separated groups well
far away from the Fermi surface, as can be seen in Fig. 3
of Ref. [15]. Consequently, even at elevated temperatures,
this grouping helps to maintain the separate-peaks structure
in Im[ε], like it was found in graphene [44].

The temperature dependence of the low-energy plasmon
dispersion along the 〈110〉 direction is more complicated. From
the comparison of L(q,ω) at T = 100 meV in Fig. 6(b) with the
zero-temperature case of Fig. 2(b) one can see that the lower-
energy AP1 mode starts to dilute from both the upper- and the

lower-energy sides. In particular, at T = 100 meV this mode
loses its collective character at energies below ω ∼ 100 meV.
In more detail, this can be seen for q = 0.02 a.u. in Fig. 11.
Even though three clear peaks I1, I2, and I3 can be resolved at
T = 100 meV in Im[ε] of Fig. 11(a), its real part crosses zero
only once at ω ≈ 55 meV. At other zero crossings observed
at lower temperatures the real part at this T drops below the
zero line. Moreover, Re[ε] is almost flat in the energy interval
where the AP1 mode exists at low temperature. As a result,
only very broad structure is seen at T = 100 meV in the loss
function in Fig. 11(c) at ω in the 50–150 meV interval. In the
case of the upper-energy AP2 mode the effect of T is not so

FIG. 9. Calculated (a) imaginary and (b) real parts of ε and (c) loss
function, Im[ε−1], versus the energy ω at q = 0.025 a.u. along the
〈111〉 symmetry direction. Solid, dash–long-dashed, dashed, dash-
dotted, and dotted lines stand for the data calculated for T = 0, 50,
100, 200, and 500 meV, respectively.
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FIG. 10. Calculated (a) energy and (b) linewidth of the AP peak
at some values of momentum q directed along the 〈111〉 axis.

FIG. 11. Calculated (a) imaginary and (b) real parts of ε and (c)
loss function, Im[ε−1], versus the energy ω at q = 0.020 a.u. along the
〈110〉 symmetry direction. Solid, dash–long-dashed, dashed, dash-
dotted, and dotted lines stand for the data calculated for T = 0, 50,
100, 200, and 500 meV, respectively.

dramatic, and a rather well-defined peak in the loss function
can be found at T = 100 meV at this q. However, since at
this temperature Re[ε] is maintained below the zero line in its
vicinity, we interpret it as a single-particle excitation.

On the other hand, upon the temperature increase the upper
AP mode starts to disappear from the lower-energy side. Thus,
at T = 100 meV the AP2 mode presents itself as a collective
mode at the energies above 0.8 eV.

From Figs. 7(a) and 7(c) it is clear that at T = 200 meV the
regions in the momentum-energy phase space where the AP
can exist reduces significantly. Nevertheless, the scenario of
its disappearance from the upper-energy side still holds, and
this mode still has clear collective character down to the lowest
accessible energies. At the same time, along the 〈110〉 direction
the lower-energy AP1 ceases to exist at this T , whereas the
upper-energy AP2 peak is transformed into a broad single-
particle peak denoted in Fig. 7(b) by a dashed line. Even though
at such temperature, as follows from Fig. 12, the AP2 peak
linewidth in the low-energy interval is several times smaller
than its energy, the absence of a corresponding zero crossing in
Re[ε] does not allow us to interpret it as a collective excitation.

As seen in Fig. 8(c), the increasing temperature up to T =
500 meV results in a complete disappearance of the AP in
the 〈111〉 direction. At the same time, even at such elevated
temperature, notable peaks in the loss function traced to the
AP at low temperatures can be detected in two other symmetry
directions. They are clearly shifted upward in comparison with
the T = 0 case of Fig. 2.

FIG. 12. Calculated (a) energy and (b) linewidth of the upper-
energy AP2 peak at some values of momentum q directed along the
〈110〉 axis.
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IV. CONCLUSIONS

In this work, we have investigated the evolution of the
low-energy collective electronic excitations in bulk Pd with
variation of the electronic temperature. It was found that
the acoustic plasmon modes are rather robust excitations
against the temperature increase. Thus they can be observed
at energies significantly lower in comparison with the electron
temperature. Moreover, in contrast to our expectations, the
extinction of the AP modes upon the temperature increase
is observed generally from the higher-energy side, whereas
in the lower-energy side the temperature effect at moderate
T ’s is limited to the AP linewidth increase. Such scenario
is realized for the momentum transfers along the 〈100〉 and
〈111〉 symmetry directions. Along the 〈110〉 direction, this is
accompanied by the gradual extinction of the lower-energy AP
mode as well.

Our findings confirm that the AP mode can be realized in
this material at rather elevated electron temperature. At the
same time the temperature increase may introduce a notable
upward shift of the AP dispersion. We believe that these
findings may constitute an interesting topic for an experimental
verification performed, for instance, in the pump-probe optical
experiments on the Pd thin films in infrared interval.
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