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Abstract. In this work we obtain the astrophysical reaction and production rates for the two-particle radiative
capture processesα + n + n → 6He+ γ andα + α + n → 9Be+ γ. The hyperspherical adiabatic expansion
method is used. The four-body recombination reactionsα + α + n + n → 6He+ α, α + n + n + n → 6He+ n,
α + α + n + n → 9Be+ n andα + α + α + n→ 9Be+ α are also investigated.

1 Introduction

Once the hydrogen fuel in a star is exhausted, the produc-
tion of energy and the temperature drop. The gravitational
collapse increase the temperature and the helium becomes
the new source of energy. Due to the lack of neutrons, the
A=5 andA=8 instability gaps have to be bridged by the
triple-alpha reactionα + α + α→ 12C+ γ.

Nevertheless, different scenarios are also possible such
as the so called “hot bubbles”. In these environments the
rapid neutron capture nucleosynthesis can happen [1,2].

Among these processes, two very relevant ones are the
formation of9Be through the reactionα+α+ n→ 9Be+ γ
[3,4] and the capture of two neutrons by anα-particle lead-
ing to 6He+γ [4,5]. These two reactions can be followed
by the capture of anotherα-particle leading to either12C+n
or 9Be+n. Since the triple alpha reaction is too slow at the
temperature-density conditions in the hot bubble, the reac-
tions mentioned above play a crucial role.

Together with the radiative capture reactions there are
also other reactions that in a high temperature neutron rich
environment could also play a relevant role. In particular
the four-body recombination processesα + α + n + n →
6He+α, α+ n+ n+ n→ 6He+ n, α+α+ n+ n→ 9Be+ n
andα + α + α + n→ 9Be+ α.

2 Theoretical description: Production and
reaction rates

Let us assume some stellar environment characterized by a
temperatureT , a mass densityρ and the mass abundances
Xi of their different constituents. Let us assume also a nu-
clear reaction involvingN of the elements contained in the
star, which transform them into whateverM final products.
TheProduction Rate for such reaction (A1+A2+· · ·+AN →
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B1+B2+· · ·+BM) is defined as the number of reactions tak-
ing place per unit time and unit volume of the star. It gives
then the velocity at which the products of the reaction are
created.

The production rateP obviously depends on the center
of mass kinetic energyE of theN-particle system involved
in the reaction. We shall denote the production rate at a
given energy asP(E).

The total production rate is then given by:

P =
∫

dEP(E)B(E, T ), (1)

whereB(E, T ) is the probability of finding theN particles
with a center of mass kinetic energyE. This probability
depends on the temperature of the star, and it is given by
the Maxwell-Boltzmann distribution, which forN particles
takes the form:

B(E, T ) =
1

Γ( 3N−3
2 )

1
kBT

(

E
kBT

)
3N−5

2

e−
E

kBT , (2)

wherekB is the Boltzmann constant. From the exponential
in Eq.(2) it is clear that for a given temperatureT only
energies satisfyingE . kBT (or at most a few timeskBT )
are relevant. Therefore, for a temperature of 1010 K (or 10
GK), sincekBT ≈ 1 MeV, only energies not bigger than
a few MeV’s play a role. The typical temperature in the
center of a standard star, like the sun, is of about 10−2 GK,
while the one in a hot bubble could reach up to 10 GK [6].
Therefore, in a nuclear energy scale, we are in any case
dealing with very low (sometimes extremely low) energy
reactions.

The production rateP(E) is given by some function
R(E) of the kinetic energy multiplied by the densityni of
each of the elementsi entering in the reaction. This density
can be written asni = ρNAXi/Ai, with NA being the Avo-
gadro number,Ai the mass number of elementi, andXi the
mass abundance of such element (

∑

i Xi = 1). Therefore:

EPJ Web of Conferences 3, 04017 (2010) 
DOI:10.1051/epjconf/20100304017 
© Owned by the authors, published by EDP Sciences, 2010 

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which 
permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.
Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20100304017

http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20100304017


EPJ Web of Conferences

P(E) = n1 · n2 · · · nNR(E) =

= (ρNA)N

(

X1

A1

)

·
(

X2

A2

)

· · ·
(

XN

AN

)

R(E). (3)

R(E) is the transition probability of the reaction with
initial energyE, which is given by:

R(E) =
2π
~

1
g1 · g2 · · · gN

× (4)

×
∫

δ(E − E f )
∣

∣

∣〈Ψi|W |Ψ f 〉
∣

∣

∣

2 d3p1

(2π)3
· · ·

d3pM−1

(2π)3
,

whereΨi andΨ f are the center of mass wave functions
of the initial N-body and finalM-body states,W is the in-
teraction responsible for the reaction,p1, · · · , pM−1 are the
M − 1 relative momenta of theM products of the reaction
(the remaining momentum is theM-body center of mass
momentum which is integrated away), andgi (i = 1, · · · ,N)
is the degeneracy of each of particle states in the incident
channel.

Inserting (3) into (1) we can then write the total pro-
duction rate as:

P = (ρNA)N

(

X1

A1

)

·
(

X2

A2

)

· · ·
(

XN

AN

)

〈R(E)〉, (5)

where

〈R(E)〉 =
∫

dER(E)B(E, T ), (6)

which is the so calledReaction Rate. In any case, to avoid
confusion betweenR(E) and〈R(E)〉, we shall refer to the
first of them as the reaction rate (or reaction rate at a given
energy), and to the second one as the energy weighted re-
action rate.

As one could intuitively think, reactions involving more
particles have a smaller reaction rate. The larger the num-
ber of particles involved, the smaller the probability to have
all them close enough to react. As an example, one could
consider the two-neutron radiative capture processα+ n +
n → 6He+ γ and the four-body recombination reaction
α + n + n + n → 6He+ n. They are both a source of6He.
However, as seen in Eq.(5), the production rate is propor-
tional toρN . Therefore, for a sufficiently large star density
ρ, a higher number of particlesN in the initial state could
compensate the decrease in the reaction rate, and then be-
come a relevant process.

Note that the matrix element in the integrand of Eq.(4)
is the same for a given process and the inverse, where the
initial and final states are exchanged. The only difference
between the reaction rates of both processes appears in the
integration momenta, since the final states are in principle
different in one case and the other. Therefore, it is always
possible to relate the reaction rates for a given process and
the inverse. In particular, when only two particles are in-
volved in the initial state, Eq.(4) is simply the two-body
cross section multiplied by the relative velocity between
both particles, and〈R(E)〉 for such process is usually de-
noted by〈vσ〉. Thus, the reaction rates for processes lead-
ing to two particles can be written in terms of the two-body

cross section for the inverse reaction. This is particularly
relevant, since such two-body cross sections are often mea-
surable experimentally.

Note also that the energy in Eq.(6) is the kinetic energy
in the center of mass of the initial system, which is different
for a given reaction and the inverse. However, the center of
mass kinetic energies of both processes are related through
theQ-value of the reaction. In the reactionA1 + A2 + · · · +
AN → B1 + B2 + · · · + BM the initial kinetic energyEN

and the kinetic energyEM (initial energy for the inverse
process) are related byEN = EM − Q whereQ is theQ-
value of the direct reaction.

2.1 Theory: Two-particle Radiative Capture

Let us consider here the radiative capture reactiona + b +
c → A + γ, whereA is a bound three-body state havinga,
b, andc as constituents.

As discussed above, the reaction rate〈Rabc(E)〉 for this
process can be related to〈RAγ(Eγ) ≡ 〈vσγ(Eγ)〉, whereE =
Eγ + B, B is the binding energy of the three-body system
A, andσγ(Eγ) is the photodissociation cross section ofA.
This relation is given by:

Rabc(E) =
~

3

c2

8π
(µxµy)3/2

(

Eγ
E

)2 2gA

gagbgc
σγ(Eγ) (7)

wheregi (i = a, b, c, A) is the degeneracy of particlei, and
µx andµy are the reduced masses of the systems connected
by the usualx andy Jacobi coordinates used to describe
the three body system made by particlesa, b, andc.

With the help of Eqs. (2) to (6) and using Eq.(7) we can
then write the production rate for thea + b + c → A + γ
reaction as:

Pabc(ρ, T ) = nanbnc
~

3

c2

8π
(µxµy)3/2

gA

gagbgc
e−

B
kBT ×

× 1
(kBT )3

∫ ∞

|B|
E2
γσγ(Eγ)e

− Eγ
kBT dEγ, (8)

which, sinceni = ρNAXi/Ai, depends on the mass density
and the temperature.

The photodissociation cross section for the inverse pro-
cessA + γ → a + b + c can be expanded into electric and
magnetic multipoles. In particular, the electric multipole
contribution of orderλ has the form:

σ(λ)
γ (Eγ) =

(2π)3(λ + 1)
λ[(2λ + 1)!!] 2

(

Eγ
~c

)2λ−1 dB
dE
, (9)

where the strength functionB for a transition between a
three-body state|n0J0M0〉 and the excited state{|nJM〉} is
given by:

B(Eλ, n0J0→ nJ) =
∑

µM

|〈nJM|Oλµ|n0J0M0〉|2, (10)

whereJ0, J andM0, M are the total angular momenta and
their projections of the initial and final states, and all the
other needed quantum numbers are collected inton0 andn.
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Finally, the electric multipole operator involved in the
previous expression is given by:

Oλµ =
3

∑

i=1

zi|ri − R|λYλ,µ(Ωyi) , (11)

wherei runs over the three particles, and where we neglect
the contributions coming from the intrinsic transitions in
each of the three constituents [7].

2.2 Theory: Four-Body Recombination

We now consider the processa + b + c + d → A + d
whereA is a bound three-body state havinga, b, andc as
constituents. This is the so called four-body recombination
process where particled is just a spectator taking the ex-
cess of energy released whena, b, andc create the bound
stateA.

As previously discussed, since we only have two par-
ticles in the final state, the reaction rate〈Rabcd(E)〉 can be
related to〈RAd(T ′z)〉 (≡ 〈vAdσAd(T ′z)〉), whereT ′z is the fi-
nal relative two-body kinetic energy,E = Tz′ + B, with B
being the binding energy of the three-body systemA, and
σAd(T ′z) is the cross section for the breakup ofA after col-
lision with d. This relation is given by:

Rabcd(E) =

(2π)3
√

2~6 gA

gagbgc

µ′z

(µxµyµz)3/2

Γ( 9
2)

Γ( 3
2)

T ′z

E
7
2

σAd(T ′z) ,(12)

wheregi (i = a, b, c, A) is the degeneracy of particlei, and
µx, µy, andµz are the reduced masses of the systems con-
nected by the usualx, y, andz Jacobi coordinates used to
describe the four body system made by particlesa, b, c,
andd.

Inserting now Eqs.(2) and (12) into Eq.(6) we then eas-
ily get:

〈Rabcd(E)〉 =
4(2π)

5
2~

6µ′z

(µxµyµz)3/2

gA

gagbgc
e−

B
kBT ×

× 1

(kBT )
9
2

∫ ∞

|B|
T ′zσAd(T ′z)e

− T ′z
kBT dT ′z . (13)

From this expression it is evident the connection be-
tween the reaction rate and the observableσAd, which in
principle can be measured experimentally. However, to com-
pute it numerically, one can directly do it using Eqs.(4) to
(6), which require only calculation of the matrix element
〈Ψi|W |Ψ f 〉.

The assumptions made are two: First, the four-body
wave functions are approximated as a three-body wave func-
tion plus a spectator particle in a relative plane wave; and
second, the matrix element involved in the calculation is
treated as the sum of three matrix elements corresponding
to the interaction between the spectator particle and each
of the constituents in the three-body system.

3 Numerical results: Reaction and
Production rates

3.1 Two-particle Radiative Capture

Their reaction rates can be obtained from the photodisso-
ciation cross sections of the inverse processes.

For the6He, the dipole term dominates by roughly four
orders of magnitude and the quadrupole result agrees with
previous estimates by Görres et al. [3] and Fowler et al.
[8]. For the dipole contribution our reaction rate is about
one order of magnitude higher than Görres et al. [3], Efros
et al. [5] and Barlett et al. [4]. The reason is that in these
calculations a fully sequential capture process is assumed.

For theα + α + n → 9Be + γ radiative process the
dominant contribution comes from the 1/2+ states, which
produce a peak below 1 GK related to the low-lying reso-
nant state in the photodissociation cross section. Only for
temperatures beyond 5 GK the 5/2+ contributions begins to
dominate. For temperatures beyond 1 GK our calculation
agrees with the one in [9].

The computed reaction rate for the production of9Be is
at least one order of magnitude above the one for the pro-
duction of6He. Only for temperatures around 5 GK they
become comparable.

The production of9Be is dominating in all the cases for
low temperatures. For higher temperatures the reaction rate
for production of9Be is comparable to the one obtained for
the production of6He, and the dominance of one process or
another depends on the abundance of neutrons and alphas.

3.2 Four-Body Recombination

Processes having a neutron as spectator clearly dominate.
The difference is of roughly two orders of magnitude. This
is due to the different nuclear interaction between the spec-
tator and the three constituents in6He or9Be, and not to the
additional Coulomb repulsion felt by the spectator.

When comparing the rates for production of6He and
9Be we find that the reactionα + n + n + n → 6He+ n
dominates for all temperatures, and the processα + α +
n + n → 9Be+ n shows a reaction rate comparable to the
one obtained for production of6He having anα-particle as
spectator.

The largest production rate is the one corresponding to
theα+n+n+n→ 6He+n reaction. An increase in the mass
density by a certain factor, enhances by the same factor the
relative four-body recombination production rate. There-
fore, for temperatures as the ones estimated for a hot bub-
ble (units of GK), the four-body recombination reactions
could easily be very relevant. On the other hand, for typi-
cal temperatures in the interior of a standard star of about
10−2 GK the electromagnetic processes clearly dominate.

4 Summary and conclusions

Temperature and mass density are two crucial star prop-
erties which determine the production rate of a given re-
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action. As typical temperatures are small, only very low
relative energies are relevant.

For a proper description of the radiative capture re-
actions we must include all the possible mechanisms and
usually those of them involving less particles are more im-
portant. However, if the star density is large enough the
latter could be relevant.

For temperatures as the ones estimated for a “hot bub-
ble”, the four-body recombination reactions could be very
relevant. On the other hand, for temperatures of about 10−2

GK the electromagnetic processes clearly dominate, and
only mass densities many orders of magnitude larger could
make the four-body processes to dominate.
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