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Low-coverage surface diffusion in complex periodic energy landscapes: Analytical solution
for systems with symmetric hops and application to intercalation in topological insulators
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This is the first of two papers that introduce a general expression for the tracer diffusivity in complex, periodic
energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low-coverage,
single-tracer limit). The present report focuses on the analysis of diffusion in systems where the end sites of the
hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal
surfaces and bulk materials. For diffusion in two dimensions, a number of formulas are presented for complex
combinations of the different hops in systems with triangular, rectangular, and square symmetry. The formulas
provide values in excellent agreement with kinetic Monte Carlo simulations, concluding that the diffusion
coefficient can be directly determined from the proposed expressions without performing the simulations. Based
on the diffusion barriers obtained from first-principles calculations and a physically meaningful estimate of the
attempt frequencies, the proposed formulas are used to analyze the diffusion of Cu, Ag, and Rb adatoms on
the surface and within the van der Waals (vdW) gap of a model topological insulator, Bi2Se3. Considering the
possibility of adsorbate intercalation from the terraces to the vdW gaps at morphological steps, we infer that, at
low coverage and room temperature, (i) a majority of the Rb atoms bounce back at the steps and remain on the
terraces, (ii) Cu atoms mostly intercalate into the vdW gap, the remaining fraction staying at the steps, and (iii)
Ag atoms essentially accumulate at the steps and gradually intercalate into the vdW gap. These conclusions are
in good qualitative agreement with previous experiments. The companion report (M. A. Gosálvez et al., Phys.
Rev. B, submitted] extends the present study to the description of systems that contain asymmetric hops.
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I. INTRODUCTION

The diffusion of atoms and molecules on crystalline
surfaces is fundamental to several technologies [1–5]. These
include heterogeneous catalysis for mass production of essen-
tial compounds in the chemical, food, and energy industries
[6], as well as growth of thin films for the fabrication of
semiconductor devices and novel two-dimensional (2D) ma-
terials, such as graphene [7–9]. Planar synthesis technologies,
such as chemical vapor deposition, where surface diffusion
plays a key role, are currently attracting increasing attention
as an alternative to supply a complete, new generation of
atom-thick materials, including semimetals (graphene, NiTe2,
VSe2, etc.) [7,8,10–12], semiconductors (WS2, WSe2, MoS2,
MoSe2, MoTe2, TaS2, RhTe2, PdTe2, etc.) [10,13–15], insula-
tors (hexagonal-BN, HfS2, etc.) [13,16,17], superconductors
(NbS2, NbSe2, NbTe2, TaSe2, etc.) [10,18], and topological in-
sulators (Bi2Se3, Bi2Te3, etc.) [19,20]. Recently, the deposition
of various adsorbates on model topological insulators, such as
Bi2Se3 and Sb2Te3, has received much consideration [21–39].
Adsorbate deposition provides a route to control the position
of the Dirac point relative to the Fermi level [24,29,33,34].
Structural investigations of the impurity-deposited Bi2Se3

surface reveal partial [23] or almost-complete [25,26] loss of
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the adatoms at room and higher temperatures, indicating that
the adsorbates may diffuse across the terraces and intercalate
at the steps into the van der Waals (vdW) gaps [31]. In addition
to general applications in energy storage and synthesis of
atom-thick materials, intercalation offers the possibility of
adjusting the properties of the host material, e.g., converting
a topological insulator into a superconductor [40–46]. In
this manner, the understanding of adsorbate diffusion in
material-specific energy landscapes remains a prerequisite
for clarification of the novel properties observed in new
materials.

At the atomistic level, diffusion has a vibrational origin
[1–3]. The substrate atoms perform localized oscillations
around their equilibrium positions, while the adatoms execute
small vibrations about the adsorption sites, occasionally
hopping to adjacent sites. The hops occur due to the occasional
constructive coupling between the substrate and the adatom
vibrations, which provides sufficient energy to jump over
the barrier between neighboring sites. This vibrational nature
is described by expressing the hop rate of an adparticle as
the product of two factors: ν = ν0e

−Ea/kBT . According to
transition state theory (TST) [47–50], the Boltzmann factor
e−Ea/kBT indicates the probability of performing the jump at
temperature T if the energy barrier is Ea , and the attempt
frequency ν0 = kBT

h
ZT

ZI
describes how frequently on average

the substrate phonons and the adparticle vibrations couple with
each other constructively. Here, kB and h are the Boltzmann
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FIG. 1. (a) Example of a complex potential energy landscape for
a diffusing particle. Four adsorption site types are indicated: f , h,
t and b. (b) A possible diffusion track (random walk) involving 14
performed jumps at 10 different hop rates νij . (c–f) Possible hops from
each site type (h, b, f , and t , respectively). Gray-shaded landscapes
in (b)–(f) are used to highlight the colored arrows/hops. (g) Energy
paths for hops starting/ending in h sites. A longer arrow assigned to
a hop rate (νth, νht , etc.) indicates a higher rate.

and Planck constants, respectively, ZT is the partition function
for the transition state (or activated complex), calculated for
all normal coordinates except the one in which the reaction
occurs, and ZI is the partition function for the initial state.
In harmonic TST [48,49], the attempt frequency is further
simplified to ν0 = (�3N

i=1ν
I
i )/(�3N−1

i=1 νT
i ), i.e., the ratio of the

product of the 3N normal mode frequencies in the initial state
(νI

i ) to the product of the 3N − 1 normal frequencies in the
transition state (νT

i ), N being the total number of particles.
Generally, TST is valid as long as any trajectory across the
transition state does not contain recrossings. This requires that
tunneling is absent and the energy barrier is large enough
compared to the thermal energy kBT . In this study we require
that the largest barrier experienced by the adatom satisfies
Ea > 4kBT , where the factor 4 has been taken from Ref. [1].
For complex networks of hops with various energy barriers,
the hop rates associated with smaller barriers become so high
with increasing temperature that the overall rate is effectively
controlled by the lowest rate, i.e., the largest barrier. Thus, we
ensure that TST is valid for this barrier.

In this study we are interested in the diffusion of a particle
in a complex periodic energy landscape, such as the one
shown in Fig. 1(a). One can discern the presence of four
adsorption sites (labeled f , h, t , and b), corresponding to
the locations where the energy has a local/global minimum.
A diffusing particle proceeds by hopping between the sites,
as shown schematically in Fig. 1(b). If one focuses on a
particular site, as illustrated in Figs. 1(c)–1(f) for h, b, f , and t ,
respectively, one may note that each hop requires surpassing a
different energy barrier. As further emphasized in Fig. 1(g), the
different energy barriers and dissimilar shapes of the energy

wells (=dissimilar attempt frequencies) result in different hop
rates for the different jumps (νht , νth, νhb, νbh, etc.), including
the forward and backward directions. As a result, the random
walk between point A and point B in Fig. 1(b) involves as
many as 10 hop rates for a total of 14 performed hops. In this
study we focus on the analytical description and computational
validation of the average distance traveled per unit time by the
adparticle, expressing it as a function of the M known hop
rates νij between the S different site types when the number of
performed hops N grows very large, i.e., when the diffusion
time t becomes arbitrarily long.

The average squared distance covered by a single particle
per unit time is a well-defined quantity, known as the tracer
diffusion coefficient (or tracer diffusivity) [1],

DT = 1

2α
lim
t→∞

∑n
i=1〈|ri(t) − ri(0)|2〉

Npt
, (1)

where α = 1,2,3 is the number of dimensions, Np is the
number of diffusing particles simultaneously present in the
system, ri(t) designates the position of particle i at time t ,
and 〈·〉 is the ensemble average. Not surprisingly, DT is a
function of the number of particles Np or, equivalently, of the
coverage θ = Np/Na, where Na is the number of adsorption
sites that may be occupied by the particles. The larger the
number of adparticles, the smaller the number of available
empty sites that any chosen particle can jump to, thus leading
to correlation effects between consecutive hops, also known as
memory effects [1,2]. This is especially relevant for systems
with strong adsorbate-adsorbate interactions [51,52].

We are interested in the low-coverage regime, where the
density of diffusing particles is so low that the chance of
affecting each other’s motion is negligible:

Dθ≈0
T = 1

2α
lim
t→∞

〈|r(t) − r(0)|2〉
t

. (2)

The low-coverage limit is an important measure, as it provides
a simple procedure to compare the typical distances covered
by different adsorbates across different substrates [1–5].
Previous analytical work on diluted systems has focused
on the determination of the center-of-mass diffusivity for
small 2D islands and clusters on metal surfaces based on
the master equation [53–55] or the continuous-time random
walk formalism [56,57]. In the framework of bulk-mediated
surface diffusion, Revelli et al. described the average motion
of the adsorbed molecules, including both Markovian and
non-Markovian desorption, by using the generalized master-
equation approach [58]. Condit et al. [59,60] and Birnie
[61] derived the overall jump rate for complex, sequential
diffusion paths in three-dimensional (3D) crystals, where
typical vacancy-interstitial complexes evolve by repeating
a particular sequence of hops. Overall, both parts of the
present study (see [62] for the second part) generalize this
sequential analysis by providing a universal expression for the
diffusivity in complex hopping networks where both parallel
and sequential diffusion routes are available between the
different adsorption sites. The expressions presented in this
study for the diffusivity are valid for any combination of
values for the hop rates, even if the rates differ by orders
of magnitude or become similar/equal. The validity of the
proposed expressions is independent of the method used to
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assign values to the hop rates themselves, such as TST or
harmonic TST.

Computationally, adsorbate diffusion is traditionally stud-
ied by [1,5] (i) first-principles calculations, typically involving
the use of density functional theory (DFT) for the determina-
tion of the activation barriers and attempt frequencies, which
are then passed to other methods; (ii) molecular dynamics
simulations, which numerically solve Newton’s equations
for the substrate and adsorbate atoms based on effective
interaction potentials, enabling analysis at the picosecond time
scale for systems with ∼105 atoms; (iii) Langevin models,
which describe the adparticle in an effective periodic force
field, restricting the analysis to general trends for time scales of
picoseconds; and (iv) kinetic Monte Carlo (KMC) simulations,
which focus on describing the hops between adjacent basins
(rare events) while disregarding all other vibrations, in this
way enabling long simulated times (seconds and minutes) with
affordable computational resources.

The purpose of this report is to present a general analytical
expression for the low-coverage diffusivity in systems that
display symmetric hops (Sec. II) and to validate the resulting
formulas for illustrative energy landscapes by comparison to
KMC simulations (Sec. III), finally applying the formulas
to discuss the relative mobility of various adsorbates in the
context of topological insulators (Secs. IV and V).

II. THEORY

We consider the diffusion of a single particle in a complex,
periodic energy landscape, such as the one shown in Fig. 1(a).
The diffusing particle may correspond to an adsorbate atom
or molecule that moves essentially in two dimensions over
a surface. It may also consist of a bulk defect, such as an
impurity or vacancy (or a pair/cluster of these) traveling in
three dimensions within a crystal. While the energy landscape
corresponds to an energy surface for the 2D case, for bulk
diffusion it corresponds to a 3D scalar field, characterized
by finite volumes where the energy increases alternating
with volumes where it decreases. Although more difficult to
represent graphically, the periodicity of the defect energy as
it diffuses within the material allows describing the 3D case
by the same formalism as in the 2D case. Thus, although
the graphical illustrations presented below are geared for two
dimensions, the underlying mathematical derivations and main
result are valid in three dimensions as well.

A. Definitions

Let us consider a system with S different site types, such
as the one shown in Figs. 2(a) and 2(b) for S = 4 or Fig. 2(c)
for S = 3. For a generic hop from site type i to site type j

(i,j = 1, . . . ,S) the hop distance lij , hop rate νij , and hop
multiplicity mij are assumed to be known. mij is the number
of equivalent hops from the initial site type i to nearby end sites
of type j . In this paper we focus on systems where mij � 2
and the corresponding end sites are symmetrically located
with respect to the initial site. In this manner, the center of
mass of the end sites coincides with the location of the initial
site, and the hops are termed symmetric. In two dimensions,
the directions along which such symmetric hops can occur

(a) Triangular (b) Rectangular (c) Square

1 2

      1 2 1 2

1 2
1

2 1 2

f = fcc hollow
h = hcp hollow
t = on-top
b = bridge

f = 2-fold hollow

B = long bridge

t = on-top
b = short bridge

f = 4-fold hollow
t = on-top
b = bridge

, = f , = h , = t , = bSites:
side view

top view

FIG. 2. Schematic of three typical surfaces with (a) triangular
symmetry [e.g., fcc(111) and hcp(0001)], (b) rectangular symmetry
[e.g., fcc(110)], and (c) square symmetry [e.g., fcc(100)]. We refer to
typical adsorption sites as f (for fcc hollow), h (for hcp hollow), t

(for on top), b (for bridge/short bridge), and B (for long bridge).

are necessarily related by rotational (n-fold) symmetry: two
opposite directions for n = 2 and the trigonal-planar, square-
planar, and hexagonal-planar geometries for n = 3, 4, and
6, respectively. In three dimensions, the directions of such
symmetric hops correspond to the tetrahedral, octahedral,
cubic, and cuboctahedral geometries (n = 4, 6, 8, and 12,
respectively). The next part of the present study [62] provides
a detailed analysis of the diffusivity in systems containing
asymmetric hops that do not satisfy this definition.

We consider a new variable, the rateplicity μij , defined as
the product of the hop rate and the multiplicity:

μij = mijνij . (3)

For an atom located at site i, we also define the escape rate
Ri as the sum of the rateplicities to all accessible neighboring
sites,

Ri = �kμik, (4)

and the escape time τi as the inverse of the escape rate,

τi = 1

Ri

. (5)

Here, the summation runs through all site types, i.e., �k =
�S

k=1. From one hop to the next, time advances by an amount
equal to the inverse of the total rate. For a system with a
single adatom, the total rate is equal to the current value of the
escape rate. Thus, the time increments for different hops from
the same site type i to different, accessible site types j and j ′
are equal:

τij = τij ′ = τi, j 	= j ′. (6)

In addition, we define the escape rate to all other sites R
	=
i as

the sum of the rateplicities to all accessible neighboring sites
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that are different from the origin i of the hop:

R
	=
i = �k 	=iμik = Ri − μii . (7)

We also define the hop probability πij from site i to site j

as the ratio of the rateplicity μij to the escape rate Ri :

πij = μij

Ri

. (8)

πij describes the relative rate of hopping from site i to site
j in comparison to the total rate of hopping from i to any
accessible neighboring site. As the normalized rateplicity, πij

satisfies the following three important relations:

�jπij = 1, (9)

πij ′ = μij ′

μij

πij , (10)

πij = μij τij . (11)

This is demonstrated by directly using the definition [Eq. (8)]
in Eqs. (9)–(11). Similarly, we define the conditional hop
probability from site i to site j (pij ) as the product of the
equilibrium probability that the atom is located at site i (pi)
and the hop probability from site i to site j (πij ):

pij = piπij . (12)

Making use of the general principle of detailed balance, the
conditional probability of performing one process must be
equal to the conditional probability of performing the reverse
process (pij = pji):

piπij = pjπji . (13)

Summing over j in Eq. (13) we have (i = 1,2, . . . ,S):

�jpij = �jpji, (14)

�jpiπij = �jpjπji, (15)

pi = �jpjπji, (16)

pi = �kpki . (17)

This means that the probability of escaping from site type
i [left-hand side of Eq. (14)] is equal to the probability of
arriving at that site type i [right-hand side of Eq. (14)]. Based
on Eq. (17), this also means that pi can be regarded as the
probability of arriving at site i from any other hop-connected
neighboring site. Using Eq. (8) in Eq. (12) we can also rewrite:

pi = Ri

pij

μij

. (18)

Finally, combining Eqs. (12) and (17) one obtains

πij = pij

�kpki

, (19)

pij

πij

= �kpki, (20)

and rewriting Eq. (20) for two different hops from the same
site gives

pij ′ = πij ′

πij

pij , (21)

pij ′ = μij ′

μij

pij , (22)

where Eq. (10) has been used to go from Eq. (21) to (22).

B. Analytical solution

The conditional probabilities play a key role in our descrip-
tion of the low-coverage tracer diffusivity. The starting point
is to express Dθ≈0

T [Eq. (2)] as the ratio of the average squared
hop distance to the average time increment, formulating the
two averages as weighted sums of the corresponding variables
(squared hop distance and escape time) with the conditional
probabilities as weights:

P

Dθ≈0
T = 1

2α

︷ ︸︸ ︷
�i,jpij l

2
ij

�i,jpij τij︸ ︷︷ ︸
.

Q

(23)

The goal is to rewrite Eq. (23) explicitly in terms of the known
hop rates and multiplicities or, equivalently, as a function of
the rateplicities.

We start by using Eq. (22) to express all conditional
probabilities that share the same hop origin (i) in terms of
the corresponding self-hop (ii):

pij = μij

pii

μii

(i,j = 1,2, . . . ,S). (24)

Accordingly, from Eq. (23) we have

P = �i,jpij l
2
ij = �i,j

pii

μii

μij l
2
ij = �i

pii

μii

(
�jμij l

2
ij

)
, (25)

Q = �i,jpij τij = �i,j

pij

μij

πij = �i,j

pii

μii

πij (26)

= �i

pii

μii

(�jπij ) = �i

pii

μii

, (27)

where we have used Eq. (11) to substitute τij = πij /μij in
Eq. (26), and Eq. (9) to substitute �jπij = 1 in Eq. (27).
Thus, Eq. (23) becomes

Dθ≈0
T = 1

2α

P

Q
= 1

2α

�i
pii

μii

(
�jμij l

2
ij

)
�i

pii

μii

(28)

= 1

2α
�iwi

(
�jμij l

2
ij

)
. (29)

Note that in Eq. (29) we have defined the coefficients,

wi =
pii

μii

�j
pjj

μjj︸ ︷︷ ︸
T

=
pik

μik

�j
pjk

μjk︸ ︷︷ ︸
U

=
pi

Ri

�j
pj

Rj︸ ︷︷ ︸
V

= piτi

�jpjτj︸ ︷︷ ︸
W

,
(30)

where Eq. (24) has been used in the transformation T → U ,
Eq. (18) in U → V , and Eq. (5) in V → W . According to
W , the coefficient wi is the fraction of time spent at site type
i relative to the time spent at all site types. In other words,
wi is the probability of residence at site i or the occupancy

075429-4



LOW-COVERAGE SURFACE DIFFUSION IN COMPLEX . . . PHYSICAL REVIEW B 93, 075429 (2016)

probability of site type i. Thus, we refer to wi simply as the
occupancy of site i. Note that the sum of all occupancies is 1
(�iwi = 1).

The occupancy, wi , should not be confused with the
equilibrium probability, pi . According to V in Eq. (30),
the equilibrium probability of finding the adatom at site
type i is

pi = wiRi

�jwjRj

. (31)

Using this relation, Eq. (13) for detailed balance becomes

wiμij = wjμji, (32)

and summing over j in Eq. (32) gives (i = 1,2, . . . ,S)

wi�jμij = �jwjμji . (33)

Equation (33) is very important. The left-hand side can be
understood as the flux (of particles) out of site i, and the
right-hand side as the flux into site i. Thus, the net flux is
0 as a consequence of detailed balance. In addition, Eq. (33)
provides a system of equations for the occupancies, wi , which
are needed to determine the diffusivity [Eq. (29)]. Solving this
system is considered next.

Using Eq. (4) into Eq. (33) and the definition in Eq. (7), one
gets (i = 1,2, . . . ,S):

wiRi − �jwjμji = 0, (34)

wi(Ri − μii) − �j 	=iwjμji = 0, (35)

wiR
	=
i − �j 	=iwjμji = 0. (36)

Equation (36) is especially useful. One of the S equations
contained in it is redundant due to the fact that the sum of all
occupancies is 1 (�iwi = 1). Taking the equation for i = 1 to
be the redundant one and expressing Eq. (36) in matrix form
leads to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R
	=
2 −μ32 · · · −μS2

−μ23 R
	=
3 · · · −μS3

...
...

. . .
...

−μ2S −μ3S · · · R
	=
S︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w2

w3
...

wS︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A1 x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ12

μ13
...

μ1S︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

w1.

b1 x1

(37)

Thus, we need to solve the matrix equation A1 · x = b1x1 for
vector x, with components xi = wi , where i = 2, . . . ,S. Using
Cramer’s rule we have xi = x1 det(Ai)/ det(A1), where Ai is
the matrix that results from substitution of column i − 1 in
matrix A1 by vector b1:

Ai ≡ A1([b1]i−1) (i = 2, . . . ,S). (38)

Thus, the solution of Eq. (37) is

wi = Bi

B1
w1 (i = 2, . . . ,S), (39)

where

Bi = det(Ai) (i = 1, . . . ,S). (40)

Finally, taking into account that �iwi = 1 we have

wi = Bi

�jBj

(i = 2, . . . ,S). (41)

In practice, Eq. (41) is useful to determine the coefficients wi

that appear in Eq. (29). We stress that Eq. (36) and its solution,
Eq. (41), are valid for any value of S.

Equation (29) is the central result of the present paper (for
systems with symmetric hops only). Valid for any number of
different site types S, it means that the total diffusivity can be
written as a weighted sum of partial diffusivities (�jμij l

2
ij ),

which contain the rateplicities and hop lengths for all jumps
from every site type i to any accessible site type j . To calculate
the overall diffusivity we need to determine the occupancy
wi = Bi/�jBj for each site type i that acts as a hop origin,
multiplying it by the sum of several μij l

2
ij terms, one for each

different site j accessed from i and, finally, summing over all
considered hop origins i. In order to determine each Bi we can
build matrix Ai in different ways (see Sec. II C) and apply the
definition Bi = det(Ai). Alternatively, the occupancies wi can
be determined directly from the rateplicities using Eq. (51)
(see Sec. II C).

C. Ways to determine Bi and wi

Due to the redundancy of one of the relations in Eq. (36),
every determinant Bi = det(Ai) can be calculated using
different forms for matrix Ai , all of which will generate the
same value. Focusing on A2 for instance, if the equation for
site type i = 1 is chosen as the redundant one, then A1 and b1

are given by Eq. (37), and A2 is

A2 ≡ A1([b1]1) =

⎛
⎜⎜⎜⎜⎜⎝

μ12 −μ32 · · · −μS2

μ13 R
	=
3 · · · −μS3

...
...

. . .
...

μ1S −μ3S · · · R
	=
S

⎞
⎟⎟⎟⎟⎟⎠.

(42)
However, we can alternatively choose the equation for i = 2
to be the redundant one, in which case we directly have an
expression for A2:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R
	=
1 −μ31 · · · −μS1

−μ13 R
	=
3 · · · −μS3

...
...

. . .
...

−μ1S −μ3S · · · R
	=
S︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1

w3
...

wS︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A2 x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ21

μ23
...

μ2S︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

w2.

b2 x2

(43)

Similarly, we can choose the redundant equation for any
other site type and express A2 accordingly. By writing out the
determinants of the different forms for A2 it can be verified
that they all give the same expression for B2. Due to this
redundancy, the particular form of other Ai’s can also be
chosen rather freely in practice.

Typically some/many elements of the Ai matrices are 0
and the determinants result in relatively simple expressions
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for the Bi coefficients and wi occupancies. In particular, when
the number of different adsorption sites S is small enough
(e.g., S = 2,3) we can explicitly write the following, simple
expressions:

Bi = μji (S = 2; i,j = 1,2; i 	= j ), (44)

Bi = μjkμki + μkjμji + μjiμki

(S = 3; i,j,k = 1,2,3; i 	= j 	= k). (45)

As an alternative, we may express Eq. (39) as follows:

Bi

Bj

= wi

wj

= μji

μij

(i,j = 1, . . . ,S), (46)

where Eq. (32) (detailed balance) has been used. This provides
another formulation to obtain the wi occupancies:

w1 = B1

B1 + B2 + · · · + BS

(47)

= 1

1 + B2
B1

+ · · · + BS

B1

= 1

1 + μ12

μ21
+ · · · + μ1S

μS1

(48)

=
B1
B2

B1
B2

+ 1 + · · · + BS

B2

=
μ21

μ12
μ21

μ12
+ 1 + · · · + μ2S

μS2

(49)

= · · ·

=
B1
BS

B1
BS

+ B2
BS

+ · · · + 1
=

μS1

μ1S

μS1

μ1S
+ μS2

μ2S
+ · · · + 1

, (50)

with similar equations for w2, . . . ,wS . This can be summarized
by the following, single expression:

wi = Bi

�kBk︸ ︷︷ ︸ =
Bi

Bj

�k
Bk

Bj︸ ︷︷ ︸
=

μji

μij

�k
μjk

μkj︸ ︷︷ ︸
(a) (b) (c)

(i,j = 1, . . . ,S), (51)

where any j can be used in (51b) and (51c). For simplicity,
however, we typically use the same j for all i’s.

Equation (51c) usually provides the shortest route to obtain
the occupancies. It explicitly contains the rateplicities, and
thus, there is no need to build the Ai matrices. One must
be careful, however, since Eq. (51) may involve divisions by
0 when S � 3. The case S = 2 is special, since the diffusing
particle can hop only from one site type (say 1) to the other (say
2), and vice versa. Thus, the hop rates between the two different
sites are different from 0. Note that the hop rates between
identical sites do not appear in Eq. (51) [since they lead to ones]
and, thus, are irrelevant for determination of the occupancies
wi . For S � 3, however, some hops between different sites
may be forbidden, in which case the corresponding hop rates
will be effectively 0. Thus, Eq. (51) may contain indeterminate
values of type μmn

μnm
= 0

0 . We deal with this next.

D. Forward/backward fundamental paths

To handle the indeterminate values, we make use of certain
relations between the rateplicities that appear on specific

sequences of hops, here referred to as fundamental paths. A
fundamental path is a sequence of hops that starts and ends at
the same site type and visits other site types at most once (see
Fig. 3). Every fundamental path has an associated opposite
path, in which the sequence of hops is exactly the opposite.
As an example, the fundamental paths 1231 and 1321 start
and end at site 1, but they visit sites 2 and 3 in opposite
order. In this study, the two opposite paths are referred to as
the forward path (FW) and backward path (BW). As shown
below, a necessary condition for detailed balance to be fulfilled
is that the product of the rateplicities must be equal along the
forward and backward paths.

The announced relations between the rateplicity products
can be obtained by directly comparing the right-hand sides
of Eqs. (48)–(50). For S = 3, equating the right-hand side of
Eqs. (48) and (49) [or (48) and (50), or (49) and (50)] gives

μ12μ23μ31 = μ13μ32μ21. (52)

Thus, in this case the product of the rateplicities appearing
in the forward path (FW = 1231) must be equal to that of
the rateplicities in the backward path (BW = 1321). Note that
Eq. (52) also applies to the paths starting and ending at site 2
(μ23μ31μ12 = μ21μ13μ32 for FW = 2312 and BW = 2132)
and site 3 (μ31μ12μ23 = μ32μ21μ13 for FW = 3123 and
BW = 3213).

For S = 4, equating the right-hand side of Eqs. (48)–(50)
leads to

μ12μ23μ31 = μ13μ32μ21, (53)

μ12μ24μ41 = μ14μ42μ21, (54)

μ13μ34μ41 = μ14μ43μ31, (55)

μ12μ23μ34μ41 = μ14μ43μ32μ21, (56)

μ12μ24μ43μ31 = μ13μ34μ42μ21, (57)

μ13μ32μ24μ41 = μ14μ42μ23μ31 (58)

for fundamental paths involving three and four hops, respec-
tively. Similarly, for larger values of S, additional products are
obtained for all fundamental paths involving three hops, four
hops, and so on, up to S hops.

Recalling that μij = mijνij , where mij is the multiplicity
and νij the hop rate, Eq. (53) reads

m12m23m31ν12ν23ν31 = m13m32m21ν13ν32ν21. (59)

Since mij is the number of equivalent hops from site i to site
j , the product m12m23m31 appearing on the left-hand side of
Eq. (59) represents the total number of equivalent paths of type
FW = 1231. This is visually shown in Fig. 3(a). Similarly,
the product m13m32m21 appearing on the right-hand side of
Eq. (59) represents the total number of equivalent paths for
BW = 1321 (opposite order). Since the actual geometry is
the same, the total number of equivalent paths is necessarily
the same for both the forward and the backward paths.
In other words, m12m23m31 = m13m32m21. Similarly, when
substituting μij = mijνij in Eqs. (54)–(58), Figs. 3(b)–3(f)
show that the resulting products of the multiplicities are always
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4 
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S = 4

m12m23m31 = m13m32m21 = # equivalent paths m12m24m41 = m14m42m21 = # equivalent paths m13m34m41 = m14m43m31 = # equivalent paths

m12m23m34m41 = m14m43m32m21 = # equiv. paths m12m24m43m31 = m13m34m42m21 = # equiv. paths m13m32m24m41 = m14m42m23m31 = # equiv. paths

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 3. Fundamental paths for a system with four site types. FW, forward path; BW, backward path. (a–d) All four equivalent paths
for FW = 1231, 1241, 1341, and 12341, respectively, and BW = 1321, 1421, 1431, and 14321, respectively. (e, f) All eight equivalent
paths for FW = 12431 and 13241, respectively, and BW = 13421 and 14231, respectively. (g) Demonstration of the equality ν12ν23 . . . νS1 =
ν1SνSS−1 . . . ν21 for S = 4.

equal for the forward and backward paths. In this manner, the
multiplicities cancel out and Eqs. (53)–(58) are simplified to

ν12ν23ν31 = ν13ν32ν21, (60)

ν12ν24ν41 = ν14ν42ν21, (61)

ν13ν34ν41 = ν14ν43ν31, (62)

ν12ν23ν34ν41 = ν14ν43ν32ν21, (63)

ν12ν24ν43ν31 = ν13ν34ν42ν21, (64)

ν13ν32ν24ν41 = ν14ν42ν23ν31. (65)

Equations (60)–(65) for S = 4 (and similar equations for other
values of S) are always satisfied, provided that the hop rates νij

are described using Boltzmann factors, as shown in Fig. 3(g).
Note that, within TST, typically the Boltzmann prefactors will
be different for different hop types starting at the same site.
We conclude that, along any fundamental path, the forward
and backward products of the hop rates are equal.

This provides a procedure to handle the indeterminate
values of type μij

μji
= 0

0 in Eq. (51). In fact, we may consider
any pair of forward/backward fundamental paths that contains
μij and μji and rewrite their ratio as

μij

μji

= μikμkj

μjkμki

(for 3 hops, i 	= j 	= k), (66)

μij

μji

= μikμklμlj

μjlμlkμki

(for 4 hops, i 	= j 	= k 	= l), (67)
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TABLE I. Examples of low-coverage tracer diffusivities (Dθ≈0
T ) for different combinations of hop rates between standard adsorption sites

on square, rectangular, and triangular lattices. Site labels: f—fourfold hollow (square)/twofold hollow (rectangular)/fcc hollow (triangular);
h—hcp hollow (triangular); t—on top; b—bridge (square)/short bridge (rectangular); B—long bridge (rectangular). Additional expressions for
other hop combinations are listed in Tables III and IV. Expressions [a], [b], [c], [d], [e], and [f ] are all equivalent since νtf νf bνbt = νtbνbf νf t

(see Sec. II D). Similarly, [g] and [h] are equal since νtBνBf νf bνbt = νtbνbf νf BνBt . Also, [i] and [j] are equal since νtf νf hνht = νthνhf νf t . There
are other equivalent forms for [g]–[j] (see text). Sym, symmetry.

and similar relations for fundamental paths with larger num-
bers of hops.

As an example, consider the system shown in the third row
of Table I, where the hops νf b, νtb, νbf , and νbt are allowed and
have multiplicities 4, 4, 2, and 2, respectively, all involving a
hop distance of l/2. However, the hops νf t , νtf are forbidden,

i.e., νf t = νtf = 0. Applying Eq. (51) leads to

wf = Bf

Bf + Bt + Bb

= 1

1 + Bt

Bf
+ Bb

Bf

= 1

1 + μf t

μtf
+ μf b

μbf

.

(68)
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Here, μf b

μbf
= 2 νf b

νbf
but μf t

μtf
= 0

0 is indeterminate. To resolve the
latter, we use the fact that μf tμtbμbf = μf bμbtμtf . In other
words,

μf t

μtf

= μf bμbt

μtbμbf

= νf bνbt

νtbνbf

. (69)

Thus, we obtain

wf = 1

1 + νf bνbt

νtbνbf
+ 2 νf b

νbf

= νtbνbf

νtbνbf + νf bνbt + 2νf bνtb

. (70)

Similarly,

wt = νf bνbt

νtbνbf + νf bνbt + 2νf bνtb

, (71)

wb = 2νf bνtb

νtbνbf + νf bνbt + 2νf bνtb

. (72)

E. Obtaining formulas for the diffusivity

Table I lists a few example formulas obtained using Eq. (29)
by applying Eq. (51) to obtain the occupancies and Eqs. (66)
and (67) to resolve any indeterminate values μij

μji
= 0

0 , if
needed. Equivalently, one may use Eqs. (40) and (41) to
obtain the occupancies wi . The table lists results for various
systems, including square, rectangular, and triangular lattices.
Additional expressions for other hop combinations in the
rectangular and triangular lattices are provided in Tables III
and IV.

When S > 2, the diffusivity typically can be described by
several equivalent expressions, as shown by formulas [a]–[f]
in row 4 of Table I. This is due to the fact that the occupancies
appearing in Eq. (29) can be described by mutually equivalent
expressions [see Eqs. (48)–(50)] and also the products of the
rates can be written out in various equivalent forms, according
to the underlying fundamental paths [see Eqs. (60)–(65)].
Since expressions [a] through [f ] are equal, the diffusivity
can also be described as a combination of those expressions.
In fact, when applying Eq. (29) one directly obtains Dθ≈0

T =
1
2 ([a] + [b]) or Dθ≈0

T = 1
2 ([c] + [d]) or Dθ≈0

T = 1
2 ([e] + [f ]),

depending on whether one uses j = f or j = t or j = b in
Eq. (51c). Similarly, regarding expressions [g] and [h], which
are equivalent, Eq. (29) directly leads to Dθ≈0

T = 1
2 ([g] + [h])

when using j = f in Eq. (51c), with equivalent expressions
(not shown) when using j = t or j = b in Eq. (51c). Since
the same applies to expressions [i] and [j ], these examples
demonstrate that the diffusivity can typically be described by
a number of equivalent expressions when S > 2.

Although we restrict ourselves to the presentation of
diffusivity formulas for 2D landscapes, Eq. (29) is completely
general and can be applied to 3D problems as well, provided
that all hops are symmetric, as defined in Sec. II A. See
the companion report [62] for a complementary method to
determine the diffusivity in systems where asymmetric hops
are present. The expressions listed in Tables I, III, and IV have
been derived using Eq. (29) and confirmed by applying the
more general method described in the next part of the present
study [62].

III. NUMERICAL VALIDATION

Based on the popularity of KMC simulations for deter-
mining tracer diffusivities [1–5,51,53,63], we now compare
the values obtained from the previous formulas and those
determined by KMC simulations. We assume a typical lattice-
gas model, where the adsorption sites form a periodic array and
the temperature is sufficiently low so that the adsorbates are
well localized around the sites, occasionally hopping between
them at rates that are much lower than the typical vibrational
frequencies.

As described in Figs. 4(a) and 4(b), we perform two
types of simulations. In the first type (KMC-1) the tracer
is followed until it hits the perimeter of a circle of radius
Ro � lij , repeating the process for NRW different random
walks (RWs) in order to obtain an ensemble average of the
time 〈t〉 required to cover that distance, thus determining the

diffusivity as Dθ≈0
T = 1

2α

R2
o

〈t〉 . In the second type of simulations
(KMC-2) the tracer is followed until it performs a desired
number of hops NH , repeating the process for NRW different
RWs to determine the average squared distance 〈X2 + Y 2〉
covered by the tracer and the corresponding average time
〈t〉, obtaining the diffusivity by using Dθ≈0

T = 1
2α

〈X2+Y 2〉
〈t〉 . In

both KMC-1 and KMC-2 we perform G ensemble averages
(each over NRW random walks) and report the simulated
diffusivity values as the mean ± standard deviation of the
G measurements. Both KMC implementations use the time-
dependent approach (or variable time stepping), where the
next hop (from site i to site j ) is selected with probability
μij /R, where R = �i(�jμij ) is the total rate for all currently
accessible jumps, and the corresponding time increment is
	t = − log(e)

R
, where e ∈ (0,1] is a uniform random number. At

the low-coverage limit there is only one adparticle (currently
at site i), and thus, R = Ri = �kμik . For KMC-1, we use
Ro = 100l, where l is the smallest hop length, NRW = 103,
and G = 500. For KMC-2, we use NH = 104, NRW = 103,
and G = 100.

Since the goal is to check the validity of the analytical
expressions for the diffusivity, different hop rate values are
used to probe situations where the rates have similar values or
differ by several orders of magnitude. We also use realistic hop
rates for several adsorbates, including Cu, Ag, Rb, and Se on
the Bi2Se3(0001) surface and in the vdW gap of this material.
The hop rates for these physically meaningful examples are
obtained by determining the energy barriers through labor-
intensive DFT calculations (see Sec. IV) and estimating the
attempt frequencies by the method described in Figs. 4(c)–4(e).
In other words, we make the approximation

νo ≈ νA
L ≈ 1

2d

√
Ea

2m
, (73)

where Ea is the energy barrier for the hop, d is the separation
between the initial site A and the saddle point T (transition
state), and m is the adatom mass.

The estimate in Eq. (73) can be considered an alternative to
(i) the typical assumption of equal prefactors for all hop rates
[1,63–66] and (ii) the large computational cost to determine
all the vibrational mode frequencies νA

i and νT
i for the adatom

and substrate at the initial and saddle configurations using
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TABLE II. Simulated and calculated low-coverage diffusivities (Dθ≈0
T ; cm2s−1) for various combinations of hop rates in systems with

triangular and rectangular symmetry, including the diffusion of Cu, Ag, Rb, and Se on the Bi2Se3(0001) surface (surf) and in the Bi2Se3 van
der Waals gap (vdW) at T = 295 K. Boldface values: Activation energies obtained by DFT.

DFT methods [1,64–66] [see expression U for the attempt
frequency in Fig. 4(d)]. Due to typical cancellations of the
vibrational modes of the substrate [66], the prefactor νo is
usually approximated by the Vineyard equation [expression V
in Fig. 4(d)]. Owing to compensation effects between the
surface-parallel (νA

‖ and νT
‖ ) and the surface-normal (νA

⊥
and νT

⊥) vibrational frequencies of the diffusing atom [66],
the Vineyard formula is approximated by just keeping the
frequency of the longitudinal vibrations (along the diffusion
path) of the atom at the initial site [νA

L ; see expression W
in Fig. 4(d)]. Our estimate consists of approximating the

longitudinal path by a sinusoidal path, resulting in a simple
and physically meaningful expression for νA

L in terms of the
energy barrier, hop distance, and adatom mass, as described in
Fig. 4(f) and contained in Eq. (73). Although the actual energy
path can be asymmetric with respect to the saddle point T, the
part after this point is irrelevant for the rate calculation and in
our approximation it is considered to be a reflection of the part
before it.

Table II provides a comparison of the calculated values for
the low-coverage tracer diffusivities according to the derived
formulas and those obtained from the KMC simulations for
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FIG. 4. Illustration of the two simulation procedures used to perform KMC simulations of diffusion in this study: (a) KMC-1; (b) KMC-2.
(c–e) Estimations of the attempt frequencies in this study. (f) Interpretation of the attempt-frequency dependence on the barrier size and path
length.

systems with triangular and rectangular symmetry where all
hops are symmetric. In this table, the activation energies listed
in the third column are used to determine both the Boltzmann
factors (e−Ea/kBT ) and the prefactors (νo = √

Ea/2m/2d).
Those activation energies determined by our DFT calculations
are shown in boldface in the table. For hops of types νij ,
νii , νji , and νjj the barrier is located in the middle of the
straight line between the initial and the final sites. Thus,
the factor 2d in the expression for νo is equal to the hop
distance: 2d = lij , lii , lj i , or ljj , respectively. For hops of
type νi→j→i the hop distance is lii but the path is not
straight, the energy maximum being located at site j . Thus,
in this case, 2d = 2lij 	= lii . All other considered activation
energies are used to probe different combinations of hop
rates spanning several orders of magnitude for different
lattices.

For all considered systems in Table II the simulated and
calculated diffusivities agree extremely well with each other.
Thus, the proposed formulas are suitable for discussion of the
low-coverage tracer diffusivity of typical diffusion species in
complex energy landscapes without the need to perform the
corresponding KMC simulations.

IV. DFT CALCULATIONS

In this study the reported diffusion barriers (activation
energies) are the result of a large computational effort based
on DFT calculations. The calculations are performed using
the projector augmented-wave method [67] in the VASP
implementation [68,69]. The exchange-correlation potential
is described by the generalized gradient approximation [70],
and the spin-orbit coupling is neglected. Test calculations
performed including the latter show that the activation energy
changes only a few percent, e.g., 1.1%, for Rb. To account for

the vdW interactions we make use of the DFT-D2 approach
proposed by Grimme [71].

The crystal structure of Bi2Se3 is formed by quintuple layer
(QL) blocks separated by the vdW gaps, as shown in Fig. 5(a).
In each QL the hexagonal atomic planes follow the order Se-
Bi-Se-Bi-Se. While the bonding between atoms that belong to
the same QL is of the covalent-ionic type, neighboring QLs are
only weakly bonded by vdW forces. The diffusion barriers on
the surface are determined by using a slab of 5 atomic layers
(i.e., 1 QL), as schematically described in Fig. 5(b.1), while
the diffusion within the vdW gap is studied using a slab of
10 atomic layers (2 QLs), as described in Fig. 5(b.2). In both
cases, essentially isolated adatoms are considered by placing
them in the 3 × 3 supercell. Figure 5(c) shows a top view of the
typical locations of the energy minima (adsorption sites) found
in the vdW gap. The behavior of the Cu and Ag adatoms in the
vicinity of [011̄0]-oriented ([112̄0]-oriented) steps is studied
using a supercell containing 1 full 3 × 6 (2

√
3 × 6) QL and

3 × 3 (2
√

3 × 3) step-terminated QLs on top of it, as shown
schematically in Fig. 5(b.3). For Rb adatoms the long side of
the supercell is lengthened by a factor of 1.5 (1.333) to better
account for the stronger relaxations.

Figure 5(d) provides several diffusion path geometries
and energy profiles determined in our DFT calculations for
diffusion of Ag atoms along the terrace, in the vdW gap, and
across the step, as described below. Similar results are obtained
for all considered adatoms in the same/other terrace/vdW/step
geometries.

A. Terrace diffusion

We start by determining the total energy at locations f , h,
t , and b [see Fig. 2(a)], discarding those locations where the
energy is excessively high. Let us refer to the nondiscarded
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FIG. 5. (a) Crystal structure of Bi2Se3, showing the Bi and Se atoms as large and small spheres, respectively, using different colors according
to the stacking sequence: red for a, blue for b, and black for c. (b) Several crystallographic cells are highlighted (solid, dashed, and dotted
lines) for cross-reference. (b) Schematic supercell structure used for the calculation of diffusion barriers on the terrace, in the vDW gap, and
across steps, as indicated. (c) Top view of possible adsorption sites at the vdW gap: a, b, and c are locations aligned vertically with each stack,
respectively. (d) Example of diffusion path geometries and energies determined through our DFT calculations for the Ag adatom.

locations as accessible sites. They may correspond to adsorp-
tion sites or saddle points, although this is decided later. Due
to symmetry, any other possible adsorption site and/or saddle
point—if it exists—is necessarily located between neighboring
accessible sites. Correspondingly, for any pair of accessible
sites we consider the projection (on the XY plane) of the
line that links both sites and proceed to move the adatom
incrementally along that projection. After every incremental
move, the vertical coordinate of the adatom and all three
coordinates of all other atoms are allowed to relax, except
for the atoms located at the bottom of the QL, which are kept
frozen. In this manner, we sample the diffusion energy along
all XY-straight paths between all possible adsorption sites and
saddle points. The diffusion barriers (or activation energies)
reported in this study correspond to the energy difference
between the initial point (always an adsorption site) and the
highest energy point along the corresponding path (always a
saddle point or absolute maximum). This approach has been
verified using the nudged elastic band method [72,73] for the
case of Rb on Bi2Se3(0001) (this can also be done using the
dimer method [74]). The results obtained are found to be in
excellent agreement regarding the location of the saddle point
and the activation energy value.

B. Diffusion in the vdW gap

For diffusion in the vdW gap, we similarly determine the
energy at octahedral (a) and tetrahedral (b and c) positions
[see Fig. 5(c)] in order to resolve which are the accessible
sites. We then proceed as in the case for terrace diffusion in
order to determine the diffusion paths, their energy profiles,
and the corresponding diffusion barriers.

C. Diffusion across the steps

For diffusion across the steps, the number of possibilities
increases due to the different step orientations, [112̄0] and
[011̄0], the latter having two possible atomic terminations.
As an example, Fig. 5(d) considers the [011̄0]-type I step

geometry for the case of Ag adatoms. A DFT study of diffusion
within the vdW gap [Fig. 5(d.1)] concludes that only the a sites
can be considered strong adsorption sites. Similarly, a terrace
diffusion study [Fig. 5(d.3)] infers that the f and h sites act
as strong adsorption centers in this case. The diffusion of the
adatom across the step is studied by (i) starting at a surface site
that is most distant (within the supercell) from the step [h in
Fig. 5(d.2)], (ii) moving the adatom towards the step along a
previously determined terrace diffusion path [h → f → h →
f ′ in Fig. 5(d.2)], (iii) crossing the step by linking site f ′
(an intermediate f -like site located in the proximity of the
step) and site a′ (an intermediate a-like site in the opposite
proximity of the step), and (iv) moving the adatom away from
the step along a previously determined vdW diffusion path
[a′ → b → a in Fig. 5(d.2)], ending at a vdW site that is most
distant (within the supercell) from the step [a in Fig. 5(d.2)].
The study proceeds by performing similar calculations for the
other step geometries, namely, the [011̄0]-type II and [112̄0]
steps. This allows the determination of the diffusion barrier
for penetration into the vdW gap (EvdW) and reentry into the
terrace region (Eterr) for the three step geometries. For each
geometry, if more than one energy path across the step is
determined, as in Fig. 5(d.2), EvdW and Eterr are reported as
the minimum values among those paths.

V. APPLICATION TO TOPOLOGICAL INSULATORS

Encouraged by the validation of the diffusivity formulas
we now consider the temperature dependence of the diffusion
of Cu, Ag, and Rb adatoms on the Bi2Se3(0001) surface
and the corresponding intercalation of these adsorbates in
the Bi2Se3 vdW gap. Figures 6(a) and 6(b) provide the

calculated diffusion length 
 =
√

2αDθ≈0
T t as a function of

the temperature for the three considered adatoms when they
diffuse on the surface and in the vdW gap, respectively. The
evaluations have been done on the basis of the formulas
obtained for Dθ≈0

T (see final column in Table II). For diffusion
with a single barrier Ea , the underlying assumption that the
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FIG. 6. Calculated diffusion length 
 (in logarithmic scale) as
a function of temperature for Cu, Ag, and Rb adatoms: (a) on the
Bi2Se3(0001) surface and (b) in the Bi2Se3 vdW gap. Diffusion time:
1 min.

hops can be treated as rare events (compared to the fast
vibrations around the adsorption sites) is valid if Ea > 4kBT

(see Ref. [1]). Correspondingly, each displayed curve in
Fig. 6 terminates at Tmax = Ea,max/4kB , where Ea,max is the
maximum barrier experienced by the corresponding adatom.
As an example, the diffusion of Rb on the surface experiences
two barriers: Ef h = 0.127 eV and Ehf = 0.104 eV. Thus,
Ea,max = 0.127 eV and Tmax = 368 K. Similarly, for Cu in
the vdW gap we have Tmax = 342 K. Nevertheless, the total
temperature range is restricted to 550 K since the desorption of
Cu is reported to start approximately at this temperature [75].

It is shown in Fig. 6 that the hierarchy of the diffusion length
is 
Rb > 
Cu > 
Ag on the surface and 
Cu > 
Ag > 
Rb in
the vdW gap. The Rb (Cu) atoms are the most mobile species
on the surface (in the vdW gap), capable of covering more than
1 μm within 1 min even at 100 K. However, the vdW (surface)
diffusion length of the Rb (Cu) atoms is much lower than that
on the surface (in the vdW), which is due to the significantly
higher diffusion barriers. Interestingly, the Ag atoms travel at
almost-equal rates on the surface and in the vdW gap.

Let us now bring the discussion closer to the available
experiments [23,25,26]. These indicate indirectly the occur-
rence of partial [23] or almost-complete [25,26] intercalation
of the metal adatoms inside the Bi2Se3 vdW gap at room and
higher temperatures. Recently, it has been argued [31] that the
intercalation of the metal atoms in the Bi2Se3 vdW gap is step
mediated, in the sense that they penetrate into the vdW gap after
reaching the steps, which are typically present at the Bi2Se3

surface [25]. This is favored by the geometrical alignment
between the terrace and the vdW gap in a stepped surface, as
schematically shown in Fig 7(a). At the same time, penetration
of Cu [25] and Ag [31] in the vdW gap via interstitials
and/or vacancies of the topmost Bi2Se3 QL is significantly
less probable due to high-energy barriers. Therefore, one may
also rule out the possibility of vertical penetration of the Rb
atom, whose covalent radius is 1.5 (1.66) times larger than that

FIG. 7. (a) Geometrical alignment between terrace and vdW
gap at a morphological step. (b–d) Schematic of the low-coverage
diffusivity (in cm2 s−1) of Rb, Cu, and Ag on the terrace and in the
vdW gap of Bi2Se3 at room temperature. Larger arrows denote larger
diffusivities. Our DFT-calculated diffusion barriers (in eV) are shown
in boldface for (left) terrace diffusion, (center left) terrace reentry,
(center right) vdW-gap penetration, and (right) vdW-gap diffusion.

of Ag (Cu), whereupon the diffusion barriers are expected to
be even higher.

By using large and small double-headed arrows, Figs. 7(b)–
7(d) present a graphical description of the relative diffusivity
of the three types of adatoms on the terraces and within the
vdW gaps. In addition, Fig. 7 also provides the relative rates
to enter the vdW gap and to bounce back to the terrace by
assigning them large/small unidirectional arrows. Moreover,
the figure collects all the diffusion barriers determined by our
DFT calculations for the three adatoms on the terrace and in
the vdW gap, as well as for their penetration into the vdW
gap and reentry into the terrace for two step orientations,
namely, [112̄0] and [011̄0], the latter having two possible
atomic terminations [31]. To ease the discussion, the three
barriers for vdW penetration (terrace reentry) for each adatom
are algebraically averaged and used to estimate the vdW
penetration (terrace reentry) rate of that atom, accordingly
assigning them large/small unidirectional arrows. We focus
the discussion on room temperature (295 K) and long diffusion
times.
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The Rb atoms have the highest terrace and lowest vdW
diffusivities, with a very low vdW penetration rate and a rather
high terrace reentry rate. Thus, the Rb atoms are expected to
quickly diffuse across the terraces and hit the steps, where
a small fraction will remain trapped while the majority will
bounce back to the terraces. This is described schematically
in Fig. 7(b), where a large number of Rb atoms are drawn
in the terrace region, with additional atoms at the step, and
hardly any atoms in the vdW gap. In comparison, the Cu
atoms are characterized by moderate terrace and highest vdW
diffusivities, with the highest vdW penetration rate and a low
terrace reentry rate. Accordingly, the Cu atoms need a longer
time to arrive at the steps but they eventually penetrate with
relative ease into the vdW gap, where they diffuse rather
rapidly. Thus, the Cu atoms are expected to mostly intercalate
in the vdW gap, although a notable fraction will remain at the
steps, as sketched in Fig. 7(c). Finally, the Ag atoms display a
slightly lower terrace diffusivity compared to Cu and a medium
diffusivity in the vdW gap among the three species under
consideration. Having reached the steps, the Ag atoms are
forced to linger along them due to the large terrace reentry
barrier and significant vdW penetration barrier [Fig. 7(d)].
Since the latter is smaller, the Ag atoms are expected to
gradually intercalate into the vdW gap. The behavior is similar
to that of Cu, although intercalation is slower for Ag. Valid only
for the low-coverage limit, these trends are in good qualitative
agreement with those from available experiments [23,25,26].

VI. CONCLUSIONS

This article initiates a series of two papers dedicated to the
presentation of a general expression to calculate the single-
particle diffusion coefficient in any number of dimensions
for systems with complex, periodic energy landscapes, where
the end sites of the hops can be located symmetrically (this
paper) and/or asymmetrically [62] with respect to the hop
origins. In particular, the present paper introduces a simple,
general expression to determine the average motion of the
diffusing particle in systems that contain symmetric hops
only, focusing then on the analysis of adsorbate diffusion on
surfaces and within the 2D gaps of layered materials with
triangular, rectangular, and square symmetry, finally applying
the resulting formulas to discuss intercalation in a model

topological insulator, Bi2Se3. The analytical expressions are
validated against KMC simulations, obtaining excellent agree-
ment between calculated and simulated diffusivities. Thus,
one can determine the overall diffusion coefficient without
performing the KMC simulations.

Based on diffusion rates obtained from energy barriers
procured by labor-intensive DFT calculations, we analyze the
temperature dependence of the diffusion of Cu, Ag, and Rb
on the Bi2Se3(0001) surface and within the vdW gap of this
layered material. We also analyze the occurrence of adsorbate
intercalation due to the alignment between vdW gaps and
terraces on the stepped (0001) surface of this topological
insulator. At room temperature and low coverage, we conclude
that the Rb atoms quickly diffuse across the terraces and hit
the steps, where a small number remain trapped while the rest
bounce back into the terraces. Thus, Rb is expected to partially
decorate the steps while remaining present on the terraces. In
comparison, the Cu atoms take a longer time to arrive at the
steps, eventually penetrating with relative ease into the vdW
gap. Thus, Cu atoms are expected to mostly intercalate into
the vdW gap while partially remaining at the steps. Ag atoms
are expected to take an even longer time to diffuse across the
terraces, eventually penetrating into the vdW gap with time
but meanwhile remaining around the steps.
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