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ABSTRACT

Background. A key challenge for conservation biology in the Neotropics is to under-
stand how deforestation affects biodiversity at various levels of landscape fragmentation.
Addressing this challenge requires expanding the coverage of known biodiversity data,
which remain to date restricted to a few well-surveyed regions. Here, we assess the
sampling coverage and biases in biodiversity data on fruit-feeding butterflies at the
Brazilian Atlantic Forest, discussing their effect on our understanding of the relationship
between forest fragmentation and biodiversity at a large-scale. We hypothesize that
sampling effort is biased towards large and connected fragments, which occur jointly
in space at the Atlantic forest.

Methods. We used a comprehensive dataset of Atlantic Forest fruit-feeding butterfly
communities to test for sampling biases towards specific geographical areas, climate
conditions and landscape configurations.

Results. We found a pattern of geographical aggregation of sampling sites, inde-
pendently of scale, and a strong sampling bias towards large and connected forest
fragments, located near cities and roads. Sampling gaps are particularly acute in small
and disconnected forest fragments and rare climate conditions. In contrast, currently
available data can provide a fair picture of fruit-feeding butterfly communities in large
and connected Atlantic Forest remnants.

Discussion. Biased data hamper the inference of the functional relationship between
deforestation and biodiversity at a large-scale, since they are geographically clustered
and have sampling gaps in small and disconnected fragments. These data are useful
to inform decision-makers regarding conservation efforts to curb biodiversity loss
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in the Atlantic Forest. Thus, we suggest to expand sampling effort to small and
disconnected forest fragments, which would allow more accurate evaluations of the
effects of landscape modification.

Subjects Biogeography, Ecology, Entomology, Zoology

Keywords Biodiversity data, Deforestation, Butterflies, Habitat fragmentation, Atlantic Forest,
Landscape, Macroecology, Sampling bias

INTRODUCTION

Species are disappearing worldwide at an alarming rate, particularly in tropical
regions (Dirzo ¢ Raven, 2003) where extinction and defaunation processes result from
anthropogenic environmental impacts (Crutzen, 2006; Ceballos et al., 2015; Dirzo et al.,
2014). In the Neotropics, species extinction is directly related to deforestation (Estrada et
al., 2016). However, an in-depth understanding of how deforestation causes biodiversity
loss for specific taxa in relation to different levels of landscape fragmentation is still missing
(Chase et al., 2020).

Assessing the vulnerability of species to extinction caused by deforestation needs long-
term data on population dynamics at different spatial scales and levels of landscape
fragmentation (Fahrig, 2017). However, community data documenting the species
abundance and richness for different localities, specifically in fragmented landscapes,
are scarce (Martin, Blossey ¢ Ellis, 2012). The lack of such data curbs making reliable
assessments of population trends through time and along different gradients of landscape
fragmentation. In this sense, extensive on-line biodiversity information could help
us to understand species extinctions, correlating changes in species occurrence with
deforestation and habitat fragmentation. However, information about species occurrence
and distributions available in on-line databases is potentially biased (Hortal, Lobo ¢
Jiménez-Valverde, 2007; Hortal et al., 2008; Lobo et al., 2007; Boakes et al., 2010; Stropp
et al., 2016; Stropp et al., 2020). Such biases in species occurrence data could be partly
addressed by adding the records of species occurrence from small natural history collections
and scientific literature that are typically not present in on-line databases (Robertson et
al., 2014; Gries, Gilbert & Franz, 2014; Geijzendorffer et al., 2015; Soltis & Soltis, 2016). Data
mobilization (i.e., making data available for use by anyone and anywhere) can partially
reduce the spatial and temporal bias, and increase the predictive power of models, allowing
assessing ecological patterns accurately (see Whittaker et al. (2005)). Nevertheless, the
use of the assembled big data can potentially add noise and/or bias into conservation
studies. This issue naturally stems from pulling together data gathered using different
survey methods and collected for very different specific questions, which may or may
not be related to the aims of the new big data studies. As far as we know, the extent to
which mobilizing biodiversity big data allows studying the functional relationship between
forest fragmentation and large-scale biodiversity loss has not been subject to systematic
evaluation yet.

Sobral-Souza et al. (2021), PeerJ, DOl 10.7717/peerj.11673 2/23


https://peerj.com
http://dx.doi.org/10.7717/peerj.11673

Peer

The Brazilian Atlantic Forest is a highly human-impacted biodiversity hotspot, which
is threatened by deforestation, climate change, and invasive species (Mittermeier et al.,
2005; Bellard et al., 20145 Joly, Metzger ¢ Tabarelli, 2014; Bello et al., 2020). The increase
in forest fragmentation, with the consequent increment in the number of small forest
patches (Taubert et al., 2018), translates into an overall loss of biodiversity and changes in
ecosystem functioning (Sala et al., 2000; Dirzo ¢ Raven, 2003; Butchart et al., 2010; Haddad
et al., 2015; Chase et al., 20205 Hortal ¢ Santos, 2020). The Atlantic Forest fragmentation
is the main driver of the loss of mammals (Pardini, 2004; Galetti et al., 2009; Jorge et
al., 2013), birds (Metzger et al., 2009; Boscolo ¢ Metzger, 2009), reptiles (Gibbons et al.,
2000; Almeida-Gomes & Rocha, 2014a), amphibians (Almeida-Gomes & Rocha, 2014b;
Almeida-Gomes et al., 2016), dung beetles (Alves ¢» Herndndez, 2019), other invertebrates
(Didham et al., 1996), and plants (Hobbs ¢ Yates, 2003). In the same way, Atlantic Forest
fragmentation caused the depletion of ecosystem functions such as pollination (Hadley
¢ Betts, 20115 Jaffé et al., 2016) and seed dispersal (Galetti, Alves-Costa ¢ Cazetta, 2003;
Galetti et al., 2006). Most of these studies are based on small-scale data from a few forest
fragments, but their outcomes are commonly used to infer the overall impact of forest
fragmentation on biodiversity and ecosystem function at large scale. The scarcity of
standardized biodiversity inventories across large geographical areas mostly explains the
lower proportion of large-scale studies in comparison to local studies. Yet, the publication
of data papers has been contributing to fill this knowledge gap (Galetti ¢» Ribeiro, 2018).
Besides these compilation efforts, the study of the spatial and environmental sampling bias
in the knowledge of a taxon is also a crucial challenge to improve the understanding of the
fragmentation effects on biodiversity across different spatial scales.

Here we assess the sampling coverage biases and gaps in fruit-feeding butterfly
biodiversity data, discussing the possibility to infer or not the relationship between
deforestation and the loss of diversity from this group at large scale in the Brazilian
Atlantic Forest. We focus our study on fruit-feeding butterflies (Lepidoptera) whose
occurrence is sensitive to environmental conditions (Brown ¢ Freitas, 2000; Bonebrake
et al., 2010). The fruit-feeding butterflies are mostly used to assess the effects of forest
fragmentation as they respond quickly to changes in environmental conditions, are
easy to capture using standardized sampling traps, and their taxonomic identification is
straightforward compared to other insect groups (Freitas et al., 2014). The fruit-feeding
butterfly communities of the Atlantic Forest have been surveyed across several localities for
around fifty years. Most of this information was until recently restricted to field guides or
to the sampling made by naturalists, who did field expeditions to collect as many species as
possible mainly in forest sites and protected areas, typically located at large forest remnants.
The recent digitalization of such information allowed the construction of several datasets,
whose quality relies on an extensive compilation of standardized samplings and field
observations conducted over 54 years across 122 localities (see Santos et al., 2018).

We have used this new dataset to investigate and quantify spatial biases and gaps in the
occurrence of fruit-feeding butterflies from the Brazilian Atlantic Forest. We seek to assess
how previous sampling effort affects our capacity to assess the functional relationship
between deforestation and trends in fruit-feeding butterflies at large scale in this biome.
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We hypothesize that sampling efforts are spatially biased towards large and connected
fragments, which occur geographically clustered in the Atlantic forest nowadays. We predict
that these biases prevent inferences of relation between fragmentation and biodiversity loss
at large scale.

MATERIALS & METHODS
Study area

The Brazilian Atlantic Forest stretches from the southern to the northeastern Atlantic coast
of Brazil (see Ribeiro et al. (2009), Fig. 1). Two main forest types prevail: a dense tropical
rainforest occurs close to the Atlantic coast; a seasonal forest occurs inland at altitudes
higher than 600 m above sea level. The Brazilian Atlantic forest biome comprises five
bioregions (Bahia, Brejos Nordestinos, Pernambuco, Diamantina, and Serra do Mar), and
three regions that are considered transition zones (Sdo Francisco Forest, Araucaria Forest,
and Interior Forests) (Silva ¢ Casteleti, 2003; Fig. 1). Despite its high species richness and
endemism, the original Atlantic Forest landscape has been severely modified, with the
remaining mosaic of small and disconnected forest fragments accounting for less than
12% (150 million hectares) of the original forest cover (Ribeiro et al., 2009). About 80% of
these fragments are smaller than 50 hectares (Joly, Metzger ¢ Tabarelli, 2014) and poorly
connected to larger forest remnants (Ribeiro et al., 2009).

Species data

All fruit-feeding butterflies occurring in the Atlantic forest belong to the family
Nymphalidae forming a large polyphyletic group within this family. The larvae are
herbivorous and adults feed on decomposing fruits and other fluids like plant exudates or
mammal excrements (Devries, 1987; Freitas et al., 2014). We obtained records of species
occurrence from two on-line biodiversity databases: Global Biodiversity Information
Facility (GBIF, 2020 DOI https://doi.org/10.15468/dl.bnbeqo) and SpeciesLink (2020).

Besides these records, we added all records compiled by Santos et al. (2018), who made
an exhaustive compilation of data on local checklists covering 54 years of continuous
sampling and observations. This dataset includes: (1) all local species checklists recorded
by Prof. K. Brown Jr. from 1964 to 2006 and by Prof. A. V. L. Freitas from 1988 to 2018,
and (2) local checklists recorded in studies published in peer-reviewed journals, PhD,
Masters and BSc theses, and technical reports). These checklists contain records compiled
in exhaustive local inventories of areas typically smaller than 1 km?. In total, Santos et al.
(2018) dataset contains records on 279 fruit-feeding butterfly species.

We then combined all records gathered from these three sources (i.e., GBIF, SpeciesLink
and Santos et al., 2018) into a single dataset. We excluded duplicate records, i.e., records
of the same species that were collected at identical latitude, longitude and date. We also
excluded records which: (1) geographic coordinates were given with a precision of less than
three decimal places (i.e., approximately 100 m of spatial precision) to ensure observations
can be attributed also to small forest fragments; (2) coordinates placed outside Brazil; and
(3) coordinates coinciding with the center of a city/village and/or museum collections (i.e.,
populated places and places classified as administrative level 2 according to GEONAMES,
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Figure 1 Location of sites with well-sampled fruit-feeding butterfly inventories in the Brazilian At-

lantic Forest. Black dots indicate well-sampled sites of fruit-feeding butterflies; White lines mark the lim-

its of Brazilian states; dark gray areas highlight forest remnants and background colour shades show the

Brazilian Atlantic Forest bioregions proposed by Silva ¢ Casteleti (2003).
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2020) (https://www.geonames.org/). Additionally, all records holding erroneous scientific

names, except accepted synonyms, were excluded from our analyses following Lamas (2004)

as correct taxonomy data. Finally, we selected from this dataset only records belonging to
the 279 species listed by Santos et al. (2018) because this dataset contains taxonomically

revised names with updated taxonomy.

Climate variables and landscape metrics
We used the 19 bioclimatic variables available in WorldClim 2.0 database (Fick ¢ Hijmans,
2017) at 1 km? resolution to characterize the climatic conditions of Atlantic Forest. These

variables were downloaded in worldwide extension and then clipped to the limit of the

Brazilian Atlantic forest (Ribeiro et al., 2009). Then, we applied a Principal Component

Analysis (PCA), with varimax rotation, to obtain the main climatic gradient across the
Atlantic forest. The first two axes of the PCA summarize the variation of climate in the
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Table 1 Landscape metrics used to describe variations in landscape features, for the assessment of environmental coverage and bias in the in-
formation on fruit-feeding butterflies in the Atlantic Forest.

Metric

Description

Category

Reference

Proportion of habitat

Fragment size

Functional Connectivity

Homogeneity

Distance to urban areas

Distance to roads

Proportion of forest habitat within a square window 1 x

1 km, centered in the focal cell (= amount of vegetation
cells/total number of cells in the window). It varies between
0 and 100%

Size of the forest fragment where the sampling site was
located in (log10 ha)

Area of functionally connected forest (log10 ha * 100) with
distance between separate patches < 180 m. Sampling sites
located at 180 m far from the forest edge obtain the value as
if located inside the fragment

Similarity of Enhanced Vegetation Index (EVI) between
adjacent pixels based on the textural features of EVI.
Images were acquired by the Moderate Resolution Imaging
Spectroradiometer (MODIS)

Euclidean distance to urban area (m)

Euclidean distance to nearest road (m)

Landscape modification

Landscape modification

Landscape modification

Landscape modification

Anthropogenic
Anthropogenic

Ribeiro et al. In prep.

Ribeiro et al. In prep.

Ribeiro et al. In prep.

Tuanmu ¢ Jetz (2015)

Ribeiro et al. In prep.
Ribeiro et al. In prep.

Atlantic forest and constitute our definition of climate environmental space, in 0.25 x 0.25
km resolution, for all subsequent analyses.

We used five landscape metrics to characterize the spatial features of Atlantic Forest
patches: (1) proportion of forest cover; (2) patch size; (3) homogeneity of forest cover; (4)
200 m functional connectivity—as a proxy for butterfly dispersal ability; and (5) Euclidean
distance from roads and urban areas. We used these metrics because they capture the
structure and configuration of forest patches that affect the composition of butterfly
communities (Santos et al., 2020). All landscape metrics were calculated for geospatial
grid cells of 1 km? cell-size resolution (Table 1) and are based on maps of natural forest
cover produced by the Brazilian Foundation for Sustainable Development (FBDS, 2020),
Fundac¢do SOS-Mata Atléntica and the National Institute for Spatial Research (SOS Mata
AtlAcntica Foundation, 2020), and the Global Forest Change project (Hansen et al., 2013).
To characterize the spatial features of forest patches, we used maps of non-forest natural
vegetation (e.g., Savanna), water bodies, planted forests (silviculture), urban areas, pasture,
sugarcane plantations, roads, and other anthropic uses (e.g., other crops, degraded soil,
burned area). Moreover, we estimate the anthropogenic influence in the forest patches
by calculating the Euclidean distance between forest patches to the nearest road and city.
Finally, we performed a Principal Component Analysis (PCA) and used the first two axes
of the PCA to summarize the spatial features of forest patches of the Atlantic forest in grid
cells of 0.25 x 0.25 km in environmental space.

Analysis of inventory completeness

Inventory completeness was calculated for all grid cells of 1 km? resolution of the Brazilian
Atlantic Forest, as defined by Ribeiro et al. (2009). For each grid cell, we considered the
cumulative number of specimens and species collected only from GBIF and SpeciesLink.
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Inventory completeness was estimated by the ratio between the number of observed and
predicted species, with the latter being obtained from species accumulation curves (Lobo et
al., 2018). We obtained the number of predicted species for each cell from the asymptotic
value of the sample-based species accumulation curve fitted with the function “Clench”
from the R package KnowBR (Lobo et al., 2018), where each record from either GBIF

or SpeciesLink was considered as an independent sample (see Hortal ¢~ Lobo, 2005). We
considered cells as well-sampled when either: (1) they contain more than 50 records and
show an inventory completeness higher than 0.7; or (2) they host a local inventory from
the list of Santos et al. (2018). Since the dataset compiled by Santos et al. does not contain
the information on the number of observations for each individual species, we assumed
that each local inventory that passed their scrutiny was complete enough so as to consider
it as well-sampled—and by extension the 1 km? grid cell where it is placed. However, this
dataset is one of the most comprehensive compilations of sampling and field observations
of butterfly communities in the Atlantic Forest (Santos et al., 2020). Thus, the final set
of well-sampled sites includes both the results of inventory completeness obtained from
on-line biodiversity information databases, and the complete inventories included in Santos
etal. (2018) (Table S1).

Analysis of spatial coverage and bias of well-sampled sites

First we conducted an Average Nearest Neighbor analysis (ANN) with the aim of assessing
if the well-sampled sites were spatially overdispersed or aggregated (i.e., clustered) at both
narrow and broad geographical scales (i.e., small and large neighbor distances) testing
against a null model that include the 117 points randomized 1000 times through the
Atlantic Forest delimitation, using 1 km? cell-size resolution. To access the percentage of
aggregated sites we calculated the spatial dispersion of sites based on randomly expected
mean nearest neighbour distance, thus distances lower than random were considered as
aggregated and higher than random as overdispersed.

In addition, we assessed whether well-sampled grid-cells cover the climate and landscape
conditions of the Brazilian Atlantic Forest. To this end, we first calculated the frequency
of each climate and landscape condition (Table 2) in the environmental space defined by
all 0.25 x 0.25 km grid cells of the biome. Second, we quantified the overlap between
the distributions of well-sampled cells and all cells in these two environmental spaces
(both climate and landscape) through Schoener’s D index (Schoener, 1970; Warren, Glor ¢
Turelli, 2008). This index characterizes the congruency (i.e., overlap) between two spatial
layers varying from zero (total lack of congruency) to one (total congruence) (Broennimann
et al., 2012).In our analysis, D values close to one indicate that well-sampled cells are located
in most if not all climate and landscape conditions found in the Atlantic forest, while D
values close to zero indicate incomplete coverage of climate and landscape conditions, and
thus biases in coverage (see Ronquillo et al., 2020 for a similar approach). We tested the
significance of D values by comparing the observed D value against a null distribution,
generated by drawing 1,000 random samples of 117 cells (i.e., the number of well-sampled
cells; see below), and then calculating the Schoener’s D index in each iteration for climate
and landscape conditions separately.

Sobral-Souza et al. (2021), PeerJ, DOl 10.7717/peerj.11673 7/23


https://peerj.com
http://dx.doi.org/10.7717/peerj.11673#supp-1
http://dx.doi.org/10.7717/peerj.11673

Peer

Table 2 Summary results of the analysis of the coverage, bias and rarity in the description of climate and landscape structure variations across
the Atlantic Forest provided by the sites with well-sampled cells fruit-feeding butterfly communities.

Climate Sampling Coverage Bias Rarity
Bioregions Number of well- Schoener’sD  Coverage  PCl x? P PC2 x? P X2 P
sampled cells Surface
Atlantic Forest 117 0.44 0.24 1.386 0.239 1.377 0.24 37.03 <0.0001"
Bahia 16 0.21 0.043 1.089 0.267 2.386 0.122 20.66 <0.0001"
Serra do Mar 42 0.22 0.11 1.634 0.201 1.594 0.206 19.29 <0.0001"
Pernambuco 4 0.02 0.015 2.554 0.110 1.378 0.240 0.7 0.4
Araucaria 12 0.06 0.034 1.674 0.196 0.250 0.616 3.49 0.06
Interior 41 0.27 0.1 1.824 0.177 0.034 0.855 24.4 <0.0001"
Diamantina 2 0.01 0.006 0.004 0.945 0.58 0.446 2.4 0.12
Landscape Sampling Coverage Bias Rarity
Bioregions Number of well- Schoener’sD  Coverage  PCl x? P PC2 x? P x P
sampled cells Surface
Atlantic Forest 117 0.38 0.1 10.39 <0.0001"" 93.68 <0.0001" 113.25  <0.0001"
Bahia 16 0.07 0.032 3.301 0.069 0.922 0.337 13.4 <0.0001"
Serra do Mar 42 0.19 0.072 16.145 <0.0001"" 11.941 0.001"  28.75 <0.0001"
Pernambuco 4 0 0.007 1.224 0.269 2.956 0.086 0.2 0.65
Araucaria 12 0.12 0.035 6.906 0.009" 5.629 0.018" 19.08 <0.0001"
Interior 41 0.36 0.035 11.358 <0.001" 51.954 <0.0001"" 66.2 <0.0001""
Diamantina 2 0.01 0.004 4.809 0.028" 0.823 0.364 3.75 0.05"
Notes.

Number of well-sampled cells indicates the number of well-sampled sites. Significant results of the Kruskall-Wallis tests used to assess bias in sampling and rarity sites are
marked with *p < 0.05; **p < 0.0001.

To assess the coverage of climate and landscape conditions of the Atlantic forest by
well-sampled cells, we applied Kruskal-Wallis tests. These tests allowed verifying the extent
to which well-sampled cells: (1) provide a representative subset of the overall climate
and landscape variation; and (2) cover adequately regions of rare climate and landscape
conditions (see similar approaches in Kadmon, Farber ¢ Danin, 2004; Hortal & Lobo,
2011). For this latter purpose, we standardized values of each PCA axis to vary between
0 and 1, where values near one represent rare climate and landscape conditions—that is,
environmental conditions that occur in unique grid cells or sites. In contrast, values close
to zero represent the most common conditions—climate and landscape conditions that
occur in many sites of the Atlantic Forest.

Our analyses considered climate and landscape separately and were performed for the
entire Brazilian Atlantic Forest, and separately for each bioregion (see study area section).
Only bioregions with more than one well-sampled cell were analyzed. All analyses were
performed in R (R Development Core Team, 2018).

RESULTS

In Santos et al. (2018) we found 6,840 occurrences of fruit-feeding butterflies, recorded
in 119 grid-cells, 110 of them located in the Brazilian Atlantic Forest. In GBIF and
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SpeciesLink we found a total of 411,795 Nymphalidae occurrences, being that 10,672 of
them were within the boundaries of the Brazilian Atlantic Forest, and of those 2,201 were
from fruit-feeding butterfly species according to Santos et al. (2018). These records were
distributed across 75 grid-cells. Only seven grid-cells showed high inventory completeness,
i.e., had more than 50 records and an indicator of inventory completeness larger than 0.7.
Therefore, we found 117 well-sampled sites: 110 local checklists documented by Santos et
al. (2018), and seven additional sites presented high inventory completeness according to
GBIF and SpeciesLink records (Fig. 1).

The Average Nearest Neighbor analysis (ANN) indicated that there is an spatial
aggregation of well-sampled sampling sites in relation to the null models (Fig. 2). Still,
regardless of the scale (nearby or distant neighbors—X-axis in Fig. 2A), the sampling data
is more aggregated (70% of our sampling sites) than the null model (Fig. 2B, C). Once
the results showed a strong geographical sampling bias, further analyses are required to
identify the environmental factors (accessibility and/or landscape configuration) that may
have caused these spatial biases.

The PCA performed with climate variables did not reveal any strong climate gradient
(Fig. S1A). However, in the PCA performed with landscape metrics we identified two
main gradients, reflecting mainly variation in the structure of forest cover (Axis 1) and
the anthropogenic influence (distances) in the landscape (Axis 2) (Fig. SIB). The first
axis, accounting for 45% of the variation, was associated with the proportion of forest
cover, patch size, and 200 m functional connectivity (Fig. S1A). The second axis accounted
for 34% of the variation and was correlated to distance to cities, roads, and landscape
homogeneity (Fig. S1B).

The location of well-sampled cells does not cover all climate and landscape conditions in
the Brazilian Atlantic Forest (climate: D = 0.44, p =0.001; landscape D =0.38, p < 0.001)
(Table 3, Figs. 3A and 3B, Figs. 4A and 4B). We found that only 24% and 10% of climate
and landscape surfaces, respectively, were well sampled (Table 2). Even covering only 24%
of the Atlantic Forest climate surface, the well-sampled cells are not climatically biased
(Fig. 3; Table 2; PC1 - x2=1.386,df =1, p=0.23; PC2 - x2=1.377 df =1, p=0.24).
Moreover, we found that the location of well-sampled cells across Atlantic Forest does not
capture the whole landscape conditions, but instead is biased towards large and connected
forest fragments that are close to cities and roads (Fig. 4, Table 2, PC1: x2=10.39, df =1,
p <0.0001; PC2: x2=93.68, df =1, p <0.0001). Importantly, our results also showed
pronounced sampling gaps in rare climate and landscape conditions, (Fig. 5; Table 2,
Climate: x2=37.03, df =1, p <0.0001; Landscape x2=113.25,df =1, p <0.0001)

(Fig. 4).

The Interior and Serra do Mar bioregions in the South host a larger number of well-
sampled sites than the northern bioregions of the Brazilian Atlantic Forest (Fig. 1, Table
2). Interestingly, the location of well-sampled cells within each bioregion did not present
significant climatic biases, but high sampling bias towards large and connected forest
fragments, close to cities and roads. Moreover, these regions presented consistent gaps in
the coverage of rare climate and landscape conditions, although the interpretation of these
results requires some caution due to the low number of sampling sites in each bioregion.
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DISCUSSION

Our findings point that the well-sampled sites of fruit-feeding butterflies are more spatially
aggregated than random, stemming from a sampling bias towards large and connected
fragments, close to cities and major roads, independently of scale. Besides, we found
pronounced survey gaps in rare climate and landscape conditions and oversampling

in common conditions—see geographical locations of rare and common climate and
landscape conditions (Fig. 5). These results suggest that the current knowledge about the
distribution of fruit-feeding butterflies in the Atlantic Forest may be insufficient to infer
functional relationships between deforestation and the biodiversity of this group, at least
on a broad scale. This highlights the need to both (1) account for these shortcomings (bias)
when assessing the responses of fruit-feeding butterflies to forest fragmentation in the
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Atlantic Forest, and (2) conduct further surveys in a wider range of climate and landscape

conditions within this biome.

The spatial biases and gaps in the data on fruit-feeding butterflies reported here
are common for insects (Lewinsohn, Freitas ¢~ Prado, 2005; Diniz-Filho, De Marco Jr ¢
Hawkins, 20105 Cardoso et al., 2011) and also extend to other taxonomic groups (Lewirnsohn
& Prado, 2002; Oliveira et al., 2016). A complete assessment of biases and gaps in the spatial

and environmental coverage of the Atlantic Forest provided by biodiversity data is still
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missing for most groups. Recent initiatives to streamline data on species occurrences,
populations, and communities of the Atlantic Forest (Galetti ¢~ Ribeiro, 2018) offer a new
opportunity to scrutinize the extent of these shortcomings in biodiversity sampling for this
biome. Such assessment is key for pinpointing the limitations of current biodiversity data,
accounting for them when evaluating the impact of forest fragmentation on biodiversity,
and planning future surveys. Determining extinction trends resulting from this kind of
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information is important to support informed decision-making that becomes particularly
important in the context of assessing the potential impacts of eventual changes to the
Brazilian Forest Code (Metzger, 2010; Brancalion et al., 2016).

The spatial over aggregation and the dearth of well-sampled sites in fragments located
far from cities and major roads is an accessibility bias that is common for most biodiversity
taxa (Dennis ¢~ Thomas, 2000; Kadmon, Farber ¢ Danin, 2004; Hortal, Lobo & Jiménez-
Valverde, 2007; Boakes et al., 2010; Tessarolo et al., 2014; Monsarrat, Boshoff & Kerley, 2018;
Stropp et al., 2020). Although the proximity to cities and roads poses a potential threat
to biodiversity (Benitez-Lopez, Alkemade ¢» Verweij, 2010), the trend of research teams to
choose more accessible places for sampling is indubitable. Most of the available databases
are composed of scientific publications originated from theses and research from academic
activities. Once these scientific projects have short-term and low funding, the choice
for study areas near institutions often guarantees their accomplishment under these
conditions. Yet, in the specific case of the fruit-feeding butterfly database, the nearness
of the researchers group for Lepidoptera studies also explains the geographical bias on
Atlantic Forest (Santos et al., 2018). In addition, butterfly surveys have been historically
carried out seeking to sample as many species as possible. This may have caused that larger
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and more connected fragments were more sampled, following the logic of the species—area
relationship (see below). In the Atlantic Forest, large fragments are spatially clustered,
which explains the aggregation of fruit-feeding butterfly surveys. An effective plan for
filling the sampling gaps from a geographical perspective should consider consulting the
geographic distribution of the records in the databases before choosing locations for future
expeditions. Unfortunately, the success of this strategy does not depend solely on technical
practices. Logistic factors such as funding for research and people engagement are also at
stake. Given that science and politics are not on the same page in the current Brazilian
scenario, expectations of developing such approach soon in the Atlantic Forest are currently
low.

Reaching a sound understanding of the carrying capacity of progressively more
fragmented landscapes requires good-quality data on population and community trends
from fragments located across the entire environmental, spatial, and habitat gradients.
Our results showed a lack of well-sampled sites for fruit-feeding butterflies in small and
disconnected forest fragments. The naturalists or researchers behind the historical butterfly
expeditions often had a premise for sampling sites to record as much biological diversity
as possible, and uncover new species for science. Thus, their predilection for these sites
and the number of inventories in extensive natural forests are not a simple coincidence
(see Sastre ¢» Lobo, 2009). In present times, most of these Atlantic Forest landscapes are
represented by forest remnants within conservation units. From the perspective of the
environmental landscape bias, they represent the most common sampling sites.

In contrast, the small forest fragments or those more subject to the deforestation
processes are comparatively less sampled. Nonetheless, nowadays most of the Atlantic
Forest landscape is represented by forest fragments of these characteristics (Ribeiro et
al., 2009). These small fragments may host species that are deemed to extinction due to
the time lag between reduction in the size of forest area and the eventual disappearance
of the remnant populations (e.g., Triantis et al., 2010). Therefore, estimating extinction
debt and determining how to ameliorate it are crucial challenges of fragmentation effects
on biodiversity (Kuussaari et al., 2009). It follows that these landscape-sampling gaps
compromise our ability to understand how species respond to changes in habitat size. The
lack of well-sampled inventories from small and disconnected forest fragments highlights
the importance of assessing the quality and coverage of the available biodiversity data
before conducting large-scale analyses in macroecology and conservation (Hortal, Lobo
& Jiménez-Valverde, 2007; Rocchini et al., 2011; see also Stropp et al., 2016; Ronquillo et al.,
2020; Freitas et al., 2021).

Nonetheless, although the well-sampled sites had a higher overall coverage of climatic
gradients than that of landscape characteristics, they also failed in providing a fair
representation of rare climatic conditions in all bioregions of the Brazilian Atlantic
Forest (see Fig. 2). Climatically rare regions lack good-quality inventories since they are not
represented on naturalist expeditions and opportunistic surveys (but see Faith ¢ Walker,
19965 Sastre ¢ Lobo, 2009). Consequently, species restricted to small and rare climate
habitats (Ohlemiiller et al., 2008; Morueta-Holme et al., 2013) are underrepresented in our
analysis, an observation that applies to other biodiversity surveys in the Neotropics in
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more general (Kamino et al., 2012). This absence of information about species occurring
in rare climates may compromise our ability to predict shifts in species distribution as a
response to climate change and forest fragmentation (see Kamirno et al., 2012; Hortal, Lobo
& Jiménez-Valverde, 2012; Guisan et al., 2014).

CONCLUSIONS

Current knowledge on fruit-feeding butterflies may provide an incomplete picture of
species responses to landscape transformations in the highly dynamic Atlantic Forest
biome. This does not necessarily mean that the current database on fruit-feeding butterflies
in the Brazilian Atlantic Forest does not have its merit or is not useful. The fair coverage
of climatic gradients and accessible and conserved forest fragments provides a solid
basis for designing samplings that prioritize small, disconnected fragments in remote
locations. The relationship between deforestation and community decay only will be
adequately established at a broad scale when biodiversity data provides an even coverage of
both landscape and climate variations in the Atlantic Forest. To accomplish this, feeding
biodiversity databases with surveys from regions of less common environmental conditions
is necessary. In the specific case of the Atlantic Forest butterfly database, these areas are
recognized as disturbed forest fragments.
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