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Condensed sister chromatids possess a protein scaffold or axial 
core to which loops of chromatin are attached. The sister cores 
are believed to be dynamic frameworks that function in the 
organization and condensation of chromatids. Chromosome 
structural proteins are implicated in the establishment of sister 
chromatid cohesion and in the maintenance of epigenetic phe­
nomena. Both processes of templating are tightly linked to 
DNA replication itself. It is a question whether the structural 
basis of sister chromatid cores is templated during S phase. As 
cells proceed through the cell cycle, chromatid cores undergo 
changes in their protein composition. Cytologically, cores are 
first visualized at the start of prometaphase. Still, core assem­
bly can be induced in G1 and G2 when interphase cells are 
fused with mitotic cells. In this study, we asked if chromatid 
cores are similarly able to assemble in S-phase cells. We find 
that the ability to assemble cores is transiently lost during local 
replication, then regained in chromosome regions shortly 
after they have been replicated. We propose that core templat. 
ing occurs coincident with DNA replication and that the com· 
petence for the assembly of the sister chromatid cores is 
acquired shortly after passage of replication forks. 

Abbreviations. PCCs Prematurely condensed chromosomes. 
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Introduction 

Metaphase chromosomes consist of two sister chromatids, 
each one having an axial protein core or scaffold to which 
loops of chromatin are anchored [2, 8, 9,11]. Silver impregna­
tion directly stains chromatid cores in mammalian cells at 
cycle stages where the nuclear envelope is absent, i. e. during 
the period from prometaphase until mid telophase [5], closely 
resembling topoisomerase II alpha immunostaining [4] . Still, 
single chromosomal G1 cores and double Gz cores can be 
stained with silver when interphase chromosomes are made to 
condense prematurely by mitotic cell fusion (Fig. 1a) [4] . 
Recent work has demonstrated that CAF-1-dependent chro­
matin assembly, a process that promotes the maintenance of 
epigenetically determined chromosomal states, can only occur 
following DNA replication [15] . Moreover, longitudinal 
cohesion between sister chromatids is established during DNA 
replication [17]. Thus, the cohesin Scc1p, in budding yeast , is 
able to bind to chromatin in S phase and Gz. However, asso­
ciation during ongoing DNA replication is essential for the 
establishment of cohesion [17] . If the ability to assemble sister 
chromatid cores is similarly acquired during DNA synthesis, 
this process should be revealed when S-phase prematurely 
condensed chromosomes (PCCs) are analysed by silver 
impregnation. 

Material and methods 
Cell culture and fusion 
SVM 87 cells, a Muntiacus muntjak SV 40-transformed fibroblast cell 
line [12], were grown in monolayer cultures at 37°C in Eagle's minimal 
essential medium (MEM) supplemented with 10 % fetal calf serum, 
nonessential amino acids, penicillin and streptomycin, in an atmo­
sphere of 5 % CO2, 
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Fig_ 1_ Prematurely condensed chromosomes of Muntiacus muntjak 
(SVM) cells , impregnated with silver to visualize chromatid cores 
(methodology as previously described [4, 6] . M = metaphase chromo­
some, G 1 = G 1 PCC, G2 = G2 PCC. (8) Fusion of a G h a G2 and a 
metaphase cell. In G 1 PCCs, cores are continuous and single. G2 PCCs 
have continuous double cores. (b) Early-S-phase PCe. No double core 
segments can be seen. Single cores do not stain with silver in a continu­
ous pattern . Rather, the cores are fragmented, appearing as discrete , 
evenly spaced segments (small arrowheads). (c) Mid-S-phase PCCs . 

For the induction of premature chromosome condensation, mitotic 
SVM cells were fused with unsynchronized SVM cultures, according to 
the standard procedure [6] . 

Silver impregnation 
Silver impregnation was performed according to [4]. Brietly, the mate­
rial was fixed with Carnoy's, either directly or after a 6 min hypotonic 
treatment in 50 % culture medium 50 % distilled water. Fixed material 
was dropped onto slides and air-dried. Dried slides were treated for 23 
min with 2 x SSC at 60 °c, then rinsed in distilled water and allowed to 
dry. The staining solution was prepared immediately before use: 150 !ll 
of 0.05 % formic acid in distilled water was added to 0.1 g of silver 
nitrate . Each slide was given three drops of the staining solution, then 
covered with a coverslip. Slides were put in a wet chamber at 75 °C. 
Usually 3-4 min staining gave optimal staining intensity. Coverslips 

Some short double core segments are present (large arrows) , inter­
spersed with regions in which the cores are not detectable. Single core 
segments (small arrowheads) are less abundant than in (b) . (d) Late-S­
phase PCCs. No single core segments are detectable. Regions of dou­
ble cores stained with silver (large arrows) , interspersed with gaps 
without a stained core . (e) S/G2-phase PCCs. Chromosomal cores are 
almost complete. Several core gaps (three of them pericentromeric) 
remain in this cell (arrowheads). Magnification of Fig. a, band dare 
similar to that of Fig. e . Bars = 10 !lm. 

were then removed with distilled water and slides were air dried and 
then mounted with Euparal resin . 

Results and discussion 

In S-phase pees, a mixture of unreplicated, replicated and 
actively replicating DNA coexists [10,13,16]. If cores are able 
to assemble regardless of the cycle stage, S-phase pees should 
reveal segments of double core, correlating with the chromo­
some segments that have been replicated, interspersed with 
regions of single core corresponding to segments of DNA that 
have not yet been replicated [10]. At the other extreme, if 
cores are only competent to assemble once cells have com-
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pleted DNA replication, cores should not be visible in S-phase 
PCCs. In fact, neither of these extremes proved to be correct. 
The silver staining pattern of cores in S-phase PCCs revealed 
that the competence to assemble cores is indeed related to 
DNA replication. 

We examined early-S-phase PCCs to ask whether the abil­
ity to assemble cores is lost following G!. Silver staining 
revealed a dramatic fragmentation of single chromatid cores 
into discrete segments, interspersed with regions in which core 
assembly could not be seen (Fig. Ib). The early S-phase PCCs 
therefore revealed the localized loss of the competence to 
assemble a core. These core gaps resemble the chromosome 
gaps seen in S-phase pulverized PCCs, which were proven to 
correspond to replicating chromosomal regions by detecting 
[3H]thymidine incorporation [10, 13, 16]. In these early S­
phase PCCs, no double core regions were apparent. 

By mid S phase, silver staining of PCCs revealed that single 
core segments were progressively lost and small regions with 
double cores appeared (Fig. lc). These patterns of silver­
stained S-phase PCCs closely correspond with the images 
obtained by scanning electron microscopy of muntjac replicat­
ing chromosomes [10]. 

In late-S-phase PCCs, silver staining revealed double core 
segments interspersed with regions which were not stained 
with silver (Fig. Id). The amount of assembled double core 
progressively increased as cells were closer to the end of S 
phase (Fig. Ie), as would be expected if the competence for 
core assembly were related to the advancement of replication 
forks. We conclude that sister chromatid cores are able to 
assemble in chromosome regions shortly after they replicate. 
Therefore, sister chromatid cores are likely to be templated 
coincident with DNA replication. 

Chromosome scaffolds or cores contain topoisomerase II, 
Scll (a member of the condensin family of putative ATPases) 
[2, 3, 7, 14] and other less abundant proteins. Cores are 
dynamic frameworks that function in the organization and 
condensation of chromatids. Although premature chromo­
some condensation can be induced at any stage of the cell 
cycle, the ability to assemble a core is transiently lost in repli­
cating chromosome regions, then regained. This process prob­
ably involves loss or modification of core components prior to 
the initiation of DNA replication. In fact some core conden­
sins are absent from the nuclear matrix [14] and from the 
endoreduplicating chromosomes [1]. Such components pre­
sumably reassociate with chromosomes following passage of 
the replication fork. As sister chromatid cohesion also appears 
to be established at the time of DNA replication [17], it is 
tempting to propose that the establishment of their cohesion is 
linked to the gain of competence for assembly of sister chro­
matid cores. 
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