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Abstract
Linear complexity is a much used metric of the security of any binary sequence with appli-
cation in communication systems and cryptography. In this work, we propose a method of
computing the linear complexity of a popular family of cryptographic sequences, the so-called
generalized sequences. Such a family is generated by means of the irregular decimation of a
single Pseudo Noise sequence (PN-sequence). The computation method is based on the com-
parison of the PN-sequence with shifted versions of itself. The concept of linear recurrence
relationship and the rows of the Sierpinski triangle play a leading part in this computation.

Keywords Decimated sequence · Linear complexity · Generalized generator · Sierpinski
triangle · Recurrence relationship

Mathematics Subject Classification 94A55

1 Introduction

The idea of randomness in finite sequences reflects the difficulty of predicting next digits
of a sequence from the previous ones. A measure of the unpredictability of a sequence is
its linear complexity (LC). Roughly speaking, LC is related with the amount of sequence
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needed to recover the whole sequence. In terms of security, this amount must be as large as
possible: the recommended value is approximately half the period T of such a sequence, that
is LC � T /2. Traditionally, the LC of a sequence is computed by the Berlekamp–Massey
algorithm [17] after processing at least 2 · LC of its digits. Nevertheless, for sequences with
periods in a cryptographic range (T � 2128) the application of this algorithm could be an
extremely hard task.

In the literature, there exist different families of pseudorandom binary sequences, e.g.
Gold-sequence family, Kasami (small and large set) sequence families, GMW sequences
and generalized GMW sequences, Klapper sequences, No sequences, cascaded sequences,
multiplexed sequences or some classes of irregular decimated sequences (see [13,19,20]
and the references cited therein) with the following property: every one of these sequences
is obtained interleaving shifted versions of a single PN-sequence or output sequence of a
maximum-length Linear Feedback Shift Register (LFSR), see [13, Definition 1] and Sect.
2.1 for details on interleaved sequences. In brief, a large number of well-known sequences
satisfies such a property.

In this work, we analyse the LC of the sequences obtained from a class of irregular
decimation-based generators. The underlying idea of this type of generators is the irregular
decimation of a PN-sequence according to the bits of another one. Inside the class of genera-
tors based on self-decimation, we can enumerate: (a) the self-shrinking generator [18] where
a single PN-sequence decimates itself, (b) the modified self-shrinking generator [15] a new
variant of the self-shrinking generator that uses a selection rule based on the XORed value of
a pair of bits, (c) the t-modified self-shrinking generator [5] a generalization of the previous
generator where the PN-sequence is divided into groups of t bits before applying the selection
rule and (d) the generalized self-shrinking generator [14] a family of sequence generators
that includes among its members the generators listed in (a), (b) and (c), see subsection (2.3).
Thus, the generalized self-shrinking generator is the most general and representative element
in the class of self-decimated generators. Nevertheless, in reference [14] where such a gener-
ator is introduced, nomention to the parameter LC of the generalized sequences or sequences
produced by this generator can be found. Keeping in mind this fact, we introduce a method
of computing the LC of the generalized sequences. Such a method is based exclusively on
the comparison of the bits of shifted versions of one single PN-sequence that constitutes the
fundamental structure of the previous sequences.

This method of computing the linear complexity of generalized sequences was first intro-
duced in [9]. Nevertheless, amore complete and detailed version of such amethod is here pre-
sented. In the last section of this work, we introduce: (a) a discussion of the proposedmethod,
(b) a comparison between the requirements of the Berlekamp–Massey algorithm and those
of the algorithm here developed and (c) an extension of such a method to other types of self-
decimated generators. The previously enumerated items constitute the novelty of this paper.

The work is organised as follows: In Sect. 2, we introduce the basic concepts and results
necessary to understand the rest of the paper. This section includes an explicit description
of the concepts: LFSR, linear complexity, generalized sequences and t-modified sequences.
In Sect. 3, we describe a method of computing the linear complexity of the generalized
sequences. Discussion of such amethod aswell as its application to self-decimated generators
are introduced in Sect. 4. Finally, conclusions in Sect. 5 end the paper.

2 Preliminaires

In this section, we recall basic concepts and results that will be useful throughout this paper.
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Fig. 1 LFSR of length L

2.1 Binary sequences

Since the pseudorandom sequences used in secure communications and cryptography are
binary sequences, this work focusses on the binary field of two elements, denoted by F2. In
fact, let {ai } (i = 0, 1, 2, . . . ) be a sequence defined over F2, that is ai ∈ F2 for all i ≥ 0.
The decimation of the sequence {ai } by distance d is a new sequence {bi } (i = 0, 1, 2, . . . )
obtained by taking every dth term of {ai }, that is {bi } = {ad·i }, see [7].

Let L be a positive integer, and let c0, c1, . . . , cL−1 be given elements of the binary field
F2. A sequence {ai } satisfying the relation

ai+L = c1ai+L−1 + c2ai+L−2 + · · · + cL−1ai+1 + cLai i ≥ 0 (1)

is called an Lth order linear recurring sequence in F2. The equality given in (1) is an Lth
order linear recurrence relationship (l.r.r.). The polynomial of degree L

p(x) = x L + c1x
L−1 + c2x

L−2 + · · · + cL−1x + cL ∈ F2[x] (2)

is the characteristic polynomial of the linear recurrence relationship and the sequence {ai } is
said to be generated by p(x).

The generation of linear recurring sequences can be implemented onLinear FeedbackShift
Registers (LFSRs) [12, Chapter II]. These devices handle information in form of bits and they
are based on shifts and linear feedback (see Fig. 1). An LFSR consists of L interconnected
stages (LFSR length) of binary content, the characteristic polynomial p(x) of its linear
recurrence relationship and the non-zero initial state (stage contents at the initial instant). If
p(x) is a primitive polynomial [16, Chapter 3], then the register is said to be a maximum-
length LFSR and its output sequence {ai } is called a PN-sequence of period T = 2L −1 with
2L−1 ones and (2L−1 − 1) zeros. Therefore, a PN-sequence is a sequence generated by a
linear recurrence relationship of the form given in (1) whose characteristic polynomial given
in (2) is primitive. The structural properties of the PN-sequences are extensively analysed in
[12, Chapter III].

The linear complexity of a sequence is the length of the shortest LFSR that generates such
a sequence or, equivalently, the order of the lowest linear recurrence relationship able to gen-
erate it. Clearly, the linear complexity of a PN-sequence is L , the degree of its corresponding
characteristic polynomial, as given just L of its terms (ai , ai+1, . . . , ai+L−1) the remaining
terms are uniquely determined.

If α is a root of p(x), then α is a primitive element in F2L the extension field of F2 [16].
Via the characteristic polynomial, there is a natural one-to-one correspondence

ai ↔ αi (i = 0, 1, 2, . . . , 2L − 2), (3)
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Table 1 Interleaved sequence
w = {wi } generated by
interleaving 4 shifted versions of
a single PN-sequence

w0 w1 w2 w3

1 1 1 1

1 0 1 0

0 0 1 1

0 1 0 1

1 0 0 1

0 1 1 0

1 1 0 0

between the ith term of the PN-sequence, notated ai , and the ith power of α, notated αi .
The trace map is the function Tr : F2L → F2 defined by

Tr(x) =
L−1∑

j=0

x2
j ∀x ∈ F2L .

The trace map provides an adequate way of relating terms of the PN-sequence with powers
of α [16, Theorem 7.47]. In fact, if {ai } (i = 0, 1, 2, . . . ) is the PN-sequence generated by a
maximum-length LFSR, then there exists a non-zero element c ∈ F2L such that

ai = Tr(c αi ) (i = 0, 1, 2, . . . ).

Finally, the concept of interleaved sequence is defined as follows [13, Definition 1]:

Definition 1 Let p(x) ∈ F2[x] be a polynomial of degree r defined over F2[x] and letm be a
positive integer. For any sequencew = {wi } overF2, write k = i ·m+ j with (i = 0, 1, 2, . . . )
and ( j = 0, 1, . . . ,m−1). If the subsequencew j = {wi ·m+ j } (i = 0, 1, 2, . . . ) is generated
by p(x) for all j , then the sequence w is called an interleaved sequence over F2 of size m
associated with p(x). �	

We can write w = {w0,w1, . . . ,wm−1} where each w j ( j = 0, 1, . . . ,m − 1) is an
m-decimation of the sequence w by taking one out of m terms. If the polynomial p(x)
is primitive, then the sequence w is a primitive interleaved sequence and all subsequence
w j is the single PN-sequence generated by p(x). Table 1 shows the interleaved sequence
w over F2 with size m = 4 and associated with the primitive polynomial p(x) = x3 +
x + 1 of degree r = 3. Its period is Tw = 28. By rows, the interleaved sequence is w =
{1, 1, 1, 1, 1, 0, 1, 0, 0, 0, . . . , 1, 1, 0, 0}. By columns, every subsequence w j is a shifted
version of the PN-sequence generated by p(x).

2.2 The family of generalized sequences

The generalized self-shrinking generator (or simply generalized generator) was introduced
in [14] as a more simple version of the shrinking generator [6], since the generalized gen-
erator involves a single LFSR. This generator produces a family of sequences, the so-called
generalized sequences, that can be described as follows:

Definition 2 Let {ai } (i = 0, 1, 2, . . . ) be a PN-sequence generated by a maximum-length
LFSRwith an L-degree primitive characteristic polynomial. Let p be an integer and {vi } (i =
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0, 1, 2, . . . ) be a p-position left shifted version of {ai } with (p = 0, 1, 2, . . . , 2L − 2). The
decimation rule is very simple:

1. If ai = 1, then vi is output.
2. If ai = 0, then vi is discarded and there is no output bit.

Thus, for each p an output sequence {s0 s1 s2 . . .}p denoted by {sk}p (k ≥ 0) is generated.
Such a sequence is called the generalized sequence associated with the shift p. �	

Recall that {ai } remains fixed while {vi } is the sliding sequence or left-shifted version of
{ai }. When p ranges in the interval p ∈ [0, 1, 2, . . . , 2L − 2], then the family of 2L − 1
generalized sequences is obtained. Such a family, plus the identically null sequence, has
structure of Abelian group whose group operation is the bit-wise XOR (addition mod 2), the
neutral element is the identically null sequence and the inverse element of each sequence is
the sequence itself [14, Theorem 2].

Since 2L−1 is the number of ones in the PN-sequence {ai }, the period of every gener-
alized sequence will be a divisor of 2L−1. This family always includes [11] the sequence
{111111 . . .} for p = 0 and the sequences {101010 . . .} and {010101 . . .} for p = q, q + 1,
where q is an integer corresponding to the power αq ∈ F2L satisfying αq+1 = αq + 1. All
the sequences in this family are balanced (equal number of ones and zeros) except for the
identically one and null sequences [14, Theorem 1].

Finally, let {ui } (i = 0, 1, . . . , 2L−1 − 1) be a sequence of period T = 2L−1 whose terms
ui are elements of F2L . Keeping in mind the one-to-one correspondence defined in (3), the
terms of {ui } are the powers of α associated with the ones of {ai }. In fact,

ui = ατ(i), (4)

where τ(i)with 0 ≤ τ(i) ≤ 2L−2 denotes the position of the (i+1)th one in the PN-sequence
{ai }. Next, an upper bound on the LC of {ui } is given.
Theorem 1 ([1], Theorem 6) The linear complexity of the sequence {ui } defined in (4) is
upper bounded by

LC({ui }) ≤ 2L−1 − (L − 2).

The previous theorem will allow us to obtain an upper bound on the LC of the generalized
sequences.

Now two different sequence generators related with the generalized generator are intro-
duced. The self-shrinking generator [18] is a more simplified version of the shrinking
generator [6], where the PN-sequence {ai } = {a0, a1, . . .} generated by a maximum-length
LFSR is self-decimated. In this case, consecutive pairs of bits are considered. If a pair hap-
pens to take the value 10 or 11, then it produces the bit 0 or 1, respectively. On the other hand,
if a pair happens to be 01 or 00, then this pair is discarded. More formally speaking, given
two consecutive bits {a2i , a2i+1}, i = 0, 1, 2, . . ., the output sequence {s j } = {s0, s1, . . .} is
computed as:

{
If a2i = 1 then s j = a2i+1,

If a2i = 0 then a2i+1 is discarded.

The generated sequence is called the self-shrunken sequence.
On the other hand, themodified self-shrinking generator [15] considers groups of three bits

of a PN-sequence: given three consecutive bits {a3i , a3i+1, a3i+2}i≥0, the output sequence
{s j } = {s0, s1, . . .} is computed as:
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{
If a3i + a3i+1 = 1 then s j = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {s j } is known as the modified self-shrunken sequence.
Both the self-shrunken sequence and the modified-self shrunken sequence are also gen-

eralized sequences [3,21]

2.3 The family of t-modified sequences

In this subsection, a family of sequences closely related with the generalized sequences is
defined. The t-modified self-shrinking generator was introduced in [5] as a generalization
of the self-shrinking generator [18] and the modified self-shrinking generator [15]. This
generator produces a family of sequences, the so-called t-modified sequences, that can be
described as follows.

Definition 3 Let {ai } (i = 0, 1, 2, . . . ) be a PN-sequence generated by a maximum-length
LFSR with an L-degree primitive characteristic polynomial. From {ai } a t-modified self-
shrinking generator (t = 2, 3, . . . , 2L −2)with a very simple decimation rule is constructed.
In fact, if we divide the PN-sequence into groups of t bits {at ·i , at ·i+1, at ·i+2, . . . , at ·i+(t−1)},
then the t-modified sequence {sk} (k = 0, 1, 2, . . . ) is computed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

If
t−2∑
j=0

at ·i+ j = 1, then sk = at ·i+(t−1).

If
t−2∑
j=0

at ·i+ j = 0, then at ·i+(t−1) is discarded.

�	

According to this decimation rule, the t-modified sequence is obtained from t decimated
sequences {Seq( j)} = {at ·i+ j } ( j = 0, 1, . . . , t − 1) of the original PN-sequence {ai } with
decimation distance t . That is:

{Seq(0)} : a0 at a2t a3t a4t a5t . . .

{Seq(1)} : a1 at+1 a2t+1 a3t+1 a4t+1 a5t+1 . . .

{Seq(2)} : a2 at+2 a2t+2 a3t+2 a4t+2 a5t+2 . . .
...

...
...

...
...

...
...

{Seq(t − 2)} : at−2 at+t−2 a2t+t−2 a3t+t−2 a4t+t−2 a5t+t−2 . . .

{Seq(t − 1)} : at−1 at+t−1 a2t+t−1 a3t+t−1 a4t+t−1 a5t+t−1 . . .

If the decimation distance t satisfies the condition

g.c.d.(t, 2L − 1) = 1, (5)

then all the decimated sequences {Seq( j)} ( j = 0, 1, . . . , t − 1) are the same PN-sequence
whose characteristic polynomial is given by

p(x) = (
x + αt ) (

x + α2t ) (
x + α4t ) · · · (x + αt ·2L−1

),

where α ∈ F2L is a root of the characteristic polynomial p(x) of the PN-sequence {ai }.
See [12, Chapter III] for more details about decimation of PN-sequences.
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Recall that in order to construct the t-modified sequence, we perform the bit-wise XOR of
the first (t − 1) sequences {Seq( j)} giving rise to the same decimated sequence but starting
at a different point, that is:

{Seq(0)} : a0 at a2t a3t a4t a5t . . .

{Seq(1)} : a1 at+1 a2t+1 a3t+1 a4t+1 a5t+1 . . .

{Seq(2)} : a2 at+2 a2t+2 a3t+2 a4t+2 a5t+2 . . .
...

...
...

...
...

...
...

⊕{Seq(t − 2)} : at−2 at+t−2 a2t+t−2 a3t+t−2 a4t+t−2 a5t+t−2 . . .

{ad+t ·i } : ad ad+t ad+2t ad+3t ad+4t ad+5t . . .

where d is an integer 0 ≤ d ≤ 2L − 2. Next, to get the t-modified sequence we simply apply
the decimation rule given in Definition 2 to the sequences {ad+t ·i } and {Seq(t − 1)}.

Recall that, as both sequences are the same PN-sequence but starting at different terms,
what we are generating via the decimation rule is just a generalized sequence. Consequently,
the t-modified sequence is a generalized sequence. Moreover, if t = 2, then the 2-modified
sequence is the self-shrunken sequence defined in [18] as well as if t = 3, then the 3-
modified sequence is the modified self-shrunken sequence defined in [15]. In general, for any
integer t satisfying the equation (5), the corresponding t-modified sequence is a generalized
sequence [5].

In brief, if the Eq. (5) holds, then the self-shrinking generator, the modified self-shrinking
generator and the t-modified self-shrinking generator produce generalized sequences [3,5,
21]. Thus, the LC of the sequences produced by the previous generators can be analysed as
that of the generalized sequences.

3 Linear complexity of the generalized sequences

In this section, an upper bound on the linear complexity of the generalized sequences is
computed. Next and based on this result, we introduce a method of computing such a linear
complexity as well as an illustrative example.

3.1 An upper bound on the linear complexity

Since the period of every generalized sequence is a power of 2, then its minimal polynomial
(lowest degree characteristic polynomial) is of the form (x+1)LC [8, Section 5], [10, Theorem
1]. Thus, (x + 1)N with LC < N are characteristic polynomials of higher degree defining
linear recurrence relationships that the generalized sequence has to satisfy [9]. Contrarily,
(x + 1)N with N < LC are not characteristic polynomials meaning that the generalized
sequence does not satisfy their corresponding linear recurrence relationships. This is the key
idea to compute the LC in the class of generalized sequences.

The coefficients of the polynomial (x +1)N are the binomial terms
(N
i

)
(i = 0, 1, . . . , N )

of the Nth row of the Pascal’s triangle (see Fig. 2a) [2,4]. When such a triangle is reduced
mod 2, then we get the Sierpinski’s triangle (see Fig. 2b). Now an upper bound on the LC
of the generalized sequences is given by the following theorem.

Theorem 2 The linear complexity of every generalized sequence is upper bounded by

LC({sk}p) ≤ 2L−1 − (L − 2) (p = 0, 1, 2, . . . , 2L − 2).
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1

1 1

1 12

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 288 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

(a) Pascal’s triangle

1

11

101

111 1

1001 0

101 0 11

10 01 0 1 1

11 1 1 1 1 1 1

1

11

101

1111

1001 0

101 0 11

10 01 0 1 1

11 1 1 1 1 1 1

1

11

1 0 1

1 1 1 1

1 0 0 10

1 0 101 1

1 0 100 11

1 1111111

0 00 0000

000 0 00

0 00 00

000 0

0 00

00

0

(b) Sierpinski’s triangle

Fig. 2 Pascal and Sierpinski triangles
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Proof According to Theorem 1, the sequence {ui } satisfies the l.r.r.
M0∑

i=0

ci ui+ j = 0 ( j = 0, 1, . . . , 2L−1 − 1), (6)

where the ci are the binary coefficients of the M0th row in the the Sierpinski’s triangle
(numbered 0, 1, 2, . . . from top to bottom), M0 = 2L−1 − (L − 2) and the sum (i + j) is
taken mod 2L−1.

Multiplying Eq. (6) by c α p where c ∈ F2L and c �= 0, we get

c α p
M0∑

i=0

ci ui+ j =
M0∑

i=0

(ci c α p ui+ j ) = 0 (p = 0, 1, 2, . . . , 2L − 2).

Thus,

Tr

(
M0∑

i=0

ci c α p ui+ j

)
=

M0∑

i=0

ci T r
(
c ατ(i+ j)+p

)
=

M0∑

i=0

ci aτ(i+ j)+p = Tr(0) = 0,

(7)

where {aτ(i+ j)+p} denotes the generalized sequence associated with the shift p. Therefore,
according to Eq. (7), all the generalized sequences satisfy the l.r.r. given in (6) and their linear
complexities are upper bounded by M0 = 2L−1 − (L − 2). �	

3.2 Amethod of computing the linear complexity of the generalized sequences

Based on the upper bound provided by Theorem 2, the practical computation of the LC for
the class of generalized sequences is performed. The main idea is to test decreasing values,
Mi , of LC starting at the upper bound M0 = 2L−1 − (L − 2), that is M0 > M1 > M2 >

M3 > M4 > · · · and to check for each Mi the l.r.r. of the different generalized sequences.
For M1 < M0 and taking the coefficients ci of the M1th row in the Sierpinski’s triangle,

we compute:

M1∑

i=0

ci ui+ j = αn �= 0 ( j = 0, 1, . . . , 2L−1 − 1),

n being a non-negative integer. Therefore, proceeding in the same way as before we get:

M1∑

i=0

ci ατ(i+ j)+p = αn+p ⇒
M1∑

i=0

ci aτ(i+ j)+p = an+p. (8)

Thus, {an+p} (p = 0, 1, 2, . . . , 2L − 2) is the PN-sequence {ai } starting at the term an .
Therefore,

1. If an+p = 0 for some p, then the l.r.r. in (8) holds for the corresponding sequence {sk}p
and its LC({sk}p) ≤ M1.

2. If an+p = 1 for some p, then the l.r.r. in (8) does not hold for the corresponding sequence
{sk}p and its LC takes the previous value LC({sk}p) = M0 (as for M0 the l.r.r. was
satisfied).
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In fact, there are (2L−1 − 1) terms an+p = 0, which are the zeros of the PN-sequence. Thus,
we have (2L−1 − 1) generalized sequences with LC ≤ M1. In the same way, there are 2L−1

terms an+p = 1, which are the ones of the PN-sequence. Thus, we have 2L−1 generalized
sequences with LC = M0.

For M2 < M1 and taking the coefficients ci of the M2th row in the Sierpinski’s
triangle, we compute two alternative values of the l.r.r when j ranges in the interval
j ∈ [0, 1, 2, . . . , 2L−1 − 1].

M2∑

i=0

ci ui+ j = αn1 �= 0 or
M2∑

i=0

ci ui+ j = αn2 �= 0.

This yields to:

M2∑

i=0

ci aτ(i+ j)+p = an1+p or
M2∑

i=0

ci aτ(i+ j)+p = an2+p. (9)

Therefore, we get two shifted versions of the same PN-sequence {ai }, one of them starting
at an1 and the other at an2 .

1. If an1+p = an2+p = 0 for some p, then the l.r.r. in (9) holds for the corresponding
sequence {sk}p and its LC({sk}p) ≤ M2.

2. If an1+p = an2+p = 1 for some p, then the l.r.r. in (9) does not hold for the corresponding
sequence {sk}p and its LC takes the previous value LC({sk}p) = M1.

Thus, we have (2L−2 − 1) terms an1+p = an2+p = an+p = 0, that is there are (2L−2 − 1)
generalized sequences with LC({sk}p) ≤ M2. In the sameway, we have 2L−2 terms an1+p =
an2+p = 1 andan+p = 0, that is there are 2L−2 generalized sequenceswith LC({sk}p) = M1.

For successive and decreasing values of Mi , we get 1, 2, 4, 8, 16, . . . , 2L−2 shifted
versions of the PN-sequence {ai }, respectively. Each one of these L − 1 groups of
shifted sequences provides with 2L−1, 2L−2, 2L−3, . . . , 4, 2, 1, generalized sequences with
LC = M0, M1, M2, . . . , ML−3, ML−2 = 2, ML−1 = 1, respectively. The values Mi

(i = 1, 2, . . . , L − 3) are not necessarily consecutive values. In fact, if any Mi does not
provide new values in the Eq. (6), then Mi is decreased in one unit and the process is
repeated for the new Mi .

Recall that he number of generalized sequences that satisfy (do not satisfy) the linear
recurrence relationship in one step is half the number of sequences obtained in the previous
step. Now a numerical example illustrates the computational method.

3.3 An illustrative example

Let us consider a maximum-length LFSR of length L = 5, with characteristic polynomial
p(x) = x5 + x3 + 1, initial state (1, 1, 1, 1, 1) and period T = 31. The sequence {ui } =
{1, α, α2, α3, α4, α7, α8, α10, α13, α18, α20, α22, α23, α24, α26, α27} and α18 = α17 + 1.
We compute the linear recurrence relationship for different values Mi .

1. For M0 = 2L−1 − (L − 2) = 13:
According to Theorem 1, the sequence {ui } satisfies the l.r.r. given by the Eq. (6), where
the coefficients ci are the bits of the 13th row in Fig. 2b, that is (1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 1). Consequently, the linear complexity of all the generalized sequences is
LC({sk}p) ≤ 13.
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2. For M1 = 2L−1 − (L − 2) − 1 = 12:
We check the Eq. (6) with M1 = 12 where the coefficients ci are now the bits of the 12th
row in Fig. 2b, that is (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1). In fact,

∑12
i=0 ci ατ(i+ j)+p =

α29 �= 0, then {a29+p} (p = 0, 1, 2, . . . , 30) is the PN-sequence {ai } starting at the term
a29.
Thus, according to Table 2, the 15 generalized sequences corresponding to p =
0, 1, 7, 8, 11, 13, 14, 16, 17, 18, 19, 21, 23, 27, 30 (the zeros of {a29+p} in bold)will sat-
isfy LC({sk}p) ≤ 12; while the 16 generalized sequences corresponding to the remainder
values of p (the ones of {a29+p}) will have LC({sk}p) = 13. Therefore, we have com-
puted the LC of 16 generalized sequences just by analysing the binary digits of the
PN-sequence {a29+p}.

3. For M2 = 2L−1 − (L − 2) − 2 = 11:
We check the Eq. (6) for M2 = 11 where the coefficients ci are now the bits of the
11th row in Fig. 2b, that is (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1). In fact,

∑11
i=0 ci ατ(i+ j)+p =

α19, α25 �= 0, alternatively for the successive values of j .
Thus, according to Table 3, the 7 generalized sequences corresponding to p =
0, 11, 17, 18, 21, 23, 27 will satisfy LC({sk}p) ≤ 11. Recall that the previous values
of p correspond to the zeros coinciding in the three shifted PN-sequences {a29+p} =
{a19+p} = {a25+p} = 0, see the columns in bold in Table 3.
On the other hand, the 8 generalized sequences corresponding to p = 1, 7, 8, 13, 14, 16,
19, 30 will have LC({sk}p) = 12. Recall that the previous values of p correspond to
the ones coinciding in the two shifted PN-sequences {a19+p} = {a25+p} = 1 (on grey
rectangles) but with {a29+p} = 0, see the columns in Table 3. Therefore, the comparison
of binary digits in three shifted version of a single PN-sequence allows us to compute
the LC of 8 generalized sequences.

4. For M3 = 2L−1 − (L − 2) − 3 = 10:
We check the Eq. (6) for M3 = 10 where the coefficients ci are now the bits of the
10th row in Fig. 2b, that is (1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1). In fact,

∑10
i=0 ci ατ(i+ j)+p =

α11, α30, α28, α12 �= 0, alternatively for the successive values of j .
Thus, according to Table 4, the three generalized sequences corresponding to p =
0, 17, 18 will satisfy LC({sk}p) ≤ 10. Recall that the previous values of p correspond to
the zeros coinciding in the seven shifted PN-sequences {a29+p} = {a19+p} = {a25+p} =
{a11+p} = {a30+p} = {a28+p} = {a12+p} = 0, see the columns in bold in Table 4.
On the other hand, the 4 generalized sequences corresponding to p = 11, 21, 23, 27 will
have LC({sk}p) = 11. Recall that the previous values of p correspond to the ones coin-
ciding in the 4 shifted PN-sequences {a11+p} = {a30+p} = {a28+p} = {a12+p} = 1 (on
grey rectangles) but with {a29+p} = {a19+p} = {a25+p} = 0, see the columns in Table 4.
Now, the comparison of binary digits in seven shifted version of a single PN-sequence
allows us to compute the LC of 4 generalized sequences.

5. When the LC of the last 3 generalized sequences is considered, then the successive Mi

(Mi = 9, 8, . . . , 2) do not provide new values in the Eq. (6).
6. Until for Mi = 1:

We check the Eq. (6) forMi = 1where the coefficients ci are now the bits of the 1st row in
Fig. 2b, that is (1, 1). In fact,

∑1
i=0 ci ατ(i+ j)+p = α14, α15, α16, α17, α9, α21, α5, α6 �=

0 for the successive values of j . Thus, according to Table 5, the single generalized
sequence corresponding to p = 0 will satisfy LC({sk}p) = 1. It is the identically 1
sequence. Recall that the value p = 0 corresponds to the zeros coinciding in the 15 shifted
PN-sequences {a29+p} = {a19+p} = {a25+p} = {a11+p} = {a30+p} = {a28+p} =
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Table 2 Linear Complexity of generalized sequences

p = 0 4 8 12 16 20 24 28 30

{a29+p} 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0

Table 3 Linear Complexity of generalized sequences

Table 4 Linear Complexity of generalized sequences

{a12+p} = {a14+p} = {a15+p} = {a16+p} = {a17+p} = {a9+p} = {a21+p} = {a5+p} =
{a6+p} = 0, see the column in bold in Table 5.
On the other hand, the 2 generalized sequences corresponding to p = 17, 18 will satisfy
LC({sk}p) = 2. They correspond to the generalized sequences {1010 . . .} and {0101 . . .}.
Recall that the previous values of p correspond to the ones coinciding in the eight shifted
PN-sequences {a14+p} = {a15+p} = {a16+p} = {a17+p} = {a9+p} = {a21+p} =
{a5+p} = {a6+p} = 1 (on grey rectangles) but with {a29+p} = {a19+p} = {a25+p} =
{a11+p} = {a30+p} = {a28+p} = {a12+p} = 0, see the columns in Table 5.

In this way, we have computed the LC of the whole family of generalized sequences for
this example. The numerical results are depicted in Table 6.

In the general case, there will be 2L−1 generalized sequences with LC = M0 = 2L−1 −
(L − 2), 2L−2 sequences with LC = M1 < M0, 2L−3 sequences with LC = M2 <

M1, . . ., until we get 2L−(L−2) = 4 sequences with LC = ML−3 < ML−4. Finally, we
obtain 2L−(L−1) = 2 sequences, the generalized sequences {101010 . . .} and {010101 . . .},
with LC = ML−2 = 2 and 2(L−L) = 1 sequence, the identically 1 sequence {111111 . . .},
with LC = ML−1 = 1. Table 7 depicts the different linear complexities for an arbitrary
family of generalized sequences.

4 Discussion of themethod and application to self-decimated
generators

To our knowledge, no numerical method of computing the LC of the generalized sequences
can be found in the literature, apart from the Berlekamp–Massey algorithm [17] that can
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Table 5 Linear complexity of generalized sequences

Table 6 Linear complexity of this family of generalized sequences

Generalized sequences LC

{sk }p with p = 2, 3, 4, 5, 6, 9, 10, 12, 15, 20, 22, 24, 25, 26, 28, 29 13

{sk }p with p = 1, 7, 8, 13, 14, 16, 19, 30 12

{sk }p with p = 11, 21, 23, 27 11

{sk }p with p = 17, 18 2

{sk }p with p = 0 1

Table 7 Linear complexity of an
arbitrary family of generalized
sequences

Number of generalized sequences LC

2L−1 sequences M0 = 2L−1 − (L − 2)

2L−2 sequences M1 < M0

2L−3 sequences M2 < M1

… …

2L−(L−2) sequences ML−3 < ML−4

2L−(L−1) = 2 sequences ML−2 = 2

2L−(L) = 1 sequence ML−1 = 1

be applied to any binary sequence. In this section, the numerical method here proposed is
discussed. Next, the application of such amethod to other self-decimated sequence generators
is presented.

4.1 Themethod of computing the LC of the generalized sequences: a discussion

The method here developed involves very simple operations: computation and checking of
particular bits of a single PN-sequence {ai } whose characteristic polynomial p(x) of degree
L is known.
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Useful facts for the computation of the LC can be enumerated:

1. According to the properties of the PN-sequences [12] and the l.r.r. in Eq. (1), any arbitrary
term ai of a PN-sequence can be expressed as a linear combination of its L first terms
(a0, a1, . . . , aL−1), that is ai = ∑L−1

j=0 d
i
j a j with dij ∈ F2, where dij ( j = 0, . . . , L − 1)

are the coefficients of the polynomial di (x) = diL−1x
L−1 + · · · + di1x + di0 computed as

follows:

di (x) ≡ ximod p(x), (10)

that is the polynomial xi reduced modulo p(x).
2. According to the one-to-one correspondence given in (3), any element αi in F2L can

be written as a linear combination of the L first powers (1, α, α2, . . . , αL−1), that is
αi = ∑L−1

j=0 d
i
j α

j where dij ∈ F2 are the coefficients of the polynomial di (x) defined in
(10). Thus, any term of the sequence {ui }, that is a power of α, can be written as a linear
combination of (1, α, α2, . . . , αL−1) weighted by binary coefficients.

3. All the shifted versions of {ai } startingwith 0 are arranged into groups of 1, 2, 4, . . . , 2L−2

sequences, in total L − 1 groups and 2L−1 − 1 sequences, see Table 5. In practice, only
one sequence of each group is needed. More precisely, just one sequence of each one of
the L − 2 first groups, notated {am j } (0 ≤ j ≤ L − 3) where {am j } is the PN-sequence
starting at am j , will be needed for the computation. In fact, the last group only provides
the linear complexities of the sequences {101010 . . .}, {010101 . . .} and {111111 . . .},
which are already known.

4. Only L bits of each sequence {am j } (0 ≤ j ≤ L−3) are necessary to compute the specific
term am j+p via the representation given in item 1. Thus, the memory requirements of
this method, (L − 2) · L bits, are minimum.

5. The fractal structure of the Sierpinski’s triangle simplifies the computation of the l.r.r.
given in (6) when the Nth row of this triangle is considered.

(a) For 2L−2 ≤ N < 2L−1, that is N = 2L−2 + k with (0 ≤ k < 2L−2), the Eq. (6) with
j = 0 can be decomposed as follows:

N∑

i=0

ci ui =
k∑

i=0

ci ui +
2L−2+k∑

i=2L−2

ci ui , (11)

where the first summation corresponds to the Eq. (6) for the kth rowof the Sierpinski’s
triangle. At its turn, such a summation can be decomposed and computed recursively.
The second summation is the new expression to be computed.

(b) Due to the symmetry of the Sierpinski’s triangle, the coefficients ci satisfy:

ci = ci+2L−2 (i = 0, . . . , k).

(c) The N th row of the Sierpinski’s triangle has, at most, 2L−2 coefficients ci = 1,
half in the firs summation and half in the second summation of (11). The remaining
coefficients equal zero.

In order to compute the LC of an arbitrary generalized sequence {sk}p , the successive bits
am j+p (0 ≤ j ≤ L − 3) are computed until a bit am j+p = 1 is obtained, then the linear
complexity of such a sequence is LC({sk}p) = Mi−1.

A comparison between the Berlekamp–Massey algorithm and the numerical method here
proposed can be stated. In the worst case, for a generalized sequence {sk}p with maximum
LC = 2L−1 − (L − 2) the requirements are:
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(a) The Berlekamp–Massey algorithm needs 2 · LC digits to compute the linear complexity
of the generalized sequence. Thus, it has to generate and process 2L − 2 · (L − 2) � 2L

bits (nearly twice the period of the sequence) or it has to generate and store one period
of the sequence to be processed twice. Time complexity of this algorithm is O(2L).

(b) The method here proposed needs to compute:

M1∑

i=0

ci ui = αm0 , (12)

where every ui ∈ F2L is represented as mentioned in item 2, M1 = 2L−1 − (L − 2) − 1
and the summation can be decomposed as mentioned in item 5. Consequently, the Eq.
(12) just performs bit-wise additions modulo 2 with time complexity O(2L−2). Next,
the L first bits of the sequence {am0}, that is the sequence {ai } starting at the term am0 ,
are enough to determine the bit am0+p by means of the modular expression

dm0+p(x) ≡ xm0+pmod p(x).

Except for the L bits of {am0}, no more digits of the PN-sequence have to be stored.
Thus, the memory requirements of this method are minimum compared with those of
the Berlekamp–Massey algorithm.

In brief, the computational complexities in what memory and speed are concerned are in the
method here proposed less than in the Berlekamp–Massey algorithm.

In cryptographic terms, LC must be as large as possible so the computing method allows
us to determine generalized sequences with guaranteed maximum LC , that is LC = 2L−1 −
(L − 2). In fact, any term am0+p = 1, see Table 2, provides us with the shifting p of a
generalized sequence {sk}p whose linear complexity meets the maximum value.

4.2 Application to other self-decimated sequence generators

This method of computing the linear complexity can be extended to the sequences produced
by self-decimated generators.

(a) Computation of LC for the self-shrinking generator:
In this case, the two shifted versions of the PN-sequence involved in the decimation rule

are [18]:

{Seq(0)} : a0 a2 a4 . . . a2L−2 a1 a3 . . . a2L−3
{Seq(1)} : a1 a3 a5 . . . a2L−3 a0 a2 . . . a2L−2

Thus, the relative shift between both sequences is the value p solution of the equation:

0 + p · 2 ≡ 1 mod 2L − 1.

That is, p = 2L−1. Therefore, the self-shrunken sequence is the generalized sequence {sk}2L−1

generated from the PN-sequence {a0, a2, a4, a6, . . .} and whose LC can be computed by
means of the method developed in Sect. 3.

In [18], the authors only give a lower bound on the LC of the self-shrunken sequence
corresponding to the expression

2�L/2�−1 < LC,

here we present a method of computing the exact value of LC .
(b) Computation of LC for the modified self-shrinking generator:
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In this case, the three shifted versions of the PN-sequence involved in the decimation rule
are [15]:

{Seq(0)} : a0 a3 a6 a9 a12 a15 . . .

{Seq(1)} : a1 a4 a7 a10 a13 a16 . . .

{Seq(2)} : a2 a5 a8 a11 a14 a17 . . .

The bit-wise XOR of Seq(0) and Seq(1) gives:

{Seq(0)} : a0 a3 a6 a9 a12 a15 . . .

⊕{Seq(1)} : a1 a4 a7 a10 a13 a16 . . .

{ad+3·i } : ad ad+3 ad+6 ad+9 ad+12 ad+15 . . .

where ad = a0 + a1, d being an integer 2 ≤ d ≤ 2L − 2. Therefore the two shifted versions
of the same PN-sequence involved in the decimation rule are:

ad ad+3 ad+6 ad+9 ad+12 ad+15 ad+18 . . .

a2 a5 a8 a11 a14 a17 a20 . . .

Thus, the relative shift between both sequences is the value p solution of the equation:

d + p · 3 ≡ 2 mod 2L − 1. (13)

Therefore, the modified self-shrunken sequence is the generalized sequence {sk}p with p
defined in (13) and generated from the PN-sequence {ad , ad+3, ad+6, ad+9, ad+12, . . .}.
Thus, its LC can be computed by means of the method developed in Sect. 3.

In [15], the author only gives a lower bound on the LC of the modified self-shrunken
sequence corresponding to the expression

2�L/3�−1 < LC,

here we present a method of computing the exact value of LC .
(c) Computation of LC for the t-modified self-shrinking generator [5]:
Assume that g.c.d.(t, 2L − 1) = 1. In this case, the t shifted versions of the PN-sequence

involved in the decimation rule are:

{Seq(0)} : a0 at a2t a3t a4t a5t . . .

{Seq(1)} : a1 at+1 a2t+1 a3t+1 a4t+1 a5t+1 . . .
...

...
...

...

{Seq(t − 2)} : at−2 at+t−2 a2t+t−2 a3t+t−2 a4t+t−2 a5t+t−2 . . .

{Seq(t − 1)} : at−1 at+t−1 a2t+t−1 a3t+t−1 a4t+t−1 a5t+t−1 . . .

The bit-wise XOR of Seq(0), . . . , Seq(t − 2) gives:

{Seq(0)} : a0 at a2t a3t a4t a5t . . .

{Seq(1)} : a1 at+1 a2t+1 a3t+1 a4t+1 a5t+1 . . .
...

...
...

...

⊕{Seq(t − 2)} : at−2 at+t−2 a2t+t−2 a3t+t−2 a4t+t−2 a5t+t−2 . . .{
ad ′+t ·i

} : ad ′ ad ′+t ad ′+2t ad ′+3t ad ′+4t ad ′+5t . . .

where ad ′ = a0 + a1 + · · · + at−2, d ′ being an integer 0 ≤ d ′ ≤ 2L − 2. Therefore the two
shifted versions of the PN-sequence involved in the decimation rule are:

ad ′ ad ′+t ad ′+2t ad ′+3t ad ′+4t ad ′+5t ad ′+6t . . .

at−1 at+t−1 a2t+t−1 a3t+t−1 a4t+t−1 a5t+t−1 a6t+t−1 . . .
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Thus, the relative shift between both sequences is the value p solution of the equation:

d ′ + p · t ≡ t − 1 mod 2L − 1. (14)

Therefore, the t-modified self-shrunken sequence is the generalized sequence {sk}p with
p defined in (14) and generated from the PN-sequence {ad ′ , ad ′+t , ad ′+2t , ad ′+3t , ad ′+4t ,

ad ′+5t , . . .}. Thus, its LC can be computed by means of the method developed in Sect. 3.

5 Conclusions

Although the class of generalized sequences exhibit good cryptographic properties, the
parameter Linear Complexity has never been specifically analysed. At any rate, we present
the first known method of computing the linear complexity of such sequences. In fact, a
practical method based exclusively on the comparison of shifted versions of a single PN-
sequence is introduced and developed. The numerical method is efficient and can be applied
to sequence generators in a cryptographic range. The procedure allows us to classify, group
and compute the LC of the family of generalized sequences. In addition, the procedure can
be extended to the class of self-decimated generators due to the close relationship between
the sequences produced by such generators and the generalized sequences.

As the fundamental structure of all these computations is the PN-sequence, the systematic
extension of these ideas to the whole class of interleaved sequences is intended as the main
direction of the future work.
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