
A computational method for defeasible argumentation
based on a recursive warrant semantics

Teresa Alsinet1, Ramón Béjar1, and Lluís Godo2

1 Department of Computer Science – University of Lleida
C/Jaume II, 69 – 25001 Lleida, SPAIN

{tracy, ramon}@diei.udl.cat
2 Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB - 08193 Bellaterra, Barcelona, SPAIN

godo@iiia.csic.es

Abstract. In a recent paper [2] the authors have formalized a recursive semantics
for warranted conclusions in a general defeasible argumentation framework based
on a propositional logic. The warrant recursive semantics is based on a general
notion of collective (non-binary) conflict among arguments allowing to ensure
direct and indirect consistency properties. This general framework was also ex-
tended by allowing levels of defeasibility and providing a level-wise recursive
definition of warranted and blocked conclusions. In this paper we focus on the
particular framework of Defeasible Logic Programming (DeLP) extended with
levels of defeasibility for which we characterize programs with a unique output
(extension) for warranted conclusions, and we design, for this type of programs,
an algorithm for computing warranted conclusions in polynomial space and with
an upper bound on complexity equal to PNP .

Keywords: defeasible argumentation, recursive semantics, computational aspects

1 Introduction and motivation

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is a rule-based argumen-
tation framework which incorporates the treatment of possibilistic uncertainty at the
object-language level. Indeed, P-DeLP is an extension of Defeasible Logic Program-
ming (DeLP) [17] in which program defeasible rules are attached with necessity degrees
(belonging to the real unit interval [0, 1]) expressing their belief strength. Warranted
(justified) conclusions or beliefs with a maximum necessity degree are formalized in
terms of an exhaustive dialectical analysis of all possible arguments.

Because the dialectical tree-based P-DeLP semantics for warranted conclusions
does not satisfy the indirect consistency property3, in [3, 2] a new recursive seman-
tics ensuring that property has been investigated. In particular, following the ideas of an
approach by Pollock [19], the authors have defined in [2] a recursive semantics for war-
rant in a general defeasible argumentation framework based on a notion of collective
(non-binary) conflict among arguments. This general framework has also been extended
by allowing to introduce levels of defeasibility in the knowledge base and providing a

3 This property is satisfied when the set of warranted conclusions is consistent with respect to
the set of strict (non-defeasible) rules of a program and was identified in [6] as a basic postulate
that rule-based argumentation systems should satisfy.



level-wise recursive definition of warranted and blocked conclusions. In this setting we
distinguish between warranted and blocked conclusions. A warranted conclusion is a ul-
timately justified conclusion which is based only on warranted information and which
does not generate any conflict, while a blocked conclusion is a conclusion which, like
warranted conclusions, is based only on warranted information but which generates a
conflict. Finally, in the same paper, this recursive warrant semantics is particularized to
the framework of P-DeLP, the resulting formalism being called RP-DeLP (Recursive
P-DeLP), and circular definitions of conflict between arguments that lead to multiple
extensions (outputs) are identified by means of warrant dependency graphs.

In this paper, after overviewing in Section 2 the main elements of the warrant recur-
sive semantics for RP-DeLP and the unique output property for RP-DeLP programs, in
Section 3 we design for this type of programs an algorithm for computing warranted
conclusions in polynomial space and with an upper bound on complexity equal to PNP .
In contrast with DeLP and other argument-based approaches [4, 8, 21, 22], the warrant
computation algorithm for RP-DeLP does not require the use of dialectical trees and it
is not necessary to explicitly compute all the possible arguments for a given literal in
order to discover whether it is warranted, blocked or rejected.

2 Argumentation in RP-DeLP: an overview

In order to make this paper self-contained, we will present next the main definitions that
characterize the RP-DeLP framework. For further details the reader is referred to [2].

The language of RP-DeLP, denoted LR, is inherited from the language of logic pro-
gramming, including the notions of atom, literal, rule and fact. Formulas are built over
a finite set of propositional variables p, q, ... which is extended with a new (negated)
atom “∼ p” for each original atom p. Atoms of the form p or ∼ p will be referred
as literals, and if P is a literal, we will use ∼ P to denote ∼ p if P is an atom
p, and will denote p if P is a negated atom ∼ p. Formulas of LR consist of rules
of the form Q ← P1 ∧ . . . ∧ Pk , where Q,P1, . . . , Pk are literals. A fact will be a
rule with no premises. We will also use the name clause to denote a rule or a fact.
The RP-DeLP framework is based on the propositional logic (LR,`R) where the in-
ference operator `R is defined by instances of the modus ponens rule of the form:
{Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} `R Q. A set of clauses Γ will be deemed as con-
tradictory, denoted Γ `R ⊥, if , for some atom q, Γ `R q and Γ `R ∼q.

A RP-DeLP program P is a tuple P = (Π,∆,�) over the logic (LR,`R), where
Π,∆ ⊆ LR, and Π 6`R ⊥. Π is a finite set of clauses representing strict knowledge
(information we take for granted they hold true), ∆ is another finite set of clauses rep-
resenting the defeasible knowledge (formulas for which we have reasons to believe
they are true). Finally, � is a suitable total pre-order on the set of defeasible formu-
las ∆. Suitable means that this pre-order is representable by a necessity measure N
defined on the set of formulas of LR. Namely, ϕ � ψ iff N(ϕ) ≤ N(ψ) for each
ϕ,ψ ∈ ∆∪Π , whereN is a mappingN : LR → [0, 1] such thatN(>) = 1, N(⊥) = 0,
N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)), and further N(ϕ) = 1 iff Π `R ϕ. For the sake of
a simpler notation we will often refer to numerical weights for defeasible clauses and
arguments rather than to the pre-ordering �.



The notion of argument is the usual one. Given a RP-DeLP program P , an argument
for a literal Q of LR is a pair A = 〈A,Q〉, with A ⊆ ∆ such that Π ∪ A 6`R ⊥, and A
is minimal (w.r.t. set inclusion) such that Π ∪A `R Q. If A = ∅, then we will call A a
s-argument (s for strict), otherwise it will be a d-argument (d for defeasible). We define
the strength of an argument 〈A,Q〉, written s(〈A,Q〉), as follows4:

s(〈A,Q〉) = 1 if A = ∅, and s(〈A,Q〉) = min{N(ψ) | ψ ∈ A}, otherwise.

The notion of subargument is referred to d-arguments and expresses an incremental
proof relationship between arguments which is defined as follows. Let 〈B,Q〉 and
〈A,P 〉 be two d-arguments such that the minimal sets (w.r.t. set inclusion) ΠQ ⊆ Π
and ΠP ⊆ Π such that ΠQ∪B `R Q and ΠP ∪A `R P verify that ΠQ ⊆ ΠP . Then,
〈B,Q〉 is a subargument of 〈A,P 〉, written 〈B,Q〉 < 〈A,P 〉, when either B ⊂ A
(strict inclusion for defeasible knowledge), or B = A and ΠQ ⊂ ΠA (strict inclusion
for strict knowledge). A literal Q of LR is called justifiable w.r.t. P if there exists an
argument for Q, i.e. there exists A ⊆ ∆ such that 〈A,Q〉 is an argument.

The following notion of acceptable argument with respect to a set (possibly empty)
of justifiable conclusions W plays a key role to formalize the recursive warrant se-
mantics. If we think of W of a consistent set of already warranted conclusions, an
acceptable argument captures the idea of an argument which is based on subarguments
already warranted. Let W be a set of justifiable conclusions which is consistent w.r.t.
Π , i.e.Π ∪W 6`R ⊥. A d-argumentA = 〈A,Q〉 is an acceptable argument forQ w.r.t.
W iff:

1. if 〈B,P 〉 is a subargument of 〈A,Q〉 then P ∈W
2. Π ∪W ∪ {Q} 6`R ⊥

The usual notion of attack or defeat relation in an argumentation system is binary.
However in certain situations, the conflict relation among arguments is hardly repre-
sentable as a binary relation. For instance, consider the following RP-DeLP program
P = (Π,∆,�) withΠ = {∼p← a∧b} and∆ = {a, b, p}, and consider just one level
for defeasible information ∆. Clearly, A1 = 〈{p}, p〉,A2 = 〈{b}, b〉,A3 = 〈{a}, a〉
are arguments that justify p, b and a respectively, and which do not pair-wisely generate
a conflict. Indeed, Π ∪{a, b} 6`R ⊥, Π ∪{a, p} 6`R ⊥ and Π ∪{b, p} 6`R ⊥. However
the three arguments are collectively conflicting since Π ∪ {a, b, p} `R ⊥, hence in
this program P there is a non-binary conflict relation among several arguments. Next
we formalize this notion of collective conflict among acceptable arguments and which
arises when we compare them with the strict part of a RP-DeLP program.

Let P = (Π,∆,�) be a RP-DeLP program, let W be a consistent set of justifiable
conclusions w.r.t. Π and let A1 = 〈A1, L1〉, . . . ,Ak = 〈Ak, Lk〉 be acceptable argu-
ments w.r.t. W of a same strength, i.e. such that s(〈A1, L1〉) = . . . = s(〈Ak, Lk〉).
We say that the set of arguments {A1, . . . ,Ak} generates a conflict w.r.t. W iff the two
following conditions hold:

(C) The set of argument conclusions {L1, . . . , Lk} is contradictory w.r.t. Π ∪W , i.e.
Π ∪W ∪ {L1, . . . , Lk} `R ⊥.

4 Actually, several necessity measures N may lead to a same pre-order �, but we can take any
of them to define the degree of strength since only the relative ordering is what matters.



(M) The set {A1, . . . ,Ak} is minimal w.r.t. set inclusion satisfying (C), i.e. if S ⊂
{L1, . . . , Lk}, then Π ∪W ∪ S 6`R ⊥.

In the above example, arguments A1, A2 and A3 are acceptable w.r.t. Π and the
empty set of conclusions W = ∅ and, according to our definition, it is clear that the
set of acceptable arguments {A1,A2,A3} for p, b and a respectively, generates a col-
lective conflict (with respect to W = ∅). The intuition is that this collective conflict
should block the conclusions a, b and p to be warranted, and therefore, for instance,
A4 = 〈{a, b},∼ p〉 is an argument for ∼ p, but ∼ p should be a rejected conclusion
since A4 is not acceptable w.r.t. W = ∅ because A2 and A3 are subarguments of A4

but obviously a, b 6∈ W . This general notion of collective conflict is used to define a
recursive semantics for warranted conclusions of a RP-DeLP program.

Actually we define an output of a RP-DeLP program P = (Π,∆,�) as a pair
(Warr,Block) of warranted and blocked conclusions (literals) respectively, all of them
based on warranted information but, while warranted conclusions do not generate any
conflict, blocked conclusions do. Because we are considering several levels of strength
among arguments, the construction of the sets of conclusions Warr and Block is done
level-wise, starting from the highest level and iteratively going down from one level
to next level below. If 1 > α1 > . . . > αp ≥ 0 are the strengths of d-arguments that
can be built withinP , we define d-Warr = {d-Warr(α1), . . . , d-Warr(αp)} and Block =
{Block(α1), . . . ,Block(αp)}, where d-Warr(αi) and Block(αi) are respectively the sets
of the warranted and blocked justifiable conclusions with strength αi. In the following,
we write d-Warrr(> αi) to denote ∪β>αid-Warr(β), and analogously for Block(> αi),
taking d-Warr(> α1) = ∅ and Block(> α1) = ∅.

Formally, an output for a RP-DeLP programP = (Π,∆,�) is any pair (Warr,Block),
where Warr = s-Warr ∪ d-Warr with s-Warr = {Q | Π `R Q}, such that d-Warr and
Block are required to satisfy the following recursive constraints:

1. A d-argument 〈A,Q〉 of strength αi is called valid (or not rejected) if it satisfies the
following three conditions5:

(i) for every subargument 〈B,P 〉 < 〈A,Q〉 of strength αi, P ∈ d-Warr(αi);
(ii) 〈A,Q〉 is acceptable w.r.t.

W = d-Warr(> αi) ∪ {P | 〈B,P 〉 < 〈A,Q〉 and s(〈B,P 〉) = αi};
(iii) Q 6∈ d-Warr(> αi) ∪ Block(> αi) and ∼Q 6∈ Block(> αi);

2. For every valid argument 〈A,Q〉 of strength αi we have that

– Q ∈ d-Warr(αi) whenever there does not exist a set G of valid arguments of
strength αi such that
(i) 〈A,Q〉 6< 〈C,R〉 for all 〈C,R〉 ∈ G

(ii) G ∪ {〈A,Q〉} generates a conflict w.r.t. W = d-Warr(> αi) ∪ {P |
there exists 〈B,P 〉 < 〈D,L〉 for some 〈D,L〉 ∈ G ∪ {〈A,Q〉}}

– otherwise, ϕ ∈ Block(αi).

5 Notice that if 〈A,Q〉 is a d-argument,A 6= ∅ and, because of the notion of argument,Π 6`R Q
and hence Q 6∈ s-Warr. Moreover, if 〈A,Q〉 is an acceptable d-argument w.r.t. d-Warr(> αi),
then 〈A,Q〉 is valid whenever condition (iii) holds.



The intuition underlying this definition is as follows: a d-argument 〈A,Q〉 of strength
αi is either warranted or blocked whenever for every subargument 〈B,P 〉 of 〈A,Q〉, P
is warranted and there does not exist a different valid argument forQ of strength greater
than αi; then, it is eventually warranted if Q is not involved in any conflict, otherwise it
is blocked.

For instance, consider the RP-DeLP program P of the previous example with Π =
{∼p← a∧ b} and ∆ = {a, b, p} extended with three levels of defeasibility as follows:
p ≺ b ≺ a. Assume α1, α2 and α3 are the levels of a, b and c respectively, obviously
with 1 > α1 > α2 > α3. Then, s-Warr = ∅ and the argument for 〈{a}, a〉 is the
only valid argument with strength α1. Then, at level α1, we get d-Warr(α1) = {a} and
Block(α1) = ∅. At level α2, we have that 〈{b}, b〉 is a valid argument w.r.t. d-Warr(α1)
because Π ∪ {a} ∪ {b} 6`R ⊥, and 〈{b}, b〉 does not produce any conflict at level α2.
Then, b is a warranted conclusion at level α2, and thus, 〈{a, b},∼ p〉 is also a valid
argument w.r.t. d-Warr(α1) ∪ {b}. Hence, at level α2 we get d-Warr(α2) = {b,∼ p}
and Block(α1) = ∅. Finally, at level α3 the argument 〈{p}, p〉 for p is not valid w.r.t.
d-Warr(α1) ∪ d-Warr(α2) since Π ∪ {a} ∪ {b,∼p} ∪ {p} `R ⊥, and thus, at level α3

we get d-Warr(α3) = Block(α3) = ∅.
It can be proven that if (Warr,Block) is an output for a RP-DeLP program P =

(Π,∆,�), the set Warr of warranted conclusions is indeed non-contradictory and sat-
isfies the indirect consistency property (Π ∪Warr 6`R ⊥) and it is closed with respect
to the strict knowledge (if Π ∪Warr `R Q then Q ∈ Warr).

In [2] we showed that, in some cases, a RP-DeLP program may have multiple out-
puts (Warr,Block) due to some circular definitions of warranty that emerge when
considering conflicts among arguments. Such circular definitions of warranty are iden-
tified by means of what we called warrant dependency graph of a RP-DeLP program.
Intuitively, the warrant dependency graph for a set of arguments represents conflict and
support dependences among arguments with respect to a set of justified conclusions.

For instance, consider a RP-DeLP program with an empty set of strict clauses and
the set of defeasible clauses ∆ = {p, q,∼p ← q,∼q ← p} with just one defeasibility
level. Obviously, s-Warr = ∅ and the arguments A1 = 〈{p}, p〉 and A2 = 〈{q}, q〉
for conclusions p and q, respectively, are valid arguments with respect to s-Warr. Now
consider the arguments for conclusions ∼ p and ∼ q; i.e. B1 = 〈{q, ∼ p ← q},∼ p〉
and B2 = 〈{p, ∼ q ← p},∼ q〉. In this example, the arguments A1 and A2 are valid
arguments, and thus, conclusions p and q may be warranted or blocked but not rejected.
Moreover, the argument B1 may be valid whenever the conclusion q is warranted, and
the argument B2 may be valid whenever the conclusion q is warranted. However, if
the argument B1 is valid, then p and ∼p are blocked conclusions, and if the argument
B2 is valid, then q and ∼ q are blocked conclusions. Hence, in that case we have two
possible outputs: (Warr1, Block1) with Warr1 = {p} and Block1 = {q,∼ q}, and
(Warr2, Block2) with Warr2 = {q} and Block2 = {p,∼p}.

3 On the computation of the unique output

From a computational point of view, the unique output property for RP-DeLP programs
can be checked by means of a level-wise procedure, starting from the highest level and



iteratively going down from one level to next level below, and for every level verifying
that there is no cycle in the graph for every valid argument with respect to the set of
warranted conclusions at previous levels and the current level. Next we define an algo-
rithm which implements this level-wise procedure computing warranted and blocked
conclusions until a cycle is found or the unique output is obtained. In the following we
use the notation W (1) for s-Warr, W (α) for d-Warr(α) and B(α) for Block(α). Then,
W denotes ∪1≥α>0W (α),B denotes ∪1>α>0B(α),W (≥ α) denotes ∪β≥αW (β) and
B(≥ α) denotes ∪β≥αB(β).

Algorithm Computing warranted conclusions
Input P = (Π,∆,�): a RP-DeLP program
Output
unicity: Boolean value for the unique output property
(W,B): unique output for P
Method
unicity := True
W (1) := {Q | Π `R Q}
B := ∅
α := maximum_defeasibility_level(∆)
while (unicity and α > 0)

level_computing(α, W , B, unicity)
α := next_defeasibility_level(∆)

end while
end algorithm Computing warranted conclusions

The algorithm Computing warranted conclusions first computes the set of
warranted conclusions W (1) form the set of strict clauses Π . Then, for each defeasibil-
ity level 1 > α > 0, the procedure level_computing determines all warranted and
blocked conclusions with necessity degree α whenever there does not exist a recursive
warranty definition between arguments.

Procedure level_computing (in α; in_out W , B, unicity)
VC : = {Q | 〈C,Q〉 with strength α is valid w.r.t. (W,B)}
while (unicity and VC 6= ∅)

while (∃ Q ∈ VC | ¬ conflict(α, Q, VC, W , not_depend(α, Q, VC, W , B)))
W (α) := W (α) ∪ {Q}
VC := VC\{Q} ∪ {P | 〈C,P 〉 with strength α is valid w.r.t. (W,B)}

end while
I := {Q ∈ VC | conflict(α, Q, VC, W , ∅)}
B(α) := B(α) ∪ I
VC := VC\I
if (for some Q ∈ VC there is a cycle in the graph w.r.t. W ) then unicity := False

end while
end procedure level_computing



For every level α the procedure level_computing computes the set of valid conclu-
sions VC with respect to the current sets of warranted and blocked conclusions (W,B)6.
The set of valid conclusions VC is dynamically updated depending on new warranted
conclusions. The procedure level_computing is based on the two following auxil-
iary functions.

Function conflict(in α, Q, VC, W , D): return Boolean
return (∃ S ⊆ VC\{Q} ∪D such that Π ∪W (≥ α) ∪ S 6`R ⊥

and Π ∪W (≥ α) ∪ S ∪ {Q} `R ⊥)
end function conflict

Function not_depend(in α, Q, VC, W , B): return set of conclusions
D := {P 6∈ VC | 〈C,P 〉 with strength α is almost valid w.r.t. (W,B)

and literal Q is not a conclusion in C}
return(D)
end function not_depend

The function conflict checks conflicts amongQ, the set of valid conclusions VC\{Q}
and the set of conclusions D. The set of conclusions D takes two different values: the
empty set and what we call almost valid conclusions with respect to (W,B)7 which do
not depend on Q; i.e. conclusions which depend on some valid conclusion in VC\{Q},
do not depend on blocked conclusions and do not generate conflicts. In fact, the function
not_depend computes the set of conclusions D for a given literal Q ∈ VC. Finally,
we would remark that the existence of a cycle in the graph for some Q ∈ VC with re-
spect to the current set of warranted conclusions W can be determined by checking the
stability of VC after two consecutive iterations instead of explicitly building the war-
ranty dependence graph for every Q ∈ VC, since the function conflict considers
recursive warranty definitions among arguments by means of the set of conclusions D.

One of the main advantages of the warrant recursive semantics for RP-DeLP is from
the implementation point of view. Actually, warrant semantics based on dialectical trees
and, in general, rule-based argumentation frameworks like DeLP [7, 9], might consider
an exponential number of arguments with respect to the number of rules of a given
program. In contrast, in our framework, at least for the particular case of RP-DeLP
programs with unique output, it is not necessary to explicitly compute all the possible
arguments for a given literal, in order to discover whether it is warranted, as we can
implement the previous algorithm with a worst-case complexity in PNP .

First, observe that the incremental discovery of valid conclusions (set VC in the
algorithm) can be performed in P -time, as for every defeasibility level α all that we

6 Notice that for every level of execution α, an argument 〈C,Q〉 with strength α is valid w.r.t.
the current sets (W,B) iff (i) Q 6∈ W (≥ α) and Q,∼Q 6∈ B(≥ α), and (ii) 〈C,Q〉 is
acceptable w.r.t. W (≥ α).

7 For every level of execution α, an argument 〈C,P 〉 with strength α is called almost valid
w.r.t. the current sets (W,B) iff (i) P 6∈ W (≥ α) and P,∼ P 6∈ B(≥ α); (ii) for all
〈E,R〉 < 〈C,P 〉 with strength β > α, R ∈ W (β); (iii) for all 〈E,R〉 < 〈C,P 〉 with
strength α, R,∼R 6∈ B(≥ α); (iv) for some 〈E,R〉 < 〈C,P 〉 with strength α, R 6∈ W (α);
and (v) Π ∪W (≥ α) ∪ {R | 〈E,R〉 < 〈C,P 〉 with strength α} ∪ {P} 6`R ⊥.



need for a literal Q to be in VC is either that Q ∈ ∆ with level α, or an α-rule with
warranted body and conclusion Q. An α−rule R is a rule with either level α or greater
than α but with Body(R) \W (≥ α) 6= ∅, so that it can only conclude its conclusion
with strength equal or less than α. Secondly, remember that we can effectively avoid
building and checking the dependency graph for literals, as if the program has unique
output, the set VC changes at every iteration of the main loop at level_computing.
Finally, we need only to check the complexity of the following problems:

1. Whether a literal P is in the setD = not_depend(α,Q, VC,W ,B). We can non-
deterministically guess a subset S ⊆ (W (≥ α) ∪∆(α)) and check in polynomial
time whether it encodes an almost valid argument for P without using Q. The set
∆(α) is the set of facts with level α and α−rules, as defined before. So, we can
check whether P has such almost valid argument with an NP algorithm 8.

2. Whether the function conflict(α, Q, VC, W , D) returns true. Remark that we
can non-deterministically guess a subset S ⊆ VC\{Q} ∪D and check in polyno-
mial time whether Π ∪W (≥ α) ∪ S 6`R ⊥ and Π ∪W (≥ α) ∪ S ∪ {Q} `R ⊥).
So, again this can be checked with an NP algorithm.

Finally, these basic problems are solved at most a polynomial number of times in the
level_computing procedure. In level_computing a literal is never inserted
again in the set VC once it has been removed from it, and the number of iterations
of the inner loop, the one that discovers warranted literals, is bounded by the size
of VC. So, given that the outer loop of level_computing will end as soon as no
more literals are found in VC or as soon as VC becomes stable (because no valid con-
clusions can be either warranted or blocked), the number of steps of the procedure
is polynomially bounded by the size of the program. Also, the number of times that
level_computing is called is bounded by the number of levels of defeasibility. So,
this gives an upper bound on complexity equal to PNP for discovering whether a literal
is warranted in the unique output, or a function complexity of FPNP for computing
the unique output.

It is worth noticing that in a recent work [18], the authors have studied the complex-
ity of the warranted formula problem in a framework for propositional argumentation
with classical logic and general formulae (not only horn clauses), and they have shown
the problem to be PSPACE-complete. In our case, at least for the particular case of RP-
DeLP programs with unique output, the complexity is upper bounded with a subclass
of PSPACE, PNP , but we suspect that for general RP-DeLP programs the complexity
of determining whether a literal is in the skeptical output is at least PSPACE-hard. In
contrast, in abstract argumentation frameworks similar reasoning problems have lower
complexity than for propositional argumentation. For example, checking whether an
argument is included on some preferred extension is NP-complete [10] and checking
whether an argument is included on every preferred extension (skeptical reasoning) is
coNPNP -complete [15]. Recently, the related problem of checking whether an argu-

8 The argument found by such NP algorithm may not be minimal, but as we are concerned with
the existence problem, if there is an almost valid argument, then a subset of it will be a minimal
one. It can be shown that the main algorithm only stores a literal in the warrant set once it has
found a minimal argument that is conflict free.



ment is in the maximal ideal extension has been shown to be between coNP and a
subclass of PNP [16, 14].

4 Conclusions and future work

In this paper we have designed an algorithm for computing the warranty status of argu-
ments according to the new recursive semantics defined in [2] for defeasible argumen-
tation with defeasibility levels, for the particular case of programs with unique output.
It discovers warranted literals using a polynomial amount of memory, as it avoids main-
taining sets of arguments that could be of exponential size with respect to program size,
and its worst-case complexity is upper bounded with the class PNP . Moreover, taking
profit of the recursive semantics, it allows to recover the argument for every warranted
literal and even for blocked literals it is possible to store the conflict sets that were
found as responsible of their blocking. So in possible applications of this framework
this algorithm could provide useful information for users in case of unexpected outputs.

Future work will be addressed in two main directions. On the one hand we plan
to design an efficient version of the algorithm we have shown here, by minimizing
the effective number of NP queries that have to be made during the execution of the
level_computing procedure. There are several ways of saving NP queries. For
example, every time an almost valid argument has been found for a literal Q, this argu-
ment can be saved, so next time we need to check an argument for Q, if the one saved
is still almost valid (i.e. it is not based on blocked conclusions), there is no need to find
a new one. Also, with the aim of obtaining an algorithm able to scale up with problem
size, we will design polynomial time reductions of the NP queries to be performed to
the SAT problem, so that we can take profit of state-of-the-art SAT solvers for solving
the most critical subproblems during the search. We also plan to study particular cases
of RP-DeLP programs that have a better worst-case complexity, looking for tractable
cases, like it has been done recently for other argumentation frameworks, like the case
of bipartite abstract argumentation frameworks [14].

On the other hand we plan to come to the problem of deciding which output should
be considered for RP-DeLP programs with multiple outputs. A natural solution to this
problem could be to adopt the intersection of all possible outputs in order to define the
skeptical output as the set of those literals which are ultimately warranted. However,
as stated in [19], adopting the intersection of all possible outputs can lead to an incon-
sistent output when some recursive situation occurs between the literals of a program.
So that we plan to define an ultimately warranted conclusion for RP-DeLP programs
with multiple outputs as a conclusion of the intersection which is recursively based
on ultimately warranted conclusions. In fact, this idea corresponds with the maximal
ideal extension defined by Dung, Mancarella and Toni [12, 13] as an alternative skep-
tical basis for defining collections of justified arguments in the abstract argumentation
frameworks promoted by Dung [11] and Bondarenko et al. [5].

Acknowledgments Authors are thankful to the anonymous reviewers for their helpful comments.
Research partially funded by the Spanish MICINN projects MULOG2 (TIN2007-68005-C04-
01/02) and ARINF (TIN2009-14704-C03-01/03), CONSOLIDER (CSD2007-0022), and ESF



Eurocores-LogICCC/MICINN (FFI2008-03126-E/FILO), and the grant JC2009-00272 from the
Ministerio de Educación.

References
1. T. Alsinet, C.I. Chesñevar, L. Godo, and G. Simari. A logic programming framework for

possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems,
159(10):1208–1228, 2008.

2. T. Alsinet, R. Béjar, and L. Godo. A characterization of collective conflict for defeasible
argumentation. In Proc. of COMMA 2010.

3. T. Alsinet, C.I. Chesñevar and L. Godo. A Level-based Approach to Computing Warranted
Arguments in Possibilistic Defeasible Logic. In Proc. of COMMA 2008, pages 1–12, 2008.

4. P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.
5. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-

theoretic approach to default reasoning. Artif. Intell., 93:63–101, 1997.
6. M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artif. Intell.,

171(5-6):286–310, 2007.
7. L. Cecchi, P. Fillottrani, and G. Simari. On the complexity of delp through game semantics.

In Proc. of NMR 2006, pages 386–394, 2006.
8. C.I. Chesñevar, A. Maguitman, and R. Loui. Logical Models of Argument. ACM Computing

Surveys, 32(4):337–383, 2000.
9. C.I. Chesñevar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilis-

tic defeasible logic programming. In Proc. of LPNMR 2005, pages 158–171, 2005.
10. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default

theories. Theoretical Computer Science, 170(1-2):209 – 244, 1996.
11. P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.
12. P.M. Dung, P. Mancarella, and F. Toni. A dialectic procedure for sceptical, assumption-based

argumentation. In Proc. of COMMA 2006, pages 145–156, 2006.
13. P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artif.

Intell., 171(10-15):642–674, 2007.
14. P.E. Dunne. The computational complexity of ideal semantics. Artif. Intell., 173(18):1559–

1591, 2009.
15. P.E. Dunne and T.J.M. Bench-Capon. Coherence in finite argument systems. Artif. Intell.,

141(1-2):187 – 203, 2002.
16. P.E. Dunne. The computational complexity of ideal semantics i: Abstract argumentation

frameworks. In Proc. of COMMA 2008, pages 147–158, 2008.
17. A. García and G. Simari. Defeasible Logic Programming: An Argumentative Approach.

Theory and Practice of Logic Programming, 4(1):95–138, 2004.
18. R. Hirsch and N. Gorogiannis. The complexity of the warranted formula problem in propo-

sitional argumentation. J. of Logic and Computation, 20(2), 2009.
19. J.L. Pollock. A recursive semantics for defeasible reasoning. In I. Rahwan and G. Simari,

editors, Argumentation in Artificial Intelligence, chapter 9, pages 173–198. Springer, 2009.
20. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible

priorities. J. of Applied Non-classical Logics, 7:25–75, 1997.
21. H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay

and F. Guenther, editors, Handbook of Phil. Logic, pages 219–318. Kluwer, 2002.
22. I. Rahwan and G. Simari, editors. Argumentation in Artificial Intelligence. Springer, 2009.


