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Graphical Abstract 

 

Highlights 

1. We tested indices of community environmental associations based on occurrence 

records to infer how butterflies responded to climatic and land cover changes in the 

Iberian Peninsula from 1901 to 2016. 

2. Community Temperature Index and Community Precipitation Index responded to 

spatial variation in the climate, but did not change significantly over time. Instead, 

butterfly communities became more associated with closed vegetation. 

3. Local variation in climatic conditions and elevation dampened butterfly community 

responses to heating and drying, suggesting that topographic heterogeneity could shield 

regional butterfly faunas from the impacts of climate change. 
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Abstract 

1. Indices of environmental associations such as the Community Temperature Index (CTI) 

and Community Precipitation Index (CPI) can be derived from occurrence data to extend 

the geographic scope or time frame of evidence for responses of insect diversity to global 

change.  

2. We tested whether occurrence records from 1901 to 2016 from the Iberian Peninsula could 

shed light on butterfly community responses to changes over space and time in the climate; 

and whether local climatic variation caused by topographic heterogeneity could buffer 

communities against the effects of climate change. 

3. CTI and CPI were closely related to variation in temperature and precipitation across 115 

well-sampled 10 km grid squares. However, whereas temperature and precipitation 

changed systematically from 1901-1979 to 1980-2016, and these changes were positively 

related to changes in CTI and CPI, community climatic associations did not change 

significantly over time. Butterfly communities became more associated with closed 

vegetation, suggesting that land cover changes overshadowed the effects of climate change. 

4. Local (1 km) climatic variation generally exceeded change over time at 10 km resolution, 

and heterogeneity in elevation slowed rates of warming. In turn, spatial variation in climatic 

conditions dampened butterfly community responses to heating and drying.  

5. Occurrence data are limited by their spatial resolution but can inform understanding of 

insect community responses to global change for regions lacking long-term monitoring 

data. Our results suggest that local climatic variation accompanying topographic 

heterogeneity can shield regional butterfly faunas from the impacts of climate change. 
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Climatic debt, Community Precipitation Index (CPI), Community Temperature Index (CTI), 

land abandonment, climate change, refugia, TAO Index 

 

Introduction 

Insect abundance and diversity are affected globally by threats including climate change, 

habitat degradation and pollution, whose intensity varies geographically and over time 

(Montgomery et al., 2020; Wagner, 2020). Geographic variation in insect trends therefore 

offers pointers regarding the drivers of changing insect biodiversity, and the resilience of 

different insect communities to these respective drivers (Wagner et al., 2021). Existing 

evidence for changes to insect communities is biased towards a few temperate regions where 

landscapes have undergone long-lasting and intensive human exploitation, potentially 

concealing or exacerbating the effects of recent climate change (Dirzo et al., 2014; van Klink 



4 
 

et al., 2020). Therefore, to determine how insect diversity responds to climate change there is 

a need to examine changes to insect communities for as wide a range of environments as 

possible, even in regions where data are limited. Long-term evidence from regions not yet 

subject to extensive habitat degradation, or from gradients of land-use intensity, could be 

especially useful to detect the potential for intact habitats or topographic variation to shield 

biodiversity against the negative impacts of climate change (Halsch et al., 2021). 

Opportunistic historical records from museum specimens and publications often represent the 

only evidence of species distributions and community composition before pronounced climate 

warming in the late twentieth century (Kharouba et al., 2019; Montgomery et al., 2020). In 

some cases, these historical data have been used to provide evidence of changes to insect 

distributions or diversity over the past century or more (Eskildsen et al., 2015; Habel et al., 

2016, 2019; Lewthwaite et al., 2017; Van Dooren, 2019; van Strien et al., 2019). Historical 

data are subject to possible effects of sampling bias, including spatial or temporal variation in 

recorder activity, which complicates interpretation of changes to species distributions, 

abundance, or richness (Ries et al., 2019; Didham et al., 2020). Nevertheless, even with 

incomplete data for a location, indices based on the environmental associations of species can 

provide information on changes to communities and their environmental drivers. Indices such 

as the Community Temperature Index (CTI) or Community Precipitation Index (CPI) can be 

calculated based on the climatic associations of constituent species over their geographic 

ranges (Devictor et al., 2008; Schweiger et al., 2014). CTI and CPI have been shown to vary 

over space or time consistent with spatial or temporal variation in climatic conditions (Nieto-

Sánchez et al., 2015; Herrando et al., 2019). In turn, comparison of rates of change in these 

indices between different regions, habitats or taxonomic groups can offer clues to the factors 

influencing vulnerability to climate change, and hence help to identify priorities for 

conservation (Devictor et al., 2012). 

The insect communities of Mediterranean systems exemplify these challenges. In the past 

century, Mediterreanean regions have been exposed to rapid rates of climate change (Serrano-

Notivoli et al., 2018, 2019), as well as to contrasting pressures of rural depopulation and land 

abandonment, versus urbanisation, infrastructure development and agricultural intensification 

(Debussche et al., 1999; Rescia et al., 2010; Serra et al., 2014; Herrando et al., 2016). Over 

recent decades, Mediterranean butterfly communities have responded to climatic warming 

(Zografou et al., 2014; Nieto-Sánchez et al., 2015) and drying (Herrando et al., 2019), as well 

as vegetation encroachment (Ubach et al., 2020) and changing agricultural practices (Lee et al., 

2020). Some evidence from these regional studies suggests that topographic variation or 

vegetation cover may counteract effects of climate change on insects (Nieto-Sánchez et al., 

2015; Herrando et al., 2019), as has been observed for Mediterranean bird communities 

(Clavero et al., 2011; Barnagaud et al., 2013; Tellería 2019, 2020). However, wider geographic 

tests of the scope for topography or vegetation to offset the impacts of climate change are 
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limited by availability of longer-term or larger-scale evidence of changes to Mediterranean 

insect communities (Lobo et al., 2018).  

Here, we derive species-climatic associations and community indices from butterfly 

distribution records in the Iberian Peninsula over the course of 116 years, and test whether 

variation in the community indices is consistent with climatic variation over space and time. 

We calculate CTI and CPI independently for a set of well-sampled 10 km squares by estimating 

species-climatic associations using occurrence information from the remaining grid squares in 

the Iberian Peninsula. We then test i) whether the indices for the well-sampled squares are 

related to geographic variation in temperature and precipitation; and ii) whether changes over 

time in the community indices (1901-1979 versus 1980-2016) are related to the magnitude of 

temperature or precipitation change over the same period. We use our analysis of change in 

CTI and CPI, and of an index representing the associations of component butterfly species with 

open versus closed vegetation (“TAO”; Ubach et al., 2020), to assess whether regional butterfly 

faunas show evidence of buffering effects against climate change from topographic variation; 

or of direct responses to changes in vegetation cover, as has been inferred from monitoring data 

in the north-eastern Iberian Peninsula (Herrando et al., 2016, 2019; Ubach et al., 2020). We 

assess in particular whether topographic variation can increase the resilience of insect 

communities to environmental change through its effects on spatial and temporal variation in 

climatic conditions, and consider the implications of our results for adapting the conservation 

of insect communities to climate change. 

 

Materials and methods 

Butterfly distribution data 

We used atlas data for the Papilionoidea and Hesperioidea of the Iberian Peninsula (García-

Barros et al., 2004) updated to 2016. The database includes 380,214 distribution records at a 

resolution of 10 x 10 km Universal Transverse Mercator (UTM) squares from publications, 

public and private collections, and field surveys, which we updated and verified to ensure that 

identifications and locations were reliable. We analysed occurrence records from 10 km 

squares for 225 species, representing >95% of Iberian species for which there are reliable 

distribution data. Species nomenclature follows Wiemers et al. (2018). Where species 

identifications are uncertain (for a few cryptic species pairs; Platania et al., 2020), we assign 

records to the more widespread of the two taxa in the Iberian Peninsula, and if unequivocal 

records are not available for one of the species, we calculate species-climatic associations just 

for one taxon (see Table S1 for the full species list, climatic associations, and notes).  

To test changes in the climatic associations of butterfly communities over time, we split the 

data into two periods (Fig. 1). Recording intensity has increased over time, so for the first 
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period we selected a longer time span, from 1901 to 1979, to achieve sufficient occurrence 

records (97,838 unique records of 218 species). The second period, from 1980 to 2016, had an 

average of more than five times as many records per year (259,803 records of 225 species) and 

corresponded to the period previously used to estimate butterfly species-climate associations 

for Europe (1981-2000; Schweiger et al., 2014). In the Iberian Peninsula, mean annual 

temperature increased by an equivalent amount over each period (Fig. 1c) and conditions also 

tended to be drier in 1980-2016 (Fig. 1d). A species was considered present in either period 

where there had been at least one confirmed record in each 10 km square. 

To minimise bias from spatial and temporal variation in recording, we restricted our analyses 

of geographic patterns and temporal changes in butterfly communities to grid squares with the 

most complete sampling in both periods. We used KnowBR software (Lobo et al., 2018) to 

estimate inventory completeness for each 10 km square in each period. Inventory completeness 

is estimated using the number of species recorded divided by the expected species richness, 

based on rates of species accumulation per distribution record. We used the following criteria 

to select adequately sampled 10 km squares: i) a minimum of 300 total occurrence records; ii) 

a minimum of 50 records in each period (1901-1979 and 1980-2016); and iii) a minimum 

inventory completeness computed by KnowBR of 50% in each period. A total of 115 grid 

squares exceeded this threshold sampling intensity (Fig. 1), representing c. 2.5% of 10 km 

squares with any occurrence records, and c. 1.8% of squares in the entire Iberian Peninsula.  

Climatic data and community indices 

We used the dataset CHELSAcruts (Climatologies at high resolution for the earth’s land 

surface areas: Karger et al., 2017) to obtain monthly maximum and minimum temperatures and 

precipitation sums over the period 1901-2016 at a resolution of 1 km. We used these data to 

calculate the mean annual temperature (°C) and precipitation (mm) for each period (1901-1979 

and 1980-2016) in each 10 km square. This allowed us to compute for each species at 10 km 

resolution in the Iberian Peninsula the same metrics that have been calculated in the CLIMBER 

database (Climatic niche characteristics of the butterflies in Europe) using butterfly records at 

50 km resolution for 1981-2000 (Schweiger et al., 2014; Platania et al., 2020). For each species, 

we calculate the Species Temperature Index (STI) as the mean temperature (°C), and the 

Species Precipitation Index (SPI) as the mean precipitation (mm), in 10 km squares where the 

species was recorded in 1980-2016, the period when distributions were sampled more 

completely. We tested whether our measures of STI and SPI for the Iberian Peninsula were 

consistent with those calculated across Europe for 222 species (Platania et al., 2020) and with 

a previous calculation for 63 species in the Iberian Peninsula based on atlas data from 1998-

2005 (Herrando et al., 2019) using Spearman rank correlations because most variables were 

not normally distributed (Table S2).  
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To ensure our measures of Community Temperature Index (CTI) and Community Precipitation 

Index (CPI) were independent from (and could therefore be compared to) these measures of 

STI and SPI, we excluded the 115 best-sampled grid squares from the data and re-calculated 

STI and SPI for each species based on all remaining 10 km grid squares with occurrence records 

in 1980-2016 (n = 4390). We used these re-calculated indices to calculate CTI and CPI, for all 

squares except those that underpinned our species-level indices. We checked the revised 

species indices by correlating them with the STI and SPI values from all squares (Table S2). 

For the 115 well-sampled squares, we computed community indices based on the presence of 

species in 1901-1979 and 1980-2016 respectively. For each square, the Community 

Temperature Index (CTI) was the mean STI value of species recorded in the square during each 

respective period, and the Community Precipitation Index (CPI) was the mean SPI. We treated 

each species equally in the calculations because the occurrence records were not collected in a 

sufficiently systematic way to measure relative species abundances. Then for each 10 km 

square we calculated change over time in Community Temperature Index (ΔCTI) and 

Community Precipitation Index (ΔCPI) by subtracting the square’s 1901-1979 index from its 

1980-2016 index. 

We obtained environmental data for the 115 well-sampled 10 km squares to test for factors 

influencing geographic variation and change over time in butterfly communities. The changes 

in mean annual temperature and precipitation from 1901-1979 to 1980-2016 were calculated 

for each square as a measure of the magnitude of climatic changes expected to have influenced 

butterfly communities. Temperature, rainfall and vegetation vary over elevation gradients 

(Körner, 2007); while topographic variation can influence rates of climatic change, as well as 

providing microclimatic variation that protects species from climatic change by allowing 

localised changes to species distributions (Scherrer & Körner, 2011).  We used the 25 m 

resolution European Digital elevation model (EU-DEM, 2016) to compute mean elevation (m) 

and standard deviation in elevation (as a measure of topographic variability) per 10 km square; 

and we also computed the standard deviation of annual mean temperature and precipitation 

across the 100 constituent 1 km cells in each square as measures of local climatic variation. 

We recorded longitude, latitude and distance from the coast for each square because of their 

potential influences on butterfly faunas (Romo & García-Barros, 2010; Pulido-Pastor et al., 

2018), and on climatic conditions and rates of change (Serrano-Notivoli et al., 2018, 2019).  

Community associations with vegetation cover 

The composition of insect communities in Mediterranean Europe has responded to recent land 

abandonment (Stefanescu et al., 2011; Dantas de Miranda et al., 2019; Wölfling et al., 2019; 

Ubach et al., 2020). To test whether increased vegetation cover had influenced Iberian butterfly 

communities, or modified their responses to climate change, we used an index (TAO) for the 

association of species with open or closed vegetation (Ubach et al., 2020). TAO represents a 

value between +1 (species associated with entirely open habitats) and -1 (species associated 
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with entirely closed habitats) and has been calculated for butterflies in North East Spain based 

on habitat associations in the Catalan Butterfly Monitoring Scheme. Thus, in common with 

STI and SPI, TAO was calculated for each species independently of its occurrence in the 115 

well-sampled squares. However, whereas we used atlas data to calculate STI and SPI, we 

applied the published TAO values based on monitoring data for 145 species for which the index 

has been calculated (Ubach et al., 2020) (Table S1). We computed the community TAO index 

(TAOc) for each of the 115 well-sampled 10 km squares for 1901-1979 and 1980-2016 as the 

average TAO for species that were recorded in the respective period. As for calculation of CTI 

and CPI, we treated each species equally (i.e., species presence rather than relative abundance). 

We measured change in TAOc over time (ΔTAOc) in the same way as for CTI and CPI, as the 

index for the first period subtracted from the index for the second.  

Data analysis 

Relating community indices to climatic and geographic variables 

To test whether butterfly community indices in the 115 squares in 1980-2016 reflected spatial 

variation in climatic conditions, we ran linear models of CTI and CPI against observed mean 

temperature and precipitation (the respective climatic predictors). We included elevation, 

latitude, longitude and distance to the coast as explanatory variables, as well as standard 

deviation (SD) in elevation (at 25 m resolution in each 10 km square) and standard deviation 

in the climatic predictor (at 1 km resolution), to test for effects of variation in topography or 

local climate within each grid square. We tested the interaction between SD climatic variation 

and the climatic variable, to assess whether spatial variation in climatic conditions could 

influence butterfly community responses to the average climate. To understand geographic 

variation in temperature and precipitation across the 115 squares, and the climatic gradients 

that butterfly communities were responding to, we also modelled temperature and precipitation 

against elevation, SD elevation, latitude, longitude, and distance from the coast. We used the 

same approach to model the effects of these geographic variables on TAOc (the association of 

the butterfly community with open or closed vegetation). We also correlated CTI, CPI and 

TAOc to test whether butterfly community associations with the climatic variables and land 

cover were linked. 

We used R version 3.6 for all analyses (R Core Team, 2018). For model selection we used the 

dredge function in the MuMIn package (Bartoń, 2020). We standardised all explanatory 

variables to compare variable effect sizes in the models (Schielzeth, 2010), and used an 

information theoretic approach, comparing candidate models using the Akaike Information 

Criterion corrected for small sample sizes (AICc) (Burnham & Anderson, 2002). The most 

parsimonious model for each test was that with the lowest AICc, and we constructed a 

confidence model set including all candidate models whose AICc differed by 6 or less from 
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the most parsimonious model (ΔAIC ≤ 6) (Richards, 2008). We consider a parameter to have 

strong support if it was included in all models of the confidence set (Richards, 2015).  

Change in community indices 

To test whether climatic conditions or butterfly community associations changed from 1901-

1979 to 1980-2016, we used non-parametric Wilcoxon tests paired by the 115 grid squares, 

since not all datasets were normally distributed.  

To test whether communities had changed to a greater extent where climatic conditions had 

changed more, we modelled change in the community indices against change in the respective 

climatic variable (i.e., CTI change against change in mean temperature; CPI change against 

change in annual precipitation). Again, we tested for possible effects of elevation, latitude, 

longitude and distance from the coast, and for standard deviation in the climatic variable and 

elevation. As a test for the possible buffering effect of local variation in climatic conditions, 

we included an interaction between the magnitude of temperature or precipitation change with 

standard deviation in temperature or precipitation in each grid square in 1980-2016. For all 

analyses, we used model selection based on AICc in MuMIn as above. 

To understand the factors influencing exposure to climatic change, we modelled rates of 

temperature or precipitation change across the 115 squares against the same set of 

environmental variables (elevation, latitude, longitude, distance from the coast), including SD 

elevation to test whether topographic variation influenced temperature or precipitation change. 

We tested interaction terms for mean and SD elevation with distance from the coast, given the 

importance of elevation and coastal proximity for climatic variation in the Iberian Peninsula 

(Serrano-Notivoli et al., 2019). We also compared changes to mean annual temperature and 

precipitation in the 10 km squares with the overall estimated variation in temperature and 

precipitation over the constituent 1 km squares, to understand whether localised displacements 

by butterflies might allow them to cope with observed rates of climatic change. 

For the 1980-2016 community indices and change in these indices over time, we tested for 

spatial autocorrelation, which can cause overfitting in model selection (Diniz-Filho et al., 

2008). We calculated global Moran’s I in each index and its associated climatic variable for a 

distance of 248 km, at which each of the 115 squares had at least one nearest neighbour, and 

tested whether autocorrelation was reduced in the residuals of the best model for each variable 

analysed. We also calculated variance inflation factors to assess collinearity amongst all 

predictors in the models (Zuur et al., 2010). 
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Results 

Values of Species Temperature Index (STI) and Species Precipitation Index (SPI) calculated 

from the 10 km atlas data for 1980-2016 were strongly positively correlated with previous 

calculations of STI and SPI for the species in Europe and the Iberian Peninsula (Table S2).  

The 115 well-sampled 10 km squares were widely distributed, including locations from coastal 

and inland, low, and high elevation, and a wide range of longitudes and latitudes (Fig. 1, Table 

1). Across these squares, the main geographic gradients in the climate were lower mean 

temperature at higher elevation (effect size in the top-ranked model: -0.85 ± SE 0.01) and 

latitude (-0.26 ± 0.01), and greater precipitation at higher latitude (0.67 ± 0.07). In addition, 

temperature was lower but annual precipitation was greater in squares with greater standard 

deviation in elevation, nearer the coast, and further west (Table 2a). 

The mean annual temperature was higher in all 115 squares in 1980-2016 than in 1901-1979 

(median change +1.14 ºC; range 0.8-1.3 ºC). Annual precipitation was lower in 111 (97%) of 

the grid squares in 1980-2016 (median change -48 mm; maximum reduction 80 mm) (Paired 

Wilcoxon tests for changes in both climatic variables, n = 115, P < 0.001) (Table 1, Fig. 2c, d). 

The mean estimated range in annual temperature across 1 km cells in a 10 km square was 5.2 ºC 

in 1980-2016: in 105 squares (91%), this spatial variation in temperature was greater than the 

change from 1901-1979 to 1980-2016 (the ten exceptions were all lowland squares below 

655 m average elevation). The mean range in annual precipitation across 1 km cells per 10 km 

square was 432 mm (minimum 69 mm, maximum 890 mm), and this spatial variation was 

greater than the change in precipitation between the two periods for all 115 squares. 

Temperature increases from 1901-1979 to 1980-2016 were lower in grid squares with greater 

standard deviation in elevation (effect size: -0.50 ± 0.10). Temperature increases were greater 

at higher latitudes and longitudes (further north and east), at higher elevations, and further from 

the coast (Table 2b). Precipitation change showed less clear geographic patterns, although 

declines appeared to be greater at higher elevation, further east, and further inland. Precipitation 

also decreased where elevation was more variable, although a positive interaction between 

distance to the coast and standard deviation in elevation gave a weak indication that 

topographic variation at inland sites had maintained higher precipitation than in locations with 

more uniform elevation (Table 2b).  

Geographic variation in community indices 

Community Temperature Index (CTI) and Community Precipitation Index (CPI) for the 115 

squares in 1980-2016 were respectively positively related to mean temperature (effect size: 

1.47 ± 0.10) and precipitation (0.25 ± 0.05) (Fig. 2a, b). CTI in 1980-2016 varied by 0.22 ºC 

per 1 ºC geographic difference in mean temperature, and CPI varied by 13.87 mm per 100 mm 

difference in annual precipitation. Mean temperature was the only variable included in all 
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models in the confidence set for CTI (Table 3a). All models in the confidence set for CPI 

included positive effects of precipitation, elevation and latitude, and negative effects of 

distance to the coast (i.e., CPI was greater at higher elevation and in the north, and nearer the 

coast, in addition to the effects of precipitation; Fig. 3b). The top-ranked (lowest AICc) models 

for both community indices included negative interactions between the climatic term and its 

standard deviation among 1 km cells in the 10 km squares, suggesting that CTI or CPI did not 

respond so strongly to temperature or precipitation where there was greater local climatic 

variation. CTI and CPI were negatively correlated with one another (n = 115, rs = - 0.94, P < 

0.001). 

For individual species, the TAO index of association with open or closed vegetation was not 

significantly related to STI or SPI (Table S2). Community TAO (TAOc) in the 115 squares in 

1980-2016 was also not related to CTI (rs = 0.12, P = 0.21) or CPI (rs = -0.15, P = 0.11). The 

best model for TAOc included a negative effect of elevation (-0.31 ± 0.10), and a negative 

interaction between elevation and distance from the coast (-0.40 ± 0.10) (Table 4). This model 

indicates that communities were more associated with closed vegetation at low elevations near 

the coast and at high elevations inland, and were more associated with open habitats at 

relatively high elevations nearer the coast but low elevations inland (possibly related to 

geographic patterns in the vegetation of the Iberian Peninsula, e.g., see Loidi, 2017).  

Changes to community indices over time 

In contrast to observed changes in temperature and precipitation, CTI and CPI did not change 

systematically across the focal squares between 1901-1979 and 1980-2016 (Table 1, Fig. 2). 

CTI increased in 69 and decreased in 46 squares (Wilcoxon test, P = 0.12), whilst CPI increased 

in 58 and decreased in 57 squares (P = 0.95). The most parsimonious models explained only a 

small amount of variation in changes to CTI and CPI over time (adjusted r2 0.09 and 0.07 

respectively; Fig. 4), but showed that changes to the community indices were related to rates 

of climatic change, because positive effects of temperature change (effect size: 0.26 ± 0.13) 

and precipitation change (0.26 ± 0.10) were included in the top-ranked models for CTI and CPI 

respectively (Table 3b).  

A negative effect of distance to the coast was the only variable included in all models in the 

confidence set for CTI change, indicating that CTI increased least in squares that were further 

inland (Fig. 3). CTI also increased less at higher latitudes. These effects contrast with the 

greater observed increases in temperature further inland and further north (Table 2b). Models 

for CPI change were weakly supported, with maximum ΔAICc from the null model of only 

4.02. The top-ranked model suggested that CPI remained relatively high (despite reductions in 

precipitation) in squares that were further inland (positive effect of distance to the coast) and 

where there was greater local variation in precipitation (positive effect of SD precipitation; 

positive interaction between precipitation change and SD precipitation). 
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Community TAOc decreased in 71 grid cells and increased in 44 (Wilcoxon test, V = 4357, P 

= 0.004), showing that butterfly communities in 1980-2016 were associated with more closed 

vegetation than in 1901-1979. All candidate models for change in TAOc were weakly 

supported (no variables included in all models of the candidate set, maximum ΔAICc from null 

model = 1.17; Table 4), suggesting that changes to vegetation associations were occurring 

throughout the Iberian Peninsula. Whereas respective changes to CTI and CPI were negatively 

correlated (rs = -0.76, P < 0.001), change to TAOc was not correlated with change in CTI (rs = 

-0.12, P = 0.21) or CPI (rs = -0.07, P = 0.42). 

Spatial autocorrelation in CTI, CPI and change in these indices was reduced by the fitted 

models (Table S3). There was no significant spatial autocorrelation in TAOc or ΔTAOc. 

Variance Inflation Factors ranged from 1.1 to 2.7 for variables included in the models, 

suggesting that results were robust to multicollinearity. 

Discussion 

We used indices based on occurrence records from the Iberian Peninsula to assess butterfly 

community variation over space and time in response to climate and land cover. The climatic 

associations of butterfly communities, quantified by Community Temperature Index (CTI) and 

Community Precipitation Index (CPI), were correlated with geographic variation in mean 

temperature and precipitation, respectively. Between 1901-1979 and 1980-2016, greater rates 

of warming and drying were associated with greater increases in CTI and reductions in CPI. 

However, whereas temperature and precipitation changed significantly over time, the 

community climatic indices did not show significant change. Topographic variation may have 

buffered communities against the effects of warming and drying, because rates of warming 

were reduced by greater variation in elevation, and we found evidence that local climatic 

variation dampened community responses to climate over space and time. The most widespread 

change to butterfly communities over time was an increased association with more closed 

vegetation. Thus, our results suggest that the Iberian butterfly fauna at 10 km spatial resolution 

has not yet shown generalised responses to climate change. Instead, local climatic variation 

related to topography, and the capacity of butterflies for behavioural thermoregulation, may 

have buffered communities against the effects of climate change; or climate-driven changes 

may have been overshadowed by factors such as land cover change. 

Climatic associations of butterfly communities  

We separated atlas data for the butterflies of the Iberian Peninsula into 115 well-sampled 10 km 

squares, and the remaining squares from which we calculated species temperature and 

precipitation indices. For the well-sampled squares, we found strong evidence that butterfly 

CTI was correlated with temperature, and CPI with precipitation. Evidence that these indices 

of community composition vary over geographic gradients in the climate (e.g., Nieto-Sánchez 

et al., 2015), combined with widespread recent observations of range shifts by species in 
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response to warming (Lenoir et al., 2020), suggest that space-for-time substitutions in 

biogeographic patterns will occur as communities are increasingly composed of warm- or dry-

adapted species (Devictor et al., 2008, 2012). Our results do not demonstrate recent space-for-

time substitutions in the butterfly fauna of the Iberian Peninsula, because whilst conditions 

became significantly hotter and drier between 1901-1979 and 1980-2016, the butterfly faunas 

showed no generalised increases in CTI or decreases in CPI. 

Previous studies at finer resolution in different parts of the Iberian Peninsula have shown 

inconsistent recent changes to the climatic associations of butterfly communities. For example, 

CTI increased between 1967-1973 and 2006-2012 at sites between 580 m and 2250 m elevation 

in the Sierra de Guadarrama in central Spain (Nieto-Sánchez et al., 2015). In contrast, CTI in 

monitored sites showed non-significant decreases in north-eastern Spain (Stefanescu et al., 

2011; Devictor et al., 2012), where butterfly and bird communities appear to be responding 

more to changes in precipitation (Herrando et al., 2019). We found that (accounting for 

geographic variation), CTI increased more where there was greater warming, and CPI reduced 

more where precipitation declined more, and therefore that the previously recorded geographic 

differences could partly be explained by different rates of warming and drying in different 

regions. Conditions heated most further from the coast, such as where Nieto-Sánchez et al. 

(2015) found increases in CTI, whereas precipitation reduced more in the east, where Herrando 

et al.’s (2019) study was focused.  

Changes to the climatic variables themselves were more pronounced than changes to butterfly 

communities, with several possible methodological and biological explanations. We sought to 

control for sampling effort by restricting analyses to the most comprehensively sampled grid 

squares over both periods. However, documented faunas are likely to be incomplete for most 

grid squares, particularly in the 1901-1979 baseline period used to calculate change in CTI and 

CPI. Uncertainty in baseline data imposes noise on observed insect trends (Didham et al., 

2020), which in this case might obscure responses of CTI and CPI to climatic change. In this 

respect, it is reassuring that we did detect albeit weak effects of warming on the rate of CTI 

change, and of drying on the rate of CPI change (Fig. 4).  

Our results could also be explained by time lags in community responses to climate change 

(“climatic debt”; Devictor et al., 2012), or time lags in extirpations resulting from global change 

more generally (“extinction debt”; Kuussaari et al. 2009). Following postglacial 

recolonizations from ice age refugia (Schmitt, 2007), faunal composition in the Iberian 

Peninsula in the baseline period (1901-1979) is likely to have been associated largely with 

climatic conditions (Hawkins & Porter, 2003). In the Iberian Peninsula, butterfly species 

richness generally declines to the south and west associated with increasing water stress 

(Stefanescu et al., 2004; see also Penado et al., 2016 for bumblebee species richness and 

temperature). Hence, if species requiring cooler or wetter environments are lost from a location, 

relatively few species associated with warmer or drier conditions may be available to colonise, 
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and the chances of specialists doing so is limited by isolated habitat distributions (Wilson et 

al., 2007). CTI increased less both inland and at higher latitudes, despite high rates of warming 

in these locations: in both cases, few thermophilic species may be present nearby (Romo & 

García-Barros, 2010; Pulido-Pastor et al., 2018) and would need to travel long distances across 

inhospitable habitats for colonization. Nevertheless, there is evidence that species formerly 

restricted to southern or coastal regions, such as Zizeeria knysna (Trimen, 1862; Lycaenidae) 

or Charaxes jasius (Linnaeus, 1767; Nymphalidae), have begun to colonise inland and at higher 

elevations (Munguira, pers. obs.; Cancela & Vasconcelos, 2019). 

A second possible biological explanation for the discrepancy in rates of climatic and 

community change is that other changes to vegetation or land cover have obscured changes 

driven by the climate (González-Megías et al., 2008). We found that an index of the vegetation 

associations of communities (TAOc) showed a significant shift towards species more 

associated with closed vegetation. Equivalent changes have been observed in butterfly 

monitoring data from Catalonia (north east Spain) since the 1990s (Stefanescu et al., 2011; 

Herrando et al., 2016; Ubach et al., 2020), driven at least partly by extirpations of species using 

open habitats. Our results suggest that these changes have occurred across the Iberian Peninsula 

for a longer period of time (since 1980 or before), likely associated with habitat abandonment 

as rural to urban migration occurred during the twentieth century (Rescia et al., 2010; Serra et 

al., 2014). There was little evidence for geographic variation in changes to TAOc, suggesting 

a widespread trend. Faunal changes towards insects and birds using more closed vegetation 

have been observed in several parts of Mediterranean Europe (Clavero et al., 2011; Barnagaud 

et al., 2013; Herrando et al., 2016; Dantas de Miranda et al., 2019; Wölfling et al., 2019; 

Tellería 2019, 2020), and their consequences for functional and taxonomic diversity merit 

research. 

It is possible that changes to climatic conditions have not yet been sufficient to cause systematic 

changes in the butterflies recorded at 10 km resolution. For most grid squares, changes to 

temperature or precipitation over time were exceeded by spatial variation among 1 km cells in 

1980-2016. Hence, it is likely that species would have been able, if needed, to shift their 

distributions locally within 10 km squares to maintain associations with favourable climatic 

conditions (Roth et al., 2014; Colom et al., 2020). Local range shifts could occur via 

movements to higher elevations (Wilson et al., 2007; Geppert et al., 2020; Marshall et al., 

2020), or to cooler microclimates on north-facing slopes or in narrow valleys (Scherrer & 

Körner, 2011), which could provide locally cooler or moister conditions. Butterflies can also 

respond in situ to climatic variability through changes to behaviours such as egg-site selection 

(Bennett et al., 2015), basking (Barton et al., 2014) and aestivation (García-Barros, 1988), and 

through plasticity in physiology and morphology (e.g., de Jong et al., 2010; Gibbs et al., 2011). 

Variation within and among species in phenological responses to climate change could also 

buffer populations and communities against changes to prevailing climatic conditions during 

flight periods (e.g., Stefanescu et al., 2003; Gutiérrez & Wilson, 2021).  Nevertheless, climatic 
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unpredictability may limit the scope of phenotypic plasticity to buffer populations against 

climate change (Kingsolver & Huey, 1998; Kingsolver & Buckley, 2018). As a result, although 

the geographic distributions of butterflies may be closely related to variation in the climate, 

there are likely to be delays in climate-driven range shifts resulting from colonizations or local 

extinctions (Rapacciuolo et al., 2011), with accompanying delays in community responses 

(Devictor et al., 2012). 

Environmental buffers against climatic change 

Greater variation in elevation or topography could shield ecological communities from the 

impacts of global change for several reasons. Steeper slopes lead to a wider range of habitats 

and abiotic conditions (including microclimates). Landscapes with steeper slopes experience 

reduced rates of conversion to intensive uses but are subject to abandonment if extensive 

agriculture or livestock rearing become economically unsustainable (Debussche et al., 1999). 

In Catalonia, sites with greater topographic heterogeneity support butterfly populations with 

less variable population dynamics (Oliver et al., 2014) and reduced local extinction risk 

(Fernández-Chacón et al., 2013). The ability of topographic variation to provide a wider range 

of microclimatic conditions and hence to reduce rates of extirpation from 10 km cells has been 

observed for insects and plants that are sensitive to warming in England (Suggitt et al., 2018). 

In our study we show that 10 km squares with greater variation in elevation (e.g., in 

mountainous regions) experienced reduced warming from 1901-1979 to 1980-2016, decreasing 

the exposure of mountain butterfly communities to hotter conditions. These observations 

reinforce the importance of topographic or microclimatic heterogeneity in models of ecological 

responses to climate change and highlight the vulnerability of insects in flat landscapes to 

climate change (Luoto & Heikkinen, 2008; Roth et al., 2014; Penado et al., 2016). 

Nevertheless, warming rates and reductions in precipitation tended to be greater at high 

elevations: observed community responses to climate change over gradients of elevation and 

land use will reflect these combined changes to temperature, precipitation, and weather patterns 

(Halsch et al., 2021), and their effects on insects and interacting species such as host plants 

(Gutiérrez et al., 2016).  

Land abandonment or changed forestry practices have led to increased tree cover in southern 

Europe (Debussche et al., 1999; Rescia et al., 2010; Marshall et al., 2020). Apart from 

promoting population recovery in woodland butterflies (Stefanescu et al., 2011) greater 

vegetation cover could counteract the ecological effects of climate change by providing cooler 

microclimates (Barnagaud et al., 2012; De Frenne et al., 2019). Mountain bird communities in 

the Iberian Peninsula have recently become increasingly dominated by forest species, in some 

cases with evidence that forest species have expanded downhill to take advantage of increasing 

habitat availability (Tellería 2019) and reducing Community Temperature Index despite 

climatic warming (Clavero et al., 2011; Stefanescu et al., 2011).  However, in our study there 

was little evidence that changes to the TAOc index for butterfly communities were correlated 
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with changes to climatic associations, or that increasing contributions by species of closed 

habitats would act either antagonistically or synergistically to the community changes expected 

from climate change.  

Adapting conservation to climate change 

Topographic variation can reduce rates of climate warming and provide a range of 

microclimatic conditions and habitats, helping species to shift their distributions on a local 

scale (Roth et al., 2014). The need to protect sufficient abiotic variation to facilitate ecological 

and evolutionary responses to global change (“conserving nature’s stage”; Lawler et al., 2015) 

demands that habitats are protected, connected and managed across geographic and climatic 

gradients, permitting communities to track ongoing changes to climate and land cover 

(Mingarro et al., 2020).  

We demonstrate that occurrence data can be valuable for identifying long-term or large-scale 

changes to a fauna, and for suggesting the reasons behind apparent differences in trends 

between regions or at different spatial scales. We were able to use atlas data from throughout 

the Iberian Peninsula to calculate Species Temperature and Species Precipitation Indices that 

were closely correlated with STI and SPI for Europe (Platania et al., 2020), even though most 

10 km squares have incomplete faunal information for butterflies (García-Barros et al., 2004), 

as is the case for other insects in the Iberian Peninsula (Penado et al., 2016; Lobo et al., 2018) 

and for butterflies in much of the world (Girardello et al., 2019). A limited number of relatively 

well-sampled 10 km squares could then be used to detect changes in communities over time 

from before 1980, and to infer the factors driving these changes.  

We suggest that the identification of potential refugia from climate change in regions where 

there are geographic or historical gaps in species distribution data will benefit from: a) 

geographic information on climatic variation over space and time (Serrano-Notivoli et al., 

2018, 2019); b) comprehensive evidence of past distributions from the ongoing cataloguing of 

natural history collections (Kharouba et al., 2019; Montgomery et al., 2020); and c) up-to-date 

surveys of species distributions and abundance (e.g., Stefanescu et al., 2004, 2011). Our study 

shows how the complementary use of such data can provide information on changes to butterfly 

communities and their drivers for one region of Mediterranean Europe. 
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Table 1. Environmental and butterfly community variation in the 115 grid squares which met 

criteria for completeness of sampling in both 1901-1979 and 1980-2016. Community 

associations are summarised as the Community Temperature Index (CTI), Community 

Precipitation Index (CPI) and TAOc Index of species associations with vegetation cover (-1: 

closed; +1: open; Ubach et al., 2020). Temperature and precipitation are average values per 10 

km square, sourced at 1 km resolution (Karger et al., 2017). 

 Minimum Maximum Median 

Latitude (ºN) 36.17 43.49 42.05 

Longitude (ºE) -9.40 2.70 -1.76 

Elevation (m) 12.68 2348.16 1065.32 

Distance to the coast (km) 0.46 329.50 149.24 

1901-1979    

Mean annual temperature (ºC) 0.54 17.88 9.31 

Annual precipitation (mm) 317.91 1753.28 875.02 

CTI 9.13 13.43 11.48 

CPI 715.21 957.05 821.44 

TAOc 0.28 0.45 0.35 

1980-2016    

Mean annual temperature (ºC) 1.64 18.68 10.45 

Annual precipitation (mm) 299.12 1720.22 812.13 

CTI 9.07 13.61 11.49 

CPI 706.75 942.86 819.69 

TAOc 0.27 0.41 0.34 
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Table 2. Models for climatic variation among the 115 focal grid squares. a) Mean annual temperature (ºC) and precipitation (mm) in 1980-2016; 

b) Changes to temperature and precipitation from 1901-1979 to 1980-2016. Standard deviation (SD) represents variation across 1 km cells in the 

10 km grid squares for elevation. Interaction terms of elevation and SD elevation with distance from the coast were tested. Coefficients (±SE) 

are shown for the top-ranking model based on AICc; variables in bold selected in all models within the confidence set (ΔAICc<6 of the top 

model). Variable importance shows the sum of weights of models containing the variable in the confidence set. †Denotes terms included in all 

models under a less conservative criterion of ΔAICc<2 (Burnham & Anderson, 2002). 

Climate term Intercept Elevation SD 

elevation 

Latitude Longitude Distance 

to coast 

Interaction 

elevation: 

distance to coast 

Interaction SD 

elevation: 

distance to coast 

Adj. r2 AICc  

 

a) 1980-2016 climatic conditions 

Temperature 

 

Importance 

-0.00 

(±0.01) 

 

-0.85 

(±0.01) 

0.97 

-0.06 

(±0.01) 

0.97 

-0.26 

(±0.01) 

0.97 

+0.03† 

(±0.01) 

0.91 

+0.12 

(±0.01) 

0.97 

 

 

0.28 

-0.03  

(±0.01) 

0.89 

0.99 -215.0 

 

Precipitation 

 

Importance 

+0.00 

(±0.05) 

 

 

0.55 

+0.39 

(±0.06) 

1.00 

+0.67 

(±0.07) 

1.00 

-0.38 

(±0.06) 

1.00 

-0.26 

(±0.05) 

1.00 

 

 

0.14 

 

 

0.26 

0.67 207.1 

 

b) Change in climatic conditions 

Temperature 

 

Importance 

-0.01 

(±0.06) 

+0.27† 

(±0.10) 

0.97 

-0.50 

(±0.10) 

0.99 

+0.50 

(±0.07) 

0.99 

+0.12 

(±0.07) 

0.60 

+0.39 

(±0.07) 

0.99 

 

 

0.36 

-0.14 

(±0.07) 

0.62 

0.61 227.3 

 

Precipitation 

 

Importance 

+0.01 

(±0.07) 

-0.33† 

(±0.12) 

0.95 

-0.22 

(±0.12) 

0.67 

 

 

0.29 

-0.20† 

(±0.08) 

0.90 

-0.08 

(±0.09) 

0.73 

 

 

0.27 

+0.13  

(±0.08) 

0.27 

0.40 276.1 
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Table 3. Models for community climatic associations in the 115 focal grid squares. a) Community Temperature Index (CTI) and Community 

Precipitation Index (CPI) in 1980-2016; b) Changes to CTI and CPI from 1901-1979 to 1980-2016. *Independent climate terms were a) mean 

annual temperature (ºC) for CTI and mean annual precipitation (mm) for CPI; or b) change in these variables over time. Standard deviation (SD) 

represents variation across 1 km cells in the 10 km grid squares for the respective climate terms and elevation. Coefficients (±SE) are shown for 

the top-ranking model based on AICc; variables in bold selected in all models within the confidence set (ΔAICc<6 of the top model). Variable 

importance shows the sum of weights of models containing the variable in the confidence set. †Denotes terms included in all models under a less 

conservative criterion of ΔAICc<2 (Burnham & Anderson, 2002). 

Index Intercept Climate 

term* 

SD climate 

term 

Interaction 

climate:SD 

Elevation SD 

elevation 

Latitude Longitude Distance 

to coast 

Adj. r2 AICc  

 

a) 1980-2016 community associations 

CTI 

 

Importance 

-0.04 

(±0.03) 

 

+1.47 

(±0.10) 

0.97 

+0.40 

(±0.29) 

0.69 

-0.06 

(±0.02) 

0.45 

+0.64 

(±0.09) 

0.62 

-0.47 

(±0.30) 

0.53 

 

 

0.69 

-0.08† 

(±0.03) 

0.76 

-0.11 

(±0.03) 

0.58 

0.94 7.4 

 

CPI 

 

Importance 

+0.07 

(±0.04) 

+0.25 

(±0.05) 

0.96 

+0.09† 

(±0.06) 

0.84 

-0.08† 

(±0.03) 

0.77 

+0.36 

(±0.05) 

0.96 

+0.14† 

(±0.05) 

0.92 

+0.37 

(±0.04) 

0.96 

 

 

0.31 

-0.10 

(±0.03) 

0.96 

0.91 44.5 

 

b) Change in community associations 

ΔCTI 

 

Importance 

+1.0 e-16 

(±0.09) 

+0.26 

(±0.13) 

0.54 

 

 

0.29 

 

 

0.03 

 

 

0.23 

 

 

0.26 

-0.22 

(±0.11) 

0.42 

 

 

0.32 

-0.41 

(±0.11) 

0.93 

0.09 321.7 

 

ΔCPI 

 

Importance 

+0.07 

(±0.10) 

+0.26† 

(±0.10) 

0.68 

+0.17† 

(±0.10) 

0.58 

+0.18 

(±0.09) 

0.41 

 

 

0.26 

 

 

0.21 

 

 

0.19 

 

 

0.31 

+0.21† 

(±0.10) 

0.76 

0.07 325.4  
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Table 4. Models for community associations with open or closed vegetation in the 115 focal grid squares. Models for a) the community TAOc 

index (Ubach et al., 2020) based on species presence /absence in 1980-2016, and b) changes to TAOc from 1901-1979 to 1980-2016. TAOc varies 

from +1 (species associated with entirely open habitats) to -1 (species associated with entirely closed habitats). Standard deviation (SD) represents 

variation across 1 km cells in the 10 km grid squares for elevation. Interaction terms of elevation and SD elevation with distance from the coast 

were tested. Coefficients (±SE) are shown for the top-ranking model based on AICc; variables in bold selected in all models within the confidence 

set (ΔAICc<6 of the top model). Variable importance shows the sum of weights of models containing the variable in the confidence set. 

Response Intercept Elevation SD 

elevation 

Latitude Longitude Distance 

to coast 

Interaction 

elevation: 

distance to coast 

Interaction SD 

elevation: 

distance to coast 

Adj. r2 AICc  

 

a) TAOc 

 

Importance 

+0.07 

(±0.09) 

 

-0.31 

(±0.10) 

0.92 

 

 

0.25 

 

 

0.23 

 

 

0.22 

+0.01 

(±0.10) 

0.92 

-0.40  

(±0.10) 

0.92 

 

 

0.05 

0.14 316.0 

 

b) ΔTAOc 

 

Importance 

+0.00 

(±0.09) 

 

 

0.44 

 

 

0.53 

+0.16 

(±0.09) 

0.55 

 

 

0.32 

+0.15 

(±0.09) 

0.69 

 

 

0.19 

 

 

0.21 

0.05 328.3 
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Figure legends 

Fig. 1. Variation in climatic conditions over space and time in the Iberian Peninsula. a, b) 1 km 

resolution mean annual temperature (ºC, a) and precipitation (mm, b) in 1980-2016 (data from 

Karger et al., 2017); c) mean annual temperature (ºC) and d) precipitation (mm) across all grid 

squares from 1901 to 2016; lines smoothed according to loess method (local polynomial 

regression fitting) with 95% confidence intervals. In a and b, the 115 well-sampled 10 km grid 

squares are outlined in black. 

Fig. 2. The relationship between community indices and climatic variables in the 115 well-

sampled grid squares. Scatter plots for 1980-2016 of a) Community Temperature Index (CTI) 

against mean annual temperature; b) Community Precipitation Index (CPI) against mean 

annual precipitation. Boxplots show changes to the climatic variables (dark) and community 

indices (light) from 1901-1979 to 1980-2016 for c) temperature/CTI, and d) precipitation/CPI. 

Dotted lines in c and d show no change in indices or climatic variables. 

Fig. 3. Butterfly Community Temperature Index (CTI – a, c) and Community Precipitation 

Index (CPI – b, d) for 115 well-sampled 10 km grid squares in 1980-2016 (a, b) and their 

change since 1901-1979 (c, d). Units are equivalent to ºC for CTI and mm for CPI. 

Fig. 4. Observed against modelled changes in a) CTI and b) CPI from 1901-1979 to 1980-2016, 

based on the top-ranking models in Table 3b. Units are equivalent to a) ºC and b) mm. Dashed 

line shows best fit, with shaded area showing 95% confidence intervals of the model. Symbols 

are shaded based on observed changes to a) Temperature and b) Precipitation in the 115 grid 

squares. Note that observed and modelled changes to CTI and CPI were both positive and 

negative, whereas temperature increased in all squares, and precipitation decreased in 111 grid 

squares.   
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Supplementary Tables 

 

Table S1. Species Temperature Index (STI) and Species Precipitation Index (SPI) for 225 

butterfly species based on confirmed 10 km records in the Iberian Peninsula from 1980 to 2016. 

The total number of squares where each species was recorded is shown, with the number of 

115 well-sampled 10 km squares in parenthesis and superscript. STI and SPI calculated 

excluding these 115 well-sampled squares (to permit independent analyses of CTI and CPI) 

also shown in superscript. Species are shown in alphabetical order within families. For 145 

species shown in bold the TAO open/closed vegetation index was used from Ubach et al. 

(2020).  

Species name 

N 10 km 

squares STI (ºC) SPI (mm) 

Papilionidae       

Iphiclides feisthamelii 1801 (104) 12.79 12.94 777 771 

Papilio machaon 1697 (100) 13.34 13.56 730 720 

Parnassius apollo 351 (61) 8.38 8.61 906 885 

Parnassius mnemosyne 41 (23) 4.67 4.33 1169 1123 

Zerynthia rumina 1196 (59) 13.90 14.00 689 687 

Hesperiidae       

Borbo borbonica 5 (1) 18.20 18.13 652 645 

Carcharodus alceae 1015 (65) 13.17 13.33 750 746 

Carcharodus baeticus 459 (30) 13.67 13.74 629 629 

Carcharodus floccifera 150 (26) 9.87 10.24 926 912 

Carcharodus lavatherae 200 (37) 10.64 11.22 823 788 

Carcharodus tripolinus 22 (3) 16.88 17.10 592 600 

Carterocephalus palaemon 41 (4) 9.15 9.52 1159 1165 

Erynnis tages 651 (64) 11.05 11.29 920 911 

Gegenes nostrodamus 155 (12) 16.12 16.16 534 536 

Hesperia comma 563 (85) 9.94 10.14 881 869 

Heteropterus morpheus 99 (5) 11.94 12.07 1186 1180 

Muschampia proto 522 (31) 13.66 13.76 597 594 

Ochlodes sylvanus 659 (70) 10.64 10.92 991 986 

Pyrgus alveus 253 (49) 9.19 9.59 977 957 

Pyrgus andromedae 19 (11) 4.57 5.24 1036 845 
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Pyrgus armoricanus 297 (35) 10.54 10.68 849 847 

Pyrgus cacaliae 7 (5) 2.85 3.16 1030 1025 

Pyrgus carthami 315 (48) 9.76 9.94 879 868 

Pyrgus cinarae 7 (1) 9.97 9.89 699 692 

Pyrgus cirsii 174 (36) 10.05 10.33 791 760 

Pyrgus foulquieri 24 (5) 10.39 10.66 921 888 

Pyrgus malvoides 560 (71) 10.52 10.70 934 929 

Pyrgus onopordi 297 (34) 11.81 11.92 722 715 

Pyrgus serratulae 324 (55) 9.24 9.50 946 940 

Pyrgus sidae 6 (1) 9.89 9.17 985 981 

Spialia sertorius 1125 (87) 12.36 12.56 777 768 

Thymelicus acteon 1271 (80) 12.90 13.08 780 771 

Thymelicus lineola 601 (67) 11.38 11.59 776 762 

Thymelicus sylvestris 1281 (97) 12.04 12.24 805 796 

Pieridae       

Anthocharis cardamines 1144 (102) 11.58 11.77 879 876 

Anthocharis euphenoides 880 (81) 12.12 12.30 695 685 

Aporia crataegi 1082 (98) 11.10 11.28 804 793 

Colias alfacariensis 845 (90) 11.22 11.42 743 726 

Colias crocea 2555 (114) 13.15 13.30 772 766 

Colias phicomone 96 (30) 5.76 6.06 1140 1120 

Colotis evagore 79 (4) 16.41 16.58 441 437 

Euchloe bazae† 9 (0) 15.21 15.21 410 410 

Euchloe belemia 615 (12) 16.05 16.06 589 589 

Euchloe crameri 1551 (89) 13.66 13.87 687 677 

Euchloe simplonia 2 (1) 3.11 2.16 1174 841 

Euchloe tagis 179 (10) 14.69 14.72 579 580 

Gonepteryx cleopatra 1281 (98) 13.29 13.54 740 728 

Gonepteryx rhamni 1278 (99) 11.63 11.79 892 890 

Leptidea reali¥ 37 (4) 9.23 9.40 828 801 

Leptidea sinapis 1317 (96) 11.98 12.18 882 878 

Pieris brassicae 1932 (110) 13.50 13.70 806 802 

Pieris ergane 61 (14) 8.67 9.21 891 847 
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Pieris mannii 110 (24) 11.53 12.25 690 659 

Pieris napi 1227 (103) 11.72 11.91 862 858 

Pieris rapae 2710 (114) 13.33 13.47 773 768 

Pontia callidice 59 (22) 4.36 4.36 1056 988 

Pontia daplidice 1722 (100) 13.49 13.69 690 678 

Zegris eupheme 257 (18) 13.86 13.87 482 478 

Riodinidae       

Hamearis lucina 248 (41) 9.26 9.59 973 955 

Lycaenidae       

Agriades glandon 36 (19) 4.19 3.70 1178 1161 

Agriades pyrenaicus 31 (6) 6.81 7.31 1299 1264 

Agriades zullichi 7 (2) 6.34 6.35 533 523 

Aricia cramera 1522 (85) 13.53 13.71 705 698 

Aricia montensis 488 (65) 10.01 10.29 904 892 

Aricia morronensis 116 (17) 8.94 9.03 841 837 

Aricia nicias 16 (4) 4.57 4.70 951 911 

Azanus jesous‡ 2 (1) 18.28 18.05 678 667 

Cacyreus marshalli 513 (20) 14.65 14.71 753 753 

Callophrys avis 122 (9) 13.91 13.91 820 827 

Callophrys rubi 1267 (81) 12.82 12.98 760 752 

Celastrina argiolus 1287 (78) 12.78 12.95 837 833 

Cupido alcetas 89 (12) 10.27 10.41 871 849 

Cupido argiades 380 (27) 11.13 11.27 985 983 

Cupido lorquinii¥ 95 (8) 14.56 14.73 644 646 

Cupido minimus 496 (66) 10.11 10.41 847 828 

Cupido osiris 281 (46) 10.06 10.53 841 807 

Cyaniris semiargus 461 (65) 9.66 9.92 873 858 

Eumedonia eumedon 69 (12) 7.62 8.12 952 930 

Favonius quercus 537 (56) 12.23 12.37 784 778 

Glaucopsyche alexis 749 (70) 11.63 11.78 750 741 

Glaucopsyche melanops 1075 (69) 13.31 13.49 728 720 

Iolana debilitata 82 (18) 12.37 12.76 587 573 

Kretania hesperica 61 (11) 12.62 12.82 493 491 
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Laeosopis roboris 464 (46) 11.66 11.92 847 840 

Lampides boeticus 1373 (101) 12.85 13.07 770 763 

Leptotes pirithous 1480 (56) 13.71 13.78 818 820 

Lycaena alciphron 504 (64) 10.21 10.48 886 873 

Lycaena bleusei 197 (22) 12.70 12.87 780 788 

Lycaena helle 4 (1) 4.42 5.42 906 838 

Lycaena hippothoe 141 (28) 6.85 7.18 1042 1012 

Lycaena phlaeas 1772 (96) 13.39 13.58 730 721 

Lycaena tityrus 360 (32) 10.31 10.65 1113 1107 

Lycaena virgaureae 291 (46) 8.18 8.41 986 972 

Lysandra albicans 580 (57) 11.71 11.94 671 651 

Lysandra bellargus 946 (85) 12.26 12.52 736 720 

Lysandra caelestissima 10 (4) 9.31 9.40 665 673 

Lysandra coridon 471 (58) 9.48 9.75 951 935 

Phengaris alcon 109 (13) 9.63 10.20 1099 1093 

Phengaris arion 198 (39) 9.19 9.77 953 922 

Phengaris nausithous 23 (3) 7.87 7.92 1018 1002 

Plebejus argus 751 (77) 10.64 10.86 876 866 

Plebejus idas 266 (52) 8.73 9.00 953 934 

Polyommatus amandus 200 (37) 9.35 9.78 892 857 

Polyommatus celina†¥ 90 (0) 15.66 15.66 617 617 

Polyommatus damon 152 (25) 9.37 9.77 863 833 

Polyommatus daphnis 78 (8) 11.06 10.99 686 688 

Polyommatus dorylas 400 (51) 9.41 9.73 914 898 

Polyommatus eros 38 (20) 4.75 5.19 1133 1051 

Polyommatus escheri 414 (63) 10.66 10.99 784 764 

Polyommatus fabressei 80 (7) 10.87 11.05 563 560 

Polyommatus fulgens 197 (27) 10.56 10.77 834 814 

Polyommatus golgus 12 (2) 8.35 8.74 579 582 

Polyommatus icarus 2077 (113) 12.86 13.02 756 748 

Polyommatus nivescens 118 (16) 11.76 12.13 567 546 

Polyommatus ripartii 197 (25) 10.60 10.75 829 803 

Polyommatus thersites 513 (63) 11.14 11.40 751 736 
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Polyommatus violetae† 22 (0) 11.95 11.95 572 572 

Pseudophilotes abencerragus 109 (8) 14.81 15.00 551 554 

Pseudophilotes panoptes 777 (65) 12.42 12.58 669 657 

Satyrium acaciae 258 (47) 9.74 10.01 886 881 

Satyrium esculi 1105 (72) 13.19 13.33 741 735 

Satyrium ilicis 367 (56) 10.51 10.80 924 916 

Satyrium pruni† 10 (0) 11.50 11.50 1063 1063 

Satyrium spini 579 (73) 11.83 12.09 796 779 

Satyrium w-album 104 (24) 9.36 10.06 964 913 

Scolitantides orion 81 (13) 10.97 11.21 686 677 

Tarucus theophrastus† 26 (0) 18.25 18.25 276 276 

Thecla betulae 233 (20) 10.33 10.51 1063 1055 

Tomares ballus 424 (31) 14.79 14.85 605 604 

Zizeeria knysna 188 (16) 16.12 16.34 616 614 

Nymphalidae       

Aglais io 949 (89) 11.29 11.49 925 926 

Aglais urticae 900 (81) 10.61 10.79 908 902 

Apatura ilia 176 (16) 10.84 11.07 958 955 

Apatura iris 151 (21) 9.88 10.29 1174 1182 

Aphantopus hyperantus 308 (22) 9.72 9.95 1049 1043 

Araschnia levana 76 (8) 11.58 11.77 1015 1021 

Arethusana arethusa 283 (30) 10.65 10.82 872 868 

Argynnis pandora 1071 (64) 12.67 12.75 725 722 

Argynnis paphia 674 (81) 10.36 10.59 971 968 

Boloria dia 544 (52) 10.36 10.59 944 933 

Boloria eunomia 22 (3) 6.12 5.84 987 966 

Boloria euphrosyne 341 (46) 8.61 8.92 1028 1010 

Boloria napaea 8 (3) 3.81 4.34 869 787 

Boloria pales 73 (27) 5.63 6.14 1180 1171 

Boloria selene 464 (39) 9.99 10.18 1074 1079 

Brenthis daphne 443 (59) 9.72 9.95 953 942 

Brenthis hecate 243 (23) 10.61 10.73 789 782 

Brenthis ino 270 (31) 9.21 9.46 966 947 
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Brintesia circe 1222 (80) 11.52 11.62 757 748 

Charaxes jasius 422 (20) 14.80 14.88 728 725 

Chazara briseis 325 (38) 11.48 11.54 676 667 

Chazara prieuri 28 (5) 11.64 11.92 475 465 

Coenonympha arcania 700 (78) 10.01 10.19 957 952 

Coenonympha dorus 714 (59) 12.20 12.43 733 717 

Coenonympha glycerion 502 (48) 9.76 9.83 878 876 

Coenonympha pamphilus 1862 (98) 12.85 13.04 788 781 

Danaus chrysippus 106 (7) 16.52 16.65 473 467 

Danaus plexippus 71 (2) 16.80 16.80 742 744 

Erebia arvernensis ‡  74 (22) 5.74 6.10 1176 1153 

Erebia epiphron 110 (27) 6.34 6.75 1137 1118 

Erebia epistygne 98 (9) 10.61 10.66 615 615 

Erebia euryale 90 (26) 6.30 6.80 1147 1133 

Erebia gorge 43 (19) 5.81 6.76 1204 1192 

Erebia gorgone 34 (22) 4.20 3.27 1200 1165 

Erebia hispania 11 (2) 7.81 8.13 526 518 

Erebia lefebvrei 63 (27) 5.51 5.87 1152 1130 

Erebia manto 17 (10) 5.07 5.77 1177 1208 

Erebia meolans 349 (63) 8.86 9.09 1044 1048 

Erebia neoridas 106 (30) 7.57 8.09 991 942 

Erebia oeme 18 (8) 3.60 3.41 995 971 

Erebia palarica 92 (6) 7.98 8.07 1131 1122 

Erebia pandrose¥ 37 (16) 4.22 4.11 1119 1055 

Erebia pronoe 25 (16) 4.78 5.41 1247 1351 

Erebia rondoui 45 (19) 4.74 5.11 1068 1031 

Erebia triarius 318 (56) 8.88 9.12 953 945 

Erebia zapateri 53 (6) 9.67 9.71 594 593 

Euphydryas aurinia 929 (84) 11.80 12.00 876 873 

Euphydryas desfontainii 314 (37) 12.25 12.52 708 686 

Fabriciana adippe 622 (78) 10.34 10.52 928 922 

Fabriciana niobe 338 (41) 10.65 10.79 796 791 

Hipparchia fagi 130 (23) 10.47 10.74 863 847 
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Hipparchia fidia 473 (46) 13.00 13.17 695 685 

Hipparchia hermione 865 (84) 10.94 11.12 862 855 

Hipparchia semele 978 (81) 11.59 11.69 770 763 

Hipparchia statilinus 1206 (74) 12.45 12.56 743 739 

Hyponephele lupina 339 (29) 12.74 12.79 600 595 

Hyponephele lycaon 482 (61) 10.39 10.51 813 799 

Issoria lathonia 1247 (98) 11.89 12.09 793 785 

Lasiommata maera 755 (85) 10.91 11.19 917 913 

Lasiommata megera 1958 (107) 13.11 13.28 739 731 

Lasiommata petropolitana 12 (9) 4.53 3.18 1095 1116 

Libythea celtis 236 (31) 12.71 12.85 765 763 

Limenitis camilla 198 (20) 10.71 11.09 1079 1074 

Limenitis reducta 533 (74) 10.82 11.05 861 849 

Lopinga achine 9 (1) 8.98 9.30 1228 1204 

Maniola jurtina 2148 (104) 13.05 13.20 757 750 

Melanargia galathea 533 (53) 10.68 11.01 1045 1040 

Melanargia ines 606 (28) 14.85 14.92 602 600 

Melanargia lachesis 1283 (80) 11.68 11.75 740 737 

Melanargia occitanica 515 (31) 13.31 13.38 611 602 

Melanargia russiae 392 (57) 9.50 9.64 908 898 

Melitaea aetherie 65 (1) 16.65 16.63 611 610 

Melitaea celadussa 517 (69) 9.90 10.12 960 953 

Melitaea cinxia 534 (63) 10.40 10.50 831 824 

Melitaea deione 523 (64) 11.09 11.37 922 920 

Melitaea diamina 106 (29) 7.13 7.58 1119 1087 

Melitaea didyma 605 (78) 11.19 11.54 758 732 

Melitaea parthenoides 512 (69) 9.74 9.96 979 973 

Melitaea phoebe 1228 (98) 11.79 11.97 753 742 

Melitaea trivia 260 (28) 10.84 10.86 859 861 

Minois dryas 37 (1) 12.80 12.89 1311 1309 

Nymphalis antiopa 349 (47) 9.77 10.08 1038 1028 

Nymphalis polychloros 781 (68) 12.40 12.54 786 781 

Pararge aegeria 1949 (99) 13.31 13.46 821 818 
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Polygonia c-album 827 (83) 11.54 11.74 857 849 

Pseudochazara mercurius‡ 22 (3) 9.84 9.97 488 488 

Pyronia bathseba 1163 (76) 12.70 12.81 673 664 

Pyronia cecilia 1234 (56) 14.23 14.32 650 647 

Pyronia tithonus 1362 (96) 11.68 11.84 824 817 

Satyrus actaea 409 (44) 10.82 11.00 737 721 

Satyrus ferula 27 (13) 6.54 7.32 1022 959 

Speyeria aglaja 602 (79) 9.73 9.90 925 915 

Vanessa atalanta 1472 (100) 13.12 13.34 802 796 

Vanessa cardui 1870 (106) 13.16 13.34 739 730 

Vanessa virginiensis 38 (2) 14.99 15.31 826 820 

       

Notes: † Five species not recorded in the 115 well-sampled squares. ‡ Three species for which 

European STI and SPI were not calculated by Platania et al. (2020). ¥ Cryptic species: 

confirmed records of Leptidea reali and Poloyommatus celina under-estimate the distribution 

size compared with L. sinapis and P. icarus respectively (see Platania et al., 2020); Cupido 

lorquinii under-estimates the distribution based on new evidence the species is conspecific with 

Cupido carswelli (Hinojosa et al., 2020); data for Erebia pandrose and E. sthennyo were 

combined, as in García-Barros et al. (2013). 
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Table S2. Spearman correlation coefficients (rs) of Species Temperature Index (STI) and 

Species Precipitation Index (SPI) from 10 km atlas data in the Iberian Peninsula (1980-2016) 

against published calculations of STI and SPI for Europe and the Iberian Peninsula, and the 

TAO open/closed vegetation index from Ubach et al. (2020). Spatial resolution and sampling 

period of data used to derive the indices are shown. Significance of Spearman correlations: *** 

P < 0.0001; NS P > 0.1. 

Comparison 

index 

Data 

resolution 

Years n 

species 

Species 

Temperature 

Index (STI) 

Species 

Precipitation 

Index (SPI) 

Excluding 115 

focal squares 

10 km 1980-2016 225 0.998*** 0.990*** 

Europe (Platania 

et al., 2020) 

50 km 1981-2000 222 0.710*** 0.665*** 

Iberian Peninsula 

(Herrando et al., 

2019) 

10 km 1998-2005 63 0.992*** 0.954*** 

TAO vegetation 

index (Ubach et 

al., 2020) 

≤1 km 

(transect 

sections) 

1997-2017 145 -0.121NS -0.103NS 
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Table S3. Spatial autocorrelation in community indices, their climatic explanatory variables 

and in the residuals of the top-ranked models. Results show Moran’s I calculated for a 148 km 

interval, the minimum distance at which all 115 grid squares have at least one neighbour. The 

climate terms for CTI and CPI respectively are mean annual temperature and mean annual 

precipitation in 1980-2016, and for ΔCTI and ΔCPI respectively change in these variables since 

1901-1979. Residuals are calculated from the models shown in Table 3; residuals for TAOc 

and ΔTAOc from the models in Table 4. 

Moran’s I 

for: 

Community index Climate term Residual variation 

CTI 0.551 0.409 -0.024 

ΔCTI 0.217 0.267 0.141 

CPI 0.548 0.472 0.017 

ΔCPI 0.068 0.145 0.034 

TAOc -0.010 - -0.030 

ΔTAOc 0.025 - -0.008 
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