

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 798 324

21 Número de solicitud: 202030527

61 Int. Cl.:

C07D 265/10 (2006.01) C07D 265/12 (2006.01) A61K 31/535 (2006.01)

(12)

SOLICITUD DE PATENTE

Α1

(22) Fecha de presentación:

04.06.2020

(43) Fecha de publicación de la solicitud:

10.12.2020

71) Solicitantes:

UNIVERSIDAD COMPLUTENSE DE MADRID (67.0%) Av. Séneca 2 28040 MADRID ES y CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS CSIC (33.0%)

(72) Inventor/es:

MARTÍNEZ DEL CAMPO, Teresa; TOLEDANO PINEDO, Mireia y ALMENDROS REQUENA, Pedro

54 Título: Derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo, procedimiento de obtención y uso

(57) Resumen:

Derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo, procedimiento de obtención y uso.

Debido a su actividad biológica en el tratamiento de enfermedades y utilidad en Síntesis Orgánica, las oxazinonas son actualmente objeto de estudio y se han propuesto diferentes métodos de síntesis.

La presente invención propone un método de síntesis de oxazinonas a partir de N-alenilcarbamatos que permite la incorporación de un átomo de bromo en su estructura, lo que presentaría una ventaja sintética ya que permitiría la posterior funcionalización de estos sustratos con el fin de obtener oxazinonas funcionalizadas con potencial actividad biológica y/o farmacológica. El método permite controlar el modo de ciclación y se obtienen 5-bromo-1,3-oxazin-2-onas con rendimientos superiores al 50%.

DESCRIPCIÓN

Derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo, procedimiento de obtención y uso

5

10

25

30

35

SECTOR DE LA TÉCNICA

La presente invención se engloba en el campo químico y farmacéutico. De forma más concreta, se refiere a un nuevo procedimiento para la preparación de derivados bromados de 1,3-oxazin-2-onas y sus usos como composiciones químicas y en Química Orgánica como intermedios de síntesis clave para productos farmacéuticos.

ANTECEDENTES DE LA INVENCIÓN

El esqueleto de 1,3-oxazin-2-ona se encuentra presente en diversos productos naturales y no naturales que poseen actividad biológica para el tratamiento de diferentes enfermedades. Entre las 1,3-oxazinonas no naturales, son de gran importancia las benzoxazinonas, entre las que se encuentra el Efavirenz®. Este compuesto es un fármaco comercializado, utilizado en el tratamiento del VIH debido a su actividad como inhibidor de la enzima transcriptasa inversa.

Por otro lado, las oxazinonas también han demostrado ser útiles como intermedios en Síntesis Orgánica (Kuznestov, N. et al. *Eur. J. Org. Chem.* **2012**, *334*; Shapk-Kraievskyi, B. et al. *Tetrahedron.* **2012**, *60*, 2179). Por ejemplo, se ha llevado a cabo la síntesis de metofolina, un analgésico de la familia de las isoquinolinas, partiendo de una 1,3-oxazinan-2-ona tricíclica (Richter, H. et al. *Angew. Chem. Int. Ed.* **2012**, *51*, 8784).

Debido a su actividad biológica en el tratamiento de enfermedades y utilidad en Síntesis Orgánica, las oxazinonas son actualmente objeto de estudio y se han propuesto diferentes métodos de síntesis.

Así, recientemente, se ha sintetizado un compuesto derivado de 1,3-oxazinan-2-ona eficaz en la lucha contra la diabetes, ya que es capaz de inhibir la enzima 11-ß-hidroxiesteroide deshidrogenasa tipo 1 (11- ß-HSD1), implicada en esta enfermedad

(Xu, Z. et al. J. Med.Chem. 2011, 54, 6050).

Una aproximación interesante es la síntesis a partir de la reacción de *N*-Boc-3-butin-1-aminas catalizada por una sal de oro (Robles-Machin, R. et al. *J. Org. Chem.* **2006**, *51*, 5023).

También se ha descrito la síntesis de oxazinonas a partir de carbamatos alénicos. Más concretamente la síntesis de 1,3-oxazinan-2-onas por oxiciclación de alenil-carbamatos catalizada por oro, con un completo control de la regioselectividad (Alcaide, B. et al. *Beilstein J. Org. Chem.* **2013**, 9, 818).

La ciclación de alenos con un sustituyente nucleófilo presenta el inconveniente de la regioselectividad. Por ese motivo, resulta de interés el desarrollo de nuevos métodos que permitan controlar la regioselectividad. Por otro lado, el único método descrito en la literatura de síntesis de oxazinonas a partir de *N*-alenilcarbamatos, no permite la incorporación de un átomo de bromo en su estructura, lo que presentaría una ventaja sintética ya que permitiría la posterior funcionalización de estos sustratos con el fin de obtener oxazinonas funcionalizadas con potencial actividad biológica y/o farmacológica.

20

5

10

15

EXPLICACIÓN DE LA INVENCIÓN

En un primer aspecto, la presente invención se refiere a derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II) donde R es un grupo aromático, un alquilo o un heterociclo:

25

Ш

En un modo preferente de realización, los derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), son los compuestos

de fórmulas (2a) a (2e):

Constituye otro objeto de la presente invención un método de síntesis de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo, de Fórmula II (donde R pueden ser grupos aromáticos, alquílicos o heterociclos) mediante una reacción de ciclación de alenil-carbamatos de fórmula general (I) promovida por CuBr₂ de forma que es posible controlar el modo de ciclación y conseguir moléculas potencialmente

La reacción de ciclación de los alenil-carbamatos de fórmula I se lleva a cabo siguiendo la reacción del Esquema 1 en diferentes condiciones, utilizando diferentes promotores, disolventes y temperaturas.

interesantes desde el punto de vista biológico.

Esquema 1

35

25

Como sustratos de partida se utilizan los *N*-alenilcarbamatos de fórmula (1a) a (1e), que se preparan fácilmente siguiendo el procedimiento descrito en la literatura (Alcaide, B. et al. *Beilstein J. Org. Chem.* **2013**, 9, 818):

5

15

35

Las abreviaturas utilizadas en este documento son las siguientes:

	Ph	grupo funcional fenilo
	Вос	terc-butiloxicarbonil
	(Boc) ₂ °	dicarbamato de di-terc-butilo
20	Me	metilo
	MeO	metoxi
	PMP	p-metoxifenilo
	t.a.	temperatura ambiente
	Т	Temperatura
25	t	tiempo

La reacción de ciclación de los *N*-alenilcarbamatos de fórmula (1a) a (1e) se lleva a cabo utilizando diferentes promotores, disolventes y temperaturas.

30 Como promotor se utiliza bromuro de cobre (CuBr₂) en presencia de un disolvente.

En un modo preferente de realización, el disolvente es MeCN o MeNO2 y la ciclación se lleva a cabo a temperatura ambiente o a una temperatura superior hasta 70°C durante un tiempo de reacción comprendido entre 1,5 y 24 horas. Más preferentemente, el disolvente es MeNO2 a reflujo.

En estos casos, partiendo de los compuestos 1a a 1e, se obtienen 5-bromo-1,3-oxazin-2-onas de fórmula (2a) a (2e) con rendimientos superiores al 50%.

Ph
$$\stackrel{\circ}{\longrightarrow}$$
 $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\longrightarrow}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ \stackrel

Estos derivados de bromo son interesantes desde el punto de vista sintético por la posibilidad de funcionalizar la posición bromada con el fin de obtener productos con interesantes propiedades farmacológicas y biológicas, a través de un novedoso proceso radicalario.

Su estructura química permite, en otro aspecto de la presente invención, su uso en la elaboración de un medicamento o composición farmacéutica para tratamiento y prevención de enfermedades como el cáncer, enfermedades autoinmunes, enfermedades infecciosas y, en general, cualquier enfermedad cuyo tratamiento o prevención sea susceptible de beneficiarse de las actividades biológicas mostradas por los compuestos descritos en la presente invención, o bien a un derivado de los mismos, o bien a un profármaco farmacéuticamente aceptable de los mismos.

30

20

25

Otro aspecto de la invención se refiere al uso de los compuestos como pesticidas en la prevención y el tratamiento de control de plagas. Ejemplos de plagas en los que los compuestos de la presente invención pueden presentar un efecto controlador incluyen acáridos, insectos, y pequeños animales dañinos.

Otro aspecto de esta invención se refiere al uso de los derivados de bromo descritos en química supramolecular y/o en la elaboración de nuevos materiales, sondas moleculares, sondas fluorescentes, sensores ópticos y/o sensores químicos, preferiblemente en la preparación de polímeros y/o dendrímeros y, en general, de cualquier material cuya preparación sea susceptible de beneficiarse de la metodología mostrada para los compuestos descritos en la presente invención, o bien a un derivado de los mismos.

Los compuestos de la presente invención representados por la Fórmula (II) pueden incluir isómeros, dependiendo de la presencia de enlaces múltiples (por ejemplo Z, E), incluyendo isómeros ópticos o enantiómeros, dependiendo de la presencia de centros quirales. Los isómeros, enantiómeros o diastereómeros individuales o las mezclas de los mismos caen dentro del alcance de la presente invención, es decir, el término isómero también se refiere a cualquier mezcla de isómeros, como diastereómeros, racémicos, etc., incluso a sus isómeros ópticamente activos o las mezclas en distintas proporciones de los mismos. Los enantiómeros o diastereómeros individuales, así como sus mezclas, pueden separarse mediante técnicas convencionales.

El término "derivado" tal como aquí se utiliza incluye tanto a compuestos farmacéuticamente aceptables, es decir, derivados de compuestos de Fórmula (II) que pueden ser utilizados en la elaboración de un medicamento, como derivados farmacéuticamente no aceptables ya que éstos pueden ser útiles en la preparación de derivados farmacéuticamente aceptables. La naturaleza del derivado farmacéuticamente aceptable no es crítica, siempre y cuando sea farmacéuticamente aceptable.

Asimismo, dentro del alcance de esta invención se encuentran los profármacos de los compuestos de Fórmula (II).

30 REALIZACIÓN PREFERENTE DE LA INVENCIÓN

La presente invención se ilustra mediante los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance.

5

10

15

20

Ejemplo 1.

Este ejemplo se refiere a la obtención de los alquinil-carbamatos de partida.

Se hace reaccionar aldehídos aromáticos con propargilamina en presencia de sulfato de magnesio a temperatura ambiente obteniéndose iminas que, posteriormente, se reducen con borohidruro de sodio según esquema 2 para dar lugar a aminas.

$$\begin{array}{c} H_2N \\ \hline \\ R^1 \\ O \end{array} \xrightarrow{\begin{array}{c} \text{MgSO}_4 \\ \text{CH}_2\text{Cl}_2, \text{t.a., Ar} \\ 15h \end{array}} \begin{array}{c} R^1 \\ N \end{array} \xrightarrow{\begin{array}{c} \text{NaBH}_4 \\ \text{MeOH, -20°C, } \\ \text{Ar, 30 min.} \end{array}} \begin{array}{c} R^1 \\ N \\ \end{array}$$

Esquema 2

La protección del grupo NH se realiza con dicarbamato de di-*terc*-butilo en presencia de trietilamina como base, obteniéndose los alquinil carbamatos según Esquema 3.

Esquema 3

15

En la Tabla 1 se muestran los aldehídos de partida, las aminas intermedias y los alquinil carbamatos obtenidos, así como los correspondientes rendimientos.

Ejemplo 2.

Este ejemplo se refiere a la obtención de los alenil-carbamatos.

La obtención de alenil-carbamatos se lleva a cabo a partir de alquinil-carbamatos por reacción de Crabbé. Para ello, se hacen reaccionar los alquinil-carbamatos en presencia de CuBr, paraformaldehído y diisopropilamina, utilizando 1,4-dioxano como disolvente según se muestra en el Esquema 4, obteniéndose de esta manera los alenil-carbamatos que se muestran en la Tabla 2, con buenos rendimientos.

10
$$R^{1} \stackrel{\mathsf{N}}{\underset{\mathsf{Boc}}{\mathsf{N}}} = \underbrace{\frac{(\mathsf{CH}_{2}\mathsf{O})_{\mathsf{n}}, \, \mathsf{iPr}_{2}\mathsf{NH}, \, \mathsf{CuBr}}{1,4-\mathsf{dioxano}, \, \mathsf{Ar}, \, \mathsf{Boc}}}_{\mathsf{R}^{1}} \stackrel{\mathsf{N}}{\underset{\mathsf{Boc}}{\mathsf{N}}} = R^{1} \stackrel{\mathsf{N}}{\underset{\mathsf{Boc}}{\mathsf{N}}}$$

Esquema 4

15

5

Alquinil-carbamato	Alenil-carbamato	Rendimiento
N Boc	N Boc	57%
MeO Boc	MeO Boc	89%
Boc	Boc	45%
MeO H H N Boc PMP	MeO H H N Boc PMP	64%

25

30

35

20

Sobre una disolución del alquino correspondiente (1 mmol) en 1,4-dioxano (5 ml) se adicionaron CuBr (0,5 mmol), (CH $_2$ O) $_n$ (2,55 mmol) y diisopropilamina (1,8 mmol), por ese orden, y se agitó a reflujo en atmósfera de argón. Cuando la reacción terminó (c.c.f) se añadió agua y se extrajo con AcOEt. Las fases orgánicas se juntaron y se lavaron con salmuera. Se secó con MgSO $_4$ y se evaporó el disolvente a presión reducida. Los productos obtenidos se purificaron por cromatografía en columna sobre gel de sílice (hexano/AcOEt).

Alenil-carbamato 1a.

 ^{1}H -RMN (300 MHz, CDCl₃): 1.51 (s, 9H, 3CH₃ Boc), 3.79 (s ancho, 2H, N-CH₂), 4.48 (s, 2H, CH₂-C=·=), 4.78 (dt, 2H, J = 6.6, 2.6 Hz, =·=CH₂), 5.12 (s ancho, 1H, CH=·=), 7.34 (m, 5H, Ar). ^{13}C -RMN (75 MHz, CDCl₃): 202.1 (=·=), 158.9 (C=O), 130.8 (C4^{ario}), 128.4 (4CH Ph), 127.1 (CH Ph), 86.9 (CH=·=), 80.0 (C4^{ario} Boc), 76.1 (=·=CH₂), 49.4 (CH₂), 44.9 (CH₂), 28.4 (3CH₃ Boc).

IR (CHCl₃): $1955 (=\cdot=)$, $1692 (C=O) cm^{-1}$.

HRMS (ES): Calculada M⁺ para C₁₆H₂₁NO₂: 259.1572 Experimental: 259.1579

10 Alenil-carbamato 1b.

5

15

 1 H-RMN (300 MHz, CDCl₃): 1.49 (s, 9H, 3CH₃ Boc), 3.76 (s ancho, 2H, N-CH₂), 3.80 (s, 3H, O-CH₃), 4.38 (s, 2H, CH₂-C=·=), 4.75 (dt, 2H, J = 6.6, 2.8 Hz, =·=CH₂), 5.08 (s ancho, 1H, CH=·=), 6.86 (d, 2H, J = 8.7 Hz, Ar), 7.19 (d, 2H, J = 8.1 Hz, Ar). 13 C-RMN (75 MHz, CDCl₃): 206.3 (=·=), 158.8 (O- C4^{ario}), 158.8 (C=O), 130.3 (C4^{ario}), 129.4 (2CH PMP), 113.9 (2CH PMP), 86.9 (CH=·=), 79.8 (C4^{ario} Boc), 76.1 (=·=CH₂), 55.2 (O-CH₃), 48.9 (CH₂), 44.6 (CH₂), 28.4 (3CH₃ Boc).

IR (CHCl₃): 1954 (=·=), 1692 (C=O) cm⁻¹.

HRMS (ES): Calculada M⁺ para C₁₇H₂₃NO₃: 289.1678 Experimental: 289.1675

20 Alenil-carbamato 1c.

 1 H-RMN (300 MHz, CDCl₃): 1.34 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 1.45 (s, 9H, 3CH₃ Boc), 3.39 (m, 2H, N-CH₂), 3.67 (m, 1H, N-CHH-aleno), 3.93 (m, 2H, O-CHH + N-CHH-aleno), 4.02 (dd, 1H, J = 8.3, 6.2 Hz, O-CHH), 4.25 (s ancho, 1H, O-CH), 4.77 (dt, 2H, J = 6.6, 2.8 Hz, CH=·=CH₂), 5.12 (q, 1H, J = 6.4 Hz, CH=·=CH₂). 13 C-RMN (75 MHz, CDCl₃): 208.8 (=·=), 151.8 (C=O), 109.1 (C4^{ario} acetónido), 87.1 (CH=·=CH₂), 79.9 (C4^{ario} Boc), 76.3 (CH=·=CH₂), 75.3 (O-CH), 67.3 (O-CH₂), 49.1 (N-CH₂), 47.3 (N-CH₂-aleno), 28.4 (3CH₃ Boc), 26.8 (CH₃), 25.5 (CH₃).

IR (CHCl₃): 1957 (=·=), 1694 (C=O) cm⁻¹.

HRMS (ES): Calculada M⁺ para C₁₅H₂₅NO₄: 283.1784 Experimental: 283.1786

30

Alenil-carbamato 1d.

5

15

20

25

 1 *H-RMN* (300 MHz, CDCl₃): 1.49 (s, 9H, 3CH₃ Boc), 3.35 (dd, 1H, J = 14.4, 7.2 Hz, N-C*H*H), 3.63 (s, 3H, O-CH₃), 3.74 (m, 1H, N-CH*H*), 3.77 (s, 3H, O-CH₃), 3.78 (m, 1H, C*H*HC= ·=), 3.82 (d, 1H, J = 4.4 Hz, HC-N), 4.46 (m, 1H, CH*H*-C=·=), 4.56 (d, 1H, J = 5.1 Hz, HC-O), 4.76 (m, 2H, =·=CH₂), 5.03 (s ancho, 1H, CH=·=), 6.85 (d, 2H, J = 8.3 Hz, PMP), 7.44 (m, 2H, PMP). 13 C-*RMN* (75 MHz, CDCl₃): 208.5 (=·=), 164.5 (C=O lactama), 155.7 (C=O Boc), 130.4 (C4^{ario}), 118.7 (2CH PMP), 114.3 (2CH PMP), 87.4 (CH=·=), 82.5 (HC-O), 80.5 (O-C4^{ario}), 79.9 (=·=CH₂), 59.1 (O-CH₃), 55.9 (HC-N), 55.4 (O-CH₃), 47.4 (N-CH₂), 45.1 (N-CH₂), 28.4 (3CH₃ Boc).

10 IR (CHCl₃): 1957 ($=\cdot=$), 1754 (C=O), 1694 (C=O) cm⁻¹.

Espectros de RMN. Los espectros de 1 H-RMN y 13 C-RMN se han realizado en aparatos Bruker Avance 300 (300 MHz), utilizando TMS como referencia interna. Los desplazamientos químicos se expresan en ppm (δ) y las constantes de acoplamiento en Hz. La multiplicidad de las señales se expresa como sigue: singlete (s), doblete (d), triplete (t), multiplete (m), doblete de dobletes (dd), doblete de tripletes (dt), cuadruplete (q), septuplete (sept).

Espectrometría de masas. Los espectros de masas de electroespray (EE) de alta resolución han sido realizados en el CENQUIOR (CSIC) en un espectrómetro AGILENT 6520 Accurate-Mass QTOF LC/MS.

Ejemplo 3

Este ejemplo se refiere a la optimización de las condiciones de ciclación de los alenilcarbamatos.

A partir del alenil-carbamato de fórmula 1a, se lleva a cabo la reacción de ciclación según el Esquema 5, en atmósfera inerte de argon (Ar), utilizando como promotor CuBr₂ con diferentes disolventes, temperaturas y tiempos de reacción.

35

En la Tabla 3 se muestran las condiciones de reacción en cada caso y se observa que el mejor rendimiento resultó utilizando CuBr₂ como promotor, MeNO₂ como disolvente y reflujo, a una temperatura de 70°C; en este caso, después de 1,5 h de reacción se obtuvo 5-bromo-1,3-oxazin-2-ona (2a) como único producto de reacción con un rendimiento del 72%. Este derivado de bromo es interesante desde el punto de vista sintético por la posibilidad de funcionalizar esta posición en caso de ser necesario.

Reactivos **Disolvente** T (°C) t (h) Resultado Rendimiento No se consume CuBr₂ (2,5 equivalentes) 20°C 60% MeCN 24 todo el material de AgF (3,5 equivalentes) partida Br CuBr₂ (2,5 equivalentes) MeCN 20°C 24 46% CuBr₂ (2,5 equivalentes) 70°C 1,5 MeNO₂ 72%

Tabla 3

Sobre una suspensión del aleno (1 mmol) en nitrometano (5 mL), se adicionó el CuBr₂ (2,5 mmol) bajo atmósfera de argón y se mantuvo agitando a reflujo hasta completarse la reacción. Cuando la reacción terminó (c.c.f.), se evaporó el disolvente a presión reducida. Los productos obtenidos se purificaron por columna de gel de sílice (hexano/AcOEt)

15

5

Oxazinona 2a.

 1 H-RMN (300 MHz, CDCl₃): 3.25 (dd, 1H, J =9.0, 6.1 Hz N-CHH-CH), 3.51 (t, 1H, J = 9.1 Hz, N-CHH-CH), 4.38 (q, 2H, J = 14.9 Hz, N-CH₂), 4.89 (dd, 1H, J = 9.0, 6.2 Hz, Br-CH), 5.59 (d, 1H, J = 5.6 Hz, =CHH), 6.03 (dd, 1H, J =2.3, 1.1 Hz, =CHH), 7.26 (m, 5H, Ar). 13 C-RMN (75 MHz, CDCl₃): 156.9 (C=O), 135.2 (=C), 129.0 (C4^{ario}), 128.9 (2CH Ar), 128.1 (3CH Ar), 118.8 (=CH₂), 74.6 (Br-CH), 48.7 (CH₂), 48.3 (CH₂).

IR (CHCl₃): 2929 (C=C), 1759 (C=O) cm⁻¹. Punto de fusión: 74-76 °C.

HRMS (ES): Calculada [M+H] $^+$ para $C_{12}H_{13}BrNO_2$: 284.0105 Experimental: 284.0096

25

Ejemplo 4

10

Este ejemplo se refiere a la ciclación de los alenil-carbamatos.

Teniendo en cuenta las condiciones de reacción óptimas según el ejemplo 3, se obtienen los productos 2b a 2e según el Esquema 6.

Esquema 6

En la Tabla 4 se muestran los productos y rendimientos obtenidos en cada caso.

		Tabla 4	
15	Alenil-carbamato	Resultado	Rendimiento
	MeO Boc	PMP N O Br	50%
20	Boc		52%
25	MeO H H N Boc PMP	MeO H H N O O Br	35% 31%
30	N Boc	O + N O Br	53%

REIVINDICACIONES

1. Derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II) donde R es un grupo aromático, un alquilo o un heterociclo.

R N O Br

П

2. Derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), según reivindicación 1, de fórmulas (2a) a (2e).

25 3. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Fórmula (II), según reivindicación 1, que comprende la reacción de ciclación de alenil-carbamatos de Fórmula general (I) utilizando como promotor bromuro de cobre.

30

5

5

10

4. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Fórmula (II), según reivindicación 3, donde los alenil-carbamatos son compuestos de fórmula (1a) a (1e).

20

15

5. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), según reivindicaciones 3 y 4, donde la ciclación se lleva a cabo en presencia de un disolvente.

25

6. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), según reivindicación 5, donde el disolvente es MeCN o MeNO₂.

30

7. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), según reivindicación 6, donde la ciclación se lleva a cabo a temperatura ambiente o a una temperatura superior hasta 70°C durante un tiempo de reacción comprendido entre 1,5 y 24 horas.

ES 2 798 324 A1

- 8. Procedimiento de obtención de derivados de 1,3-oxazin-2-onas que incorporan en su estructura un átomo de bromo de Formula (II), según reivindicación 6, donde el disolvente es MeNO₂ a reflujo.
- 9. Uso de los derivados de 1,3-oxazin-2-onas según se describen en las reivindicaciones 1 o 2 para la fabricación de un medicamento o composición farmacéutica para tratamiento y prevención de enfermedades seleccionadas entre cáncer, enfermedades autoinmunes, y enfermedades infecciosas.
- 10 10. Uso de los derivados de 1,3-oxazin-2-onas según se describen en las reivindicaciones 1 o 2 como pesticidas en la prevención y el tratamiento de control de plagas.
- 11. Uso de los derivados de 1,3-oxazin-2-onas según se describen en las
 15 reivindicaciones 1 o 2 en química supramolecular.
 - 12. Uso de los derivados de 1,3-oxazin-2-onas según se describen en las reivindicaciones 1 o 2 en la elaboración de nuevos materiales, sondas moleculares, sondas fluorescentes, sensores ópticos y/o sensores químicos, preferiblemente en la preparación de polímeros y/o dendrímeros.

(21) N.º solicitud: 202030527

Pecha de presentación de la solicitud: 04.06.2020

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl. :	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

Categoría	66	Documentos citados	Reivindicaciones afectadas	
А	ESCH P M; HIEMSTRA H; SPECH ions with propargyltrimethylsilane; Nº 16, páginas 3445 – 3462, ISSN Página 3454, compuesto 59. Comp	1-12		
А	synthesis of 1,3-oxazin-2-ones 30/11/2012, Vol. 9, Páginas 818	ALCAIDE BENITO et al. Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones Beilstein journal of organic chemistry Germany 2013. , 30/11/2012, Vol. 9, Páginas 818 - 826, ISSN 1860-5397 (Print), <doi: 23766795="" bjoc.9.93="" bubmed:="" doi:10.3762="">. Página 821, esquema 2, compuestos 3a-3j.</doi:>		
А	ROBLES-MACHIN R et al. Gold oxazin-2-ones. Journal of Organic 5026, ISSN 0022-3263 (print), <do 30, 32, 34 y 36</do 	1-12		
A		red solvent-free CO2 capture with homopropargylic amines: an 2-ones. Organic Chemistry Frontiers (2018), 5(22), 3331-3335	1-12	
X: d Y: d n A: re	egoría de los documentos citados e particular relevancia e particular relevancia combinado con ot nisma categoría efleja el estado de la técnica presente informe ha sido realizado para todas las reivindicaciones	de la solicitud E: documento anterior, pero publicado después d de presentación de la solicitud		
	de realización del informe 10.09.2020	Examinador E. Albarrán Gómez	Página 1/2	

INFORME DEL ESTADO DE LA TÉCNICA Nº de solicitud: 202030527 CLASIFICACIÓN OBJETO DE LA SOLICITUD **C07D265/10** (2006.01) **C07D265/12** (2006.01) **A61K31/535** (2006.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C07D, A61K Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, REGISTRY, HCAPLUS, BIOSIS, EMBASE, MEDLIN, NPL