Supporting Information

Carbons Derived from Alcohol-Treated Bacterial Cellulose with

Optimal Porosity for Li-O2 Batteries

Wenhai Wang,^a Siavash Khabazian,^b Soledad Roig-Sanchez,^a Anna Laromaine,^a Anna Roig,^a Dino Tonti^{a,*}

^a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia, Spain

^b Nanomaterials Group, Department of Materials Science and Engineering, Tarbiat Modares University, Tehran, Iran

*Corresponding author. E-mail address: <u>dino.t@csic.es</u> (D. Tonti)

Fig. S1. (a) FTIR of soaked BCs and pure solvents; (b) FTIR of soaked BCs and dried BCs; (c) zooming at $3000-2800 \text{ cm}^{-1}$ and (d) $1800-1600 \text{ cm}^{-1}$ for all samples.

Fig. S2. SEM surface images of dried BC-w (a), BC-e (b) and BC-b (c)

Fig. S3. (a) TGA of dried BCs; (b) DSC of dried BCs

Fig. S4. TEM images of carbon-w (a), carbon-e (b) and carbon-b (c)

Fig. S5. EIS of a bare glassy carbon electrode at the open circuit potential in 1 M lithium triflate (DEGDME) with saturated Ar. The continuous line is the result of fitting data with the equivalent circuit shown in the insert (R is a resistor and CPE is a constant phase element), from which the parameters R=532.4 ohm, Q=1.573e-6 F·s^(α -1),

 α =0.9391 were obtained. The effective capacitance of the constant phase element is given by C_{eff}=(QR^{1- α})^{1/ α} where α and Q as CPE parameters, R is the ohmic resistance [1, 2]. From this value we calculate the specific capacitance C*=C_{eff}/S_{GC}=14.06 μ F cm⁻², where S_{GC}=0.07 cm⁻² is the area of the glassy carbon electrode.

Fig. S6. SEM image (a) and the full discharge-charge profile (b) at 0.1 mA cm^{-2} of bare carbon paper.

Fig. S7. (a) SEM image of carbon derived from BC soaked 24 h in 1-butanol; (b) comparison of full discharge profiles of carbons derived from BCs soaked in 1- butanol during different time at 0.1 mA cm^{-2} .

Fig. S8. Discharge-charge profiles of carbon-b and Super P at 0.1 mA cm⁻².

Fig. S9. SEM images of water (a) and 1-butanol (b) treated cotton linters; SEM images of carbons from water treated cotton linters (c) and 1-butanol treated cotton linters (d); (e) full discharge-charge profiles of carbons derived from water and 1-butanol treated cotton linters at 0.1 mA cm⁻².

Fig. S10. SEM images of water (a) and 1-butanol (b) treated agarose; SEM images of carbons from water treated agarose (c) and 1-butanol treated agarose (d); (e) full discharge-charge profiles of carbons derived from water and 1-butanol treated agarose at 0.1 mA cm^{-2} .

Fig. S11. SEM images of carbons derived from methanol (a), 1-propanol (b), 1-hexanol (c), 1-octanol (d), acetone (e), ether (f) and TEGDME (g) treated BCs; (h) full discharge-charge profiles of carbons derived from different solvents treated BCs.

Solvente	Boing point	Surface tension	$\begin{array}{ll} \text{Discharge capacity} \\ \text{m}^{-1} \end{array} & (\text{mA h cm}^{-2}) \end{array}$	
Solvents	(°C)	(20 °C) /(mN m ⁻¹)		
water	100	72	0.14	
methanol	64.51	22.50	0.59	
ethanol	78.32	22.27	1.36	
1-propanol	97.2	23.70	0.99	
1-butanol	117.7	25.00	5.58	
1-hexanol	157.1	24.48	4.60	
1-octanol	195	26.71	4.09	
ether	34.6	17.06	0.57	
acetone	56.12	23.32	0.40	
TEGDME	216	29.4	2.25	

Table S1. Boiling point, surface tension of solvents[3] and Li-O₂ discharge capacity (at 0.1 mA cm^{-2}) of carbons derived from solvents treated BCs.

Table S2. Textural data for reported catalyst-free carbons and their discharge capacity when used as cathode in $\text{Li}-O_2$ batteries. Note: the textural data of carbons were collected from carbon powder before processing into electrodes.

	BET surface	Pore	Predominant	Discharge
Carbon	area	volume	pore size	capacity
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	$(mA h cm^{-2})$
Carbon b	669	1.25	~85	5.58 (0.1 mA cm ⁻²)
HOM-AMUW[4]	451	1.9	~18.5	4.08 (0.1 mA cm ⁻²)
CMK-3[5]	789	1.18	~6	5 (0.1 mA cm ⁻²)
rGO[6]	361	1.58	~17.5	4.71 (0.05 mA cm ⁻²)
LSAC[7]	1649	1.21	~8	1.2 (0.05mA cm ⁻²)
CRG[8]	535.3	0.41	~5	0.45 (0.075mA cm ⁻²)
Activated tea leaves[9]	2868.4	1.16	<1	1.25 (0.1 mA cm ⁻²)

Table S3 Comparison of the cycle life carbon-b with values reported in literature for

Sample	Current density (mA cm ⁻²)	Capacity limitation (mA h cm ⁻²)	Cycle number
Carbon-b	0.1	0.5	58
C-IL[10]	0.1	0.7	26
graphene aerogel[11]	0.12	0.6	30
CMK-3[5]	0.1	0.5	13
N-doped C[12]	0.08	1.5	20
Fe ₂ O ₃ /carbon[13]	0.1	0.48	30
Co@N-C microspheres[14]	0.1	0.5	40
MOF(Fe/Co)-CNTs[15]	0.1	0.6	40
Biphasic N-doped Co@graphene capsule[16]	0.1	1	30
NiFe ₂ O ₄ /C nanofibers[17]	0.1	0.44	40

different Li-O₂ battery cathodes.

References

[1] M.N. Kakaei, J. Neshati, A.R. Rezaierod, On the Extraction of the Effective Capacitance from Constant Phase Element Parameters, Protect. Met. Phys. Chem. Surface 54(3) (2018) 548-556.

[2] G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem. Interfacial Electrochem. 176 (1984) 275-296.

[3] N. Chen, Solvent Handbook, Chemical Industry Press, Beijing, 2002.

[4] W. Yang, Z. Qian, C. Du, C. Hua, P. Zuo, X. Cheng, Y. Ma, G. Yin, Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O₂ batteries, Carbon 118 (2017) 139-147.

[5] M. Kim, E. Yoo, W.-S. Ahn, S.E. Shim, Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity, J. Power Sources 389 (2018) 20-27.

[6] N. Ding, S.W. Chien, T.S.A. Hor, R. Lum, Y. Zong, Z. Liu, Influence of carbon pore size on the discharge capacity of Li–O₂ batteries, J. Mater. Chem. A 2(31) (2014) 12433-12441.

[7] G. Zhang, Y. Yao, T. Zhao, M. Wang, R. Chen, From Black Liquor to Green Energy Resource: Positive Electrode Materials for Li-O₂ Battery with High Capacity and Long Cycle Life, ACS Appl. Mater. Interfaces 12(14) (2020) 16521-16530.

[8] W. Zhou, H. Zhang, H. Nie, Y. Ma, Y. Zhang, H. Zhang, Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O₂ battery, ACS Appl. Mater. Interfaces 7(5) (2015) 3389-3397.

[9] F. Wang, P.K. Kahol, R. Gupta, X. Li, Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O₂ Batteries, J. Electrochem. Energy Convers. Storage 16(4) (2019) 041007.

[10] W. Ni, S. Liu, Y. Fei, Y. He, X. Ma, L. Lu, Y. Deng, CoO@Co and N-doped mesoporous carbon composites derived from ionic liquids as cathode catalysts for rechargeable lithium–oxygen batteries, J. Mater. Chem. A. 4(20) (2016) 7746-7753.

[11] C. Zhao, C. Yu, S. Liu, J. Yang, X. Fan, H. Huang, J. Qiu, 3D Porous N-Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahigh-Rate and Long-Life Li-O₂ Batteries, Adv. Funct. Mater. 25(44) (2015) 6913-6920.

[12] J. Luo, X. Yao, L. Yang, Y. Han, L. Chen, X. Geng, V. Vattipalli, Q. Dong, W. Fan, D. Wang, H. Zhu, Free-standing porous carbon electrodes derived from wood for high-performance Li-O₂ battery applications, Nano Research 10(12) (2017) 4318-4326.

[13] W. Chen, Z. Zhang, W. Bao, Y. Lai, J. Li, Y. Gan, J. Wang, Hierarchical mesoporous γ -Fe₂O₃/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O₂ batteries, Electrochim. Acta 134 (2014) 293-301. [14] J. Song, X. Lv, Y. Jiao, P. Wang, M. Xu, T. Li, X. Chen, J. Li, Z. Zhang, Catalyst nanoarchitecturing via functionally implanted cobalt nanoparticles in nitrogen doped carbon host for aprotic lithium-oxygen batteries, J. Power Sources 394 (2018) 122-130. [15] H. Wang, F. Yin, P. Lv, T. Fan, X. He, B. Chen, Metal–organic-framework-derived FeCo alloy core@nitrogen-doped carbon shell nanoparticles anchored on carbon nanotubes for rechargeable Li-O₂ battery, Int. J. Hydrogen. Energ 42(4) (2017) 2127-2133.

[16] G. Tan, L. Chong, R. Amine, J. Lu, C. Liu, Y. Yuan, J. Wen, K. He, X. Bi, Y. Guo, H.H. Wang, R. Shahbazian-Yassar, S. Al Hallaj, D.J. Miller, D. Liu, K. Amine, Toward Highly Efficient Electrocatalyst for Li-O₂ Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures, Nano Lett. 17(5) (2017) 2959-2966.

[17] X. Zhang, C. Wang, Y.-N. Chen, X.-G. Wang, Z. Xie, Z. Zhou, Binder-free NiFe₂O₄/C nanofibers as air cathodes for Li-O₂ batteries, J. Power Sources 377 (2018) 136-141.