1	The progamic phase of an early-divergent Angiosperm, Annona
2	cherimola Mill. (Annonaceae)
3	
4	J. Lora ¹ , J.I. Hormaza ^{1*} , M. Herrero ²
5	¹ Dep. Subtropical Pomology, Estación Experimental "La Mayora" - CSIC, 29760
6	Algarrobo-Costa, Málaga, Spain and ² Dep. Pomology, Estación Experimental "Aula
7	Dei" - CSIC, Apdo. 202, 50080 Zaragoza, Spain.
8	
9	
10 11	*For correspondence. Email: ihormaza@eelm.csic.es
12	Running title: Progamic phase in Annona cherimola
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

ABSTRACT

2 Background and Aims Recent studies of reproductive biology in ancient angiosperm 3 lineages are beginning to throw light on the early evolution of flowering plants, but 4 comparative studies are restricted by fragmented and meagre species representation in 5 these angiosperm clades. In this study, the progamic phase, from pollination to 6 fertilization, is characterized in Annona cherimola, which is a member of the 7 Annonaceae, the largest extant family among early-divergent angiosperms. Besides its 8 interest due to its phylogenetic position, this species is also an ancient crop with a clear 9 niche for expansion in subtropical climates.

Methods The kinetics of the reproductive process was established following
 controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube
 pathway, embryo sac and early postfertilization events were histochemically
 characterized.

• *Key Results* A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with big starch grains that are used during early cellular endosperm development.

• *Conclusions* A plesiomorphic simple gynoecium hosts a simple pollen-pistil interaction, based on a support-control system of pollen tube growth. Support is provided through a basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the

- 1 stigma-style interface. This extramural pollen tube competition contrasts with the
- 2 intrastylar competition predominant in more recently derived lineages of angiosperms.
- 3
- 4 Key words: Annona cherimola, Annonaceae, embryo sac, endosperm, Magnoliid,
- 5 ovule, pollen-pistil interaction, pollen tube.

INTRODUCTION

2 Reproductive biology of basal and early-divergent angiosperms is experiencing a 3 renaissance in the last few years and is providing valuable information on evolutionary 4 trends in flowering plants (Friedman and Ryerson, 2009; Rudall et al., 2009). While 5 much remains to be discovered about the basic features of the sexual process in 6 angiosperms, a new understanding of the evolutionary developmental basis is beginning 7 to emerge. Most angiosperms conform to a defined suite of reproductive characteristics 8 but new data derived from studies on ancient extant flowering plant lineages reveal that 9 the reproductive features of the first flowering plants differed significantly from those 10 shown by the majority of extant flowering plants (Friedman and Williams, 2004). 11 Recent work is showing unique features in the female gametophyte of ancient extant

angiosperms, such as the egg cell apparatus (Friedman, 2006), the endosperm (Friedman *et al.*, 2008) and the provisioning of ovular resources (Friedman, 2008; Rudall *et al.*, 2008). The study of pollen development and evolution is also emerging as a powerful field to understand the evolution of reproductive characters (Rudall and Bateman, 2007; Lora *et al.*, 2009). While information on the male and the female side is accumulating in ancient lineages of extant angiosperms, there is still much to be learned about the interplay between both: pollen-pistil interaction.

The progamic phase, the period of pollen tube growth through the pistil that elapses from pollination to fertilisation and gamete fusion (Linskens, 1975; Williams, 2009), provides an opportunity for pollen-pistil interaction, which is emerging as a powerful strategy regulating mating in flowering plants (Herrero and Hormaza, 1996; de Graaf *et al.*, 2001; Herrero, 2000, 2003; Rea and Nasrallah, 2008). The molecular mechanisms involved in this signalling are being deciphered (Escobar-Restrepo *et al.*, 2007; Higashiyama and Hamamura, 2008; Hiscock and Allen, 2008), although a

1 comprehensive view on the events and their implications is still to come. Recent work 2 in Amborella, sister to all extant angiosperms, sets the base line for understanding the 3 evolution of pollen-pistil interaction (Williams, 2009) and, in this sense, the study of the 4 progamic phase in ancient angiosperms, that has been performed in a number of species 5 belonging to ancient flowering plant lineages (Vithanage, 1984; Orban and 6 Bouharmont, 1995; Pontieri and Sage, 1999; Thien et al., 2003; Sage and Sampson, 7 2003; Koehl et al., 2004; Hristova et al., 2005; Lyew et al., 2007), may prove a highly 8 valuable tool to track the evolution of this process (Hiscock and Allen, 2008). Also the 9 evolution and function of the transmitting tissue in extant representatives of early-10 divergent angiosperm lineages has been recently explored (Sage et al., 2009).

11 However, one of the main limiting factors in studying developmental processes 12 in early angiosperms and placing them in a phylogenetic framework is that most 13 ancestral angiosperm lineages have arrived at the present times in a very fragmented 14 way. Early-divergent angiosperms have a very meagre representation, with some 15 lineages represented by only one or very few species. Annonaceae is the largest living family in the early-divergent angiosperm clade magnoliids (APG II, 2003; Soltis et al., 16 17 2005) including about 130 genera and 2300 species with a worldwide distribution 18 (Chatrou et al., 2004). Besides the interest of the family to address questions on early 19 angiosperm evolution, some of the species in the Annonaceae, such as cherimoya 20 (Annona cherimola), sugar apple (A. squamosa) or soursop (A. muricata) were already 21 used as a food source by pre-Columbian cultures in South America (Popenoe, 1989), 22 and now they have a clear niche for expansion in developing countries with subtropical 23 climates. Still, in spite of the importance for both basic and applied studies very little is 24 known on the reproductive biology of this family.

1 Most works on reproductive biology in the Annonaceae have been focused on 2 descriptive studies of the flowers (Norman et al., 1986, 1992; Carvalho and Weber, 2000; Norman, 2003; Kiill and Costa, 2003), embryology (Svoma, 1998a), and flower 3 4 development (Decraene and Smets, 1990; Leins and Erbar, 1996). Studies on the pollen 5 tube pathway are limited and restricted just to pollen germination in the stigma 6 (Vithanage, 1984). Recently, we have studied pollen development and release in groups 7 in A. cherimola (Lora et al., in press) and we have shown the coexistence of bi and 8 tricellular pollen at anther dehiscence in this species, contributing to the understanding 9 of the heterochronic shift from bicellular to tricellular pollen (Lora et al., 2009).

10 In this work the progamic phase and early embryo development is characterised 11 in the early-divergent angiosperm *A. cherimola*. The examination of pistil anatomy 12 reveals features showing a simple pollen-pistil interaction that are likely to be 13 plesiomorphic for all angiosperms.

14

15

MATERIALS AND METHODS

16 *Plant material*

17 A. cherimola shows protogynous dichogamy (Schroeder, 1971). Flowers are 18 hermaphroditic, but female and male structures do not mature simultaneously hindering 19 self-fertilization in the same flower. Moreover, most flowers of the same genotype are 20 synchronized and, consequently, transfer of pollen between different flowers of the 21 same genotype is also difficult. The cycle of the flower is completed in two days; in the 22 morning of the first day the flower is in preanthesis with the petals tightly closed. 23 Around noon the flower passes to the female stage, petals slightly widen apart and the 24 stigma is receptive. After approximately 30 h, flowers switch to the male stage. Anthers dehisce at approximately 1700-1800 under our environmental conditions.
 Concomitantly with anther dehiscence, the petals widen apart and the stigma dries up
 and loses receptivity.

Adult trees of the *A. cherimola* cultivar Campas located in a field cultivar
collection at the EE La Mayora-CSIC, Málaga, Spain, were used in these experiments.
Flowers were fixed along the flowering period, during two consecutive years.

7 Pollination procedures

Anthers and pollen were collected from flowers just before anther dehiscence, stored at 4°C and used for hand pollination the following day. Fifteen flowers per day were pollinated at 9:00 h. the first day of the flower cycle and the floral tube was then plugged with cotton to prevent further unwanted pollination. To evaluate developmental changes independent of pollination, similarly treated flowers were left unpollinated. The gynoecia of 15 pollinated and 15 unpollinated flowers were weighed and fixed daily from preanthesis (one day before anthesis) to three weeks following hand pollination.

An additional group of flowers were collected in the field, placed in water in the laboratory at room temperature and pollinated at 9:00 h the first day of the flower cycle to study pollen tube growth. Regression analyses were used to describe the relationships between days after anthesis and pistil weight. Several regression models were tested and third-order polynomial regression was selected.

20 Microscopic preparations

Pollen tube growth was documented using squash preparations of pistils from hand pollinated flowers kept in water at room temperature. For this purpose, pistils were fixed in formalin-acetic acid-alcohol (FAA) 3, 6 and 9 hours after pollination. Pistils were water washed and placed in 1N NaOH for 1 hour to soften the tissues. Individual

pistils were dissected and squash preparations were stained with 0.1 % aniline blue in
 PO₄ K₃ (Currier, 1957; Linskens and Esser, 1957).

3 Following hand pollination in the field, pistils were also sequentially fixed. Eight 4 flowers per day were collected at 9:00 and fixed in FAA, dehydrated in an ethanol 5 series, and then embedded in paraffin wax. Seven flowers per day were fixed in 2.5% 6 glutaraldehvde in 0.03M phosphate buffer (Sabatini et al., 1963). Finally, three flowers 7 per day were fixed for 24 h in 3:1 (V1/V2) ethanol: acetic acid and transferred to 75% 8 ethanol for storage at 4°C following the method by Williams et al. (1999). These 9 flowers and those fixed in 2.5% glutaraldehyde were dehydrated in an ethanol series and 10 embedded in Technovit 7100 (Kulzer) resin.

11 To observe pollen tubes and callose, squash preparations and paraffin embedded 12 material sectioned at 10 µm were stained with 0.1 % aniline blue in 0.1N PO₄K₃ 13 (Currier, 1957; Linskens and Esser, 1957). Sections were also stained with 0.01% 14 acridine orange in 0.03M phosphate buffer to observe DNA and RNA (Nicholas et al., 15 1986; Dudley et al., 1987), with 0.01% auramine 0 in 0.05M phosphate buffer to 16 observe cutine and suberine (Heslop-Harrison, 1977) and with 0.07% calcofluor in 17 water for cellulose (Hughes and McCully, 1975). For general histological examination, 18 paraffin embedded material was stained with a mixed staining in the following order: 19 0.1% aniline blue in 0.1N PO₄K₃, 0.01% acridine orange in water, 0.01% auramine 0 in 20 water and 0.01% calcofluor in water, for 10 minutes each at 40°C to accelerate staining 21 and drying. Others sections were also stained with safranin, crystal violet and green 22 light according to Gerlach (1969). Resin embedded material fixed in glutaraldehyde was sectioned at 2 µm and stained with periodic acid-Shiff's reagent (PAS) followed by 23 24 0.2% Toluidine Blue in water (Feder and O'Brien, 1968) to observe insoluble 25 carbohydrates and nuclei. Resin embedded material in glutaraldehyde was also stained

1 with Iodine Potassium Iodide (IKI) for starch (Johansen, 1940). Resin embedded 2 material fixed with 3:1 (V1/V2) ethanol-acetic acid was sectioned at 5 um and stained with a solution of 0.25 mg/mL of 4',6-diamidino-2-phenylindole (DAPI) and 0.1 3 4 mg/mL p-phenylenediamine (added to reduce fading) in 0.05M Tris (pH 7.2) for 1 hr at 5 room temperature in a light-free environment (Williams et al., 1999). Preparations were 6 observed under an epifluorescent Leica DM LB2 microscope with 340-380 and LP 425 7 filters for DAPI. Pollen tube growth rates were calculated as the length of the longest 8 pollen tube divided by the time elapsed from pollination.

- 9
- 10

RESULTS

11 Gynoecium anatomy and pollen tube growth

12 The average number of carpels in the gynoecium of A. cherimola is 90.4 ± 5.4 (N= 5 13 flowers) that are fused to form a syncarp which occupies the centre of a conical 14 receptacle. Each of the carpels has a single anatropous ovule that can develop into a 15 single seed. The androecium is located below the gynoecium forming a helicoidal 16 structure with up to 200 stamens. The pistil shows a big stigma and a relatively short 17 style with partial postgenital fusion at the periphery of the innermost side (Fig 1A), 18 forming an open stylar canal. The closing area of this canal is covered in a zip like way 19 by unicellular secretory papillae that result in a continuous secretory carpet starting in 20 the stigma and paving all the way through the style down to the ovary (Fig 1B). 21 Idioblastic solitary oil cells (Fig 1C), thick-walled sclereid cells (Fig 1D) and 22 tanniferous cells were observed along the cortical tissue. Tanniferous cells were also 23 observed in the ovular epidermis.

1 The length of the pollen tube pathway from the stigma to the ovule was 1832.4 2 μ m (± 132.5, N= 10). Pollen grains germinated in the stigma and the pollen tubes grew 3 on the stigmatic surface towards the suture line (Fig 1E) to penetrate in the style. The 4 stigmatic suture line formed a furrow all along the stigma continuous with the style 5 secretory area of the semi- open canal (Fig 1F). Germination occurred rapidly and one 6 hour after pollination pollen grains had germinated and grew freely in the stigma. An 7 average of 22.5 pollen grains (\pm 15.2, N= 70 stigmas) were recorded per stigma with 8 and average pollen germination of 43.6 % (\pm 8.4 %, N= 70 stigmas). However, a drastic 9 reduction in the number of pollen tubes occurred at the stigma-style interface (Fig 1F), 10 and only one to three pollen tubes were observed in the style. This reduction is related 11 to the receptive surface available for pollen tube growth. While the stigma is formed by 12 a wide papillar surface that measures 470.1 μ m (± 78, N= 10) in length and 307 μ m (± 13 69, N=10) in width, the receptive surface in this area is restricted to the narrow stylar 14 semi-closed margins that are lined by secretory papillae continuous with those of the 15 stigma. This stigma-style interface is able to lodge very few pollen tubes which, in their 16 way trough the style, stick to this narrow receptive surface leaving empty the rest of the 17 non-receptive stylar canal. Pollen tubes were first seen growing in the style 2-3 hours 18 after pollination, and travelled over a distance of 836.3 μ m (± 77.3, N= 10) to reach the 19 ovary locule (Fig 1G) some 4-6 hours after pollination, with an average pollen tube growth rate in the style of 280 µm/h. At the ovary locule, the pollen tubes grew over the 20 21 obturator and penetrated the hood-shaped ovule after traversing a distance of 526 μ m (± 22 86, N=10). A single pollen tube was observed penetrating each ovule (Fig 1H) and the 23 first fertilized ovules were observed one day after pollination.

1 Embryo sac and fertilization

A. *cherimola* shows an anatropous, bitegmic and crassinucellate ovule, with an endostomal micropyle formed by the inner integument that protrudes over the external integument (Fig 2A). The outer integument is vascularised. At anthesis, the embryo sac is mature and shows the Polygonum-type structure with seven cells and eight nuclei, three at the micropylar end [the two synergids (Fig 2A) and the egg cell (Fig 2B)], three at the chalazal end [the three antipodal cells (Fig 2C)], and two polar nuclei in the centre (Fig 2D) which are not fused at anthesis.

9 The embryo sac contains large starch grains distributed in the central cell (Fig. 10 3A). These starch grains are much bigger than the standard starch grains located in the 11 sporophytic tissues of the ovule. They react both to PAS and IKI stains. Starch 12 accumulates around the egg cell (Fig 3B), and also around the two polar nuclei (Fig 3C) 13 that fuse close to the time of fertilization. Both synergids have a big vacuole at the top 14 of the cell (antipodal side) and the cytoplasm and the nucleus are located at the base 15 (micropyle side) (Fig 3D) where a filiform apparatus is developed (Fig 3E). Starch 16 vanishes following fertilization concomitantly with endosperm development. 17 Endosperm is cellular and starts to develop three days after pollination. It shows a 18 bipolar nature where the first division produces a large cell in the micropylar pole and a 19 smaller cell in the chalazal pole. Starch grains accumulate in the chalazal pole cell (Fig 20 3F) and decrease with endosperm enlargement (Fig 3G) vanishing three weeks after 21 pollination concomitantly with further endosperm cellular division. After fertilization, a 22 zygote develops and the first cell division could be seen eight days after pollination 23 when the endosperm has already four cells (Fig 3H).

24

1 *Changes in the pistil*

2 The pollen tube pathway is lined by secretory papillae that form a continuous 3 carpet from the stigma down to the placenta facing the ovule endostome. The papillae in 4 the placenta resemble an obturator since they form a protuberance towards the ovule 5 entrance. The cytohistological features of those papillae are similar to the papillae of the 6 stigma and style (Fig 4A-C) although a basipetal maturation sequence can be seen from 7 the stigma down to the obturator. The papillae in the less mature areas are rich in starch 8 and show no secretion. As papillae mature, starch vanishes concomitantly with the 9 production of a secretion in the surface of the papillae. Thus, while at preanthesis the 10 stigma does not appear to contain starch (Fig 4A), starch is still present in the style (Fig 11 4B) where a secretion is being produced. At the obturator (Fig 4C) starch is far more 12 conspicuous and the secretion is still not apparent at this time.

13 The secretion of the papillae is present along the whole pollen tube pathway 14 from anthesis to 6 days later. This secretion stains heavily with PAS and with Toluidine 15 blue (Fig 4B). The papillae and secretion are present just in the outermost side of the 16 semi-open stylar canal (Fig 4D). Before anthesis, the unicellular secretory papillae are 17 rich in starch reserves in the style (Fig 4B and E). One day after anthesis, starch 18 vanishes and the secretion increases (Fig 4F) concomitantly with pollen tube passage. 19 The same situation can be seen in the obturator where starch is conspicuous before 20 anthesis (Fig 4G) while it vanishes as secretion increases one day later (Fig 4H). This 21 process does not seem to be triggered by the pollen tube passage, but appears to be 22 developmentally regulated, for it occurs in the same way and at the same time in 23 unpollinated flowers.

While at preanthesis callose is not apparent in the papillae secretory cells, callose layering starts in the papillae one day after pollination (Fig 5A) and is also present in the obturator (Fig 5B). This callose layering occurs in a similar way in pollinated (Fig 5B) and unpollinated flowers (Fig 5C). However, callose layering in the nucellus at the base of the embryo sac appears three days after pollination only in pollinated flowers (Fig 5D). On the other hand, callose layering in the vascular bundles is only observed in ovules of unpollinated flowers one day after anthesis (Fig 5E). During ovary development, callose also appears in the cell plates forming the walls of the cellular endosperm (Fig 5F and G).

6 Gynoecium weight increases slowly and is similar in pollinated and unpollinated 9 flowers during the first 4 days after anthesis. Six days after anthesis differences can be 10 observed among pollinated and unpollinated flowers; thus, while unpollinated flowers 11 start to drop, pollinated flowers experience rapid growth (Fig 6). A similar pattern was 12 observed for pollinated and unpollinated flowers in the two years of observations.

13

14

DISCUSSION

A. cherimola shows a simple and plesiomorphic pistil, with a short style and a semiopen continuous secretory carpel, which supports a simple pollen-pistil interaction.
Interestingly, this interaction exhibits a support-constrain strategy that is prevalent in
phylogenetically derived angiosperm species (Herrero and Hormaza, 1996) although in
the former case it takes place in the stigma instead of in the style.

20

21 *Pistil support to pollen tube growth*

A. *cherimola* shows a wet stigma similarly to other closely related species in the
 genus *Annona* (Vithanage, 1984; Heslop-Harrison and Shivanna, 1977). In *A. cherimola* the common secretory papillar carpet that covers the stigma, style and ovary along the

1 semi-suture line provides a substrate for pollen tube growth. Secretion along the pollen 2 tube pathway has also been reported in other members of ancient angiosperm clades 3 such as Trimenia moorei (Bernhardt et al., 2003), Illicium floridanum (Koehl 2002 cited 4 by Bernhardt et al., 2003), Amborella trichopoda (Thien et al., 2003), Saururus cernuus 5 (Pontieri and Sage, 1999), Psedowintera axillaries (Sage and Sampson, 2003) and 6 Kadsura longipedunculata (Lyew et al., 2007) and appears to be composed of 7 arabinogalactan and arabinogalactan-proteins (Sage et al., 2009). Although dry stigmas 8 are considered as plesiomorphic in flowering plants (Thien et al., 2009) both dry and 9 wet stigmas can be found in taxa of the ANITA and magnoliid clades (Thien et al., 10 2009). Molecular studies on wet and dry stigmas and their implications in pollen-pistil 11 interaction have been performed only in a limited number of evolutionary-derived 12 angiosperm taxa and, consequently, there is a need for more studies on this topic among 13 early-divergent angiosperm taxa (Hiscok and Allen, 2008).

14 The production of this secretion is already present before flower opening and 15 reaches a maximum level one day after anthesis, concomitantly with pollen tube 16 passage. Still, the production of secretion is independent of pollination since it occurs in 17 the same way and at the same time in pollinated and unpollinated flowers. This point is 18 different from higher angiosperms, in which pollen tube growth in the style triggers 19 starch degradation (Herrero and Dickinson 1979; Gonzalez et al., 1996). But, 20 interestingly, this production of secretion is very similar to the behaviour of the 21 obturator in which secretion occurs at a particular time of development independently of 22 pollination (Herrero and Arbeloa, 1989; Arbeloa and Herrero, 1991). In A. cherimola a 23 primitive obturator, formed by the protuberance of the placenta, continuous and with the 24 same cytohistological features of the secretory papillae, appears to be present in the 25 ovary. Similar structures have been described in other ancient angiosperm lineages,

such as in species of the Magnoliaceae that show a funicular outgrowth with papillose 1 2 cells (Matsui et al., 1993; Umeda et al., 1994), in Schisandraceae (Lyew et al., 2007), 3 Lauraceae (Sedgley and Annells, 1981) and in the monocot Ornithogalum caudatum 4 (Tilton and Horner, 1980). In A. cherimola the fact that secretion is present right from 5 anthesis at pollination time provides an adequate substrate for a rapid pollen tube 6 growth. This contrasts with longer times for pollen tube growth reported in other 7 species, which are related to waiting times in order to reach the phase where secretion is 8 produced in the pistilar structures (Herrero and Arbeloa, 1989; Herrero, 2000, 2003).

9 Following the production of secretion, callose is layered in the papillar secretory
10 structures in the same way reported in the obturator of peach (Arbeloa and Herrero,
11 1987), perhaps protecting this area and fulfilling what has been considered as a
12 prophylactic role (Heslop-Harrison, 1999, 2000).

13

14 Pistil constraint to pollen tube growth

15 Pollen tube growth proceeds rapidly and, within one day of pollination, the 16 pollen tubes reach the hood-shaped ovule, which has been considered as a 17 plesiomorphic trait in angiosperms (Soltis et al., 2005). Relatively rapid pollen tube 18 growth has also been found in other members of ancient angiosperm clades (Bernhardt 19 et al., 2003; Sage and Sampson, 2003; Koehl et al., 2004; Hristova et al., 2005; 20 Williams, 2008, 2009) and contrasts with the slow growth of pollen tubes in 21 gymnosperms (Gelbart and Von Aderkas, 2002). Both the pollen tube growth rate of A. 22 *cherimola* (480 µm/h) and the length of the pollen tube pathway 1.83 mm are in the 23 range described for basal grade angiosperms (Williams, 2008): \approx 80-600 µm/h and <0.5 24 to \approx 15 mm long. Although in some derived angiosperms delayed fertilization has also 25 been recorded (Sogo and Tobe, 2005, 2006a, b), an evolutionary trend towards rapid pollen tube growth in seed plant pollen has been proposed (Pettitt, 1982; Williams,
2008) where the development of callose plugs in pollen tubes could have played a major
role (Williams, 2008). Differences in timing also appear to be related to differences in
maturation of the pistil (Herrero and Arbeloa, 1989; Sogo and Tobe, 2005, 2006*a*, *b*)
and to a requirement for male-female synchrony (Herrero, 2003).

6 Several pollen grains germinate on the stigma, but only one pollen tube reaches 7 the ovule and achieves fertilization. While pollen grains germinate freely at the stigma 8 and direct their growth towards the semi-open suture line, a clear restriction and 9 reduction in the number of pollen tubes occur at this point of entrance in the short stylar 10 canal. Only 1-3 pollen tubes penetrate the style. This reduction in the number of pollen 11 tubes may be related to the limited space available with only a narrow papillar secretory 12 area that paves, along the semi-open suture line, the carpel margins. Pollen competition 13 and selection appears to be a common fact shared by most angiosperms (Mulcahy, 14 1979, Hormaza and Herrero, 1992; 1996) and it is usually reflected by a reduction in the 15 number of pollen tubes that continue to grow in the style (Sedgley, 1977; Cruzan, 1990; 16 Hormaza and Herrero, 1996). However, results herein show that in A. cherimola the 17 main restriction point appears at the stigma-style interface. This behaviour should be 18 investigated in other early-divergent angiosperms, but interesting recent work in 19 Amborella trichopoda (Williams, 2009) shows a very similar behaviour. A. cherimola 20 has a semi-open stylar canal similar to that described in Amborella trichopoda 21 (Williams, 2009) and in A. cherimola only the carpel margins are layered with secretory 22 papillae, paving a narrow way for the few pollen tubes growing in the style. A semi-23 open stylar canal is a common feature found in other ancient angiosperms (Endress and Igersheim, 2000) and it would be interesting to evaluate if papillar secretory cells 24 25 restricted to the margins also provide a similar pollen restriction mechanism, in contrast to the typical pollen tube attrition recorded in the style in evolutionary derived angiosperms. If this is so, during angiosperm evolution, the arena for pollen competition would have changed from the stigma to within the style and, consequently, pollen competition in the style could be considered an innovation in evolutionary derived clades of flowering plants.

6

7 Postfertilization events

8 Three days after pollination callose is layered in the nucellus under the embryo 9 sac micropylar pole only in the ovules of pollinated flowers which appear to have been 10 fertilized. On the other hand, in ovules of unpollinated flowers, deposition of callose in 11 vascular bundles was observed six days after pollination, suggesting impending ovule 12 abortion. This has been shown in other species and explained in terms of blockage of 13 metabolite translocation (Pimienta and Polito, 1982, Herrero and Arbeloa, 1989, 14 Rodrigo and Herrero, 1998).

15 The presence of starch grains has been reported in mature embryo sacs in some 16 ancient angiosperm lineages (Cook, 1902; Kimoto and Tobe, 2001; Friedman, 2008), 17 including species in the Annonaceae (reviewed in Svoma, 1998b), and also in higher 18 angiosperms (Evans, 1919; Maheshwari, 1950). But the abundance and big size of the 19 starch grains observed in this work is striking. Recent results in Hydatellaceae 20 (Friedman, 2008; Rudall et al., 2008), a family recently recognized among earlydivergent extant angiosperms (Saarela et al., 2007), shows a maternal seed-provisioning 21 22 strategy similar to that observed in gymnosperms. The provision of starch grains 23 reported here in the embryo sac before fertilization in A. cherimola could respond to a 24 similar plesiomorphic strategy. Through a different accumulation pattern, the 25 accumulation of starch reserves either in the sporophytic of gametophytic tissue would

constitute an accumulation of reserves before fertilization to support early
 postfertilization processes.

3 While zygote cell division does not start until 8 days after pollination, 4 endosperm cell division starts 3 days after pollination. Division of the endosperm is 5 bipolar giving rise to a big cell close to the zygote and a small cell full of starch at the 6 chalazal end. This situation persists during the first endosperm divisions. While this 7 behaviour in relation to starch accumulation has not been previously reported, a bipolar 8 endosperm cellular division has been shown in several species of the Winteraceae (a 9 sister group to Annonaceae in the Magnoliales) such as Drimys winteri (Bhandari and 10 Venkatar, 1968; Floyd and Friedman, 2000), Pseudowintera axillaries (Sampson, 1963) 11 cited in Bhandari and Venkatar, 1968) and Zygogynum bailloni (Swamy, 1952). The 12 presence of a similar cellular endosperm with unequal division has been also reported in 13 other ancient angiosperms (Floyd and Friedman, 2000; Tobe et al., 2000) and seems to 14 be a plesiomorphic feature in angiosperms. The prominence of endosperm development 15 in A. cherimola contrasts with an underdeveloped embryo that in the mature seed is 16 embedded in abundant ruminate endosperm, similar to other species of the Annonaceae 17 (Corner, 1949; Svoma, 1998b), where this slight embryo development has been 18 postulated as an ancestral feature (Hayat, 1963; Finch-Savage and Leubner-Metzger, 19 2006).

20

21

CONCLUDING REMARKS

Flowers of *A. cherimola* present a number of ancestral characteristics of angiosperms such as the semi-open simple carpel, the hood-shaped ovule, the cellular endosperm and the seed type with a rudimentary embryo. Still this primitive carpel host a supportconstrain strategy for pollen tube growth conserved in phylogenetically derived

1 angiosperm lineages. Support is provided by the continuous secretory papillar carpet 2 that paves the pollen tube pathway and that provides evidence for a common 3 ontogenetic origin for this tissue as well as for a conserved basipetal maturation that 4 encompasses pollen tube growth. Constraint and restriction in the number of pollen 5 tubes occurs at the stigma-style interface and is mediated by a dramatic reduction in the 6 secretory surface available for pollen tube growth from the stigma to the margins of the 7 semi-open stylar canal. It will be worthwhile to evaluate in other ancient lineages of 8 angiosperms with a similar pistil anatomy if this extramural pollen competition is 9 conserved as compared to the stylar intramural competition in modern angiosperms.

- 10
- 11

ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of Education (Project Grants
AGL2004-02290/AGR, AGL2006-13529 and AGL2007-60130/AGR), GIC-Aragón 43,
Junta de Andalucía (AGR2742), and the European Union under the INCO-DEV
program (Contract 015100). J.L. was supported by a grant from Junta de Andalucía.

16

17

18

LITERATURE CITED

APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the
 orders and families of flowering plants: APG II. *Botanical Journal of the Linnean Society* 141: 399-436.

Arbeloa A, Herrero M. 1987. The significance of the obturator in the control of pollen
 tube entry into the ovary in peach (*Prunus persica*). *Annals of Botany* 60: 681-685.

Arbeloa A, Herrero M. 1991. Development of the ovular structures in peach [*Prunus- persica* (L.) Batsch]. *New Phytologist* 118: 527-533.

1	Bernhardt P, Sage T, Weston P, Azuma H, Lam M, Thien LB, Bruhl J. 2003. The
2	pollination of Trimenia moorei (Trimeniaceae): floral volatiles, insect/wind pollen
3	vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany
4	92: 445-458.
5	Bhandari NN, Venkatar R. 1968. Embryology of Drimys winteri. Journal of the
6	Arnold Arboretum 49: 509-525.
7	Carvalho R, Weber AC. 2000. Biologia floral de Unonopsis guatterioides (A. D.C.)
8	R.E. Fr., uma Annonaceae polinizada por Euglossini. Revista Brasileira de Botânica
9	23: 421-425.
10	Chatrou LW, Rainer H, Mass PJM. 2004. Annonaceae. In: Smith N, Mori SA,
11	Henderson A, Steveson DW, Heald SV, eds. Flowering Plants of the Neotropics.
12	New Jersey : Princeton University Press, 18-20.
13	Cook MT. 1902. Development of the embryo-sac and embryo of Castalia odorata and
14	Nymphaea advena. Bulletin of the Torrey Botanical Club 29: 211-220.
15	Corner EJH. 1949. The Annonaceous seed and its four integuments. New Phytologist
16	48 : 332-364.
17	Cruzan MB. 1990. Pollen-pollen and pollen-style interactions during pollen-tube
18	growth in Erythronium grandiflorum (Liliaceae). American Journal of Botany 77:
19	116-122.
20	Currier HB. 1957. Callose substance in plant cells. American Journal of Botany 44:
21	478-488.
22	de Graaf BHJ, Derksen JWM, Mariani C. 2001. Pollen and pistil in the progamic
23	phase. Sexual Plant Reproduction 14: 41-55.

1	Decraene LPR, Smets E. 1990. The floral development of Popowia whitei
2	(Annonaceae). Nordic Journal of Botany 10: 411-420.
3	Dudley ME, Jacobs TW, Long SR. 1987. Microscopic studies of cell divisions
4	induced in alfalfa roots by Rhizobium meliloti. Planta 171: 289-301.
5	Endress PK, Igersheim A. 2000. Gynoecium structure and evolution in basal
6	angiosperms. International Journal of Plant Sciences 161: S211-S223.
7	Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang
8	WC, Grossniklaus U. 2007. The FERONIA receptor-like kinase mediates male-
9	female interactions during pollen tube reception. Science 317: 656-660.
10	Evans A. 1919. Embryo sac and embryo of Pentstemon secundiflorus. Botanical
11	<i>Gazette</i> 67: 427-437.
12	Feder N, O'Brien TP. 1968. Plant microtechnique: some principles and new methods.
13	American Journal of Botany 55: 123-142.
14	Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of
15	germination. New Phytologist 171: 501-523.
16	Floyd SK, Friedman WE. 2000. Evolution of endosperm developmental patterns
17	among basal flowering plants. International Journal of Plant Sciences 161: S57-
18	S81.
19	Friedman WE. 2006. Embryological evidence for developmental lability during early
20	angiosperm evolution. Nature 441: 337-340.
21	Friedman WE. 2008. Hydatellaceae are water lilies with gymnospermous tendencies.
22	<i>Nature</i> 453 :94-97.

1	Friedman WE, Ryerson KC. 2009. Reconstructing the ancestral female gametophyte
2	of angiosperms: insights from Amborella and other ancient lineages of flowering
3	plants. American Journal of Botany 96: 129-143.
4	Friedman WE, Williams JH. 2004. Developmental evolution of the sexual process in
5	ancient flowering plant lineages. Plant Cell 16: S119-S132.
6	Friedman WE, Madrid EN, Williams JH. 2008. Origin of the fittest and survival of
7	the fittest: relating female gametophyte development to endosperm genetics.
8	International Journal of Plant Sciences 169: 79-92.
9	Gelbart G, Von Aderkas P. 2002. Ovular secretions as part of pollination mechanisms
10	in conifers. Annals of Forest Science 59: 345-357.
11	Gerlach D. 1969. A rapid safranin-crystal violet-light green staining sequence for
12	paraffin sections of plant materials. Stain Technology 44: 210-211.
13	Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit
13 14	Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). American Journal of Botany 83: 148-154.
13 14 15	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>.
13 14 15 16	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362.
13 14 15 16 17	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of</i>
13 14 15 16 17 18	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of Botany</i> 85: 79-85.
 13 14 15 16 17 18 19 	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of Botany</i> 85: 79-85. Herrero M. 2003. Male and female synchrony and the regulation of mating in
 13 14 15 16 17 18 19 20 	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of Botany</i> 85: 79-85. Herrero M. 2003. Male and female synchrony and the regulation of mating in flowering plants. <i>Philosophical Transactions of the Royal Society of London Series</i>
 13 14 15 16 17 18 19 20 21 	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of Botany</i> 85: 79-85. Herrero M. 2003. Male and female synchrony and the regulation of mating in flowering plants. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 358: 1019-1024.
 13 14 15 16 17 18 19 20 21 22 	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of</i> <i>Botany</i> 85: 79-85. Herrero M. 2003. Male and female synchrony and the regulation of mating in flowering plants. <i>Philosophical Transactions of the Royal Society of London Series</i> <i>B-Biological Sciences</i> 358: 1019-1024. Herrero M, Arbeloa A. 1989. Influence of the pistil on pollen-tube kinetics in peach
 13 14 15 16 17 18 19 20 21 22 23 	 Gonzalez MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (<i>Actinidia deliciosa</i>; Actinidiaceae). <i>American Journal of Botany</i> 83: 148-154. Hayat AM. 1963. Morphology of seed germination and seedling in <i>Annona squamosa</i>. <i>Botanical Gazette</i> 124: 360-362. Herrero M. 2000. Changes in the ovary related to pollen tube guidance. <i>Annals of Botany</i> 85: 79-85. Herrero M. 2003. Male and female synchrony and the regulation of mating in flowering plants. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 358: 1019-1024. Herrero M, Arbeloa A. 1989. Influence of the pistil on pollen-tube kinetics in peach (<i>Prunus persica</i>). <i>American Journal of Botany</i> 76: 1441-1447.

1	Herrero M, Dickinson HG. 1979. Pollen-pistil incompatibility in Petunia hybrida:
2	changes in the pistil following compatible and incompatible intraspecific crosses.
3	Journal of Cell Science 36 : 1-18.
4	Herrero M, Hormaza JI. 1996. Pistil strategies controlling pollen tube growth. Sexual
5	Plant Reproduction 9: 343-347.
6	Heslop-Harrison J. 1999. The structure and prophylactic role of the angiosperm
7	embryo sac and its associated tissues: Zea mays as a model. Protoplasma 209: 256-
8	272.
9	Heslop-Harrison Y. 1977. Pollen-stigma interaction - pollen-tube penetration in
10	Crocus. Annals of Botany 41: 913-922.
11	Heslop-Harrison Y. 2000. Control gates and micro-ecology: the pollen-stigma
12	interaction in perspective. Annals of Botany 85: 5-13.
13	Heslop-Harrison Y, Shivanna KR. 1977. Receptive surface of angiosperm stigma.
14	Annals of Botany 41 : 1233-1258.
15	Higashiyama T, Hamamura Y. 2008. Gametophytic pollen tube guidance. Sexual
16	Plant Reproduction 21: 17-26.
17	Hiscock SJ, Allen AM. 2008. Diverse cell signalling pathways regulate pollen-stigma
18	interactions: the search for consensus. New Phytologist 179: 286-317.
19	Hormaza JI, Herrero M. 1992. Pollen selection. Theoretical and Applied Genetics 83:
20	663-672.
21	Hormaza JI, Herrero M. 1996. Dynamics of pollen tube growth under different
22	competition regimes. Sexual Plant Reproduction 9: 153-160.

1	Hristova K, Lam M, Field T, Sage TL. 2005. Transmitting tissue ECM distribution
2	and composition, and pollen germinability in Sarcandra glabra and Chloranthus
3	japonicus (Chloranthaceae). Annals of Botany 96: 779-791.
4	Hughes J, McCully ME. 1975. The use of an optical brightener in the study of plant
5	structure. Stain Technology 50: 319.
6	Johansen DA. 1940. Plant Microtechnique. New York: McGraw-Hill.
7	Kiill, LHP, Costa JG. 2003. Biologia floral e sistema de reprodução de Annona
8	squamosa L. (Annonaceae) na região de Petrolina-PE. Ciência Rural 533: 851-856.
9	Kimoto Y, Tobe H. 2001. Embryology of Laurales: a review and perspectives. Journal
10	of Plant Research 114: 247-267.
11	Koehl V, Thien LB, Heij EG, Sage TL. 2004. The causes of self-sterility in natural
12	populations of the relictual angiosperm, Illicium floridanum (Illiciaceae). Annals of
13	<i>Botany</i> 94 : 43-50.
14	Leins P, Erbar C. 1996. Early floral developmental studies in Annonaceae. In:
15	Morawetz W, Winkler H, eds. Reproductive Morphology in Annonaceae. Österreich
16	Akademie der Wissenschaften, Vienna, Austria pp 1-27.
17	Linskens HF. 1975. Incompatibility in Petunia. Proceedings of the Royal Society of
18	London Series B-Biological Sciences 188: 299-311.
19	Linskens HF, Esser K. 1957. Über eine spezifische Anfärbung der Pollen-Schläuche
20	und die Zahl Kallosepfropen nach Selbstung und Fremdung. Naturwissenschaften,
21	44 , 16.
22	Lora J, Herrero M, Hormaza JI. 2009. The coexistence of bicellular and tricellular
23	pollen in Annona cherimola (Annonaceae): Implications for pollen evolution.
24	American Journal of Botany 96: 802-808.

1	Lora J, Testillano PS, Risueño MC, Hormaza JI, Herrero M, in press. Pollen
2	development in Annona cherimola Mill. (Annonaceae). Implications for the
3	evolution of aggregated pollen. BMC Plant Biology.
4	Lyew J, Li Z, Liang-Chen Y, Yi-Bo L, Sage TL. 2007. Pollen tube growth in
5	association with a dry-type stigmatic transmitting tissue and extragynoecial
6	compitum in the basal angiosperm Kadsura longipedunculata (Schisandraceae).
7	American Journal of Botany 94: 1170-1182.
8	Maheshwari P. 1950. An Introduction to the Embryology of Angiosperms. New York:
9	McGraw-Hill.
10	Matsui M, Imaichi R, Kato M. 1993. Ovular development and morphology in some
11	Magnoliaceae species. Journal of Plant Research 106: 297-304.
12	Mulcahy DL. 1979. The rise of the angiosperms: A genecological factor. Science 206:
13	20-23.
14	Nicholas JR, Gates PJ, Grierson D. 1986. The use of fluorescence microscopy to
15	monitor root development in micropropagated explants. Journal of Horticultural
16	<i>Science</i> 61 : 417-421.
17	Norman EM. 2003. Reproductive biology of Deeringothamnus rugelii and D.
18	pulchellus (Annonaceae). Taxon 52: 547-555.
19	Norman, EM, Clayton DE, Rice K, Cochran S. 1986. Reproductive biology of two
20	Florida pawpaws: Asimina obovata and Asimina pygmaea (Annonaceae). Bulletin of
21	the Torrey Botanical Club 113: 16-22.
22	Norman EM, Rice K, Cochran S. 1992. Reproductive biology of Asimina parviflora
23	(Annonaceae). Bulletin of the Torrey Botanical Club 119: 1-5.

1	Orban I, Bouharmont J. 1995. Reproductive biology of Nymphaea capensis Thunb.
2	var. zanzibariensis (Casp) Verdc (Nymphaeaceae). Botanical Journal of the Linnean
3	<i>Society</i> 119 : 35-43.
4	Pettitt JM. 1982. Ultrastructural and immuno-cytochemical demonstration of
5	gametophytic proteins in the pollen-tube wall of the primitive gymnosperm Cycas.
6	Journal of Cell Science 57: 189-213.
7	Pimienta E, Polito VS. 1982. Ovule abortion in nonpareil almond (Prunus dulcis
8	[Mill.] D.A. Webb). American Journal of Botany 69: 913-920.
9	Pontieri V, Sage TL. 1999. Evidence for stigmatic self-incompatibility, pollination
10	induced ovule enlargement and transmitting tissue exudates in the paleoherb,
11	Saururus cernuus L. (Saururaceae). Annals of Botany 84: 507-519.
12	Popenoe H. 1989. Lost crops of the Incas: Little known plants of the Andes with
12 13	Popenoe H. 1989. Lost crops of the Incas: Little known plants of the Andes with promise of worldwide cultivation. Washington D.C: National Academy Press.
12 13 14	 Popenoe H. 1989. Lost crops of the Incas: Little known plants of the Andes with promise of worldwide cultivation. Washington D.C: National Academy Press. Rea AC, Nasrallah JB. 2008. Self-incompatibility systems: barriers to self-fertilization
12 13 14 15	 Popenoe H. 1989. Lost crops of the Incas: Little known plants of the Andes with promise of worldwide cultivation. Washington D.C: National Academy Press. Rea AC, Nasrallah JB. 2008. Self-incompatibility systems: barriers to self-fertilization in flowering plants. International Journal of Developmental Biology 52: 627-636.
12 13 14 15 16	 Popenoe H. 1989. Lost crops of the Incas: Little known plants of the Andes with promise of worldwide cultivation. Washington D.C: National Academy Press. Rea AC, Nasrallah JB. 2008. Self-incompatibility systems: barriers to self-fertilization in flowering plants. International Journal of Developmental Biology 52: 627-636. Rodrigo J, Herrero M. 1998. Influence of intraovular reserves on ovule fate in apricot

Rudall PJ, Bateman RM. 2007. Developmental bases for key innovations in the seed plant microgametophyte. *Trends in Plant Science* 12: 317-326.

Rudall PJ, Remizowa MV, Beer AS, Bradshaw E, Stevenson DW, Macfarlane TD,
 Tuckett RE, Yadav SR, Sokoloff DD. 2008. Comparative ovule and
 megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of
 features among the earliest angiosperms. *Annals of Botany* 101: 941-956.

1	Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD.
2	2009. Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement
3	of organs in reproductive units of Hydatellaceae and its bearing on the origin of the
4	flower. American Journal of Botany 96: 67-82.
5	Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG,
6	Graham SW. 2007. Hydatellaceae identified as a new branch near the base of the
7	angiosperm phylogenetic tree. Nature 446: 312-315.
8	Sabatini DD, Bensch K, Barrnett RJ. 1963. Cytochemistry and electron microscopy -
9	preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation.
10	Journal of Cell Biology 17: 19-58.
11	Sage TL, Sampson FB. 2003. Evidence for ovarian self-incompatibility as a cause of
12	self-sterility in the relictual woody angiosperm, Pseudowintera axillaris
13	(Winteraceae). Annals of Botany 91: 807-816.
14	Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P,
15	Weston P, Bagha S, Chiu G. 2009. Transmitting tissue architecture in basal-
16	relictual angiosperms: implications for transmitting tissue origins. American Journal
17	of Botany 96: 183-206.
18	Schroeder CA. 1971. Pollination of cherimoya. California Avocado Society Yearbook
19	44 : 119-122.
20	Sedgley M. 1977. Reduced pollen tube growth and the presence of callose in the pistil
21	of the male floral stage of the avocado. Scientia Horticulturae 7: 27-36.
22	Sedgley M, Annells CM. 1981. Flowering and fruit-set response to temperature in the
23	avocado cultivar Hass. Scientia Horticulturae 14: 27-33.

1	Sogo A, Tobe H. 2005. Intermittent pollen-tube growth in pistils of alders (Alnus).
2	Proceedings of the National Academy of Sciences USA 102: 8770-8775.
3	Sogo A, Tobe H. 2006a. Mode of pollen-tube growth in pistils of Myrica rubra
4	(Myricaceae): a comparison with related families. Annals of Botany 97: 71-77.
5	Sogo A, Tobe H. 2006b. Delayed fertilization and pollen-tube growth in pistils of
6	Fagus japonica (Fagaceae). American Journal of Botany 93: 1748-1756.
7	Soltis DE, Soltis PS, Endress PK, Chase MW. 2005. Phylogeny and Evolution of
8	Angiosperms. Sunderland: Sinauer Associates Incorporated.
9	Svoma E. 1998a. Studies on the embryology and gynoecium structures in Drimys
10	winteri (Winteraceae) and some Annonaceae. Plant Systematics and Evolution 209:
11	205-229.
12	Svoma E. 1998b. Seed morphology and anatomy in some Annonaceae. Plant
13	Systematics and Evolution 209: 177-204.
14	Swamy BGL. 1952. Some aspects in the embryology of Zygogynum bailloni V. Tiegh.
15	Proceedings of the National Institute of Sciences of India 18: 399-406.
16	Thien LB, Sage TL, Jaffre T, Bernhardt P, Pontieri V, Weston PH, Malloch D,
17	Azuma H, Graham SW, McPherson MA, Rai HS, Sage RF, Dupre JL. 2003.
18	The population structure and floral biology of Amborella trichopoda
19	(Amborellaceae). Annals of the Missouri Botanical Garden 90: 466-490.
20	Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB, Fan JH, Yuan LC,
21	Williams JH. 2009. Pollination biology of basal angiosperms (ANITA grade).
22	American Journal of Botany 96(1): 166–182.

1	Tilton VR, Horner HT. 1980. Stigma, style, and obturator of Ornithogalum caudatum
2	(Liliaceae) and their function in the reproductive process. American Journal of
3	Botany 67: 1113-1131.
4	Tobe, H, Jaffré T, Raven PH. 2000. Embryology of Amborella (Amborellaceae):
5	descriptions and polarity of character states. Journal of Plant Research 113: 271-
6	280.
7	Umeda A, Imaichi R, Kato M. 1994. Ovular development and morphology of the
8	outer integument of Magnolia grandiflora (Magnoliaceae). American Journal of
9	<i>Botany</i> 81 : 361-367.
10	Vithanage HIMV. 1984. Pollen stigma interactions - development and cyto-chemistry
11	of stigma papillae and their secretions in Annona squamosa L. (Annonaceae).
12	Annals of Botany 54 : 153-167.
13	Williams JH. 2008. Novelties of the flowering plant pollen tube underlie diversification
14	of a key life history stage. Proceedings of the National Academy of Sciences USA
15	105: 11259-11263.
16	Williams JH. 2009. Amborella trichopoda (Amborellaceae) and the evolutionary
17	developmental origins of the angiosperm progamic phase. American Journal of
18	Botany 96: 144-165.
19	Williams JH, Friedman WE, Arnold ML. 1999. Developmental selection within the
20	angiosperm style: Using gamete DNA to visualize interspecific pollen competition.
21	Proceedings of the National Academy of Sciences USA 96 : 9201-9206.

FIGURES

2

3 FIG. 1. Gynoecium anatomy and pollen tube growth in A. cherimola. (A) Pistil showing 4 the stigma (stg), short style (stl) and ovary (ov) with partial postgenital fusion at the 5 periphery of the innermost side (arrow). (B) Longitudinal section of the pistil showing 6 pollen tube growth (arrow) through the short open stylar canal that leads to an 7 anatropous ovule (ov). (C) Oil cells. (D) Thick-walled sclereid cells. (E) Pollen tubes 8 growing on the stigma towards the stigmatic furrow (arrows) that leads to the stylar 9 canal. (F) Stigma-style interface, with the stigmatic furrow leading to the narrow 10 receptive closing margins of the stylar canal (arrow) and pollen tube growing through 11 (pt). (G) Pollen tube (arrow) reaching the locule over the continuous papilar secretory 12 zone. (H) Pollen tube growing through the micropyle formed by the inner integument 13 (ii) that protrudes over a hood-shaped outer integument (oi), and reaching the nucellus 14 (nu) 24 hours after pollination. (A) Wholemount of a dissected pistil stained with 15 aniline blue. (B) (H) Aniline blue staining of a 10 µm paraffin section. (C) (D) Dapi 16 staining of a 5 µm resin section. (E) (F) Aniline blue staining of squash preparation. (G) 17 Mixed staining of a 10 µm paraffin section. Scale bars: (A) 200 µm; (B) 200 µm; (C) 20 18 μm; (D) 20 μm; (E) 20 μm; (F) 100 μm; (G) 20 μm; (H) 20 μm.

19

20

FIG. 2. Embryo sac in *A. cherimola*. (A) Ovule showing the micropyle (asterisk) formed
by the inner integument (ii), the shorter outer integument (oi) and the embryo sac with
two synergids (sy). (B) Egg cell (ec). (C) Two of the three antipodal cells (arrows). (D)
Two polar nuclei (pn). Dapi staining of 5 µm resin sections. Scale bar = 20 µm.

25

1 FIG. 3. Embryo sac and endosperm development in A. cherimola. (A) Embryo sac of A. 2 *cherimola* flower in preanthesis with starch grains (sg) around the two polar nuclei and 3 showing the three antipodal cells (arrow). The difference between the standard starch 4 grains (sg) located in the sporophytic tissues of the ovule and the big starch grains in the 5 female gametophyte is apparent. (B) Egg cell with a big vacuole at the base of the cell. 6 (C) Two polar nuclei surrounded by big starch grains. (D) Two synergid cells with 7 nucleus and cytoplasm at the micropylar end and a big vacuole at the top of the cell. (E) 8 Filiform apparatus (fa) of a synergid cell. (F) Starch grains (sg) accumulating in the 9 chalazal pole of the embryo sac in a fertilized ovule four days after pollination. (G) 10 Cellular endosperm eight days after pollination with starch (sg) accumulated at the cell 11 of the chalazal end. (H) Zygote first division eight days after pollination. PAS (A, F, H) 12 and PAS and toluidine blue (B-E, G) staining of a 2 µm resin section. Scale bars: (A) 20 13 um; (B) 10 um; (C) 10 um; (D) 10 um; (E) 10 um; (F) 20 um; (G) 20 um; (H) 10 um.

14

15

16 FIG. 4. Secretion along the pollen tube pathway in A. cherimola. Longitudinal section of 17 secretory papillae of the (A) stigma, (B) style and (C) obturator in preanthesis with the 18 same cytohistological features although with differences in maturation and starch 19 content: while at the stigma (A) starch has already vanished, in the style (B) starch is 20 still present and a rich secretion is apparent; and the obturator (C) is still full of starch. (D) Transverse section of the style showing a semi-open stylar canal (arrow) lined only 21 22 in the outermost side with papillar cells (pc) with secretion. Stylar longitudinal section 23 in the outermost papillar secretory zone at preanthesis (E), showing starch grains. Same 24 area, one day after pollination (F), shows less starch in the cells and secretion. 25 Transverse section of obturator (ob) cells at preanthesis (G) with starch; (ii: inner

1 integuments) and one day after pollination (H) with little starch and abundant secretion 2 (ii: inner integument; oi: outer integuments). PAS and toluidine blue staining of 2 μ m 3 resin sections. Scale bar = 20 μ m.

4

5 FIG. 5. Callose layering along the pollen tube pathway and during early endosperm 6 development in A. cherimola. Callose one day after pollination in papillar cells (arrow) of style (A) and obturator (arrow) of a pollinated (B) and an unpollinated (C) flower. 7 8 (D) Callose in the nucellus micropylar pole 3 days after anthesis. (E) Deposition of 9 callose in vascular bundles of the ovule (arrow) of unpollinated flowers one day after 10 pollination. Callose in the cell plates (arrow) forming the walls of the cellular 11 endosperm, four days after pollination (F) and eight days after pollination (G). Aniline 12 blue staining of 10 μ m paraffin sections. Scale bar = 20 μ m.

13

14

FIG. 6. Mean pistil weight after anthesis in pollinated and unpollinated flowers of *A*. *cherimola*. Bars indicate SD.