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I. DIRECT NUMERICAL SIMULATIONS

The numerical flow and transport simulations are performed on the three-dimensional image of a Berea sandstone
sample obtained by identifying the connected void phase and the solid phase by processing a X-Ray microtomography
image (see for example Gouze et al. [1] and references therein)

A. Flow

In the following we summarize the methodology to solve the flow field. The binary images of the geometry are
composed of 3003 regular voxels (cubes) that represent either void or solid. The mesh used for solving flow is obtain
by dividing each of the image voxels by 3 in each of the direction so that 1 voxel of the image is represented by 27
cubic cells of size ∆x = ∆y = ∆z = 1.06× 10−6 m. This discretization level is selected such that flow in the smallest
throats are is-represented, see also Gjetvaj et al. [2]. Thus, the resulting discretization for the regular grid consists
of 9003 cubic cells. We prescribe pressure boundary conditions at the inlet and outlet, and no-slip conditions at the
void-solid interfaces and at the remaining domain boundaries. At the inlet a pressure of 0.1 Pa in set while it is zero
at the outlet. We then solve the flow with the SIMPLE algorithm [3] implemented in OpenFOAM [4]. Note that,

∗ E-mail: marco.dentz@csic.es



2

in order to minimize boundary effects, twenty layers are added at the inlet and outlet [5]. After convergence, this
means, once the residual of the pressure and flow fields between two consecutive steps is below 10−5, we extract the
complete velocity field. Velocity values are given at every interface of the mesh in the normal direction to the face.
More details are given in Gjetvaj et al. [2]. The mean flow speed is 7.78× 10−7 m/s which corresponds to a Reynolds
number of Re ≈ 10−5, meaning that the flow is laminar and can be described by the Stokes equation. The flow fields
used for the simulations at different Péclet numbers are obtained by multiplying this flow field by a constant. The
corresponding Reynolds numbers are between Re ≈ 10−5 for Pe = 1 and Re ≈ 1 for Pe = 105, which is at the upper
limit for which the Stokes assumption is still valid.

B. Random walk particle tracking

The random walk particle tracking simulations are based on the Langevin equations

dx(t)

dt
= v[x(t)] +

√
2Dξ(t), (1)

where, ξ = (ξ1, ξ2, ξ3) is a Gaussian white noise with zero mean and correlation 〈ξi(t)ξj(t′)〉 = δ(t− t′). We can then
discretize the Langevin equations as the current position x(t) plus an advective and a diffusive component as

x(t+ ∆t) = x(t) + v[x(t)]∆t+
√

2D∆tζ(t). (2)

The advective term is based on an extension of the Pollock algorithm [6–8]. Originally, the Pollock algorithm assumes
a linear variation of velocity within an the mesh cells in each direction. It is widely used in reservoirs and very high
porosity structures. However, this linear interpolation causes precision errors in the vicinity of solid surfaces since a
linear interpolation is no longer accurate. This is why Mostaghimi et al. [7] extended the methodology by introducing
different types of quadratic interpolations in the voxels that are in contact with the solid phase. This renders this
methodology accurate in low porosity media. This methodology allows to know analytically the position x(t) of a
particle for any t and thus permits splitting the trajectory in small time intervals ∆t. The advective and diffusive
operators are split on this ∆t basis, allowing for the computation of the diffusive jumps between advective steps.

The diffusive jumps are computed following the third term on the right side of equation (2) where ζ = (ζ1, ζ2, ζ3)

with ζi being uniform random variables in [−
√

3,
√

3] with 〈ζ(t)〉 = 0 and 〈ζi(t)ζj(t)〉 = δij . The central limit theorem
guarantees that the sum of the random motions is Gaussian. Using uniformly generated random variables rather
than Gaussian present two main advantages. The computational cost is reduced and there is a better control on the
maximum displacement jump that a particle can do. This avoids unexpectedly large displacement that can jump over
solid cells and thus, allows for a moderately large ∆t.

In order to simulate particle displacement over distances larger than the sample size, we reinject the particles at
the inlet boundary of the domain once they reach the outlet of the sample. To ensure continuity of the speed series of
each particle, we first compute the particle speed v(xa) at position xa at the outlet. Then, we identify the pore area
Av(xa) at the inlet plane where the speed values v(xb) at positions xb ∈ Av(xa) fulfill v(xb) ∈ [v(xa)−∆v, v(xa)+∆v],
where ∆v = v(xa)/200. The particle is then reinjected in a random location within AvL(x). This procedure preserves
the speed continuity and ensures that no artificial decorrelation is occurring. Besides, in the case of a particle exiting
the domain through the inlet, by diffusion, the particle is reinjected at the outlet following a similar procedure.

II. SPEED DISTRIBUTIONS

We derive here the distribution of the mean flow speeds and then of the particle speeds that is required in the
time-domain random walk approach.

A. Mean flow speeds

We conceptualize the porous medium as a network of conducts and joints. Within each conduct, the volumetrically
sampled speed distribution is uniform,

p(v|vm) =
1

2vm
H(2vm − v), (3)
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where vm is the mean speed in the conduct. The Eulerian speed distribution pe(v) is constructed by integration of
p(v|vm) over all conducts weighted by the distribution pm(v) of mean speeds. This gives

pe(2v) =

∞∫
v

dvmpm(vm)
1

2vm
. (4)

This implies that the distribution of mean pore speeds can be obtained from the Eulerian speed PDF as

pm(v) = −2v
dpe(2v)

dv
. (5)

B. Particle speeds

In the time-domain random walk, the partitioning of particles at turning points (the joints) is proportional to the
flow rate into the downstream conducts. In our model, the distribution of Eulerian speeds and thus mean speeds is
obtained through volumetric sampling within the void space of the porous medium,

pm(v) =
1

V0

∑
p

Vpδ(v − vp). (6)

The distribution ps(v) of speeds is weighted by the flow rate of the conducts, which means

ps(v) =
1∑

pApvp

∑
p

Apvpδ(v − vp). (7)

We assume that the length of the conducts is approximately constant such that Vp = Ap`0. Thus, we can write

ps(v) =
1∑

p Vpvp

∑
p

Vpvpδ(v − vp) =
v

〈ve〉
pe(v). (8)

III. TRANSITION TIME DISTRIBUTION

We first derive the distribution of transition times for a single conduct, and then the compound transition time
distribution on the network scale.

A. Single Conduct

The transition time distribution for a single conduct is obtained from the solution of the following first-passage
problem. We consider an instantaneous injection of tracer at the upstream turning point at x = 0, and an absorbing
boundary at the downstream turning point at x = `v. This means

∂g(x, t)

∂t
+ v

∂g(x, t)

∂x
−D∂

2g(x, t)

∂x2
= 0 (9)

with the boundary conditions

vg(x, t)−Dg(x, t)

∂x
= δ(t), x = 0, (10)

g(x, t) = 0, x = `v, (11)

and the initial condition g(x, t = 0) = 0. The first passage time distribution over the downstream boundary is given
by

ψ0(t|v) = − D
∂g(x, t)

∂x

∣∣∣∣
x=`v

. (12)
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We solve this first passage problem in Laplace space. Laplace transform of (9) gives

λg∗(x, λ) + v
∂g∗(x, λ)

∂x
−D∂

2g∗(x, λ)

∂x2
= 0. (13)

The solution is given by

g∗(x, λ) = A(λ) exp(Pevx/`v) sinh

[
`v − x
`v

B(λ)

]
, B(λ) =

√
Pe2v + λτD, (14)

where we defined Pev = v`v/2D. The constant A(λ) is determined from the boundary condition at 0,

vg∗(x, λ)−Dg
∗(x, λ)

∂x
= 1, x = 0. (15)

Inserting (14) into the latter gives

A =
`v/D

Pev sinh(B) +B cosh(B)
. (16)

Thus, we obtain g∗(x, λ)

g∗(x, λ) =
`v
D

exp(Pevx/`v) sinh
[
`v−x
`v

B(λ)
]

Pev sinh(B) +B cosh(B)
. (17)

This gives for the first passage time distribution

ψ∗0(λ|v) =
B exp(Pev)

Pev sinh(B) +B cosh(B)
. (18)

1. Moments

The mean travel time is defined by

〈τ |v〉 = − df∗(λ)

dλ

∣∣∣∣
λ=0

. (19)

We obtain

〈τ |v〉 = τv

[
1− exp(−Pev) sinh(Pev)

Pev

]
, (20)

where we defined τv = `v/v. The mean squared travel time is defined by

〈τ2|v〉 =
d2f∗(λ)

dλ2

∣∣∣∣
λ=0

. (21)

We obtain

〈τ2|v〉 = τ2v

(
1− 1

Pe2v
+

exp(−2Pev)

Pev

[
3 +

1

2Pev
+

exp(−2Pev)

2Pev

])
. (22)

2. Numerical Approximation

Numerically, we approximate ψ0(t|v) by the truncated inverse Gaussian distribution

G(t) =
exp

[
− τ
−2
v (t−τv)2
4t/τD

]
t
√

4πt/τD
exp(−kt− Pev +

√
Pe2v + kτD). (23)
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Figure 1. First passage time distribution ψ0(t|v) obtained from numerical inverse Laplace transform of (18) for local Péclet
numbers of (crosses) Pev = 102 (circles) 10, (squares) 1 and (diamonds) 10−1. The solid lines denote the corresponding
approximations by the truncated inverse Gaussian distribution (23).

The constant k is chosen such that G(t) has the same mean transition time as ψ0(t|v). It is determined as follows.
The Laplace transform of G(t) is given by

G∗(λ) = exp
[
−
√
Pe2v + (λ+ k)τD +

√
Pe2v + kτD

]
. (24)

The first moment is given by

mG =
τD

2
√
Pe2v + kτD

≡ 〈τ |v〉. (25)

Thus, we obtain for k

kτD =
τ2D

4〈τ |v〉2
− Pe2v = Pe2v

(
τ2v
〈τ |v〉2

− 1

)
. (26)

Figure 1 shows the first passage time distribution and the approximation by the truncated inverse Gaussian distri-
bution. Random numbers are sampled numerically from the truncated inverse Gaussian distribution by using the
algorithm of Michael et al. [9] for the inverse Gaussian random variable in combination with rejection sampling in
order to account for the exponential cutoff.

B. Network scale

We first analyze the behavior of the transition time distribution and specifically its behavior for times smaller and
larger than τD. Then, we consider the behavior of the mean and of the mean squared travel time for large Péclet
numbers.

The transition time distribution ψ(t) for the network of conducts is obtained for ψ0(t|v) and pm(v) as

ψ(t) =

∞∫
0

dv
v

〈vm〉
pm(v)ψ0(t|v). (27)



6

For Pev � 1, that is for v � Dm/`v ψ0(t|v) is sharply peaked about τv = `v/v, while for Pev � 1, that it v � Dm/`v
it is ψ0(t|v) = ψ0(t) independent of v and a function of τD only. Thus, we can approximate

ψ(t) ≈
∞∫

Dm/`v

dv
v

〈vm〉
pm(v)δ(t− `v/v) +

Dm/`v∫
0

dv
v

〈vm〉
pm(v)ψ0(t). (28)

This gives

ψ(t) ≈ `v
〈vm〉t3

pm(`v/t)H(τD − t) + Cψ0(t), (29)

with C a constant. Thus, for times t � τD, the transition time distribution is dominated by the speed distribution
pm(v), and for time t� τD by the diffusive cut-off τD.

In the following, we consider speed distributions that behave as the power-law

pm(v) ∼ v−1−α (30)

for v � v0 with v0 a characteristic velocity, and which decay exponentially fast for v � v0. For illustration one can
think of a Gamma distribution. The transition time distribution thus behaves as

ψ(t) ∼ t−2−α (31)

for t� τD.
The mean travel time is given by

〈τ〉 =

∞∫
0

dv
v

〈vm〉
pm(v)〈τ |v〉. (32)

Inserting expression (20) gives

〈τ〉 = τv

1−
∞∫
0

dvpm(v)
exp(−Pev) sinh(Pev)

Pev

 . (33)

Next, we rescale the integration variable as v → v/vm, which gives

〈τ〉 = τv

1−
∞∫
0

dvp̂m(v)
exp(−Pecv) sinh(Pecv)

Pecv

 , (34)

where we defined Pec = 〈vm〉`v/2Dm and p̂m(v) = 〈vm〉pm(〈vm〉v). Note that Pec = Pe`v/`0. The leading order
behavior of 〈τ〉 for Pec � 1 is

〈τ〉 = τv + . . . , (35)

where the dots denote contributions of order Pe.
The mean squared travel time is

〈τ2〉 =

∞∫
0

dv
v

〈vm〉
τ2v pm(v)F (Pev) =

∞∫
0

dv
`2v

v〈vm〉
pm(v)F (Pev) = τ2v

∞∫
0

dv
〈vm〉
v

pm(v)F (Pev), (36)

where we defined 〈τ2|v〉 = τ2vF (Pev). We note that F (Pev) behaves for Pev � 1 as F (Pev) = 5Pe2v/3 and is equal
to 1 in the limit Pev →∞. Next, we rescale the integration variable as v → v/vm. This gives

〈τ2〉 = τ2v

∞∫
0

dv
1

v
p̂m(v)F (vPec). (37)
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The mean of p̂m(v) is equal to 1. If

∞∫
0

dvv−1p̂m(v) <∞, (38)

this means if p̂m(v) goes to 0 for v → 0, the mean squared transition time behaves as

〈τ2〉 ∼ τ2v (39)

in leading order for Pec � 1. If p̂m(v) has an integrable singularity at 0, this means, if p̂m(v) ∼ vα−1 with 0 < α ≤ 1,
we rescale the integration variable as v → vPec. This gives

〈τ2〉 = τ2v

∞∫
0

dv
1

v
p̂m(v/Pec)F (v). (40)

We set p̂m(v) = vα−1ϕ(v), where ϕ(v) goes toward a constant for v → 0 and decays exponentially fast for v → ∞.
For illustration, one may think of a Gamma distribution with mean 1. Thus, we obtain

〈τ2〉 = τ2vPe
1−α
c

∞∫
0

dvvα−2ϕ(v/Pec)F (v). (41)

For 0 < α < 1, the leading order behavior in the limit of large Pec � 1 is

〈τ2〉 ∼ τ2vPe1−αc . (42)

For α = 1, we can write

〈τ2〉 = τ2v

∞∫
0

dv
1

v
ϕ(v/Pec)F (v) ≈ τ2v

Pev∫
0

dv
1

v
F (v), (43)

because ϕ(v/Pec) sets a cutoff at Pec. Since F (v)→ 1 for v � 1, we obtain in leading order

〈τ2〉 = τ2v ln(Pec). (44)

IV. IMPLEMENTATION OF THE STOCHASTIC TIME-DOMAIN RANDOM WALK MODEL

The numerical simulations of the derived stochastic particle model is based on the equations of motion

xn+1 = xn + `v/χ, tn+1 = tn + τn. (45)

The time increments τn are generated as follows. A speed v is sampled according to the distribution ps(v) by inverse
sampling. Then, the transition time is obtained by sampling from ψ0(t|v) approximated by the truncated inverse
Gaussian distribution (23).

The displacement variance is determined as

σ2(t) = 〈x2nt
〉 − 〈xnt

〉2, (46)

where nt = max(n|tn ≤ t). The first passage time distributions are determined as

ta =

nc−1∑
n=1

τn + τnc

xχ− sn
`v

, (47)

where nc = dχx/`ve. The interpolation for the last step is negligible for nc � 1.
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V. CONTINUOUS TIME RANDOM WALKS

The continuous time random walk framework [10, 11] gives for the evolution equation of the particle distribution
p(x, t) in the derived stochastic time-domain random walk model, the following set of equations,

p(x, t) =

t∫
0

dt′R(x, t′)

∞∫
t−t′

dt′′ψ(t′′), (48)

R(x, t) = δ(x)δ(t) +

t∫
0

dtR(x− `v/χ, t′)ψ(t− t′). (49)

These equations can be solved for the Fourier-Laplace transform p̃∗(k, λ) of p(x, t) [12], which gives

p̃∗(x, λ) =
1

λ

1− ψ∗(λ)

1− exp(ik`v/χ)ψ∗(λ)
. (50)

The Fourier transform is defined here as

ϕ̃(k) =

∞∫
−∞

dx exp(ikx)ϕ(x), ϕ(x) =

∞∫
−∞

dk

2π
exp(−ikx)ϕ̃(k). (51)

The first and second displacement moments are defined in terms of p̃∗(k, λ) as

m∗1(λ) = −i ∂p̃
∗(k, λ)

∂k

∣∣∣∣
k=0

(52)

m∗2(λ) = − ∂2p̃∗(k, λ)

∂k2

∣∣∣∣
k=0

. (53)

Using expression (50), we obtain [12]

m∗1(λ) = v0λ
−2K∗(λ), (54a)

m∗2(λ) = 2D0λ
−2K∗(λ) + 2v20λ

−3K∗(λ)2, (54b)

where we defined

K∗(λ) =
〈τ〉λψ∗(λ)

1− ψ∗(λ)
, (55)

and

v0 =
`v
χ〈τ〉

, D0 =
`2v

2χ2〈τ〉
. (56)

A. Asymptotic transport

In order to determine the asymptotic large scale transport properties, we expand the kernel (55) up to linear order
in λ

K∗(λ) = 1 + λK∞, K∞ =
1

2

〈τ2〉 − 2〈τ〉2

〈τ〉
. (57)

Thus, we obtain for (54)

m∗1(λ) = v0λ
−2(1 + λK∞), (58)

m∗2(λ) = 2D0λ
−2(1 + λK∞) + 2v20λ

−3(1 + λK∞)2. (59)
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Inverse Laplace transform gives

m1(t) = v0(t+K∞) (60a)

m2(t) = 2D0(t+K∞) + v20(t+K∞)2 + 2v20K∞t+K∞2. (60b)

The mean velocity and hydrodynamic dispersion coefficient are defined by

v∞ =
d

dt
m1(t) (61)

D∗ =
1

2

d

dt

[
m2(t)−m1(t)2

]
. (62)

Using (60), we obtain

v∞ = v0 (63)

D∗ = D0 + v20
1

2

〈τ2〉 − 2〈τ〉2

〈τ〉
= D0

(
1 +
〈τ2〉 − 2〈τ〉2

〈τ〉2

)
= D0

σ2
τ

〈τ〉2
. (64)

1. Tortuosity

The macroscopic transport velocity is equal to the mean pore velocity v∞ = u [13]. Thus, we obtain from (63) with
(56) that the tortuosity is given by

χ =
`v
u〈τ〉

. (65)

Using (33) gives the explicit expression

χ = χa

1−
∞∫
0

dvpm(v)
exp(−Pev) sinh(Pev)

Pev

−1 , (66)

where χa = 〈ve〉/u.

2. Hydrodynamic dispersion coefficient

Equation (65) together with (56) in (64) gives for the hydrodynamic dispersion coefficient

D∗ = u2
σ2
τ

2〈τ〉
. (67)

The full Péclet dependence of D∗ can be obtained by using expressions (33) and (36) for the mean and mean squared
transition times.

We determine now the leading order behavior of D∗ for Pec � 1. For 0 < α < 1, we obtain by using (35) and (42)

D∗ ∼ u2τvPe1−αc = 〈vm〉`vχ−2a , P e1−αc (68)

and therefore

D∗/Dm ∼ Pe2−αc . (69)

Similarly, we obtain for α = 1 by using (44)

D∗ ∼ u2τv ln(Pec) = 〈vm〉`vχ−2a ln(Pec), (70)

and thus

D∗/Dm ∼ Pec ln(Pec). (71)

For α > 1, we obtain by using (39)

D∗ ∼ u2τv = 〈vm〉`vχ−2a , (72)

and thus

D∗/Dm ∼ Pec. (73)
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B. Anomalous dispersion

Anomalous dispersion is measured by the displacement variance σ2(t) = m2(t) − m1(t). The first and second
displacement moments m1(t) and m2(t) are given in Laplace space by (54). At times t � τD, the transition time
distribution behaves as ψ(t) ∼ t−2−α. For 0 < α < 1, its Laplace transform can be expanded as

ψ∗(λ) = 1− λ〈τ〉+ bλ1+α, (74)

with b a constant. Inserting this expansion into (55), we obtain in leading order for K(λ)

K(λ) = 1 + bλα/〈τ〉. (75)

Thus, we obtain for m∗1(λ)

m∗1(λ) = v0λ
−2 + bλα−2/〈τ〉 (76)

This implies

m1(t) = v0t+ . . . , (77)

where the dots denote subleading contributions of order t1−α. For the second moment, we obtain

m∗2(λ) = 2D0λ
−2 + 2v20λ

−3 + 2bv20λ
α−3/〈τ〉, (78)

Inverse Laplace transform gives

m2(t) = 2D0t+ v20t
2 + 2v20bt

2−α/〈τ〉Γ(1− α). (79)

Thus, we obtain for the displacement variance

σ2(t) ∼ t2−α. (80)

For α = 1, the Laplace transform of ψ(t) can be expanded as

ψ∗(λ) = 1− 〈τ〉λ− cλ2 ln(λ), (81)

with c a constant. Inserting this expansion into (55), we obtain in leading order for K(λ)

K(λ) = 1− cλ ln(λ)/〈τ〉. (82)

Thus, we obtain for m∗1(λ)

m∗1(λ) = v0λ
−2 + . . . (83)

This implies

m1(t) = v0t+ . . . , (84)

where the dots denote subleading contributions. For the second moment, we obtain

m∗2(λ) = 2D0λ
−2 + 2v20λ

−3 − 2v20cλ
−2 ln(λ)/〈τ〉. (85)

Inverse Laplace transform gives

m2(t) = 2D0t+ v20t
2 + 2v20c

′t ln(t)/〈τ〉, (86)

with c′ a constant. Thus, we obtain for the displacement variance

σ2(t) ∼ t ln(t). (87)
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