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We study the interplay of pore-scale mixing and network-scale advection through heterogeneous porous
media, and its role for the evolution and asymptotic behavior of hydrodynamic dispersion. In a Lagrangian
framework, we identify three fundamental mechanisms of pore-scale mixing that determine large scale
particle motion, namely, the smoothing of intrapore velocity contrasts, the increase of the tortuosity of
particle paths, and the setting of a maximum time for particle transitions. Based on these mechanisms, we
derive a theory that predicts anomalous and normal hydrodynamic dispersion in terms of the characteristic
pore length, Eulerian velocity distribution, and Péclet number.
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Transport of dissolved substances through porous media
is determined by the complexity of the velocity field in the
pore space and diffusive mass transfer within and between
pores. The interplay of diffusive pore-scale mixing and
spatial flow variability are key for the understanding of
transport and reaction phenomena in natural and engi-
neered porous media [1–3] with diverse applications
ranging from groundwater contamination and geological
carbon dioxide storage [4], to the design of batteries [5] and
transport in brain microcirculation [6].
Therefore, hydrodynamic transport has been the focus of

research over decades in different disciplines [1,2,7–10].
Still, as outlined in the following, questions of fundamental
nature remain concerning both the evolution of hydro-
dynamic dispersion, and the dependence of asymptotic
hydrodynamic dispersion coefficients on the Péclet num-
ber, which compares the diffusion and advection times
over a typical pore length. Anomalous dispersion pheno-
mena [11] have been observed in laboratory experiments
[12–17], field scale tracer tests [18,19], and numerical
simulations in different types of porous medium and rock
structures [20–26]. They cannot be described by a single
constant hydrodynamic dispersion coefficient. The asymp-
totic concept of hydrodynamic dispersion models particle
displacements due to velocity fluctuations as Brownian
motion and thus implicitly assumes that all particles have
access to the full fluctuation spectrum at each moment, that
is, they can be considered as statistically equal. In a
porous medium, however, velocities vary on length scales
engraved in the pore structure, and thus, particle transitions
over regions of low velocity can be much longer than over
regions of high velocity. Statistical equivalence can only be
achieved at times larger than the largest transition time-
scale. Thus, anomalous behaviors can be traced back to
broad distributions of mass transfer timescales related to
wide spectra of pore-scale flow velocities.

This phenomenology lies at the heart of nonlocal trans-
port theories such as multitrapping and continuous time
random walk (CTRW), which have been used to model
anomalous and intermittent pore-scale transport behaviors
[17,20,22,24,27–30]. However, current approaches are
limited to purely advective transport, or need to be
constrained by the measurement of particle transition times.
The quantitative relation between pore-scale mixing, net-
work scale flow and the evolution of hydrodynamic
dispersion remains elusive. The pioneering works of de
Josselin de Jong [7] and Saffman [8] use the concept of
particle transition times to derive expressions for the
asymptotic hydrodynamic dispersion coefficients. Still,
and in spite of numerous theoretical and numerical studies
[31–33], the dependence of hydrodynamic dispersion on
the Péclet number remains an open issue.
We address these fundamental questions by identifying

and quantifying the key mechanisms of pore-scale mixing
and network-scale flow variability in a stochastic model for
the prediction of hydrodynamic dispersion. We derive a
theory that explains the temporal evolution of dispersion
and the dependence of its asymptotic behavior on the Péclet
number based on the Eulerian flow statistics, diffusion,
and the characteristic velocity length scale. The theoretical
developments are supported and validated by direct
numerical simulations (DNS) of flow and transport
in a three-dimensional digitized Berea sandstone sample
(Fig. 1) obtained using x-ray microtomography [34]. The
medium displays strong pore-scale heterogeneity that gives
rise to a broad distribution of flow speeds illustrated in
Fig. 2(a). We consider transport at different Péclet numbers,
which are varied by changing the average flow rate.
The molecular diffusion coefficient is set equal to
Dm ¼ 10−9 m2=s. The Péclet number is here defined by
Pe ¼ hveil0=Dm, where l0 is the average pore length and
hvei the average Eulerian flow speed.
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Figure 3 illustrates the impact of flow heterogeneity and
diffusion at different Pe. It shows on the one hand
anomalous hydrodynamic dispersion manifest in heavy-
tailed arrival time distributions fðtÞ and superdiffusive
growth of the longitudinal displacement variance σ2ðtÞ, and
on the other hand cross-overs to asymptotically Fickian
behaviors [Figs. 3(a) and 3(b)]. Streamwise dispersion in
the asymptotic regime is characterized by the constant
hydrodynamic dispersion coefficient D�, whose nonlinear
dependence on the Péclet number is shown in Fig. 3(c).
These features, which result from the complex interplay of
flow heterogeneity, diffusion, and geometry are generally
observed in laminar flows through porous media and
networks [20].
In order to understand the mechanisms that cause these

behaviors, we consider particle motion along the tortuous
paths in the void space of a porous medium as illustrated in

Fig. 1. The flow speed along streamlines varies over the
correlation scale lv imprinted in the medium geometry and
flow structure [15,44]; lv is typically larger than the
geometric pore length l0 due to the tortuosity of the
streamlines. We model motion along particle pathways
through discrete spatial steps along conducts of length lv
such that subsequent particle speeds fvng and therefore
transition times fτng along a path can be considered as
independent random variables. The distance sn and trans-
port time tn of a particle along a tortuous pathway are
described by the stochastic process

snþ1 ¼ sn þ lv; tnþ1 ¼ tn þ τn: ð1Þ

The travel distance sðtÞ along a particle path in this coarse-
grained picture is given by sðtÞ ¼ snt, where
nt ¼ maxðnjtn ≤ tÞ. This picture is equivalent to represent-
ing the pore space as a network of connected conducts of
length lv and average flow speeds vm [8], whose inter-
sections correspond to the turning points of the process (1).
For purely advective transport, particles move along

streamlines by the local Eulerian flow speed. Motion along
streamlines is projected onto streamwise motion by advec-
tive tortuosity χa ¼ hvei=ū, which is equal to the ratio
between the average Eulerian flow speed hvei and average
streamwise flow velocity ū [29,45,46]. In the presence of
pore-scale diffusion this is different. First, during a tran-
sition over a conduct, particles sample the flow speeds
across streamlines. Thus, the actual particle speed is
different from the local flow speed along a streamline.
Second, diffusion sets a maximum transition time. In fact,
if the local advective particle speed is smaller than
Dm=lv, the transition time is diffusion dominated with a
maximum of the order of τD ¼ l2

v=Dm. Third, pore-scale
mixing increases the effective path length and thus
tortuosity.
In order to quantify these mechanisms, we first consider

the flow speeds by which particles move along the conducts
of length lv. To this end, we assume that flow within a
three-dimensional conduct of length lv can be described by
the Poiseuille law, that is, by a parabolic velocity profile.
This is a valid approximation because laminar flow in the
porous medium is dominated by the drag due to the solid
walls. If the diffusion time across is smaller than the
advection time along the conduct, a particle samples the
velocity profile across the conduct and moves effectively
with the average conduct velocity. This is the case for
narrow conducts associated with low flow velocities. For
wide conducts, diffusion removes particles from the low
velocities at the grain walls such that the average particle
speed is increased towards the mean. Thus, particle motion
along a conduct is dominated by the mean speed vm, whose
probability density function (PDF) pmðvÞ is related to the
Eulerian speed PDF peðvÞ by

FIG. 1. Three-dimensional structure of a Berea sandstone
sample. The top panel highlights the void space in shades of
blue. The lines in the bottom panel show particle paths. The color
scheme indicates particle speeds from (white-blue-black-orange)
low to high.
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peðvÞ ¼
Z

∞

0

dv0pmðvÞ
1

2v0
Hð2v0 − vÞ: ð2Þ

The assumption of Poiseuille flow gives a uniform speed
PDF in the conduct, such that the Eulerian PDF can be
constructed as the weighted sum of the local uniform PDFs
represented by the Heaviside function under the integral.
The Eulerian PDF peðvÞ and thus pmðvÞ are determined by
volumetric sampling of the local flow speeds, while the
partitioning of particles at turning points is proportional to
the flow rates into the downstream conducts. Thus, the
probability psðvÞ for a particle to choose the speed v at a
turning point is given by the flux-weighted PDF of mean
speeds [34],

psðvÞ ¼
vpmðvÞ
hvmi

; ð3Þ

where hvmi is the network averaged mean velocity.
Figure 2(a) displays the Eulerian peðvÞ, and pmðvÞ for
the Berea sample, and the corresponding Lagrangian psðvÞ.
The PDF pmðvÞ of mean speeds is very similar to peðvÞ
because of the power-law behavior at small velocities.
Equations (2)–(3) provide the bridge between Eulerian and
Lagrangian flow characteristics. Current approaches that
explore mapping the conduct widths to flow speeds via the
Poiseuille law and local mass conservation [28,47–49]
provide promising avenues to ultimately relate peðvÞ to the
medium structure, which, however, is beyond the scope of
this Letter.
Next we consider the impact of diffusion on the PDF of

transition times over a single conduct. It is obtained by
considering advective-diffusive transport in a d ¼ 1 dimen-
sional domain of length lv characterized by an instanta-
neous injection at the upstream and an absorbing boundary
condition at the downstream end [34]. The transition time
PDF ψ0ðtjvÞ for a single conduct is given by the solute flux

over the downstream boundary. It is sharply peaked around
the advection time τv ¼ lv=v for high local Péclet numbers
Pev ¼ vlv=2D, and broadly distributed with an exponen-
tial cutoff at the diffusion time τD as illustrated in Fig. 2(b)
for Pev ¼ 102; 10; 1, and 10−1. The mean transition time is
given by [34]

hτjvi ¼ τv
Pev − expð−PevÞ sinhðPevÞ

Pev
: ð4Þ

At high Pev it tends to the local advection time τv, at low
Pev to τD=2. The network-scale PDF ψðtÞ of transition
times is given in term of ψ0ðtjvÞ and pmðvÞ

ψðtÞ ¼
Z

∞

0

dv
vpmðvÞ
hvmi

ψ0ðtjvÞ: ð5Þ

For times t ≪ τD, it can be approximated by
ψðtÞ ≈ l2

vt−3pmðlv=tÞ. For times larger than τD, ψðtÞ
decreases to 0 exponentially fast. Note that this result
quantifies particle transition times from first principles,
namely, pore-scale advection and diffusion, and network
scale flow variability.
So far, we have considered motion along particle paths

while our focus lies on dispersion in streamwise direction,
that is, aligned with the mean pressure gradient. In analogy
to purely advective motion, the increments lv along
tortuous particle paths are projected onto the streamwise
increments in terms of tortuosity χ such that the particle
position xðtÞ at time t is given by xðtÞ ¼ sðtÞ=χ. In order to
determine χ, we note that, under ergodic flow conditions,
the asymptotic mean particle velocity is equal to the mean
flow velocity ū. This implies that, as particles sample a
representative part of the spatial flow variability they
assume asymptotically the mean flow velocity, which is
equal to the Darcy velocity divided by porosity [9]. The
stochastic time-domain random walk (TDRW) model

(a) (b) (c)

FIG. 2. (a) PDFs of (circles) Eulerian flow speed peðvÞ, (crosses) mean flow speed pmðvÞ and (squares) flux weighted mean speed
distribution psðvÞ normalized by the Eulerian mean speed hvei for the Berea sample of Fig. 1. The solid line denotes the power-law vα−1

with α ¼ 0.35. (b) First passage time distribution ψ0ðtjvÞ for local Péclet numbers of (crosses) Pev ¼ 102 (circles) 10, (squares) 1 and
(diamonds) 10−1. (c) Tortuosity χ versus Pe for Gamma distributed peðvÞ with exponents (solid line) α ¼ 0.35, (dotted) 0.5, (dash-
dotted) 0.8, and (dashed) 1. The horizontal line indicates the advective tortuosity χa.
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described by Eqs. (1)–(5) yields for the asymptotic average
particle velocity v∞ ¼ lv=χhτi≡ ū, where hτi is the
average transition time [50]. This gives for tortuosity
χ ¼ lv=ūhτi. Using Eqs. (5) and (4), we obtain the explicit
expression

χ ¼ χa

�
1 −

Z
∞

0

dv
1 − expð−PevÞ

Pev
pmðvÞ

�
−1
: ð6Þ

The behavior of χ for the Berea sample is shown in Fig. 2(c).
For Pe ≫ 1 it tends to advective tortuosity χa and increases
monotonically for decreasing Pe.
We use the derived theory to quantify and elucidate

anomalous and normal hydrodynamic dispersion behaviors.
To this end, we focus on speed PDFs that behave as power
laws for speeds much smaller than the average, pmðvÞ ∼
vα−1 with 0 < α ≤ 1. Such behaviors have been observed
for a wide range of porous media [17,21,44]. Note that α ¼ 1
for a channel or tube. For the Berea sample we find α ≈ 0.35
as shown in Fig. 2(a). The corresponding transition time
PDF behaves as ψðtÞ ∼ ðt=τvÞ−2−α for times t ≪ τD, and
decays exponentially fast for t ≫ τD, which is a key feature
of the impact of pore-scale mixing. To facilitate the analysis,
we note that the stochastic TDRW model described by
Eqs. (1)–(6) constitutes a CTRW so that we can use the
CTRW machinery to derive the hydrodynamic dispersion
behaviors predicted by the theory [34].
We focus on the PDF fðtÞ of first arrival times

at control planes perpendicular to the mean flow direction,
and the longitudinal displacement variance σ2ðtÞ ¼
hxðtÞ2i − hxðtÞi2. For times t ≪ τD particles see only the
power-law scaling ψðtÞ ∼ t−2−α of the transition time PDF. In
this regime, particle motion is history dependent because
transition times may be of the order of the observation time.
CTRWbasedon thegeneralizedcentral limit theorempredicts
power-law scaling as fðtÞ ∼ t−2−α [51]. The displacement
variance is predicted to scale as σ2ðtÞ ∼ ūlvðt=τvÞ2−α for

0 < α < 1 and as σ2ðtÞ ∼ ūlvðt=τvÞ lnðt=τvÞ for α ¼ 1
[34,52]. This means, dispersion is anomalous. For times t ≫
τD all particles are able to access the full spectrumof transition
times and become statistically equal because the memory of
the initial velocities is lost. This leads to an exponential cutoff
in fðtÞ [50], and linear (Fickian) scaling of σ2ðtÞ as 2D�t. The
hydrodynamic dispersion coefficient D� can be obtained by
matching the preasymptotic and asymptotic expressions for
σ2ðtÞ at t ¼ τD. This gives D�=Dm ∼ Pe2−α. A similar
behavior was obtained by Bijeljic et al. [20] based on
empirical transition time PDFs using CTRW theory [50].
The theory presented here directly links these behaviors to the
distribution of Eulerian flow speeds. For α ¼ 1, we obtain
D�=Dm ∼ Pe lnðPeÞ, which is equivalent to the expression
derived by Saffman [8] andKoch andBrady [31] based on the
assumption that the distribution of flow speeds is flat,which is
characteristic of the linear flow profile at pore walls. For
α > 1, the theory predicts D�=Dm ∼ Pe. Details are given in
the Supplemental Material [34].
These features of anomalous and asymptotic Fickian

dispersion are illustrated in Fig. 3 for the Berea sandstone
sample. The power-law scaling and exponential tempering
of fðtÞ are shown in Fig. 3(a) for different Pe. Figure 3(b)
shows the evolution of σ2ðtÞ. The theory predicts the
early time ballistic behavior, the cross-over to anomalous
dispersion for t > τv, and the transition to normal
dispersion for times t > τD. The diffusive behavior at very
early times t < Dm=ū2 is not resolved by the theory
because it does not explicitly represent (Brownian) particle
motion at short times. The impact of diffusion is accounted
for through its effect on particle transition times, tortuosity,
and velocity sampling as detailed above. The theory
predicts that the dependence of D� on Pe is constrained
betweenD�=Dm ∼ Pe2 andD�=Dm ∼ Pe. This is illustrated
in Fig. 3(c), which shows D� versus Pe obtained from the
Berea sample as well as the theoretical predictions for
α ¼ 0.5, 0.8, 1 using a Gamma-distributed peðvÞ.

(a) (b) (c)

FIG. 3. (a) First arrival time PDFs at distance x ≈ 32l0 and (b) σ2ðtÞ for (crosses) Pe ¼ 104, (circles) 103, (squares) 102, and (rhombs)
10. (c) Streamwise hydrodynamic dispersion coefficients versus Péclet number from (full circles) direct numerical simulations, and
(empty circles) the model predictions. The gray symbols show the predictions for Gamma-distributed Eulerian speeds with exponents
(top to bottom) α ¼ 0.5, 0.8, 1, the corresponding lines show the theoretical scalings.
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Data from a broad range of experimental and numerical
studies of dispersion in a variety of porous media
[2,9,23,33,53,54] indicate a non-linear increase of D� with
Pe. These data are often interpreted jointly by a single
regression [2,9], which implicitly assumes the existence of
a universal behavior across different types of porous media.
The derived theory indicates that neither the Pe dependence
of asymptotic hydrodynamic dispersion nor its evolution
are universal, but depend on the flow distribution. On the
other hand, it shows that dispersion can be predicted based
on the distribution of flow speeds, which can be applied
across a broad range of porous media.
The theory quantifies anomalous and normal hydro-

dynamic dispersion from first principles in terms of the
characteristic velocity scale, the Eulerian flow speed, and
pore-scale diffusion. It is valid for Pe > 1 and based on the
knowledge of the Eulerian speed distribution. It is not
constrained by transport measurements. The fundamental
nature of the considered flow and transport processes in the
conceptual picture of a network of conducts allows appli-
cation of the key elements of the derived theory to transport
of dissolved chemicals, bacteria, and colloids in a wide
range of porous media also under non-Newtonian and
multiphase flow conditions.
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