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Abstract 30 

Significant advances toward the remote sensing of photosynthetic activity have been achieved in 31 

the last decades, including sensor design and radiative transfer model (RTM) development. 32 

Nevertheless, finding methods to accurately quantify carbon assimilation across species and 33 

spatial scales remains a challenge. Most methods are either empirical and not transferable across 34 

scales or can only be applied if highly complex input data are available. Under stress, the 35 

photosynthetic rate is limited by the maximum carboxylation rate (Vcmax), which is determined by 36 

the leaf biochemistry and the environmental conditions. Vcmax has been connected to plant 37 

photoprotective mechanisms, photosynthetic activity and chlorophyll fluorescence emission. 38 

Recent RTM developments such as the Soil-Canopy Observation of Photosynthesis and Energy 39 

fluxes (SCOPE) model allow the simulation of the sun-induced chlorophyll fluorescence (SIF) and 40 

Vcmax effects on the canopy spectrum. This development provides an approach to retrieve Vcmax 41 

through RTM model inversion and track assimilation rate. In this study we explore SIF, narrow-42 

band indices and RTM inversion to track changes in photosynthetic efficiency as a function of 43 

vegetation stress. We use hyperspectral imagery acquired over an almond orchard under different 44 

management strategies which affected the assimilation rates measured in the field. Vcmax used 45 

as an indicator of assimilation was retrieved through SCOPE model inversion from pure-tree 46 

crown hyperspectral data. The relationships between field-measured assimilation rates and Vcmax 47 

retrieved from model inversion were higher (r2= 0.7-0.8) than when SIF was used alone (r2= 0.5-48 

0.6) or when traditional vegetation indices were used (r2=0.3-0.5). The method was proved 49 

successful when applied to two independent datasets acquired at two different dates throughout 50 

the season, ensuring its robustness and transferability. When applied to both dates 51 

simultaneously, the results showed a unique significant trend between the assimilation measured 52 

in the field and Vcmax derived using SCOPE (r2=0.56, p<0.001). This work demonstrates that 53 

tracking assimilation in almond trees is feasible using hyperspectral imagery linked to radiative 54 

transfer-photosynthesis models. 55 

 56 

 57 

  58 
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1. Introduction 59 

The accurate monitoring of plant photosynthetic activity at large scales is required to control the 60 

effects of potential threats affecting adequate growth and resulting yield (Kimball, 1983; Lobell et 61 

al., 2009; Long et al., 2015). Plants under water and nutrient stress regulate their photosynthetic 62 

rate reducing the production of assimilates (Schurr et al., 2006). Non-photochemical dissipation 63 

mechanisms protect the photosynthetic apparatus from excessive irradiance. These 64 

photoprotective mechanisms are very dynamic with illumination intensity and react within seconds 65 

or minutes (Demmig et al., 1987). The timely assessment of crop stress is therefore challenging 66 

as when symptoms are visually detectable, productivity and yield might be compromised (Hsiao 67 

et al., 1976; Hsiao and Bradford, 1983). In the particular case of orchards, in addition to frequent 68 

monitoring, the within-field heterogeneity resulting from changes in elevation, soil and irrigation 69 

system efficiency requires methods that properly assess the spatial variability of photosynthetic 70 

activity at the individual object level, e.g. at the tree scale. In the last decades, there has been an 71 

important advance towards developing remote sensing methods to detect pre-visual stress, that 72 

is before visual symptoms appear, and extend the assessment to describe within field variations 73 

(Chaerle, L., 2007; Suarez et al., 2009; Tremblay et al., 2011; Zarco-Tejada et al., 2012; Ihuoma 74 

and Madramootoo, 2017; Hernandez-Clemente et al., 2019). 75 

Changes in both the green spectral region and in the emission of chlorophyll fluorescence from 76 

photosystem I (PS-I) and photosystem II (PS-II) have been connected to plant photosynthetic 77 

dynamic processes under stress (Papageorgiou, 1975; Gamon et al., 1992; Krause and Weis, 78 

1991; Mohammed et al., 2019). The effect in the green region has been attributed to 79 

photoprotective mechanisms that dissipate part of the absorbed radiation under limited 80 

photosynthetic capacity, mainly through changes in xanthophyll pigment composition (Demmig-81 

Adams, 1990). When incoming radiation exceeds the capacity of the photosynthetic reaction 82 

centres, the xanthophyll pigment violaxanthin (V) de-epoxidise to antheraxanthin (A) and later to 83 
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zeaxanthin (Z) to avoid oversaturation. This process has an effect on the spectral signal around 84 

531 nm and has been used to track photosynthetic efficiency remotely (Gamon et al., 1992, Filella 85 

et al., 1996, Stylinski et al., 2000; Evain et al., 2004).   86 

As a proxy of photosynthesis activity, the chlorophyll fluorescence signal can be quantified as the 87 

ratio between the maximum variable fluorescence emission to the maximum total fluorescence 88 

(Krause and Weis, 1991; Mohammed et al., 1995). The application of this method to image data 89 

is not practical though, being the focus on quantifying steady-state fluorescence signals, i.e. SIF, 90 

for the remote assessment. Among other methods, SIF can be quantified applying the Fraunhofer 91 

Line Depth (FLD) principle using the atmospheric O2 absorption bands (Plascyk and Gabriel, 92 

1975). Despite the high spectral resolution required to quantify fluorescence at the O2-A and O2-93 

B absorption bands, modelling work by Damm et al (2011) demonstrated that sensors with 5-6 94 

nm full-width at half maximum (FWHM) spectral bands within the oxygen absorption window can 95 

be used to derive sun-induced fluorescence through this method. As an example, Zarco-Tejada 96 

et al. (2012; 2016; 2018) and Damm et al. (2014; 2015a) showed successful retrievals of sun-97 

induced fluorescence (SIF) using airborne sensors of such spectral characteristics in the context 98 

of stress detection, e.g. focusing on the relative spatial variability of SIF as an indicator of stress. 99 

Although SIF has been demonstrated to be directly linked to photosynthetic activity (Mohammed 100 

et al., 2019; Meroni et al., 2009; Rascher et al., 2009; Zarco-Tejada et al., 2009), the amount of 101 

fluorescence emitted and its quantification based on the in-filling method described above is 102 

affected by the irradiance levels at the time of data acquisition, therefore highly variable in the 103 

temporal scale. Indices derived from the green region present similar issues when used with time 104 

series of image data (Gamon et al., 1997; Damm et al., 2015b). Attempts to normalise these 105 

indices calculated from reflectance and FLD methods with ancillary measurements have been 106 

frequent in the last years (Suarez et al., 2010; Zarco-Tejada et al., 2013b). Apart from the 107 

difficulties to properly normalise these spectral indices, the link between these indicators and 108 
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photosynthetic efficiency needs to be established to provide a meaningful interpretation (Nichol 109 

et al., 2002; Running et al., 1999). This link is typically highly empirical, site and species specific 110 

(Courault et al., 2005) and affected by structural and pigment levels across species. 111 

The estimation of photosynthetic parameters (i.e. Vcmax) is an alternative approach that does not 112 

rely on further empirical links. The limitation in the enzyme kinetic processes driving 113 

photosynthesis is defined by two parameters, the maximum electron transport rate (Jmax) and the 114 

maximum carboxylation rate (Vcmax) by the Ribulose-1,5-bisphosphate carboxylase/oxygenase 115 

(RuBisCO) enzyme under saturated light conditions. Both Vcmax and Jmax change in response to 116 

environmental conditions and the CO2 fixation rate is determined by the most limiting of them 117 

(Farquhar et al., 1980). Vcmax has been proposed as a useful parameter linked to photosynthetic 118 

rate, given its responsiveness to biotic and abiotic stressors, such as insect or pathogen damage 119 

(Dungan et al., 2007) and drought (Xu and Baldocchi, 2003). In the field, Vcmax is obtained from 120 

leaf measurements made with a gas exchange instrument using net assimilation of CO2–121 

intercellular CO2 concentration (A–Ci) curves (Farquhar et al., 1980). However, measuring Vcmax 122 

on the ground is time-consuming and logistically impossible for timely large-area assessments of 123 

the natural heterogeneity present in agricultural fields.  124 

Empirical models derived by Serbin et al. (2012, 2015) showed there is a strong spectral response 125 

to Vcmax changes in the blue-green and the Red-Edge spectral regions but reached the conclusion 126 

that there is not unique link between spectral signal and Vcmax  and the large-area assessment of 127 

Vcmax based on spectral data needed to account for species type and environmental factors at the 128 

time of image acquisition. Recent advances in physical models have linked the radiative transfer 129 

theory with plant physiological modules where photosynthetic performance can be simulated as 130 

a function of stress and environmental conditions (Van der Tol et al., 2009). This is the case of 131 

the Soil Canopy Observation, Photochemistry and Energy fluxes model (SCOPE, Van der Tol et 132 

al., 2009). The SCOPE model allows the simulation of the effect of varying Vcmax on the canopy 133 
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spectra including the emission as fluorescence. According to model simulations, these effects are 134 

spectrally located in the green (505 – 560 nm) and in the red and far-red chlorophyll fluorescence 135 

emission (650 - 850 nm) regions. By establishing the physical link between the spectral signal 136 

and Vcmax, changes in photosynthetic activity can be tracked without relying on site specific 137 

empirical relationships.  138 

With the recent progress on the estimation of SIF at the global scale (Frankenberg et al., 2011; 139 

Guanter et al., 2014), especial interest has been put on models such as SCOPE for carbon 140 

accounting (Koffi et al., 2015). Some studies have demonstrated the big potential of SCOPE in 141 

combination with satellite-derived SIF to monitor carbon sequestration against international 142 

agreement targets (Zhang et al., 2014; Guan et al., 2016), although the spatial resolution of SIF 143 

derived from satellite imagery poses many challenges related to pixel heterogeneity and ancillary 144 

input data availability (Verma et al., 2017) which makes its interpretation complex. These 145 

challenges could be overcome by increasing the model capabilities to properly simulate the within-146 

pixel heterogeneity. Increasing image spatial resolution to minimise the effect of mixed scene 147 

elements is another potential solution. 148 

At the finer scale and in the context of precision agriculture, the assessment of Vcmax through 149 

physical models might provide an advantage for the quantitative monitoring of canopy assimilation 150 

over time without relying on empirical methods that are not robust across scales and 151 

environmental conditions. As a photosynthetic trait, Vcmax does not require any further link or 152 

empirical calculation to track assimilation over time. As an example, Camino et al. (2019) 153 

demonstrated the retrieval of Vcmo (e.g. Vcmax of a top leaf standardised to a reference 154 

temperature at 25 °C) through SCOPE radiative transfer model inversion to track photosynthetic 155 

rate differences in wheat under nutrient and water stress.  156 
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The SCOPE model simulates the canopy as a 1D homogeneous flat turbid medium (Van der Tol 157 

et al., 2009; Verhoef, 1984).  This arrangement is ideal to simulate continuous crops like wheat 158 

but might be limited when attempting the same with discontinuous woody vegetation structures. 159 

Heterogeneous canopy scenes (i.e. tree orchards) present a complex arrangement of canopy, 160 

sunlit soil background and shadows (Verstraete et al., 1990; Law et al., 2001) adding complexity 161 

to the simulation of the multiple scattering effects between the different elements (Widlowski et 162 

al., 2006). Submeter spatial resolution imagery allows the extraction of pure crown pixels avoiding 163 

shadows and the tree crown edges that are more exposed to horizontal fluxes, therefore 164 

minimizing the effects of the canopy discontinuity. However, modeling the within-crown structural 165 

parameters remains a challenge when simulating tree crowns as a turbid medium. It has been 166 

demonstrated that the shaded gaps and the signal and angular arrangement of the different 167 

canopy elements including branches and twigs play an important role on the overall reflectance 168 

signal (Cescatti, 1997; Verrelst et al., 2010). Regardless the limitations, 1D models have been 169 

successfully inverted to retrieve complex canopy properties in the past (see Jacquemoud et al. 170 

(2009) for a review). 171 

Here we show how SCOPE model inversion can be used to track photosynthetic activity in an 172 

almond tree orchard using high spatial resolution imagery collected with an airborne lightweight 173 

hyperspectral sensor. Although both the green and the red-far red spectral regions are explored, 174 

we show the potential of the green region to invert Vcmax for photosynthetic rate monitoring. The 175 

validity of the method is tested for independent datasets acquired at different phenological stages.   176 

  177 
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2. Materials and methods 178 

2.1. Study site and experimental field 179 

The study site is an almond orchard (cv. Guara onto GF-677 rootstock) located in Cordoba Spain 180 

(37°52′N, 4°49 W) growing under a Mediterranean weather characterized by warm and dry 181 

summers, cold and wet winters and an annual rainfall around 550 mm, mainly occurring in Spring 182 

and Autumn. The orchard was established in 2009 on a sandy loam soil in a 6 x 7 m grid, resulting 183 

in a tree density of 238 trees per ha.  184 

During three years, four replicates of three different water and nutrient management treatments 185 

were applied to plots of 16 trees resulting in a wide range of stress variability. The first treatment, 186 

which trees were considered as control, was fertilized and irrigated to satisfy full requirements 187 

calculated following Fereres et al. (2012). The other two treatments followed a regulated deficit 188 

irrigation scheme (RDI), receiving 20% of full water requirements during kernel filling and 60% of 189 

control rates after harvest. The first of the RDI treatments received the same amount of N as the 190 

control treatment, fertilization rate of the second RDI was reduced to a 75% of the control. All 191 

trees were kept free of weeds, and pests and diseases were fully controlled. Table 1 gives an 192 

overview of the different treatments applied and a full description of the experimental site can be 193 

found in Espadafor et al. (2017) and Lopez-Lopez et al. (2018). 194 

Table 1. Summary of irrigation and fertilization treatments applied in the experimental site. 195 

Treatment Irrigation Fertilisation 
Treatment 1: Control Full ET 100% N 
Treatment 2: RDI 1 Regulated Deficit Irrigation: 

- 20% full ET during kernel filling 
- 60% after harvest 

100% N 

Treatment 3: RDI 2 Regulated Deficit Irrigation: 
- 20% full ET during kernel filling 
60% after harvest 

75% N 

 196 



9 
 

During the growing season, two central trees of each plot were monitored. Data collection 197 

included assimilation rate using a portable photosynthesis system (LCDpro-SD, ADC, 198 

Bioscientific Ltd., Herts, UK) and stomatal conductance with a porometer device (SC-1, Decagon 199 

Devices Inc., Pullman, WA, USA) both measured on two to four leaves per tree. Chlorophyll 200 

concentration was measured on 10 to 15 leaves using a SPAD meter (SPAD502DL, Minolta, 201 

Japan) and leaf steady-state fluorescence with a pulse amplitude modulated fluorometer 202 

(Fluorpen FP110, Photon Systems Instruments, Brno, Czeck Republic) on 10 leaves per tree. 203 

 204 

2.2. Field data collection and airborne campaigns 205 

Two airborne campaigns were conducted using a nano-hyperspectral imager (Headwall 206 

Photonics, Fitchburg, MA, USA) on DOY: 218 and DOY: 237 (summer, 2015) corresponding to 207 

the kernel filling period and after harvest respectively. Flight design and airborne operations were 208 

coordinated by the Laboratory for Research Methods in Quantitative Remote Sensing 209 

(QuantaLab) of the Spanish Council for Scientific Research (IAS-CSIC, Córdoba, Spain). The 210 

specifications of the nano-hyperspectral imager used are detailed in Table 2. Flying operation 211 

was carried out on the solar principal plane at 250 m above ground level with a speed of 130 212 

km/h, yielding a ground spatial resolution of 30 cm. Within 3 days of the image acquisition, a field 213 

dataset was collected by sampling two central trees of each treatment block as described above. 214 

The imagery was radiometrically calibrated keeping the original instrument FWHM of 6.5nm. 215 

Image raw data were transformed into radiance using calibration coefficients derived from 216 

measurements against a calibration standard (CSTM-USS-2000C LabSphere, North Sutton, NH, 217 

USA) at four integration times over four illumination intensities. The image atmospheric correction 218 

was conducted with SMARTS model (Gueymard 1995, 2001) using aerosol optical parameters 219 

measured with a handheld sun-photometer (Microtops II, Solar Light Co., Philadelphia, PA, USA) 220 
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and air temperature, relative humidity and air mass measured with a portable weather station 221 

(WX510 from Vaisala, Vantaa, Finland).  222 

Irradiance was also measured in the field with a cosine receptor unit attached to an upward 223 

looking spectrometer covering the 350-2500 nm spectral range (Fieldspec III Pro, Analytical 224 

Spectral Devices, Inc., Malvern Panalytical). This field measured irradiance was later used as 225 

input in the model simulations. Ortho-rectification of each single hyperspectral flightline was 226 

performed using PARGE software package (ReSe Applications Schläpfer, Wil, Switzerland) 227 

based on the readings of an Inertial Measuring Unit (IMU) installed on-board the airborne platform 228 

during the flight. 229 

The pixels corresponding to each individual tree crown in the orchard were selected using an 230 

automated process as reported in Calderon et al. (2015), ensuring only pure vegetation pixels 231 

were considered for the analysis. Figure 1c presents an example of reflectance and radiance 232 

resulting from the segmentation for one tree crown from a control plot together with the irradiance 233 

measured at the time of the image acquisition. Figure 2 shows the average reflectance and 234 

radiance spectra for the different treatments.  235 

Table 2. Platform and sensor operational settings during image acquisition 236 

Hyperspectral sensor characteristics and settings 
Spectral range (nm) 400 – 885  
Number of spectral bands 260 
FWHM 6.5 nm 
Slit size 25 µm 
Detector pixel pitch 7.4 µm 
Focal length 4.8 mm 
Radiometric resolution (bits) 12 
Integration time 18 ms 
 
Image acquisition details 
Acquisition dates and times 6th & 25th August 2015, solar noon 
Flying height (AGL) 250 m 
Cruise speed 130 km/h 
Mean spatial resolution (m) 0.3 

 237 



11 
 

 238 

 

 
(b) 

 

 

(a) 
Figure 1. Overview of the image captured over 
the experimental field on DOY 160 (a) with the 
control blocks in green (C), RD1 blocks in yellow 
and RD2 blocks in red. Zoom of the automatic 
segmentation applied to one tree of each 
treatment (b), example reflectance and radiance 
spectrum from a tree of the control group (c). 

(c) 

Spectral indices traditionally used for vegetation stress detection were calculated using the 239 

average value of the reflectance spectra extracted from each tree crown in the experiment (Table 240 

3). The index selection comprises structural indices typically related to vigour and foliage density, 241 

indices used to assess pigment concentration and special attention was put on stress indices 242 

calculated from the green spectral region due to their connection to photoprotective processes 243 

under water and nutrient stress conditions. Sun induced fluorescence was also retrieved from the 244 

hyperspectral imagery using the FLD principle applied to the O2-A absorption line at 760 nm. The 245 

method was applied to the image data using the bands at 762nm and 750 nm as the centre of the 246 

absorption feature and reference radiance, respectively (Table 3). 247 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Average radiance and reflectance spectrum for each of the treatments over the 400-800nm spectral range (a and d), zooms 
over the green (500-560 nm) region (b and e) and far-red-NIR (700-800 nm) region (c and f) where physical models indicate Vcmax 
change effects. 
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Table 3. List of spectral indices used in the study with their formulation and original reference. 248 
Rλ, Lλ and Eλ refers to reflectance, radiance and irradiance at λ nm. 249 

Index Formulation Reference 
Structural indices 
NDVI (R800 - R670) / (R800 + R670) Rouse et al. (1974) 
RDVI (R800 - R670) / (R800 + R670)0.5 Rougean and Breon (1995) 
EVI 2.5 ⋅ (R800 - R670) / (R800 + 6⋅R670 - 7.5⋅R400+1) Huete et al. (2002) 

MTVI 1.2⋅(1.2⋅(R800 - R550) - 2.5⋅(R670 - R550)) 
Broge & Leblanc (2000); 
Haboudane et al. (2004) 

Chlorophyll indices 
CI R750 / R710 Zarco-Tejada et al. (2001) 

TCARI/OSAVI 3 ⋅ ((R700 - R670) - 0.2⋅ (R700 - R550) ⋅ (R700 / R670))/  
((1 + 0.16) ⋅ (R800 - R670) / (R800 + R670 + 0.16)) Haboudane et al. (2002) 

SIPI (R800 - R445) / (R800 + R680) Peñuelas et al. (1995) 
Xanthophyll-related Indices in the green region 
PRI (R570 – R530) / (R570 + R530) Gamon et al. (1992) 
PRI515 (R515 – R530) / (R515 + R530) Stagakis et al. (2012) 
PRIM1 (R512 – R531) / (R512 + R531) Gamon et al. (1993) 
PRIM2 (R600 – R531) / (R600 + R531) Gamon et al. (1993) 
PRIM3 (R670 – R531) / (R670 + R531) Gamon et al. (1993) 
PRIn PRI / [RDVI ⋅ (R700 / R670)] Zarco-Tejada et al. (2013) 

Fluorescence quantification 
Fraunhofer 
Line Depth 
(FLD) 

FLD = ((E750 ⋅ L762)-(E762 ⋅ L750))/(E750-E762) Plascyk and Gabriel (1975) 

 250 

All spectral indices including FLD as an indicator of sun-induced fluorescence were computed 251 

using the average reflectance and radiance extracted from each tree crown, being the tree crown 252 

our individual object of study. Linear interpolation was used to derive the reflectance value 253 

corresponding to each band in the formulas. 254 

 255 

2.3. Simulation of Vcmax spectral effects with SCOPE model  256 

The SCOPE (Van der Tol et al., 2009) radiative transfer model was used to simulate the effects 257 

of the photosynthetic performance changes on the canopy spectral signal, including the emitted 258 

chlorophyll fluorescence. SCOPE model incorporates the influence of photosynthetic activity 259 

processes into a coupled leaf-canopy radiative transfer model resulting in a tool to study the effect 260 
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of vegetation stress on the canopy reflectance. The leaf radiative transfer module is based on 261 

FLUSPECT leaf model (Vilfan et al., 2016) which simulates leaf reflectance using leaf thickness, 262 

dry matter and water content, chlorophyll, anthocyanin and carotenoid content. To incorporate 263 

the Vcmax and Jmax rates driving the RuBisCO enzyme activity in the photosynthetic process, the 264 

SCOPE model uses the Farquhar–von Caemmerer–Berry (FvCB; Farquhar et al. (1980)) 265 

photosynthesis model, the stomatal resistance (Cowan, 1978), the Ball–Berry stomatal 266 

conductance model (Ball et al., 1987) and the coupled photosynthesis-stomatal model by Collatz 267 

et al. (1991). Vcmax and Jmax determine the maximum carboxylation rate of RuBisCO and the 268 

maximum rate of photosynthetic electron transport varying in response to environmental 269 

conditions and governing the potential assimilation rate. Jmax has been demonstrated to vary 270 

linearly with Vcmax as function of air temperature (Woodward et al., 1995). The fluorescence and 271 

energy balance modules in SCOPE incorporate the effects of Vcmax changes in the radiative 272 

transfer equation returning the overall canopy signal function of stress (Van der Tol et al., 2014). 273 

During its execution, the model ensures the energy balance closure integrating the thermal 274 

radiation, environmental conditions, leaf biochemistry and chlorophyll fluorescence and canopy 275 

radiative transfer (Van der Tol et al., 2009).  276 

The SCOPE model input to track Vcmax is the maximum carboxylation rate of a top leaf 277 

standardized to a reference temperature at 25°C (Vcmo). We will refer to it as Vcmax from now 278 

onwards for easiness, and considering the air temperature at the time of image acquisition was 279 

within 5 degrees of the optimal 25°C. The spectral effects resulting from varying Vcmax can be 280 

seen Figure 3, which shows the simulated spectra for Vcmax changing from 0 to 250 μmol m–2 s–1 281 

using a standard set of input values and the ambient conditions at the time of DOY 237 airborne 282 

data collection. The effect on the signal is very subtle (dotted line, Figures 3a-c) concentrated in 283 

the green region (505-560 nm) and in PS-I and PS-II chlorophyll fluorescence emission regions 284 

(650 – 800 nm). Figures 3b and 3c show a zoom over the areas where this effect is observed. 285 

The same effects on the chlorophyll fluorescence emission region where reported by Zarco-286 
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Tejada et al. (2013a) using FluorSAIL radiative transfer model (Verhoef, 2005) coupled to FLIM 287 

(Rosema et al., 1992) developing the FluorFLIM hybrid model.  288 

 289 

  
(a) (b) 

    
(c) (d) 

 290 

Figure 3. Results of simulating the spectral response to Vcmax variation over the range 10 to 250 291 
µmol m-2 s-1 leaving the rest of parameters fixed (LAI=3, Cab=80, Cm=Cw=0.02) for the full 400-292 
800nm range (a), for the 650-800nm region (b) and for 505-565 nm region (c). Reflectance 293 
difference between the maximum and minimum feature result of Vcmax variation is represented 294 
in a dotted line. (d) reflectance difference represented for 200 simulations with Vcmax ranging 295 
from 0 to 250 µmol m-2 s-1 over the green spectral feature. 296 

 297 

The absolute reflectance difference resulting from Vcmax variation from 0 to 250 µmol.m-2.s-1 has 298 

similar dimensions in both the green and the fluorescence emission region (Figure 3a, dotted 299 

line). The reflectance difference to reflectance signal ratio is therefore up to ten times higher in 300 

the green region than in the NIR as the reflectance in the visible is much lower as a result of 301 
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pigment absorption. Figure 3d represents the family of 200 simulations with Vcmax ranging from 0 302 

to 250 µmol/m2⋅s in the green region. 303 

SCOPE simulations were also used to investigate potential relationships between Vcmax and 304 

existing indices in the green region (i.e. the Photochemical Reflectance Index (PRI), Gamon et 305 

al. (1992) and the family of formulations derived from PRI in Table 3) and SIF@760 quantified 306 

through the FLD method. Vcmax vs PRI and Vcmax vs SIF were investigated for chlorophyll content 307 

between 20 and 70 µg/cm2 and for changes in LAI 1-2 to assess the potential of establishing links 308 

between vegetation indices and Vcmax that are robust to variations in pigment content and vigour. 309 

 310 

2.4. SCOPE model inversion for Vcmax estimation 311 

SCOPE model was inverted to retrieve Vcmax as a proxy of assimilation rate for every tree in the 312 

experimental field acquired by the hyperspectral imager at the two acquisition dates. Inversions 313 

were carried out using pure vegetation pixels extracted without edge effects, as described 314 

previously. The model inversion was conducted based on the local spectral signal variations in 315 

the green (505-560 nm, as shown in Figure 3c) and red-far red (690-750 nm, Figure 3b) regions. 316 

In addition to using each region independently, the analysis also comprised both regions together 317 

and the full spectrum from 500 to 750nm. Figure 4 presents an overview of the steps followed to 318 

retrieve Vcmax through model inversion.  319 

Simulations were carried out with the atmospheric and background input parameters fixed 320 

according to known data or measurements on the image acquisition day. That includes location 321 

and sensor geometry, irradiance at the time of the flight, meteorological parameters and the soil 322 

reflectance. The irradiance used in the atmospheric module of SCOPE corresponded to the field-323 

measured irradiance, while the direct and diffuse components were calculated to keep the 324 

modelled proportional contribution. Once the irradiance was set to the field-measured spectra, 325 

the incoming shortwave radiation (Rin) input was adjusted to match the simulated radiance with 326 
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the image radiance levels. As most of the canopy spectrum over the visible and NIR is the result 327 

of structure and pigment concentration, ill-posed solutions are frequent when those inputs are not 328 

well constraint and the parameter of interest has a comparatively small effect on the signal 329 

(Combal et al., 2003, Atzberger and Richter, 2012). Consequently, a multi-step inversion 330 

approach (Combal et al., 2001; Atzberger, 2004; Laurent et al., 2014) was adopted to estimate 331 

Vcmax. First, model input parameters were constrained to specific ranges to avoid potential 332 

ill-posed inversion solutions. The ranges were established based on field measurements, existing 333 

literature and preliminary model simulations to make sure the resulting look-up-table (LUT) 334 

covered the tree crown spectral range of variability.  335 

Under the assumption that in a well-managed orchard most structural properties present limited 336 

variation, the first inversions focused on fixing the ranges for the leaf structural parameter N and 337 

the leaf area index (LAI). Leaf orientation function was left to vary as it was demonstrated that 338 

almond trees adjust the leaf exposure to incoming illumination as function of stress (Egea et al., 339 

2012). Leaf dry matter and water content are typically only affected after long term stress. In this 340 

case, they were also left to fully vary to consider the potential effect of long-term running 341 

treatments on the trees. Where there was not prior information or measurements, default values 342 

suggested for SCOPE model were used. Once the input ranges were established, the LUT was 343 

built by simulating a combination of random variations of the input values within the selected 344 

ranges. Table 4 shows the final input parameter ranges used to build the LUTs to invert Vcmax for 345 

each image acquisition date. All simulations were convolved to the wavelength range, spectral 346 

sampling interval and FWHM of the nano-hyperspectral imager used in this study. The convolution 347 

was carried out assuming gaussian band spectral response functions of 6.5 nm FWHM centered 348 

at the imager band locations. After applying the spectral convolution to the simulated reflectance, 349 

both simulations and imagery spectral dataset were comparable to execute the inversion.  350 

In order to remove data noise affecting model inversion and considering the bell-shaped response 351 

of changes in Vcmax as opposed to narrow spectral features (Figure 3), further smoothing of the 352 



18 
 

data was applied using a low-degree polynomial filter (Savitzky and Golay, 1964). The Savitzky-353 

Golay filter was applied to the data on the whole spectral range avoiding the region between 745 354 

and 775 nm to avoid an impact on the O2-A absorption region at 760 nm. For both simulations 355 

and image data, the amplitude of the second degree gaussian wavelet transformation was 356 

computed over four spectral ranges: i) 505 – 560 nm; ii) 690 – 750 nm, iii) the combination of 357 

both; and iv) the full 500 – 750nm range. Vcmax was estimated for each tree crown as the LUT 358 

entry with closest wavelet transformed spectrum using the root mean square error as cost function 359 

[1]. The rest of the input parameters derived for each tree crown were used for verification 360 

purposes only (e.g. to validate the consistency of the results over time). 361 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
( 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑏𝑏𝑠𝑠(𝜆𝜆) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆) )2

𝑁𝑁

𝜆𝜆𝜆𝜆

𝜆𝜆𝑠𝑠

 [1] 

Where λi and λj are the initial and end band of the spectral range, N is the total number of bands 362 

and RFLobs(λ) and RFLsim(λ) are the reflectance spectra from the image and from the model 363 

simulations, respectively, at a specific wavelength. 364 

Similar method was applied by Kattenborn et al. (2017) to derive plant traits from airborne 365 

hyperspectral imagery. The only adaptation made in this study was to include only 3 scales in the 366 

wavelet transformation. The reason to use less scales was to adjust the width of the wavelets to 367 

inform the changes over smaller spectral regions as opposed to characterising the effects over 368 

the full visible-NIR spectral signal. Artifacts resulting from potential signal noise on those spectral 369 

regions were removed after applying the smoothing filter. A lower filter size was applied to the 370 

red-far red region to avoid the elimination of narrow spectral effects. 371 
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 372 

Figure 4. Overview of the methodology used to retrieve Vcmax through SCOPE model inversion including hyperspectral image calibration, 373 
SCOPE parametrisation and input preparation and SCOPE model inversion.  374 

 375 
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Table 4. Input units and intervals used for SCOPE model inversion. 376 

Parameter Definition Unit Range / Value 

Leaf biophysical parameters 
N Leaf structural parameter [-] 1.7 - 1.9 
Cab Chlorophyll a & b content µg/cm2 35 - 60 
Ccar Carotene content µg/cm2 6 - 18 
Cant Anthocyanin content µg/cm2 0 - 8 
Cw Leaf water content g/cm2 0.001 - 0.05 
Cm Leaf dry matter content g/cm2 0.001 - 0.05 
Cs Brown pigment content µg/cm-2 0 
lw Leaf width m 0.07 

Leaf biochemistry 
Vcmax Maximum carboxylation rate µmol/m2·s 30 – 110 
m Ball-Berry stomata conductance [-] 8 
Rdparam Dark respiration [-] 0.015 
Kv Vertical profile of Vcmax extinction coefficient [-] 0.64 
Kc Cowan's water use efficiency [-] 700 

T 
Temperature sensitivity parameters for Vcmax 
and Resp [-] 

0.2, 0.3, 283, 311, 
328 

ρ(thermal) Leaf reflectance in thermal region [-] 0.01 
τ(thermal) Leaf transmittance in thermal region [-] 0.01 
ρs(thermal) Soil reflectance in thermal region [-] 0.06 
Stressfactor [-] 1 
fqe Fraction of photons partitioned to PSII [-] 0.02 

Canopy parameters 
LAI Leaf area index m2 / m2 0.5  –  2.3 

LIDFa 
Leaf Inclination Distribution Function 
parameter a [-]  -0.5  –  0.5 

LIDFb 
Leaf Inclination Distribution Function 
parameter b [-]  -0.5  –  0.5 

Micrometeorological 
p Air pressure hPa 1010 
u Wind speed m/s 1.6 
Oa O2 concentration in the air ppm 209 
ea Atmospheric vapour pressure hPa 0.15 
Ca CO2 concentration in the air ppm 380 
Ta Air temperature ºC 30 
Rin Incoming shortwave radiation W/m2 700 
Rli Incoming longwave radiation W/m2 300 

 377 
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 378 

3. Results 379 

3.1 Field measurements 380 

Physiological measurements collected in the field at the time of the image acquisitions depicted 381 

the stress variability consequence of the different water and nutrient management treatments. 382 

The ranges of variation of the leaf data collected on the whole experiment are shown in Figure 5.  383 

Leaf assimilation rates varied from 1.2 to 16.2 µmol m-2 s-1 for all the leaves measured. The 384 

measurements were averaged per tree and later per treatment plot (2 trees per plot) for a total of 385 

4 repetitions per treatment. Averaged plot values were used for further analysis. The ranges of 386 

variation found for the rest of the leaf parameters measured in the field can be found in Figures 387 

5b-d.  388 

The impact of varying LAI and chlorophyll content on the spectra, and therefore on the 389 

relationships Vcmax vs. PRI and Vcmax vs. SIF was further investigated using SCOPE simulations. 390 

Figure 6 shows there is not a single relationship for Vcmax estimation using PRI or SIF as the 391 

relationship is highly affected by the canopy structure (i.e. LAI; Figures 6a and 6b) and chlorophyll 392 

content (Figures 6c and 6d). Similar results were obtained for other indices of the PRI family 393 

developed to account for the effects of canopy structure or pigment concentration (data not 394 

shown).  395 
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Control  RDI1   RDI2 Control  RDI1   RDI2 

  

       
Control  RDI1   RDI2 Control   RDI1   RDI2 

Figure 5. Ranges of variation for the four physiological variables measured in the field at both 396 
dates: Assimilation rate (a), stomata conductance (b), steady-state fluorescence (c) and SPAD 397 
chlorophyll index (d). Crossing line refers to median value and box amplitude refers to the second 398 
and third quartiles’ limits. Whiskers represent the max and minimum data without outliers.  399 

 400 

3.2. SCOPE model inversion for Vcmax estimation 401 

The lack of a single relationship between modelled Vcmax and PRI, highly affected by structure 402 

and chlorophyll content, explains why the coefficients of determination and significance of the 403 

relationships between reflectance indices calculated from the hyperspectral imagery and the 404 

field-measured assimilation rate for each day are not very strong, ranging between r2=0.04 and 405 

r2=0.47. Still, indices in the green region and FLD as a proxy of SIF outperformed structural and 406 

pigment indices when tracking assimilation levels (Table 5). 407 

a) b) 

c) d) 
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(a) (b) 

  
(c) (d) 

Figure 6. Results of modeling the effect of chlorophyll content and LAI variation on Vcmax vs sun-408 
induced chlorophyll fluorescence calculated with the in-filling method at 760nm (a and c) and 409 
Vcmax vs PRI (b and d).  410 

 411 

Vcmax derived from model inversion using the green spectral region presented more robust 412 

relationships vs. assimilation rates measured in the field for both days than those obtained from 413 

the reflectance indices described above (r2=0.67-0.84, p-value<0.005). The relationships between 414 

Vcmax and assimilation showed a steady increasing trend until reaching a saturation around 100 415 

μmol m–2⋅s–1 (Figure 7). A comparison of the inverted and image spectrum for one monitored tree 416 

per treatment (Figure A2) and the retrieved parameter ranges per treatment (Figure A1) has been 417 

presented in the Appendix to this manuscript. 418 
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The results of applying the same model inversion method to other spectral regions did not yield 419 

as good results (Table 5). 420 

Vcmax retrieved by model inversion showed higher maximum carboxylation rate for higher 421 

assimilation and overall better separability between treatments than commonly used vegetation 422 

indices (one-way ANOVA analysis p-value = 0.08; eta value η = 0.5 as opposed to η = 0.1-0.4) 423 

as it was estimated accounting for the structural differences across the experimental field (Figure 424 

8b). 425 

Table 5. Coefficients of determination (r2) for the relationships between assimilation vs. the 426 
different vegetation indices and vs. Vcmax resulting from SCOPE model inversion using wavelet 427 
transforms over 4 different spectral regions. 428 

Index r2 
(DOY: 218) 

r2 
(DOY: 237) 

r2 
(both days) 

Structural indices  
NDVI 0.38* 0.27* 0.25* 
RDVI 0.38* 0.15 0.18* 
EVI 0.39* 0.16 0.20* 
MTVI 0.37* 0.16 0.13* 
Chlorophyll indices  
CI 0.35* 0.13 0.27* 
TCARI/OSAVI 0.15 0.04 0.11 
SIPI 0.37* 0.05 0.23* 
Indices based on the green region  
PRI 0.44* 0.32* 0.17* 
PRI515 0.41* 0.19 0.26* 
PRIM1 0.42* 0.18 0.26* 
PRIM2 0.47* 0.34* 0.24* 
PRIM3 0.41* 0.27* 0.21* 
PRIn 0.42* 0.33* 0.26* 
Fluorescence indicators  
FLD 0.49* 0.64** 0.35* 
Vcmax from SCOPE model inversion 
505 – 560 nm 0.67** 0.84*** 0.56*** 
700 – 750 nm 0.41* 0.25 0.16* 
505–650 nm & 700–750 nm 0.47* 0.09 0.12 
500 – 750 nm 0.38* 0.05 0.21* 
*p-value<0.1 **p-value<0.01  ***p-value<0.001  

 429 

 430 
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(a) (b) 

Figure 7. Logarithmic relationships between Vcmax derived from SCOPE model inversion using 431 
the 505-560nm spectral region and assimilation rates measured in the field at both data 432 
acquisition dates DOY: 218 during kernel filling (a) and DOY: 237 after harvest (b). Error bars 433 
refer to standard deviation values for assimilation measurements in the field. 434 

 435 

Both SIF and PRI followed the general trend of the differences found in assimilation rates. As 436 

expected, treatment blocks with higher assimilation rates (Figure 8a) also showed higher SIF in 437 

average (Figure 8c) and lower PRI (Figure 8d) corresponding to lower proportional content of 438 

photoprotective xanthophyll compounds. The means of both the Normalised Difference 439 

Vegetation Index (NDVI) and the Chlorophyll Index (CI) per treatment, indices developed to track 440 

vigour and chlorophyll changes, did not follow the trends of assimilation measured for each 441 

treatment as clearly as Vcmax (Figures 8e and 8f). 442 

The analysis of Vcmax derived from model inversion using the green spectral region and A was 443 

shown to be more robust across dates, as displayed in Figure 9a and Table 5. On the other hand, 444 

SIF and PRI did not follow the same trend when both dates were analysed together, being highly 445 

affected by environmental conditions and illumination at the moment of the data capture. NDVI 446 

presented more stability over time although, as it is a proxy of tree vigour and only indirectly linked 447 

to assimilation rate, it did not show a strong relationship as Vcmax derived by model inversion. 448 

 449 
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Control   RDI1   RDI2 Control  RDI1    RDI2 

  
Control  RDI1   RDI2 Control   RDI1   RDI2 

  
Control  RDI1   RDI2 Control  RDI1    RDI2 

 450 

Figure 8. Ranges of variation found in crown averages for each treatment for assimilation rate (a), 451 
Vcmax inverted using SCOPE (b), PRI derived from the hyperspectral image (c) and SIF calculated 452 
from the image data using the in-filling method at 760 nm O2-A band (d). Crossing line refers to 453 
median value and box amplitude refers to the second and third quartiles’ limits. Whiskers 454 
represent the max and minimum data without outliers and middle ‘x’ refers to the mean value. 455 

 456 
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 457 

   
(a) (b) 

  
(c) (d) 

 458 

Figure 9. Relationships obtained between assimilation rate measured in the field and Vcmax 459 
derived from SCOPE model inversion using the green spectral region (a), SIF quantified from 460 
hyperspectral imagery through the FLD principle (b), PRI (c) and NDVI (d) spectral indices for all 461 
the measurements at kernel filling (DOY: 218) and at harvest (DOY: 237).  462 

 463 

  464 
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Discussion 465 

According to the radiative transfer modelling analyses carried out to study the effects of Vcmax on 466 

the electromagnetic spectrum,  the spectral regions that are affected by Vcmax changes are located 467 

in the green over the 505-560nm range and in the red-far red region between 650 and 800 nm, 468 

where chlorophyll fluorescence is emitted. This analysis is in agreement with the results obtained 469 

assessing different hyperspectral reflectance indices, which show stronger correlations between 470 

assimilation rates measured in the field and spectral indices based on green bands such as the 471 

Photochemical Reflectance Index (PRI) (Table 5) and SIF. It also suggests that those are the 472 

regions that need to be used to retrieve Vcmax through model inversion using SCOPE.  473 

There is extensive literature that focuses on using the green and the chlorophyll fluorescence 474 

regions to detect pre-visual vegetation stress, that is, before changes are detectable by structural 475 

indices (Peñuelas et al., 1994; Thenot et al., 2002; Suarez et al., 2009; Flexas et al., 2000, 2002; 476 

Moya et al., 2004; Perez-Priego et al., 2005) and photosynthetic performance (Filella et al., 1996; 477 

Trotter et al., 2002; Evain et al., 2004). However, it has also been demonstrated that PRI indices 478 

are highly affected by illumination geometry, vegetation structure, pigment composition and soil 479 

background (Barton and North, 2001; Suarez et al., 2008), making their application over large 480 

areas challenging. Here we also show with physical modeling that the effects of LAI and 481 

chlorophyll content variations prevent PRI and SIF indices from having a direct universal link to 482 

assimilation rates (Figure 6). In addition to this, the methods using the PRI family of indices or 483 

SIF over time series require normalization techniques to account for the differences in illumination 484 

intensity at the time of image acquisition (Suarez et al., 2010, Zarco-Tejada et al., 2016) or within 485 

field structural or biophysical heterogeneity (Zarco-Tejada et al., 2013b; Koffi et al, 2015). Hence, 486 

these reasons suggest that methods based on spectral indices would fail at representing the 487 

variability of assimilation rate over time in crops where long-term stress has had an impact on 488 

growth and leaf composition.  489 
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In the past, new formulations and normalisations were developed to track plant traits overcoming 490 

confounding effects like LAI or pigment content (see PRI derived indices in Table 3; Haboudane 491 

et al., 2002; Zarco-Tejada et al., 2013; Woodgate et al., 2019). Still, these formulations end up 492 

being species specific and they need to be used in combination with empirical links to a particular 493 

trait. Established empirical relationships between vegetation indices and plant traits add another 494 

level of complexity as these relationships are highly empirical and difficultly transferable across 495 

fields and scales. The quantification of plant traits directly linked with plant functioning through 496 

physical model inversion allows vegetation monitoring precisely, being transferable and 497 

applicable over time series. In this study, we attempted the quantification of Vcmax to track the 498 

limitation in photosynthetic efficiency under stress. The method accounts for varying LAI and leaf 499 

chlorophyll content parameters to overcome the limitations pointed out in Figure 5 and the wide 500 

range of variation found in the field as a result of a long-term experimental design. We also 501 

assumed within-field variations in other pigments concentration, constituents and variations in leaf 502 

inclination distribution function which has demonstrated a very dynamic response to stress in 503 

almond trees (Egea et al., 2012). With SCOPE model we can simulate the effects of plant stress 504 

on the photosynthetic efficiency and the resulting reflectance signal under different illumination 505 

and ambient conditions (Van der Tol et al., 2014) ensuring the applicability of the method to time 506 

series of data.  507 

One limitation of SCOPE model is that the canopy radiative transfer module assumes a continuum 508 

1D layer, lacking the capacity of other models that account for full 3D structural parametrization 509 

of tree crowns. Previous work has proved that the quantification of Vcmax through SCOPE model 510 

inversion is achievable for wheat (Camino et al., 2019), a homogeneous single layer crop without 511 

woody elements and complex ramifications. Recent developments of SCOPE adapted the 512 

radiative transfer to account for the vertical heterogeneity of biophysical inputs across the canopy 513 

(Yang et al., 2017) but the capability of simulating tree crowns is still not present. Nevertheless, 514 

high resolution imagery allows extracting crown spectra from pure vegetation pixels. We applied 515 
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the model inversion to pure vegetation pixels and our results suggest that Vcmax derived from 516 

model inversion can be used to track assimilation rates in orchard trees.  517 

Inverting SCOPE to derive Vcmax using the green spectral region yielded better results with field-518 

measured assimilation rate (r2= 0.7-0.8) than any other approach based on common narrow-band 519 

spectral indices (r2=0.3-0.5), SIF (r2= 0.5-0.6) or model inversion using other spectral regions 520 

(Table 5). Previous studies have inverted SCOPE to derive Vcmax based on the SIF signal, these 521 

studies are either using satellite imagery with low spatial resolution (Zhang et al., 2014; 2018) or 522 

are applied to continuous crops lacking the complex architecture of woody canopies (Camino et 523 

al., 2019). Retrieving Vcmax for individual crowns using SCOPE poses extra challenges related to 524 

the proper structural characterisation of the canopy with a model that does not account for 525 

branching architecture and the presence of woody components. By employing the wavelet 526 

transformed amplitude, the estimations are resulting from the local variation of reflectance 527 

function of Vcmax response feature. This technique removes the effects of wider spectral region 528 

variation while quantifying the narrow effects (Mittermayr et al., 2001) and has been suggested 529 

as a method to minimise the effects of canopy structure on the spectral signal (Blackburn, 2006). 530 

Hence the technique is not as affected by errors in atmospheric corrections as if the inversion is 531 

based on the minimum spectral distance. This method has been used in the past to invert plant 532 

traits from hyperspectral imagery yielding similar results (Blackburn and Ferwerda, 2008; Cheng 533 

et al., 2011; Kattenborn et al., 2017). The use of the green region as opposed to the chlorophyll 534 

fluorescence emission region has further benefits for future applicability of the method because 535 

1) detectors have higher sensitivity over the visible part of the spectrum and the signal to noise 536 

ratio is higher, 2) there are not narrow atmospheric absorption features, ensuring a more reliable 537 

calibration regardless the quality of ancillary data measured in the field, 3) vegetation reflectance 538 

in the green region typically varies within a 5% and does not present abrupt changes driven by 539 

vegetation structure like in the red-far-red regions and 4) the absolute signal variation due to Vcmax 540 

changes presents a higher proportional variation on the signal due to the higher absorption of 541 
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light in the visible. On the other hand, in the green region there is a high absorption due to different 542 

photosynthetic pigments, and it is a region where their temporal dynamics is not yet well 543 

understood, in particular under stress conditions. 544 

The results suggest that the inverted maximum carboxylation rate increases linearly with 545 

assimilation measured in the field up to a saturation point. At that point, around 100 μmol m–2 s–546 

1, the maximum carboxylation rate is not limiting assimilation in a linear manner. Zarco-Tejada et 547 

al. (2016) found a similar trend between assimilation and SIF. This could be attributed to a non-548 

linear relationship between assimilation and respiration as they are known to respond differently 549 

to environmental factors like temperature (Bowling et al., 2001; Knohl and Buchmann, 2005) and 550 

stress (Raggi, 1995; Reichstein et al., 2005). Further SCOPE model analysis shows how the air 551 

temperature has an effect on the relationship between Vcmax and assimilation (data not shown), 552 

this effect is still to be properly assessed in order to track assimilation rates for periods with highly 553 

changing environmental conditions. Another cause can be the potential variability of the Jmax/Vcmax 554 

ratio, which has been demonstrated to vary with leaf temperature in almond trees (Egea et al., 555 

2011).  556 

The common trend followed by the results of both data acquisition days (p value<0.0001) 557 

indicates this method is applicable to time series without the need of further normalisation 558 

providing a reliable tool to quantitatively track photosynthetic rate in tree orchards using SCOPE. 559 

Although previous studies have successfully track Vcmax trends over time, these are limited to 560 

herbaceous crops over coarse spatial scales (Zhang et al., 2014). Previous methods also relied 561 

on the successful retrieval of SIF remotely, or require a high and accurate set of ancillary data 562 

(Guanter et al., 2014; Bayat et al., 2018). The results suggest the methodology presented in this 563 

study using the green spectral region properly accounts for existing biophysical variability and 564 

overcomes the confounding structural effects on the spectra while empirical models alone based 565 

on the same part of the spectrum could not fully track assimilation differences. Furthermore, this 566 

study demonstrates that an ultralight hyperspectral sensor can be flown on board unmanned 567 
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platforms (Thong et al., 2018; Lucieer et al., 2014), opening several avenues of future research 568 

and applications in remote sensing science of plant functioning. 569 

 570 

4. Conclusions 571 

The remote assessment of photosynthetic performance under stress is challenging due to the 572 

confounding effects of varying structural and biophysical properties in woody crops such as in the 573 

case of orchards. Here, we present a methodology that accounts for the variability in the structural 574 

and pigment composition to quantify the maximum carboxylation rate (Vcmax) as an indicator of 575 

photosynthetic rate reductions under stress through SCOPE model inversion. Results suggest 576 

that the methodology presented overcomes the biophysical and illumination effects while narrow-577 

band spectral indices cannot fully assess assimilation differences across dates. The robustness 578 

of the method has been demonstrated with datasets acquired at two different times along the 579 

season. Finally, the lightweight specifications of the hyperspectral sensor used in this study allows 580 

its use from both manned and unmanned platforms, providing a flexible, affordable and practical 581 

means to both small and large area crop monitoring and assessment of plant functioning traits. 582 
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List of figure captions: 950 

Figure 1. Overview of the image captured over the experimental field on DOY 160 (a) with the 951 
control blocks in green (C), RD1 blocks in yellow and RD2 blocks in red. Zoom of the automatic 952 
segmentation applied to one tree of each treatment (b), example reflectance and radiance 953 
spectrum from a tree of the control group (c). 954 

Figure 2. Average radiance and reflectance spectrum for each of the treatments over the 400-955 
800nm spectral range (a and d), zooms over the green (500-560 nm) region (b and e) and far-956 
red-NIR (700-800 nm) region (c and f) where physical models indicate Vcmax change effects. 957 

Figure 3. Results of simulating the spectral response to Vcmax variation over the range 10 to 958 
250 µmol m-2 s-1 leaving the rest of parameters fixed (LAI=3, Cab=80, Cm=Cw=0.02) for the full 959 
400-800nm range (a), for the 650-800nm region (b) and for 505-565 nm region (c). Reflectance 960 
difference between the maximum and minimum feature result of Vcmax variation is represented 961 
in a dotted line. (d) reflectance difference represented for 200 simulations with Vcmax ranging 962 
from 0 to 250 µmol m-2 s-1 over the green spectral feature. 963 

Figure 4. Overview of the methodology used to retrieve Vcmax through SCOPE model inversion 964 
including hyperspectral image calibration, SCOPE parametrisation and input preparation and 965 
SCOPE model inversion.  966 

Figure 5. Ranges of variation for the four physiological variables measured in the field at both 967 
dates: Assimilation rate (a), stomata conductance (b), steady-state fluorescence (c) and SPAD 968 
chlorophyll index (d). Crossing line refers to median value and box amplitude refers to the 969 
second and third quartiles’ limits. Whiskers represent the max and minimum data without 970 
outliers. 971 

Figure 6. Results of modeling the effect of chlorophyll content and LAI variation on Vcmax vs sun-972 
induced chlorophyll fluorescence calculated with the in-filling method at 760nm (a and c) and 973 
Vcmax vs PRI (b and d).  974 

Figure 7. Logarithmic relationships between Vcmax derived from SCOPE model inversion using 975 
the 505-560nm spectral region and assimilation rates measured in the field at both data 976 
acquisition dates DOY: 218 during kernel filling (a) and DOY: 237 after harvest (b). Error bars 977 
refer to standard deviation values for assimilation measurements in the field. 978 

Figure 8. Ranges of variation found in crown averages for each treatment for assimilation rate (a), 979 
Vcmax inverted using SCOPE (b), PRI derived from the hyperspectral image (c) and SIF 980 
calculated from the image data using the in-filling method at 760 nm O2-A band (d). Crossing line 981 
refers to median value and box amplitude refers to the second and third quartiles’ limits. Whiskers 982 
represent the max and minimum data without outliers and middle ‘x’ refers to the mean value. 983 

Figure 9. Relationships obtained between assimilation rate measured in the field and Vcmax 984 
derived from SCOPE model inversion using the green spectral region (a), SIF quantified from 985 
hyperspectral imagery through the FLD principle (b), PRI (c) and NDVI (d) spectral indices for all 986 
the measurements at kernel filling (DOY: 218) and at harvest (DOY: 237). 987 

Figure A1. Results of modeling the relationship between Vcmax and assimilation rate for a 988 
standard set of inputs, the atmospheric conditions used for one of the days in this study and a air 989 
temperature ranging from 29 to 36 degrees. 990 

Figure A2. Ranges of variation of SCOPE input parameter inversion for each treatment for 991 
chlorophyll (a), carotenoid (b), anthocyanin (c), LAI (d), water (e) and dry matter content (f). 992 
Crossing line refers to median value and box amplitude refers to the second and third quartiles’ 993 
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limits. Whiskers represent the max and minimum data without outliers and middle ‘x’ refers to the 994 
mean value. 995 

Figure A3. Comparison of spectra obtained from SCOPE model inversion and image average 996 
spectra for one monitored tree per treatment: Control (a), RDI1 (b) and RDI2 (c). 997 
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Appendix. SCOPE model inversion results 999 
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  1000 

Figure A1. Ranges of variation of SCOPE input parameter inversion for each treatment for 1001 
chlorophyll (a), carotenoid (b), anthocyanin (c), LAI (d), water (e) and dry matter content (f). 1002 
Crossing line refers to median value and box amplitude refers to the second and third quartiles’ 1003 
limits. Whiskers represent the max and minimum data without outliers and middle ‘x’ refers to 1004 
the mean value. 1005 
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Figure A2. Comparison of spectra obtained from SCOPE model inversion and image average 1008 
spectra for one monitored tree per treatment: Control (a), RDI1 (b) and RDI2 (c). 1009 
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