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Abstract
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common meta-
bolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged mac-
romolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is known that autophagy 
dysfunctions can promote tumorigenesis and cancer development, but, interestingly, its overstimulation by cytotoxic drugs 
may also induce cell death and chemosensitivity. For this reason, the possibility to modulate autophagy may represent a valid 
therapeutic approach to treat different types of cancers and a variety of clinical trials, using autophagy modulators, are cur-
rently employed. On the other hand, recent progress in nanotechnology offers plenty of tools to fight cancer with innovative 
and efficient therapeutic agents by overcoming obstacles usually encountered with traditional drugs. Interestingly, nanoma-
terials can modulate autophagy and have been exploited as therapeutic agents against cancer. In this article, we summarize 
the most recent advances in the application of metallic nanostructures as potent modulators of autophagy process through 
multiple mechanisms, stressing their therapeutic implications in cancer diseases. For this reason, we believe that autophagy 
modulation with nanoparticle-based strategies would acquire clinical relevance in the near future, as a complementary therapy 
for the treatment of cancers and other diseases.
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Introduction

Cancer is a complex set of diseases that represent almost 
one-third of the leading causes of death and disability 
worldwide [1]. Although the tumors widely differ from their 
genetic and molecular basis, phenotypic manifestations and 
variability on the prognosis, they share common hallmarks 
such as self-sustained proliferative abilities, sustained angio-
genesis, drastic metabolic alterations, or the capability to 

invade surrounding tissues and metastasize [2]. In addition, 
a relevant number of human tumors display dysregulation 
on autophagy, the essential cellular housekeeping mecha-
nism that enables eukaryotic organisms to maintain cellular 
homeostasis and normal function by degrading and turning 
over damaged organelles and misfolded proteins [3, 4]. In 
tumors with enhanced autophagy, its inhibition affects tumor 
cell survival under metabolic and chemotherapy stresses. On 
the other hand, excessive autophagy induction by cytotoxic 
drugs or autophagy inducers may also lead to autophagic 
cell death. Hence, the modulation of autophagy represents 
a therapeutic approach for different types of cancers [5]. 
Traditional chemotherapeutic drugs present a variety of side 
effects such as low specificity, irregular distribution in tis-
sues and organs, rapid drug clearance and biodegradation 
[6]. Therefore, new cancer treatments are desired, such as 
those derived from nanomedicine. This field of research 
can be defined as nanotechnology applied to human health 
and provides novel approaches for treating many human 
diseases, including cancer [7]. The majority of nanomateri-
als exhibit unique properties that make them useful for a 
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variety of biotechnological applications. These properties 
have been exploited to create effective therapeutic and/or 
diagnostic tools [8, 9]. Nanomaterials can be used as cyto-
toxics, and/or enhancers of standard chemotherapies, as well 
as, drug delivery systems, reducing the side effects of con-
ventional drugs [10, 11]. A number of nanomedicines have 
been assessed in clinical trials in combination with various 
therapeutic agents, mainly anticancer drugs, and many more 
are expected to be approved by the Food and Drug Admin-
istration (FDA) in the near future [12, 13]. Interestingly, 
several studies have reported the ability of various types 
of nanomaterials to exert a cytotoxic effect by modulating 
the autophagy process [14, 15]. Despite the risk of their 
inherent toxicity in immunity cells, and cardiovascular and 
neurological systems, nanomaterials may serve as therapeu-
tic agents against autophagy-related diseases [14, 15]. In 
this review, we summarize the recent studies on the capa-
bility of nanostructures to promote cell death by autophagy 
overstimulation in cancerous cells. Furthermore, to better 
introduce the reader to this topic we have included some 
sections dealing with autophagy, where its mechanisms and 
implications are detailed, as well, as some uses of nanoma-
terials in nanomedicine.

Macroautophagy

Macroautophagy (commonly referred to as autophagy) is 
an intracellular degradative process by which damaged 
macromolecules and organelles are targeted by autophagic 
vesicles to lysosomes and then eliminated. Autophagy is cru-
cial to maintain primary biological activities during cellular 
stresses, such as nutrient starvation [16]. Once autophagy 
is activated, the cellular components are embedded into 
double-membrane vesicles (autophagosomes), which fuse 
with lysosomes to form an autophagolysosome structure 
to degrade its contents by lysosomal hydrolases providing 
a nutrient source for maintaining vital cellular activities 
[17]. Autophagy requires the activation of some autophagy-
related genes (ATGs), which play a pivotal role in the forma-
tion of double-membrane autophagosome vesicles and the 
stimulation of the autophagy machinery [18, 19]. Vesicular 
protein sorting 34 (Vps34), belonging to the class III PI-3 
kinases, has been described to interact with Beclin-1 and 
other autophagy-related proteins playing a critical role in 
autophagy initiation [19]. Importantly, the ubiquitin-like 
conjugation systems are necessary for the activity of specific 
ATG proteins [20]. In particular, the mammalian homolog of 
ATG8, also called LC3B, is expressed as a full-length cyto-
solic protein that, upon induction of autophagy, is proteo-
lytically cleaved by ATG4, a cysteine protease, to generate 
LC3B-I. The carboxy-terminal glycine exposed by ATG4-
dependent cleavage is then activated in an ATP-dependent 

manner by the E1-like ATG7 and transferred to ATG3, 
to generate the active isoform LC3B-II. The recruitment 
and integration of LC3B-II into the growing phagophore 
are dependent on ATG5–ATG12 interaction, favoring the 
binding of LC3B-II on both internal and external surfaces 
of autophagosomes, where it plays a role in both fusion of 
membranes and in selecting cargo for lysosomal degradation 
[21] (Fig. 1).

AMPK and mTOR: the regulators of autophagy

The nutrient energy sensor AMP-activated protein kinase 
(AMPK) is the master regulator of autophagy. It inhibits 
mTORC1 through phosphorylation of TSC2 and Raptor in 
response to cellular energy cues [22, 23] and the AMPK-
dependent ULK1 phosphorylation is a required step to trig-
ger the autophagy machinery [24]. Under energetic stress, 
autophagy initiators unc-51-like kinase 1 (ULK1) complex 
promotes autophagy by targeting several downstream cru-
cial autophagy effectors involved in the initiation of the pro-
cess, such as the actin-associated motor protein myosin II 
and ATG9 [24]. Mammalian target of rapamycin (mTOR), 
a serine/threonine protein kinase with large molecular 
size, belongs to the phosphatidylinositol kinase-related 
kinase (PIKK) family and it is implicated in the regulation 
of multiple cellular processes including cell growth, cell 
cycle, cell survival, as well as autophagy. The observation 
that treatment with mTOR inhibitors, such as rapamycin, 
is sufficient to induce autophagy even in the presence of 
nutrients represents valid evidence for the conclusion that 
mTOR complex is a powerful repressor of autophagy [25]. 
mTOR is composed of two multiprotein enzymatic func-
tional complexes, mTORC1 and mTORC2 [26]. Contra-
rily to mTORC2, mTORC1 is sensitive to the inhibition by 
rapamycin, and it is directly regulated by the cellular nutri-
ent status, including growth factors and amino acid avail-
ability, playing essential roles in the regulation of protein 
translation and autophagy [26]. Although mTORC2 was 
discovered recently, it has already been demonstrated that 
mTORC2 plays a role in chaperone-mediated autophagy 
[27] and could activate autophagy via FoxO3 [28]. Interest-
ingly, mTORC2 phosphorylates and activates Akt, which 
has a role in the regulation of cell proliferation, survival, 
metabolism, and transcription [26]. Genetic and biochemical 
studies demonstrated that the inhibition of ULK1 by mTOR 
is a crucial mechanism involved in autophagy repression 
[29]. Importantly, recent studies showed that mTOR can 
phosphorylate ULK1 on Ser757 to favor autophagy block-
age [24]. Several studies indicate that wild-type p53 protein 
triggers autophagy in cancer cells through various mecha-
nisms including the stimulation of AMPK, the inhibition of 
the mTOR (by upregulation of PTEN and TSC1), and the 
induction of DRAM1 [30]. The functional interplay between 
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AMPK and wtp53 is a well-described mechanism involved 
in tumor suppression. Indeed, the stimulation of AMPK by 
energy stress promotes the phosphorylation and activation 
of wtp53 [31, 32]. Moreover, AMPK can increase both the 
activity and the stability of wtp53 through direct phospho-
rylation of p53 and inactivation of MDMX-mediated ubiq-
uitination process, thus prolonging the half-life of wtp53 
itself [33]. Wtp53 may, in turn, increase AMPK activity 
through transcriptional activation of the gene encoding the 
β subunit of the enzymatic complex [34] and Sestrins [35], 

providing positive feedback that sustains an autophagic 
AMPK signaling.

Mitophagy: a specialized form of autophagy

Mitochondria are cellular organelles playing a crucial role 
in energy metabolism, regulation of cell signaling and apop-
tosis in eukaryotic cells [36]. To maintain cellular homeo-
stasis, the cell has evolved complex systems for the qual-
ity control and clearance of mitochondria. Mitophagy is a 

Fig. 1  Mechanism of macroautophagy. Cellular stresses induce 
AMPK signaling that inhibits the anti-autophagic mTOR com-
plex (mTORC1 and mTORC2). Consequently, Beclin-1, ULK1, 
and Vps34 mediate phagophore formation and autophagy initiation. 
Recruitment of LC-3 II into the growing phagophore is dependent 
on ATG5–ATG12 interaction which favors the binding of LC3B-

II on both internal and external surfaces of autophagosomes, where 
it plays a role in both fusion of membranes with lysosomes and in 
selecting cargo for lysosomal degradation. Depending on the nature 
of the stimulus and by cellular context, autophagy acts as a pro-sur-
vival mechanism by maintaining vital cellular activities, or drives cell 
death-type-II, thus acting as tumor suppressor event
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selective form of autophagy, by which dysfunctional or dam-
aged mitochondria are selectively targeted by autophago-
somes and delivered to lysosomes to be recycled by the cell. 
Hence, mitophagy represents an essential quality control 
mechanism to ensure mitochondrial network’s integrity and 
functionality. Similarly to macroautophagy, mitophagy is 
tightly regulated by a variety of proteins controlling each 
phase of the process, to ensure the selective sequestration 
of those mitochondria that need to be eliminated, in the 
forming autophagosome. Efficient mitophagy occurs during 
some vital biological processes through Parkin-dependent 
and Parkin-independent pathways, and allows the damaged 
organelles to be targeted into the nascent autophagosome, 
without affecting the entire mitochondrial network [37, 38]. 
However, an extensive or uncontrolled mitophagy can lead 
to bioenergetic failure, whereas excessive mitochondrial bio-
genesis can generate high levels of reactive oxygen species 
(ROS) and promote apoptosis or cell survival depending on 
the type of stimulus and the cellular context [38]. There-
fore, the maintenance of a balanced healthy mitochondrial 
population through both processes is essential for cellular 
function and survival [39]. Defects in mitophagy machinery 
are linked to most of the neurodegenerative diseases [40], to 
tumorigenesis, neoplastic progression and chemoresistance 
[41, 42]. Therefore, we hypothesize that pharmacological 
modulation of mitophagy could represent a potent strategy 
against many human diseases.

Autophagy in cancer

Autophagy has been described to play a role in physiological 
processes, mammalian development and a variety of human 
diseases, including cancer, neurodegenerative diseases and 
muscular disorders [43]. Autophagy regulation is strictly 
interconnected with the aberrant setting of cancer cell 
metabolism as revealed by the fact that mTOR and AMPK 
pathways are both the master regulators of autophagy and 
the most critical sensors of the cellular energy status [44]. In 
particular, the mTOR complex stimulates anabolic biosyn-
thesis for cancer cell growth and inhibits autophagy, while 
AMPK signaling triggers the degradation of macromole-
cules, including lysosomal autophagic catabolism [45]. The 
role of autophagy in regulating cancer cell death or survival 
remains highly controversial and it is likely reliant on the 
tumor type, the stage of neoplasia and the cellular context, 
as well as by metabolic context in which the cells lie [46].

Some studies support the idea that, in established tumors, 
constitutive autophagy may have a protective role in can-
cer cells by removing damaged organelles or recycling 
misfolded macromolecules [47]. In support of this hypoth-
esis, several studies report that autophagy tries to fulfill the 
high metabolic demands of the proliferating tumor cells 
exposed to stressful conditions, such as nutrient deprivation, 

oxidative stress, hypoxia, or in response to therapy [46, 48]. 
Hypoxic microenvironments trigger HIF-1α-dependent and 
-independent autophagy, which also contributes to tumor 
survival [49]. Interestingly, cancers harboring activating 
KRAS mutations have a high basal rate of autophagy, even 
in growth conditions [50]. It has been reported that phar-
macological and genetic inhibition of autophagy results in 
tumor regression in pancreatic cancer xenografts and genetic 
mouse models [50, 51]. Thus, by enhancing stress tolerance 
and providing an alternative nutrient source by which cancer 
cells can meet their massive nutrient and energy demands, 
autophagy appears to serve as a pro-survival mechanism for 
tumor cells.

However, it is also well established that cancer cells hav-
ing uncontrolled autophagy can also undergo cell death, 
also called cell death-type II, likely due to excessive deg-
radation of cellular constituents and organelles required for 
homeostasis of the cells. Hence, autophagy has been widely 
established as a tumor-suppressive mechanism, and can-
cer cells can escape from extensive autophagic cell death 
resulting in the enhancement of ROS production, genomic 
instability, and tumor progression [54]. Defects in autophagy 
cause the accumulation of abnormal mitochondria that are 
a potential source of ROS that lead genomic instability, and 
cancer initiation and progression [52]. Moreover, autophagy 
dysfunctions cause also activation of the DNA damage 
response, DNA copy number variations, and genetic insta-
bility, which lead to the acquisition of genome mutations 
that drive tumorigenesis [53]. This situation of chronic tissue 
damage also provokes an inflammatory response that can, in 
turn, sustain tumor growth through cytokine and chemokine 
productions [54]. Thus, tumor promotion conferred by 
autophagy defects may result from both mutagenesis and 
the creation of an inflammatory environment. In this sense, 
it has been reported that mice having monoallelic deletion 
of the autophagy-related gene beclin1 develop spontaneous 
tumors. Allelic loss of beclin1 was also observed in 40–75% 
of breast, ovarian, and prostate cancers [3, 55]. In addition, 
accumulation of autophagy adaptor protein, p62/SQSTM1, 
as a result of the inhibition of autophagy, was reported to be 
responsible for the tumorigenesis by multiple mechanisms 
[56].

This evidence strongly suggests that autophagy is an 
important mechanism that suppresses tumor initiation and, 
when impaired, may lead to tumorigenesis. Recently, several 
studies have demonstrated that mutant p53 proteins exert 
oncogenic ability that leads to high genomic instability, 
reduced response to chemotherapy and generally poor clini-
cal outcome of cancer patients [57]. Interestingly, contrarily 
to the wild-type counterpart, mutant p53 proteins can inhibit 
autophagy machinery through the stimulation of mTOR 
signaling pathway [58, 59] and the inhibition of AMPK [60, 
61]. This oncogenic ability represents an essential turning 
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point to sustain cancer cell proliferation and growth. On the 
other side, autophagy can trigger mutp53 protein degrada-
tion in a functional interplay that can regulate tumor pro-
gression and the response to antitumor therapies [62].

Autophagy in other diseases

Neurodegenerative diseases, such as Parkinson’s disease 
(PD), Alzheimer’s disease (AD), Huntington’s disease (HD), 
and amyotrophic lateral sclerosis (ALS), are characterized 
by the progressive loss of neurons and/or neuronal functions. 
These syndromes are developed by the presence of aggre-
gate-prone neurotoxic proteins, in the form of aggresomes 
and/or inclusion bodies, as well as by the presence of dys-
functional mitochondria [63]. In this regard, autophagy 
protects against neurodegenerative diseases acting as a 
quality-control system and by removing protein aggregates 
and damaged organelles. Therefore, it represents an essen-
tial process for the maintenance of neuronal homeostasis 
[64]. Recent findings have highlighted that autophagy has a 
crucial role also in the control of muscle mass [65]. Over-
stimulated autophagy is harmful to myofiber health and is 
involved in some inherited muscle diseases [65]. However, 
also defective autophagy clearance favors the aggregation 
of misfolded proteins and damaged organelles, and contrib-
utes to the pathogenesis of different forms of muscular dys-
trophies and congenital myopathies [65–67]. Interestingly, 
recent observations suggest that re-establishing a proper 
autophagic flux with pharmacological treatments might rep-
resent a promising strategy for counteracting muscle loss in 
muscular disorders [68]. Autophagy pathway plays a central 
role in the cellular quality control, metabolic adaptation and 
clearance of misfolded proteins and/or damaged organelles 
in a plethora of human diseases, and the pharmacological 
modulation of this process may represent a valid therapeutic 
challenge [77].

Current cancer treatments based on autophagy 
modulation

In tumors with enhanced autophagy, as a mechanism of sur-
vival and chemoresistance, the inhibition of autophagy can 
suppress the ability of tumor cells to survive under cellular 
metabolic stress [69, 70] making them more prone to initi-
ate cell death mechanisms. In this sense, there are a variety 
of examples showing that autophagy inhibitors, when used 
in combination with anticancer drugs, may sensitize chem-
oresistant cells, thus inhibiting tumor survival [47, 71]. For 
example, it has been reported that inhibition of autophagy 
function by depletion of Atg5, Atg7 or beclin1 may revert 
the acquired resistance against tamoxifen in HER-positive 
breast cancer cells [72]. The combinatorial treatment con-
sisting of autophagy inhibitor 3-methyl-adenine (3-MA) and 

trastuzumab (Tmab) in HER2-positive breast cancer cells 
can increase the potency of chemotherapy [73]. Increased 
autophagy is also associated with cisplatin resistance in 
ovarian cancer cells, and Atg5 deletion in these cells induces 
apoptotic cell death [74].

Among the multiple compounds that inhibit the different 
phases of autophagy, nowadays the only clinically approved 
autophagy inhibitor by the FDA is the anti-malarial chloro-
quine (CQ) and its derivatives, such as hydroxychloroquine 
(HCQ) [75]. HCQ belongs to the class of lysosomotropic 
agents that can inhibit lysosomal acidification and prevent 
the degradation of autophagosomes, thereby suppressing 
autophagy [76]. HCQ has been shown to have antineoplastic 
effects in numerous preclinical experiments when combined 
with other agents [77]. In renal cell carcinoma lines, HCQ 
enhanced the cytotoxicity of mTOR inhibitor, such as tem-
sirolimus, promoting apoptosis and causing the downregula-
tion of phospho-S6 through a mechanism not found in other 
autophagy inhibitors, such as bafilomycin A1 [78]. In breast 
cancer cells, the combination of HCQ and tamoxifen (TAM) 
was more effective at inhibiting autophagy than monother-
apy in estrogen receptor-positive (ER+) breast cancer cell 
lines [79]. Frequently, cancer cells treated with chemother-
apy drugs exhibit autophagy induction that serves as survival 
mechanism. However, excessive autophagy induction upon 
cytotoxic drug treatment or using autophagy inducers may 
also lead to autophagic cell death. It has been reported that 
glioblastoma cells resistant to apoptosis die when treated 
with alkylating agents such as temozolomide and tyros-
ine kinase inhibitors such as dasatinib, where both induce 
autophagy [80]. Similarly, histone deacetylase (HDAC) 
inhibitors have also shown autophagy-inducing potential as 
one of its anticancer effects [81]. Proteasome inhibitors (PI) 
have also been shown to stimulate autophagy. Bortezomib, a 
PI used in the treatment of multiple myeloma and mantle cell 
lymphoma, has been shown to increase the early formation 
of autophagosomes and LC3-II, demonstrating the inducing 
effects on autophagy [82]. A well-known class of autophagy 
inductors includes analogs of the mTOR inhibitor rapamy-
cin, such as temsirolimus and everolimus. These compounds, 
used alone or in conjunction with chemotherapy drugs, show 
an antiproliferative effect in mantle cell lymphoma and acute 
lymphoblastic leukemia by overstimulating autophagy, 
which might cause tumor cell death [83, 84]. Everolimus 
has been approved for use by the FDA as an angiogenesis 
inhibitor in renal cell carcinoma, advanced breast cancer, 
and pancreatic neuroendocrine tumors [85, 86]. However, it 
is not clear whether the induction of autophagy by everoli-
mus contributes to its anti-angiogenesis ability. However, in 
clinical trials, current targeted anticancer treatments based 
exclusively on mTOR inhibition have demonstrated high 
resistance rates [87, 88] (Table 1). Numerous ongoing phase 
I/II clinical trials are investigating the combination of HCQ 
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with mTOR inhibitors in renal cell cancer, multiple mye-
loma and advanced solid tumors as reviewed by Duffy et al. 
[71]. The large number of ongoing trials demonstrates the 
enormous relevance that autophagy modulation can have, 
in combinatory treatments, to overcome the resistance to 
existing cancer therapies (Fig. 2). 

Nanomaterials as therapeutic tools

Recent progress in nanotechnology offers plenty of tools 
to fight cancer with innovative, personalized and efficient 
therapeutic agents by overcoming barriers or drawbacks 
usually encountered with traditional drugs [89]. The recent 
advances in the field of chemistry and material science have 
produced nanomaterials which are expected to improve the 

treatment of many diseases otherwise resistant to the tra-
ditional therapeutic approaches. Nanomaterials can act as 
cytotoxics and/or enhance the efficacy of standard chemo-
therapies. Moreover, they represent novel drug delivery 
systems thereby decreasing the side effects of conventional 
drugs. These nanomaterials exhibit unique physical, chemi-
cal, mechanical and optical properties that make them suit-
able as novel and powerful therapeutic tools. Depending on 
their morphology, size and chemical properties, nanomate-
rials are broadly divided into various categories, including 
liposomes, carbon-based materials, polymers, metals, metals 
oxide, and ceramics. Most of these nanomaterials are used as 
nanocarriers to deliver therapeutic molecules, such as drugs, 
proteins or nucleic acids [90–99].

One of the major challenges of nanomedicine consists of 
developing drug delivery systems to transfer drugs, proteins, 

Fig. 2  The dual role of autophagy in cancer. A variety of cellular 
stresses, including (1) nutrient deprivation, (2) oxidative stress, (3) 
hypoxia and (4) chemotherapy, can result in the induction of a pro-
tective autophagy leading tumor progression and chemoresistance. 
However,  the same stresses can also induce and autophagy with 
tumor suppressor role. Indeed, cancer cells having an uncontrolled 

extensive autophagy can also undergo cell death-type II, likely due to 
excessive degradation of cellular constituents and organelles. Impor-
tantly, the inhibition of protective autophagy leads to apoptotic and 
necrotic cell death. In contrast, the inhibition of autophagy cell death 
(for instance by oncogenic mutant p53 isoforms) may lead to tumori-
genesis through mTOR signaling and ROS
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enzymes or antibody into specific target sites without affect-
ing healthy tissues. The primary physical, chemical, and 
biological advantages in the use of nanocarriers include the 
nanoscale sizes, high surface-to-volume ratios, favorable 
drug release profiles and targeting modifications [6]. Inter-
estingly, nanocarriers can passively accumulate in the leaky 
vasculature, typical of tumor tissues in a manner known 
as the enhanced permeability and retention effect (EPR) 
[100]. Nanocarriers may also be conjugated with specific 
ligands, to utilize active targeting mechanisms [101]. This 
allows them to reach specific tissues and release drugs in 
a stable and controlled manner. Therefore, through active 
targeting, the use of nanomaterials in drug delivery can 
modify the pharmacokinetic and pharmacodynamic profiles 
of drugs, thereby enhancing their therapeutic index [100, 
102]. Microenvironmental stimuli can trigger the release of 
drugs by evoking a change in the nanocarriers, to ensure 
specific toxicity to the target tissue, while does not affect 

the healthy tissue [10]. Changes in pH, redox, ionic strength, 
and stress in target tissues are examples of internal stimuli 
[7, 13]. External stimuli, including temperature, light, ultra-
sound, magnetic force, and electric fields, also can trigger 
the release of drugs [7] (Fig. 3).

Among the different nanostructures, metallic nanoparti-
cles are particularly relevant due to their inherent reactivity, 
which can be used for therapeutic purposes, such as hyper-
thermia. Hyperthermia-based approaches [103] consist of 
exposing the body to high temperatures to kill cancer cells 
or sensitizing them to the effects of radiation and certain 
anticancer drugs. The use of metallic nanoparticles allows 
for the application of a variety of techniques such as laser, 
ionizing radiation and microwaves, to induce heat at the 
nanoparticles area [103]. Magnetic hyperthermia allows to 
remotely induce local heat using the magnetic energy losses 
of magnetic nanoparticles under an alternate magnetic field 
(AMF), thus drastically reducing the harmful side effects at 

Fig. 3  Passive and active targeting of nanoparticles in cancer treat-
ment. Passive tumor targeting is achieved by extravasation of nano-
particles through increased permeability of the tumor vasculature 
(EPR effect). Active tumor targeting (left inset) can be achieved by 

functionalization of nanoparticles with targeting ligands that promote 
cell-specific recognition and binding. Once internalized, the nanopar-
ticles can express their cytotoxic potential by releasing the drug and/
or another compound
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the surrounding healthy tissues [104]. Importantly, a number 
of studies describe magnetic hyperthermia as a very attrac-
tive adjuvant strategy to radiation and chemotherapy in 
cancer treatment [105]. Alternatively, by exposing metallic 
nanoparticles to laser radiation near their plasmon-resonant 
absorption band, it is possible to produce local heating of 
nanoparticle-labeled cells without harming surrounding 
healthy tissues. Such some promising approaches, which 
induce the photothermal effect in vitro and in vivo, have 
been developed over the last years. They include plasmonic 
photothermal therapy (PPTT) [106], and red and near-
infrared (NIR) laser light irradiations [107]. Interestingly, 
massive cancer cell death, reduction of tumoral volume and 
general improvements in survival have been demonstrated 
when the gold nanoparticles are actively targeted to tumors 
in mice over passively targeted nanoparticles [108–111].

Targeting autophagy with metal‑based 
nanoparticles as therapy in cancer diseases

In this section, we summarize the most recent studies 
describing the ability of metallic nanoparticles to overstim-
ulate autophagy and mitophagy in cancer cells selectively. 
This occurs through the dysregulation of some cellular sign-
aling pathways without significantly affecting the level of 
autophagy in noncancerous cells. The effect of several nano-
materials on autophagy/mitophagy modulation represents 
an exciting therapeutic approach against different human 
tumors (Fig. 4).

Silver‑based nanoparticles

Different studies showed the enormous therapeutic poten-
tial of silver nanoparticles (Ag-NPs) against a plethora of 
cancer cells. It has been reported that these nanomaterials 
can modulate autophagy acting as cytotoxic agents itself, in 
combination with other treatments, as well as nanocarriers 
to deliver therapeutic molecules [112–120]. For example, 
it has been shown that Ag-NPs, embedded into a specific 
exopolysaccharide (EPS), exert a cytotoxic effect against a 
panel of cancer cell lines. This occurs through the promotion 
of ROS which, in turn, induced cell death through apoptosis 
and autophagy stimulations. These observations were fur-
ther confirmed in SKBR3 cells after Ag-NPs–EPS exposure 
in which the induction of autophagic markers was detected 
by fluorescence microscopy and western blot indicating a 
prominent mechanism of autophagic cell death [112].

In another study, Ag-NPs have been observed to have a 
higher cytotoxic effect on PANC1 cancer cells compared 
to the non-tumor cell of the same tissue. In particular, Ag-
NPs decreased the viability of PANC-1 cells and stimulated 
apoptotic and autophagic cell death more significantly than 

non-tumor cells. Moreover, the authors observed that the 
protein level of autophagy marker LC3-II increased substan-
tially in PANC-1 cells treated with Ag-NPs, thus indicating 
that the apoptotic and necroptotic cell death is occurring 
with autophagy in adenocarcinoma pancreatic cancer cells 
[113].

In a related report, Cisplatin and a reduced graphene 
oxide–silver nanoparticle nanocomposite (rGO–Ag-NPs) 
were assessed in HeLa cancer cells. Interestingly, the com-
bination of Cis and rGO–Ag-NPs resulted in more pro-
nounced effects on the expression of autophagy genes and 
in the accumulation of autophagosomes and autophagolys-
osomes, which were associated with the generation of ROS 
and cell death. These findings demonstrate that rGO–Ag-
NPs can potentiate Cis-induced cytotoxicity, apoptosis, and 
autophagy in HeLa cells, and hence rGO–Ag-NPs could be 
potentially applied to cervical cancer treatment as a power-
ful synergistic agent with Cis or any other chemotherapeutic 
agents [114]. Notably, also the combination of Salymicin 
(Sal) and Ag-NPs showed a substantial synergistic effect on 
cytotoxicity and in the accumulation of autophagolysosomes 
in A2780 ovarian cancer cells. The induction of massive 
autophagy, in turn, led to mitochondrial dysfunction and cell 
death, thus representing a relevant therapeutic strategy for 
the treatment of ovarian cancer [115].

Moreover, it has been found that the combination of 
Ag-NPs and radiotherapy significantly enhanced cytotoxic 
effects in U251 glioblastoma cells and orthotopic mouse 
brain tumor model. In addition, LC3-II protein level, acrid-
ine orange (AO) and monodansylcadaverine (MDC) staining 
revealed that autophagy was strongly upregulated following 
the treatment of Ag-NPs with ionizing radiation, suggesting 
that modulation of the autophagy process may improve glio-
blastoma therapeutic outcome [116]. Transcription factor 
EB (TFEB) is a master regulator of lysosomal biogenesis, 
and it has been reported to regulate autophagy by upregu-
lating a cluster of autophagic genes, including MAPLC3B, 
SQSTM1, UVRAG, WIPI, VPS11, VPS18, and ATG9B 
[121, 122]. Recently, Ag-NPs have been shown to reduce the 
expression of TFEB in A459 lung cancer cells, thus affecting 
lysosome function and autophagic flux, and leading cellular 
damage [123].

Gold‑based nanoparticles

Gold nanoparticles (Au-NPs) have been extensively explored 
in biomedical research as drug delivery scaffolds, because 
of their low toxicity and immunogenicity [124, 125], good 
biocompatibility and excellent stability [126]. Remarkably, 
the surface of Au-NPs can be easily modified with multiple 
agents including chemotherapeutics, oligonucleotides, and 
proteins, making them excellent delivery vehicles.
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It has been reported that pH-sensitive polymeric nano-
particles with gold(I) induce cell death in MCF7 breast 
cancer cell death through regulation of oxidative stress 
and autophagy [127]. A recent study describes the devel-
opment of SMI#9-tethered Au-NPs using a chemical strat-
egy that allows the intracellular release of SMI#9, a small 
inhibitor of Rad6, a central player in DNA damage toler-
ance, post-replication DNA repair mechanism and mito-
chondrial stability [128, 129]. The authors of this study 
observed an increase in autophagy and apoptotic markers 
in SUM1315 triple-negative breast cancer (TNBC) cells 
after treatment with SMI#9-AuNPs, suggesting an essen-
tial role for Rad6 in assuring the survival of cancer cells 
[130].

In a related study, gold nanoparticles were modified with 
the snake venom protein toxin NKCT1 (Au-NPs–NKCT1) 
and tested in human leukemic U937 and K562 cell lines 
[131]. The authors reported that Au-GNPs–NKCT1 treat-
ment exerts its cytotoxic potential by inducing a caspase 
3-mediated apoptosis and an autophagic cell death response 
due to the dysregulation of AKT/mTOR signaling pathways. 
Therefore, the conjugation of Au-NPs with NKCT1 repre-
sents a promising strategy to develop therapies from natural 
resources such as snake venoms [131].

It has been reported that Au-NPs, in combination with 
tumor necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL), were able to promote a relevant Drp1-medi-
ated mitochondrial damage leading apoptosis, autophagy 

Fig. 4  Cytosolic delivery of drug-loaded metallic nanoparticles 
via receptor-mediated endocytosis and its effect on autophagy and 
mitophagy modulation. The metallic nanoparticles, once inter-
nalization via receptor-mediated endocytosis, release the drugs or 
other compounds loaded, thus exerting a cytotoxic effect against 
cancer cells. The release occurs as a consequence of some cellu-

lar environmental stimuli, such as changes in pH and redox status 
by evoking changes in the nanocarrier structure. The toxic effect is 
exerted in various manners by inducing mitochondrial damage, and 
autophagy and mitophagy processes that culminate with apoptotic 
and autophagic cell death
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and mitophagy activation [132]. In support of this, the 
authors found that mitophagy markers PINK1 and Parkin 
were recruited into mitochondrial fractions and autophagy 
signature was detected in Calu-1 cells after combined treat-
ment [132]. Hence, autophagy and mitophagy activations in 
response to TRAIL combined with Au-NPs may represent a 
strategy to overcome TRAIL resistance that occurs in many 
tumors.

The epidermal growth factor receptor (EGFR) is over-
expressed in 70–80% of TNBC and has been emerging as 
a promising target for TNBC treatment [133]. In a recent 
report, the role of autophagy was assessed in the cytotoxicity 
induced by anti-EGFR antibody-conjugated gold nanoparti-
cle (anti-EGFR–Au-NPs)-combined near infrared-photother-
mal therapy (NIR-PTT) in MDA-MB-231 cancer cells [134]. 
Interestingly, the cell death induced by anti-EGFR–Au-NPs-
combined NIR-PTT was rescued by treatment with 3-MA. 
Anti-EGFR–Au-NPs-combined NIR-PTT strongly induced 
autophagy as evidenced by autophagic vesicles and a signifi-
cant increase in several autophagy-related markers, accom-
panying the inhibition of AKT/mTOR signaling pathway. In 
addition, in mouse xenograft tumors, anti-EGFR–Au-NPs-
combined NIR-PTT also increased LC3 and beclin-1 levels. 
These findings demonstrate that autophagy elicited by anti-
EGFR–GNs-combined NIR-PTT is an alternative cell death 
mechanism, resulting in most effective cancer therapy for 
EGFR-targeted TNBC [134].

Tmab is a humanized monoclonal antibody routinely used 
for patients with HER2-positive breast and gastric cancers 
that improves survival [135]. In a recent study, Au-NPs 
modified with Tmab were evaluated in NCI-N87 and MKN7 
HER2-positive gastric cancer. Interestingly, the authors 
report that T-Au-NPs possessed specific HER2-based tumor 
selectivity and exerted a potent cytotoxic effect through the 
induction of autophagy mechanism that differs from those 
of the non-conjugated Tmab [136].

Quercetin (3,3′,4′,5,7-pentahydroxy-flavone) is a fla-
vonoid found in a wide variety of plants and constituent 
in human diet [137]. Quercetin exhibits beneficial effects 
on human health and possesses selective antiproliferative 
and antitumor effects via apoptotic mechanisms on differ-
ent human cancer cell lines [138]. It has been reported that 
gold–quercetin nanoparticles, stabilized by PLGA, induce 
autophagy cell death and apoptosis through dysregulation of 
signaling pathways in human liver, cervical and neuroglioma 
cancer cells [139–141].

Interestingly, it has been observed that monolayers of 
chiral molecules anchored on the surfaces of Au-NPs (d-
PAV–Au-NPs; l-PAV–Au-NPs) induced chirality-selective 
autophagy selectively in MDA-MB-231 cancer cells. Fur-
thermore, the intratumoral injection of d-PAV–Au-NPs 
suppresses the tumor growth without side effects in vivo 
[142]. This specific effect was likely attributed to the 

chirality-variant ROS generation, cellular uptake, and their 
continuous autophagy stimulus.

Layered nanoparticles made with an iron core and a gold 
shell, Fe@Au, combine the strong magnetic susceptibility 
of pure iron and the passivating properties of the gold coat-
ing. In practice, the gold shell only delays the oxidation, 
rather than stopping it entirely [143]. Fe@Au-NPs have been 
reported to exert toxicity in oral and colorectal cancer cells 
through mitochondria-mediated autophagy and, therefore, 
have been proposed as a potential anticancer agent [144, 
145].

Metal oxide‑based nanoparticles

Zinc oxide nanoparticles (ZnO-NPs) are routinely used 
in industrial products, and more recently, they have been 
employed in biomedical and cancer applications due to the 
attractive chemical properties of these nanomaterials [146]. 
In a recent study, it has been reported that ZnO-NPs can 
induce significant cytotoxicity, apoptosis, and autophagy in 
SKOV3 ovarian cancer cells via induction of intracellular 
ROS and oxidative stress [147]. ZnO-NPs have also been 
shown to induce toxicity in CAL27 oral cancer cell lines by 
activating PINK1/Parkin-mediated mitophagy [148].

It has been reported that conjugation of ZnO-NPs with 
meso-tetra (4-carboxyphenyl) porphyrin (MTCP) could 
increase their cytotoxic effects through autophagy induc-
tion in MCF-7 and MDA-MB-468 breast cancer cells [149]. 
These reports strongly suggest a possible application of 
ZnO-NPs as anticancer agents.

Iron oxide nanoparticles (IO-NPs) are widely used in bio-
medicine for their multi-functional properties of super-par-
amagnetism and biocompatibility as well as in cancer treat-
ment due to their drug delivery and multi-imaging functions 
[150]. However, some issues concerning their therapeutic 
efficiency and biological safety limited their development 
and clinical translation.

Interestingly, IO-NPs have been reported to induce 
autophagy process through multiple mechanisms including 
lysosome impairment, mitochondrial damage, and ER stress 
[151].

IO/Au-NPs conjugated to anti-EGFR suppress lung tumor 
growth both in vitro and in vivo, by abrogating G2/M cell-
cycle arrest and inducing DNA damage, autophagy and 
apoptosis [152].

In an excellent study, researchers have developed chi-
tosan chloride (HTCC)/alginate-encapsulated  Fe3O4 NPs 
(HTCC–MNPs) and applied them to multi-drug resistance 
(MDR) gastric cancer models. Interestingly, they reported 
that the novel HTCC–MNPs were more cytotoxic in both 
SGC7901 human gastric cancer cell line and MDR vari-
ant cell line (SGC7901/ADR) than to normal gastric epi-
thelial cell line (GES). In addition, the co-localization 
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of LC3 with lysosomal marker LAMP2 and an increased 
LC3-II/LC3-I ratio revealed the induction of autophagy 
by HTCC–MNPs. Therefore, these data indicated that 
autophagy was responsible for the cytotoxicity induced by 
HTCC–MNPs, highlighting that its modulation may have 
a role in treating MDR gastric cancer [153]. Moreover, 
IO-NPs have been shown to selectively induce significant 
autophagy–lysosome accumulation and cell death through 
dysregulation of Akt/AMPK/mTOR pathway and in a dis-
persity-dependent manner, in lung and cervix cancer cells 
but not in normal cells [154, 155].

Another study has reported that PEGylated IO-NPs 
caused severe cytotoxicity in SKOV3 human ovarian 
cancer cells through multiple mechanisms, such as ROS 
production and apoptosis induction. Notably, the authors 
observed changes in autophagosome formation when 
SKOV3 cells were exposed to PEGylated-IO-NPs by TEM 
imaging and by detecting the level of autophagy marker 
LC3-II. The authors concluded that autophagy induction 
could be a protective role against cytotoxicity IO-NPs-
induced [156].

In another study, it has been shown that IO-NPs photo-
thermal effect could lead to autophagy induction in both 
MCF-7 cancer cells and MCF-7 xenograft model, in a laser 
dose-dependent manner, and the inhibition of autophagy 
would enhance the photothermal cell killing by increas-
ing cell apoptosis. Therefore, this work may provide a 
potential combination therapeutic approach of autophagy 
modulators and photothermal agents [157].

Cuprous (Cu-NPs) and copper oxide nanoparticles (CO-
NPs), are other nanomaterials with biomedical application, 
which showed potential pharmacological effects on tumor 
therapy by inducing apoptosis, inhibiting metastasis and 
stimulating autophagic cell death in leukemia, melanoma, 
and lung and breast cancers [158–161].

In a study by Xia et al., Cu-NPs dramatically affect 
autophagy pathway in human cervical cancer cell lines, 
thus leading to inhibition of cell growth and apoptosis. 
In particular, the authors reported that Cu-NPs could 
decrease the phosphorylation of AKT and mTOR, strongly 
suggesting that Cu-NPs could induce autophagy through 
AKT/mTOR pathway. Moreover, they observed the 
increase of the autophagosome formation in a time- and 
concentration-dependent manner. Their work provides pre-
liminary evidence of the therapeutic potential of CO-NPs 
in the treatment of cervical cancer [162]. Also, CO-NPs 
have been reported to induce autophagy in MCF7 human 
breast cancer cell line, in a time- and dose-dependent man-
ner. The authors of the study hypothesize that autophagy 
induced by CO-NPs may serve as a cellular defense against 
their intrinsic toxicity, and inhibition of autophagy could 
be essential to induce apoptosis in breast cancer cells 
[163].

Silica‑based nanoparticles

Many studies have demonstrated that amorphous silica 
nanoparticles (Si-NPs) possess unique properties such as 
biocompatibility, tunable pore size, high surface area, and 
ease of modification. For this reason, Si-NPs have been 
widely used in gene transfection, drug delivery, biosensing 
and bioimaging [164–166]. It has been observed that these 
nanostructures promote osteoblast differentiation through 
autophagy stimulation [167]. Si-NPs have also been shown 
to stimulate ROS generation, oxidative stress and ER stress 
that lead to autophagy activation via unfolded protein 
response (UPR) pathways in hepatocytes [168].

Several other studies reported that through autophagy 
modulation, Si-NPs exert cytotoxic effect in cancer 
cells thus highlighting their potential therapeutic effect. 
It has been reported that Si-NPs can lead to apoptosis, 
mitophagy, autophagy, and consequently ROS accumula-
tion in glioblastoma LBC3 cells representing a potential 
therapeutic agent for glioblastoma multiforme therapy 
[169].

Intriguingly, it has been shown that accumulation of 
Si-NPs in human cervix carcinoma cells may lead to 
lysosomal dysfunctions and autophagy defects, result-
ing in a reduced metabolic activity of cancer cells [170]. 
Recently, genistein–PEGylated silica hybrid nanomateri-
als (Gen–PEG–SiHNM) have been developed, which pos-
sess antiproliferative effects by activating apoptosis and 
autophagy cell death in HT29 human colon cancer cells 
[171]. This study suggests that Gen–PEG–SiHNM may be 
potentially used as an alternative treatment for colorectal 
cancer in the near future.

Si-NPs have also been observed to induce ROS and 
autophagy dysfunction in HCT-116 colon cancer cells, 
L-02 and HepG2 hepatoma cells, providing novel evi-
dence for the study of toxic effect and safety evaluation of 
Si-NPs [117, 172–174]. Endoplasmic reticulum-involved 
autophagic process (ER autophagy) is a selective form 
of autophagy in which these organelles can be captured 
by autophagy process if they are damaged [175, 176]. 
Recently, it has been observed that Si-NPs induce endo-
plasmic reticulum (ER) autophagy in HCT-116 human 
colon cancer cells without exhibiting a strong cytotoxic 
effect. The autophagy induced by these nanomaterials was 
detected by the increase of LC3-II and was associated with 
the treated time but not by the concentration used. These 
new findings of Si-NPs-induced ER autophagy could open 
an effective way for securely designing silica-based nano-
particles and could potentially represent a valid therapeu-
tic tool in autophagy-linked diseases [174] (Table 2).
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Other examples of autophagy modulation 
using nanoparticles

The use of nanoparticles to modulate autophagy is not just 
limited to cancer, and a variety of maladies can be treated 
by this approach, such as muscular or neurodegenerative 
diseases. Neurodegenerative diseases are a complex set of 
severe disorders characterized by the progressive loss of 
neurons leading to severe physical and cognitive inabilities 
in affected patients. Impairment of autophagy machinery 
has been reported to be linked with the development of 
these diseases, and several studies have recently reported 
that autophagy modulation by nanoparticles may represent 
a valid therapeutic opportunity.

Cerium oxide nanoparticles  (CeO2-NPs), due to their 
antioxidant proprieties, have been exploited for biomedical 
application [177, 178]. In addition to protect cells from oxi-
dative stress, these nanomaterials were reported to activate 
autophagy and promote clearance of autophagic cargo, thus 
exerting a neuroprotective function. Interestingly, differ-
ent functionalized  CeO2-NPs have been shown to enhance 
autophagic clearance of proteolipid aggregates in fibroblasts 
derived from a patient with late infantile neuronal ceroid 
lipofuscinosis (LINCL) that accumulates the autophagic 
substrate ceroid lipopigment as a result of the inefficient 
function of the lysosome autophagy system. At the mecha-
nistic level, autophagy induction by  CeO2-NPs was due to 
the activation of TFEB that controls the expression of genes 
involved in lysosomal function and autophagy [179].

Europium hydroxide nanoparticles [(EuIII(OH)3)-NPs] 
has been shown to be able to reduce mutant huntingtin pro-
tein aggregation via autophagy induction, which is respon-
sible for many neurodegenerative diseases. The induction of 
autophagy flux by [(EuIII(OH)3)-NPs] has been observed in 
different cell lines such as Neuro 2a, PC12 and HeLa cells, 
and it was due to the expression of characteristic autophagy 
marker LC3-II and degradation of selective autophagy sub-
strate/cargo receptor p62/SQSTM1 [180] (Table 3).

As occurs for neurodegenerative diseases, also skeletal 
muscles are often characterized by impaired autophagy 
clearance and display accumulation of damaged orga-
nelles, or misfolded proteins, inside myofibers. Recently, 
it has been observed that rapamycin-loaded nanoparticles 
can rescue a correct autophagy flux in mdx mice, a model 
of Duchenne muscular dystrophy, thus increasing skeletal 
muscle strength that cannot be achieved with pharma-
cological doses of conventional oral rapamycin. There-
fore, rapamycin-loaded nanoparticles could represent an 
attractive therapeutic alternative by inducing an autophagy 
clearance in dystrophic muscles [181] (Table 4).

Elevation of autophagy level is a common response of 
cells upon exposure to metallic nanomaterials, and we 

have summarized the recent studies reporting that a great 
variety of these nanostructures may induce autophagy 
cell death in cancer cells. Paradoxically, in some cases 
it has been reported that metallic nanoparticles may 
have opposing roles on the cell fate. Emerging evidence 
indicates that some metallic nanomaterials induce pro-
survival autophagy in both cancer and normal cells [120, 
156, 182–188]. For example, ferroferric oxide nanoparti-
cles have been shown to induce pro-survival autophagy 
in human blood cells by modulating the Beclin1/Bcl-2/
VPS34 complex [186]. Recently, it has also been reported 
that lactosylated N-alkyl polyethylenimine-coated iron 
oxide nanoparticles induce protective autophagy in mouse 
dendritic cells [189]. Bismuth nanoparticles (Bi-NPs) 
induce protective autophagy in human embryonic kidney 
cells 293 through the regulation of AMPK/mTOR signal 
pathway [190]. It has also been published that Ag-NPs 
induce protective autophagy in HeLa cells by evoking the 
nuclear translocation of TFEB and consequently the tran-
scription of autophagy and lysosomal-related genes [191].

In all these circumstances, inhibition of autophagy 
becomes a viable approach for enhancing cancer therapeu-
tic efficacy. However, why some metallic nanomaterials 
induce pro-death autophagy, while others elicit pro-survival 
autophagy is poorly understood, and the molecular mecha-
nism underlying these two drastically different effects is 
largely unexplored.

Nanotoxicology

Despite the therapeutic advantages of nanomaterials, it is 
necessary to remind that these products can present some 
toxicity. Interestingly, the toxicity and the therapeutic effect 
observed might be derived from the modulation of the 
autophagy. For instance, Si-NPs have been shown to induce 
cytotoxicity and autophagy cell death on human umbilical 
vein, cerebral and corneal endothelial cells through several 
mechanisms, including ROS generation, dysregulation of 
PI3K/Akt/mTOR pathway, by affecting angiogenesis and 
cellular homeostasis, and by leading mitochondrial insta-
bility and mitophagy [192–196]. Si-NPs, depending on 
their size, have also been shown to induce cytotoxicity and 
autophagy dysfunction in human bronchial epithelial BEAS-
2B cells [197]. This occurred through the upregulation of 
autophagy markers LC3 and p62, and by modulating PI3K/
Akt/mTOR pathway in size- and dose-dependent manner 
[197]. This study shows that Si-NPs could lead autophagy 
dysfunction and impairment of cellular homeostasis in the 
respiratory system. Moreover, it has been observed that Si-
NPs also may induce autophagy and cell death in neuronal 
PC12 cells [198]. The autophagy induction, together with 
ROS increase, and inhibition of ubiquitin–proteasome sys-
tem (UPS), results in the aggregation of mutant α-synuclein, 
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thus representing a significant risk factor for the develop-
ment of Parkinson disease [198]. In addition, high concentra-
tions of magnetic iron oxide nanoparticles  (Fe3O4-NPs) have 
been reported to lead endothelial dysfunction, inflammation 
and cardiovascular diseases, through both autophagy induc-
tion and the blockade of autophagy flux in HUVECs [199]. 
Titanium dioxide nanoparticles  (TiO2-NPs) are semiconduc-
tor nanomaterials that have been explored for drug delivery 
purposes and are attracting an increasing level of attention 
[200, 201]. However, although this nanomaterial has been 
largely studied for their potent cytotoxic effect in a variety 
of cancer cells [202–206], it may induce autophagy response 
in HaCaT human keratinocyte cells [207]. A recent report 

showed that ZnO-NPs significantly increased the autophagy, 
ROS level and mitochondrial impairment in BV-2 microglia 
cell line, in a time-dependent manner. In addition to changes 
in autophagy markers, a PINK1/parkin-mediated mitophagy 
has also been reported. The data reported by the authors sug-
gested that mitophagy could play a protective role in ZnO-
NP-induced toxicity in BV-2 cells [208]. Despite the thera-
peutic potential of CO-NPs in a variety of cancer cell lines, 
a specific neurotoxic action of a copper-dopamine complex 
in neuronal RCSN-3 cells has also been reported. This 
occurs by inducing mitochondrial autophagy followed by 
caspase-3-independent apoptotic cell death [209]. CO-NPs 
also trigger HUVEC cell death via autophagy and lysosomal 

Table 4  In vivo assays performed in the studies reported in the review

Entry NP Compound carried/com-
bination drug

Mouse model Disease model Biological effect References

1 Silver Radiotherapy Orthotopic mouse Brain cancer Enhancement in mean 
survival time, increas-
ing cure rate in glioma-
bearing rats

[116]

2 Gold TRAIL Nude mice bearing 
Calu-1 cells

non-small-cell lung 
cancer (NSCLC)

Reduction tumor growth [132]

3 Gold Tmab Subcutaneous mouse 
NCI-N87, MKN7

Breast cancer Growth suppression, 
autophagy induction

[136]

4 Gold Quercetin Old male BALB/c nu/nu 
nude mice xenograft 
models

Glioblastoma Inhibition of tumor 
growth, low toxicity, 
improved survival in 
mice

[140]

5 Gold Quercetin Old male BALB/c nu/nu 
nude mice xenograft 
models

Cervical cancer Apoptosis, inhibition 
cancer growth, and 
progression

[141]

6 Gold Poly (acryloyl-l, d and 
racemic valine)

BALB/C mice and nude 
mice

Breast cancer Autophagy, reduction 
tumor growth

[142]

7 Iron oxide/gold Anti-EGFR antibody Old female nude mice Lung Cancer Autophagy, DNA dam-
age, apoptosis, tumor 
growth suppression

[152]

8 Iron oxide Chitosan chloride 
(HTCC)/alginate

Gastric SGC7901/ADR-
fluc tumor-bearing mice

Gastric cancer Cytotoxicity, autophagy, 
apoptosis

[153]

9 Iron oxide Photothermal treatment, 
CQ

Mude mice bearing 
MCF-7 xenograft

Breast cancer Tumor inhibition, 
autophagosomes accu-
mulation, apoptosis

[157]

10 Cuprous oxide None Cervical carcinoma 
xenograft in nude mice

Cervical cancer Suppression tumor 
growth

[162]

11 Rapamycin None C57BL10 mice, 
C57BL/10ScSn-
Dmdmdx/J mice

Duchenne muscular 
dystrophy

Autophagy, recovery 
of skeletal muscle 
strength

[181]

12 Silver None Male C57BL Melanoma Strong cell growth 
inhibition in combina-
tion with autophagy 
inhibitor

[182]

13 Silver None Adult male Sprague–
Dawley rats

Liver toxicity Oxidative stress, mark-
ers, hepatotoxicity, 
protective autophagy

[184]

14 Silica None New Zealand white 
rabbits

Ocular toxicity Autophagy, no toxicity 
reported

[196]
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dysfunction [210]. It has been reported that polyvinylpyr-
rolidone (PVP)-coated Ag-NPs have an anti-leukemia effect 
against human myeloid leukemia cells [182, 185]. However, 
Ag-NPs have also been shown to trigger cytotoxic autophagy 
in non-cancer murine pro-B cells (Ba/F3) through the modu-
lation of PI3K/mTOR signaling pathway along with genera-
tion of ROS and release of silver ions [117]. Interestingly, 
some studies report that metallic nanomaterials possess 
intrinsic toxicity versus immune system components by 
modulating autophagy. Among the plethora of cells that 
constitute the immune system, macrophages mediate innate 
immune responses and contribute to adaptive immunity 
via antigen processing [211]. It has been reported that Ag-
NPs impair monocyte–macrophage differentiation through 
autophagy blockade, which is mediated by lysosomal dys-
function. Indeed, lysosomal impairment was observed in 
Ag-NP-treated THP-1 cells, which is responsible for the 
blockade of autophagic flux [212]. This study suggests a 
crosstalk among monocyte differentiation, autophagy, and 
lysosomal dysfunction simultaneously induced by Ag-NPs. 
In addition,  Fe3O4-NPs have been reported to induce pro-
survival autophagy in RAW264.7 cells derived from mouse 
peritoneal macrophages. The induction of autophagy mark-
ers and ROS levels after treatment with  Fe3O4-NPs were 
accompanied by the ERK pathway that was activated for 
cell survival [213]. Interestingly, it has been reported that 
acute exposure to ZnO-NPs induces autophagic immune 
cell death. This occurs by the release of free Zn(2+) that 
can be taken up by immune cells triggering the production 
of excessive intracellular ROS that leads to exacerbated 
autophagy [214, 215]. Many other studies reported that Si-
NPs possess strong toxicity against immune components 
through the enhancement of proinflammatory responses, 
oxidative stress and autophagy modulation [216, 217]. These 
and other studies (reviewed in Peynshaert, 2014) indicate 
that autophagy modulation mediated by inorganic NPs can 
potentially represent a risk for immune system, cardiovascu-
lar and neurological health. However, the involvement and 
nature of autophagy deregulation in the pathogenesis of the 
above-described diseases need further investigation before 
making conclusions regarding the real cardiovascular and 
neurological dangers of these nanomaterials and to eventu-
ally efficiently target autophagy as a therapeutic strategy.

Conclusion and future perspective

Human tumors are complex diseases resulting from the 
interplay between genetic and environmental factors. 
Besides the many cellular and genetic alterations, cancer 
cells share common features responsible for their pheno-
typic manifestations, including uncontrolled proliferation 
and growth, dysregulation of apoptosis and insensitivity, 

and severe metabolic alterations [2]. Autophagy is a 
tightly regulated cellular degradative process by which 
damaged macromolecules and organelles are targeted 
by autophagic vesicles to lysosomes and then eliminated 
[218]. Autophagy is frequently dysregulated in tumors, 
however, its role in regulating cancer cell death or sur-
vival remains highly debated and dependent on metabolic 
context and on the microenvironmental conditions of the 
cells [219]. Some studies suggest that basal autophagy 
may have a protective role in cancer by providing the 
nutrients necessary for their uncontrolled growth as well 
as favoring cancer cell survival in many hypoxic tumor 
microenvironments [48]. However, it is also well assumed 
that overstimulating autophagy machinery can also lead 
to cell death, also called cell death-type II, likely due to 
excessive degradation of cellular constituents and orga-
nelles required for homeostasis of the cells [46]. There 
is mounting evidence that targeting autophagy may be 
employed as a therapeutic strategy itself or may enhance 
the efficacy of anticancer therapies [71, 220]. The field of 
nanotechnology is greatly expanding and can provide the 
necessary tools to overcome the limits frequently observed 
with traditional treatments.

This review presents an overview of the most recent 
reports on NP-mediated autophagy alterations and their 
impact on nanomedicine. Many studies have shown that 
nanomaterials and particularly metallic nanoparticles can 
be used to treat cancer by modulating autophagy. These 
nanostructures may also promote a plethora of events such 
as mitochondrial damage, lysosome impairment, ER stress 
and alterations of signaling pathways, which results in the 
activation of mitophagy, oxidative stress, and autophagic 
cell death. Importantly, these materials have shown intrinsic 
selectivity in inducing autophagy in cancer cells compared 
to noncancerous cells. However, metal-based nanomaterials 
may have opposing roles on cell fate being able to induce 
pro-survival autophagy in cancer and normal cells [162, 
184–189]. Thus, inhibition of autophagy may be a viable 
approach for enhancing cancer therapeutic efficacy.

Autophagy induced by nanomaterials can also be used 
to treat other diseases such as muscular and neurodegenera-
tive disorders. It is due to their ability to restore a proper 
autophagic flux, thus removing the protein aggregates and 
damaged organelles, responsible for the pathogenesis of 
these diseases [64, 68].

Hence, the capability of many nanostructures to over-
stimulate autophagy may acquire exceptional medical 
and toxicological importance. However, more research is 
needed to define the mechanisms underlying the NP-induced 
autophagy modulation.

In conclusion, the findings summarized in this review 
suggest that autophagy modulation with nanoparticle-based 
strategies would acquire clinical relevance in the near future, 
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as complementary therapies for the treatment of cancers and 
other diseases.
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