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ABSTRACT: The hexahydride OsH6(P
iPr3)2 competently catalyzes

the hydration of aliphatic nitriles to amides. The main metal species
under the catalytic conditions are the trihydride osmium(IV) amidate
derivatives OsH3{κ

2-N,O-[HNC(O)R]}(PiPr3)2, which have been
isolated and fully characterized for R = iPr and tBu. The rate of
hydration is proportional to the concentrations of the catalyst
precursor, nitrile, and water. When these experimental findings and
density functional theory calculations are combined, the mechanism of
catalysis has been established. Complexes OsH3{κ

2-N,O-[HNC(O)-
R]}(PiPr3)2 dissociate the carbonyl group of the chelate to afford κ1-
N-amidate derivatives, which coordinate the nitrile. The subsequent
attack of an external water molecule to both the C(sp) atom of the
nitrile and the N atom of the amidate affords the amide and regenerates the κ1-N-amidate catalysts. The attack is concerted and takes
place through a cyclic six-membered transition state, which involves Cnitrile···O−H···Namidate interactions. Before the attack, the free
carbonyl group of the κ1-N-amidate ligand fixes the water molecule in the vicinity of the C(sp) atom of the nitrile.

■ INTRODUCTION
Amide functional groups are present in natural and synthetic
products, including some drugs. In addition, amide compounds
find industrial application in the production of detergents,
lubricants, or polymers, among other manufactured goods.1

Amides have been traditionally prepared by procedures
involving carboxylic acids and amines. However, these
methods generate large quantities of waste, resulting in an
unfavorable environmental profile. As a consequence, alter-
native approaches are being developed using surrogates of both
substrates.2 In this context, nitriles have been proven to serve
as carboxylic acid alternatives. Thus, several efficient reactions
for construction of the amide function have been described
starting from them.3

Homogeneous catalysts of platinum group metals are
particularly efficient for developing atom-economical pro-
cesses. This fact converts them into one of the most powerful
tools of modern selective organic synthesis, being therefore
especially relevant from an environmental point of view.4

Among the reactions developed for the synthesis of amides,
nitrile hydration, which leads to primary amides in an atom-
economical manner (eq 1), is one of the most elegant reactions

promoted by this class of catalysts. It works under reasonable
conditions, presents fine control of subsequent hydrolysis of

the product to the carboxylic acid, and exhibits a notable
functional group tolerance.5

Aromatic nitriles have been mainly used in a ratio of about
2:1 with respect to aliphatic ones (Table S1). The reactions
have been in an overwhelming preponderance performed in
water as the solvent6 and, to a lesser extent, in alcohols,7

ethers,8 or their mixtures with water.9 Although complexes of
metals of groups 66d,10 and 8−116a,f,h,j,7a,9,11 have proven to be
active for nitrile hydration reactions, more than half of the
r e p o r t e d c a t a l y s t s a r e r u t h e n i u m c o m -
pounds,6d,h,j−l,7b,c,8,9a,11b,12 and the vast majority of them bear
specific ligands that enhance the solubility of the complex in
water by means of the formation of hydrogen bonds with
solvent molecules.6g,k,8a,b,11e,12b,d,e,g,w The improvement of
catalysts and reaction conditions have mainly been based on
empirical data obtained from trial-and-error methods. Kinetic
analysis of the reactions,6a,13 isolation of the reaction
intermediates,9a,e,14 and a density functional theory (DFT)
study of the catalysis9a,12a,15the three legs of the mechanistic
investigationhave received scarce attention. As far as we
know, mechanistic proposals based on the three legs together
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have not been reported. There is consensus on the enhance-
ment of the electrophilicity of the C(sp) atom of the nitrile, as
a result of coordination to the metal center of the catalyst,
which makes it more susceptible to undergoing the
nucleophilic attack of the hydroxide group of a water molecule,
to form metal amidate intermediates via iminolate species
(Scheme 1). The hydroxide attack can be, however, intra- (a)

or intermolecular (b and c). In the second case, the water
molecule is activated through hydrogen-bonding interaction
with a ligand of the metal coordination sphere (b) or a remote
heteroatom present in the ligand backbone (c).
Catalysis by complexes of platinum group metals has been

traditionally dominated by 4d elements. However, one of the
most active and versatile catalysts for nitrile hydration is the
platinum complex PtH{(PMe2O)2H}(PMe2OH), reported by
Parkins and co-workers in 199516 and improved by Virgil,
Grubbs, and co-workers for cyanohydrins in 2018.17 Recently,
Yao and co-workers have also discovered half-sandwich iridium
catalysts, which display excellent activity, under mild
conditions, for a broad scope of nitriles.18 Osmium is the
less used element in catalysis from the six platinum group
metals, although it has proven to be particularly useful in the
asymmetric dihydroxylation of olefins and reactions similar to
that,19 some reductions,20 C−C21 and C−heteroatom22

couplings, and acceptorless dehydrogenation of liquid organic
hydrogen carriers23 and boranes,24 whereas complexes [Os-
(OH)(η 6 -p -cymene)IPr]OTf [IPr = 1 ,3 -b i s(2 ,6 -
diisopropylphenyl)imidazolydene; OTf = CF3SO3]

25 and
OsCl2(η

6-p-cymene)(PMe2OH)
26 promote nitrile hydration

in water/2-propanol and water, respectively.
The osmium chemistry is rich in hydride complexes, which

are further playing a relevant role in catalysis.27 Among them,
the d2 hexahydride species OsH6(P

iPr3)2 (1) occupies a
prominent place because of its ability to activate σ bonds,28

which converts it in one of the keystones in the development
of the modern osmium organometallic chemistry. In the search
for a catalyst that could work with high efficiency for the

hydration of aliphatic nitriles (the least studied) in a
conventional organic solvent, we decided to explore its
performance. It bears a usual commercially available ligand,
particularly useful for mechanistic studies, is easily prepared
from OsCl3·xH2O, in two steps, in high yield,29 and is much
more stable and handy than its ruthenium counterpart, the
dihydride bis(dihydrogen) derivative RuH2(η

2-H2)2(P
iPr3)2.

30

We were inspired by the previous reactivity of complex 1
with nitriles. This polyhydride inserts aromatic nitriles to form
trihydride osmium azavinylidene compounds, which activate
molecular hydrogen, pinacolborane, and water to give
orthometalated phenylaldimine derivatives (Scheme 2a).31 In

contrast, aliphatic nitriles undergo C(sp)−C(sp3) bond
activation to yield binuclear complexes (PiPr3)2H4Os(μ-
CN)OsH3(RCN)(P

iPr3)2 (Scheme 2b).32 Under a hydrogen
atmosphere or in the presence of boranes, C(sp)−C(sp3) bond
activation of the aliphatic nitriles is inhibited, and the catalytic
formation of secondary amines33 and diborylamines34 is
observed as a consequence of the respective hydrogenation−
condensation and dihydroboration of the substrates (Scheme
3). We now show that C(sp)−C(sp3) cleavage is also inhibited
in the presence of water. In addition, the catalytic formation of
aliphatic amides takes place according to eq 1.

This paper reports a catalyst for the hydration of a wide
range of aliphatic nitriles, which works with high efficiency
under reasonable conditions, and the catalytic mechanism
based on kinetic analysis of the catalysis, isolation of the key
intermediate, and a DFT study. In addition, it demonstrates
that sophisticated ligands favoring the formation of hydrogen
bonds with water molecules are not necessary because the true

Scheme 1. Nucleophilic Attack of the Hydroxide Group to
Coordinated Nitriles

Scheme 2. Reactions of Complex 1 with Aromatic and
Aliphatic Nitriles

Scheme 3. Catalytic Transformations of Aliphatic Nitriles
Promoted by Complex 1
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catalysts of the hydration are amidate species generated in situ,
under the reaction conditions, and they can generate the
hydrogen bonds.
Reaction Conditions and Scope. Initially, we looked for

the optimal reaction conditions to obtain the amides with a
high yield in a general manner, using 0.31 M solutions of
acetonitrile, in deuterated tetrahydrofuran (THF-d8) under an
argon atmosphere, contained in a NMR tube. Results of the
optimization involving the catalyst loading, water amount, and
temperature are collected in Table 1.

Acetonitrile was transformed in acetamide in 43% yield after
3 h in the presence of 1 mol % complex 1 and 20 equiv of
water at 100 °C (entry 1). The raising of the catalyst loading
up to 2 mol % increases the yield of the reaction to 52% (entry
2), which undergoes a new increment up to 72% by increasing
the amount of catalyst precursor to 5 mol % (entry 3).
Lowering the temperature just to 80 °C results in a drastic
decrease in the amount of acetamide down to 34% (entry 4).
Similarly, reduction of the number of water equivalents to 10
lowers the yield of the reaction to 55% (entry 5), whereas the
increment of the water amount up to 50 equiv increases the
yield of amide up to 80% (entry 6). Under these conditions,
the reaction does not progress in the absence of a catalyst
precursor (entry 7). Thus, we decided to carry out the
hydration of nitriles under the conditions of entry 6, i.e., using
5 mol % of the hexahydride complex and 50 equiv of water at
100 °C. Under these conditions, the efficiency of complex 1 to
promote the hydration of acetonitrile to acetamide is higher
than those of the majority of the reported catalysts so far,
whereas it compares well with the efficiencies of a few
ruthenium precursors6d,l,12m,o,r,w and the osmium complex
OsCl2(η

6-p-cymene)(PMe2OH),
26 which work in water as the

solvent (Tables S2−S5). Scheme 4 shows the amides isolated
under the selected conditions.
Complex 1 displays good tolerance to functional groups.

Consequently, it promotes the hydration of a remarkable
variety of aliphatic nitriles, including unfunctionalized sub-
strates of linear and branched chains, among others the defiant
trisubstituted pivalonitrile, cyclic nitriles as cyclohexanecarbo-
nitrile, and functionalized aliphatic nitriles with methoxide,
keto, R-aryl (R = MeO, Br, CF3, R, CO2Me, NO2, and COPh),
and pyridyl groups.
The length of the aliphatic chain does not have a noticeable

influence on the yield of the obtained amide. Thus, acetamide,

propionamide, and hexanamide are formed in similar yields,
about 80% after 2−3 h. The hydration is slightly sensitive to
the steric hindrance on the C(sp) atom of unfuctionalized
substrates; 2-methylpropionitrile and cyclohexanecarbonitrile
are converted into the corresponding amides with the same
efficiency as that of linear nitriles; however, the trisubstituted
pivalonitrile needs 24 h to reach a conversion similar to
pivalamide. Although the presence of aromatic substituents at
the Cα atom with respect to the CN function generally delays
the reaction, the corresponding amides are formed in almost
quantitative yield after 24 h. In this context, noteworthy is the
preparation in high yields of branched chain amide derivatives
of ketoprofen and ibuprofen, which are nonsteroidal
antiinflammatory drugs widely employed as advanced inter-
mediates in the preparation of several prodrugs and preclinical
candidates.6c,12g

Main Species under the Catalytic Conditions. The 1H
NMR spectra of the catalytic solutions contain a broad triplet
at about −13.6 ppm (2JH−P ≈ 13 Hz), corresponding to a new
class of species, in addition to the signals due to the reagents,
amide products, and phosphine ligands of the catalyst. The

Table 1. Optimization of the Catalytic Hydration of
Aliphatic Nitrilesa

entry 1 (mol %) T (°C) H2O (equiv) yield (%)b

1 1 100 20 43
2 2 100 20 52
3 5 100 20 72
4 5 80 20 34
5 5 100 10 55
6 5 100 50 80
7 0 100 50 0

aReaction conditions: acetonitrile (0.14 mmol) in THF-d8 (450 μL)
for 3 h. bYields were calculated by 1H NMR spectroscopy using
mesitylene as an internal standard.

Scheme 4. Hydration of Aliphatic Nitriles Catalyzed by 1a

aReaction conditions: Corresponding nitrile (0.14 mmol), water (125
μL, 7.0 mmol), 1 (3.6 mg, 0.007 mmol, 5 mol %) in THF-d8 (450 μL)
at 100 °C. Yields were calculated by 1H NMR spectroscopy using
mesitylene as an internal standard. Isolated yields are in parentheses.
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high-field resonance fits with a singlet at about 36 ppm in the
31P{1H} NMR spectra. Resonances due to 1 are not observed.
The new species are rapidly and quantitatively formed and
remain while the nitrile is present in the solution and also once
it is consumed. To gain information about their nature, we
decided to prepare them at a Schlenk tube scale, with two
model nitriles: 2-methylpropanenitrile and pivalonitrile. The
treatment of THF solutions of 1 with 2.0 equiv of the nitriles
and 2.0 equiv of water at 100 °C for 3 h afforded 1.0 equiv of
the corresponding amide and the trihydride osmium(IV)
amidate derivatives OsH3{κ

2-N,O-[HNC(O)R]}(PiPr3)2 [R =
iPr (2a), tBu (2b)], according to eq 2. These compounds were
isolated as a colorless oil (2a) and colorless crystals suitable for
X-ray diffraction analysis (2b).

Figure 1 shows a view of 2b. The structure proves the
formation of the amidate group, which acts as a N,O-chelate

ligand with a bite angle of 57.47(10)°. The polyhedron around
the metal center is the expected pentagonal bipyramid for a
seven-coordinated d4 derivative, with the phosphine ligands
occupying axial positions [P−Os−P = 171.79(2)°], whereas
the chelate and hydride ligands lie at the perpendicular plane.
The 1H and 31P{1H} NMR spectra of 2a and 2b are consistent
with the spectra of the respective catalytic solutions involving
2-methylpropanenitrile and pivalonitrile. Furthermore, the 1H
NMR spectra of these compounds in toluene-d8 as a function
of the temperature reveal that the hydride ligands undergo a
thermally activated position site exchange process, typical for
OsH3(XY)(P

iPr3)2 complexes.28f,g,31 Thus, the hydride reso-
nance at about −13.6 ppm splits into three signals at about
−10, −14, and −15 ppm at temperatures lower than 213 K. In

the 13C{1H} NMR spectra, the presence of the amidate ligand
is strongly supported by a singlet close to 181 ppm.
Once the nature of the main metal species was established

under the catalytic conditions, we investigated their catalytic
performance. Thus, hydration of 2-methylpropanenitrile and
pivalonitrile was carried out using the isolated complexes 2a
and 2b, respectively, as catalysts. Figure 2 shows the course of

the hydration of 2-methylpropanenitrile in the presence of 1
and 2a. According to the observed reaction profiles, it is clear
that both compounds display the same activity; i.e., under the
catalytic conditions, complex 1 reacts with 1.0 equiv of nitrile
and 1.0 equiv of water to give trihydride osmium(IV) amidate
species, such as 2a and 2b, and to release two hydrogen
molecules. The formed osmium(IV) amidate compounds are
catalyst precursors closer to the true catalyst of hydration than
1. Each hydration has a specific catalyst that is generated with
the nitrile substrate itself.
Complex 1 is saturated, and, consequently, its trans-

formation into amidate derivatives needs the previous creation
of a coordination vacancy, which occurs by the dissociation of
a hydrogen molecule. The resulting unsaturated tetrahydride
OsH4(P

iPr3)2 (A) has been trapped by several types of Lewis
bases.28e,31−35 Once A is generated, the formation of amidate
complexes could take place via two different paths: (a) nitrile
or (b) water (Scheme 5). The first route should involve the
initial coordination of the nitrile to the unsaturated metal
center of A. The coordination would give B, with the
coordinated substrate activated for the attack of an external
water molecule. The attack should afford the amidate ligand
and the release of a second hydrogen molecule. In the second
one, the tetrahydride A would be trapped by a water molecule.
Then, the subsequent reaction of the resulting intermediate C
with the nitrile could yield the amidate complexes and the
second hydrogen molecule. To gain information on the
intimate details of the routes and to compare their energetic
cost, we carried out DFT calculations at the dispersion-
corrected PCM(THF)-B3LYP-D3//SDD(f)-6-31G** level
(see computational details in the Supporting Information)
using propionitrile as a model of the substrate. The variations
in free energy (ΔG) were calculated in THF at 298.15 K and 1
atm.
A nitrile route was previously proposed by Lin, Lau, and co-

workers to rationalize the hydration of nitriles with an
indenylruthenium hydride catalyst. The presence of a Ru−
H···H−OH dihydrogen-bonding interaction in the transition
state lowers the barrier for nucleophilic attack of an external
water molecule to the coordinated nitrile.12a Although the drop
is significant (19.3 kcal mol−1), the barrier remains too high

Figure 1. Molecular structure of 2b with ellipsoids at the 50%
probability level. H atoms are omitted for clarity (except for the
hydride ligands and NH group). Selected bond distances (Å) and
angles (deg): Os−N1 = 2.185(3), Os−O1 = 2.245(2), O1−C1 =
1.289(4), N1−C1 = 1.285(4), Os−P1 = 2.3373(6), Os−P2 =
2.3372(6); N1−Os−O1 = 57.47(10), P1−Os−P2 = 171.79(2).

Figure 2. Hydration of 2-methylpropanenitrile (0.24 M) catalyzed by
1 (blue ●) or 2a (red ◆) (both 1.2 × 10−2 M) in THF-d8 at 100 °C.
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Scheme 5. Possible Routes for the Formation of Amidate Complexes

Figure 3. Relative Gibbs energies for formation of the κ2-amidate OsH3{κ
2-N,O-[HNC(O)R]}(PiPr3)2 (2; R = Et) via intramolecular (blue lines)

or intermolecular (red lines) attack.

Scheme 6. Intermediates in the Formation of κ2-Amidate Complexes 2
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(40.0 kcal mol−1). A similar attack involving an Os−H···H−
OH dihydrogen bonding is also possible in our case (Figure
S93); the activation energy is even lower than that for the half-
sandwich ruthenium catalyst. However, it is still very high
(32.5 kcal mol−1). Thus, we discarded the nitrile route as a
feasible pathway for the formation of amidate compounds.
Once the nitrile route was discarded, we analyzed the water

route. Figure 3 shows the energetic profile of the trans-
formation, whereas Scheme 6 collects the calculated reaction
intermediates. Coordination of the water molecule to the metal
center of A to give C is slightly exergonic (2.3 kcal mol−1). The
formation of C is the previous step to the hydride-mediated
heterolytic activation of the water molecule. The cleavage
occurs with an activation energy of 12.9 kcal mol−1, with
respect to A, and leads to the trihydride hydroxo Kubas-type
dihydrogen osmium(IV) species D (dH−H = 0.839 Å).
Subsequent dissociation of the coordinated hydrogen molecule
affords the unsaturated six-coordinate osmium(IV) derivative
E, which lies 4.2 kcal mol−1 below A. Although hydride
hydroxo derivatives of the platinum group metals are very rare
and their chemistry is underdeveloped,36 the trihydride
hydroxoosmium(IV) complex OsH3(OH){xant(PiPr2)2}
[xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)-
xanthene], related to E, was recently reported and a part of
its reactivity studied.23g,37 Intermediate E displays the typical
structure with Cs symmetry of complexes OsH3X(PR3)2. In
order to be diamagnetic, these compounds undergo distortion
from the octahedral geometry, which involves destabilization of
an orbital of the t2g set and the simultaneous stabilization of
some occupied ones. This distortion partially cancels the
electron deficiency of the metal center, which receives electron
density through σ bonds with the hydride ligands and from a
lone pair of X via a π bond.38 In agreement with the partially
saturated character of the metal center of E, coordination of
the nitrile is slightly endergonic (1.6 kcal mol−1). The resulting
seven-coordinate species F has two pathways to evolve into the
amidate complex, one intramolecular and the other inter-
molecular. The former would involve the attack of the
coordinated hydroxo group to the C(sp) atom of the nitrile,
while in the second one, the attack should proceed from the
hydroxo group of an external water molecule. The intra-
molecular attack has to overcome an activation energy of 14.2
kcal mol−1 with respect to A, which is experimentally
accessible, and leads to the κ2-iminolate derivative G.
Dissociation of the coordinated OH group of the iminolate
affords the hydroxoazavinylidene species H, a thermodynami-
cally disfavored tautomer of the κ1-N-amidate I. Coordination
of the carbonyl group of the amidate ligand of the latter yields
the experimentally observed κ2-amidate species 2 in an
exergonic overall process by 22.8 kcal mol−1 with respect to
A. The barrier for the intermolecular attack is lower than that
for the intramolecular one (5.1 kcal mol−1 with regard to A).
The reason is that the external water molecule forms a HO···
H−OH hydrogen bond with the coordinated hydroxo group,
which provides slight stabilization of the system. The resulting
adduct J lies 9.1 kcal mol−1 below A. The attack leads to the κ1-
N-iminolate K, which coordinates a water ligand. Its
dissociation regenerates the external water molecule and
affords the hydroxoazavinylidene intermediate H, a common
intermediate for both pathways. A comparison of the overall
profile for both routes reveals that the main difference between
them is the rate-determining step of the process. While, for the
intramolecular pathway, it is the attack of the coordinated

hydroxo group at the nitrile, in the intermolecular one, it is the
heterolytic activation of the water molecule. The difference
between the barriers (ΔΔG⧧) is small, 1.3 kcal mol−1, and both
barriers are low and experimentally accessible.

Kinetics and Mechanism of the Catalysis. Once the
main metal species under the hydration conditions was
established and its method of generation was analyzed, we
investigated the mechanism of catalysis. To this end, the
kinetics of hydration of 2-methylpropanenitrile promoted by 1
was studied in THF-d8 under pseudo-first-order conditions.
The reactions were followed by 1H NMR spectroscopy and
carried out in the 373−348 K temperature range with
concentrations of the catalyst precursor 1 between 2.4 ×
10−2 and 1.2 × 10−2 M and concentrations of water between
12.2 and 4.9 M, starting from an initial concentration of nitrile
of 0.24 M.
The decrease of the nitrile concentration with a correspond-

ing increase of the amide concentration is an exponential
function of time under the selected conditions, in agreement
with a pseudo-first-order process. The rate constant kobs for
each concentration of the catalyst precursor and water used
and each temperature was calculated by graphing the
expression shown in eq 3, as exemplified in Figure 4 for the
reactions performed at 373 K, with a concentration of water of
12.2 M. The obtained values are collected in Table 2.

[ ]
[ ]

= −k tln
RCN
RCN 0

obs

(3)

The rate constant kobs is a function of the concentrations of
the catalyst precursor and water, according to eqs 4 and 5:

= [ ]k k Os aobs
1

obs
(4)

= [ ]k k H O b
1

obs
2 (5)

A plot of log kobs versus log [Os], for a water concentration
of 12.2 M, yields a straight line of slope 1.1 (Figure 5),
revealing that the hydration is first-order also in the catalyst
concentration and therefore the values of k1

obs given in Table 2
were obtained from eq 4 for a = 1. Similarly, the plot of log
k1

obs versus log [H2O], for a concentration of the catalyst
precursor of 2.4 × 10−2 M, affords a straight line of slope 1.0
(Figure 6), proving that the reaction is also first-order in the

Figure 4. Plot of eq 3 for hydration of 2-methylpropanenitrile (0.24
M) with different concentrations of 1 in THF-d8 at 373 K. [H2O] =
12.2 M; [1] = 1.2 × 10−2 M (purple ▲); 1.5 × 10−2 M (yellow ●);
1.7 × 10−2 M (blue ■); 1.9 × 10−2 M (red ◆); 2.4 × 10−2 M (green
●).
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water concentration, i.e., b = 1 in eq 5. Thus, the rate law is
described by eq 6, where k[H2O] = k1

obs and k1
obs[Os] = kobs.

[ ]
= − [ ] = [ ][ ][ ]

t t
k

d RC(O)NH
d

d RCN
d

Os RCN H O2
2 (6)

The plot of k1
obs versus [H2O] (Figure 7) provides a value of

(4.4 ± 0.4) × 10−3 M−2 s−1 for k at 373 K.
The rate law described in eq 6 excludes the reaction of κ2-

amidate complexes with water as the rate-determining step of
nitrile hydration. In this context, it should be noted that,

because the concentration of metal introduced in the catalysis
is approximately equal to the concentration of the κ2-amidate
complex generated during hydration, such a rate-determining
step should yield a second-order reaction, independent of the
nitrile concentration.
The obtained rate law indicates that both nitrile and water

are involved in the rate-determining step of hydration. To gain
information about it, we extended the previous DFT
calculations to the catalytic cycle (Scheme 7). Figure 8
shows the calculated profile for propionitrile as the model
nitrile.
The κ2-N,O to κ1-N transformation of the coordination

mode of the amidate ligand of 2 affords the necessary
coordination vacancy for entry of the nitrile molecule.
Coordination of the nitrile to the κ1-N-amidate complex I

Table 2. Kinetic Data for Hydration of 2-
Methylpropanenitrile (0.24 M) in THF-d8 Catalyzed by 1

T
(K)

[1]0
(×102 M)

[H2O]0
(M)

kobs (×104
s−1)

k1
obs (×102
M−1 s−1)

k (×103
M−2 s−1)

373 2.4 12.2 13.0 ± 2.0 5.3 ± 0.5 4.4 ± 0.4
373 1.9 12.2 10.6 ± 0.7 5.5 ± 0.6 4.5 ± 0.5
373 1.7 12.2 9.1 ± 0.4 5.4 ± 0.5 4.4 ± 0.4
373 1.5 12.2 7.3 ± 0.7 5.1 ± 0.5 4.2 ± 0.4
373 1.2 12.2 6.2 ± 0.4 5.1 ± 0.5 4.2 ± 0.4
373 2.4 9.7 10.6 ± 0.4 4.4 ± 0.4 4.5 ± 0.5
373 2.4 8.5 8.6 ± 0.5 3.5 ± 0.4 4.1 ± 0.4
373 2.4 7.3 7.6 ± 0.4 3.1 ± 0.3 4.3 ± 0.4
373 2.4 6.1 6.9 ± 0.3 2.8 ± 0.3 4.6 ± 0.5
373 2.4 4.9 5.0 ± 0.3 2.1 ± 0.2 4.2 ± 0.4
363 2.4 12.2 5.3 ± 0.4 2.2 ± 0.2 1.8 ± 0.2
358 2.4 12.2 4.0 ± 0.3 1.7 ± 0.2 1.4 ± 0.1
353 2.4 12.2 2.8 ± 0.2 1.1 ± 0.1 0.9 ± 0.1
348 2.4 12.2 1.9 ± 0.1 0.8 ± 0.1 0.6 ± 0.1

Figure 5. Plot of log kobs versus log [Os] for hydration of 2-
methylpropanenitrile (0.24 M) catalyzed by 1 in THF-d8 at 373 K.

Figure 6. Plot log k1
obs versus log [H2O] for hydration of 2-

methylpropanenitrile (0.24 M) catalyzed by 1 (2.4 × 10−2 M) in
THF-d8 at 373 K.

Figure 7. Plot of k1
obs versus [H2O] for hydration of 2-

methylpropanenitrile (0.24 M) with water catalyzed by 1 (2.4 ×
10−2 M) in THF-d8 at 373 K.

Scheme 7. Catalytic Cycle for Nitrile Hydration
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leads to the seven-coordinate intermediate L, which is the key
species of the catalysis. It undergoes the attack of an external
water molecule in the rate-determining step, as expected
according to eq 6. The free carbonyl group of the κ1-N-amidate
ligand fixes the water molecule in the vicinity of the C(sp)
atom of the nitrile. Once placed, the water molecule of adduct
M attacks the C atom of the nitrile and the N atom of the
amidate in a concerted manner. The attack takes place through
a six-membered cyclic transition state, TSM-N, which involves
Cnitrile···O−H···Namidate interactions (Figure 9). This transition

state lies 24.1 kcal mol−1 above the κ2-amidate complex and
ends up in the κ1-N-iminolate N, which resembles K bearing a
κ1-N-amide instead of a water ligand. The amide dissociation
from N affords the hydroxoazavinylidene intermediate H,
which tautomerizes into the κ1-N-amidate complex I, closing
the cycle.
The rate of formation of the amide is described by eq 7

according to the profile shown in Figure 7 and the rate-
determining step approximation.

[ ]
= [ ]

t
k M

d RC(O)NH
d

2
c (7)

The concentration of the intermediateM can be determined as
follows:

[ ] = [ ] + [ ] + [ ] + [ ]2 I L MOs T (8)

Because [L] = [M]/K3[H2O] and [I] = [M]/K2K3[RCN]-
[H2O], we have [2] = [M]/K1K2K3[RCN][H2O] and finally

[ ] =
[ ] [ ][ ]

+ + [ ] + [ ][ ]
K K K

K K K K K K
M

Os RCN H O
1 RCN RCN H O

1 2 3 T 2

1 1 2 1 2 3 2
(9)

Amidate complexes 2 are the only spectroscopically observed
species during the course of hydration. As a consequence, we
can assume that K1 + K1K2[RCN] + K1K2K3[RCN][H2O] ≪
1, and therefore [M] can be described as follows:

[ ] = [ ] [ ][ ]K K KM Os RCN H O1 2 3 T 2 (10)

Combining eqs 7 and 10, we obtain eq 11, where [Os]T is the
concentration of the catalyst precursor complex 1.

[ ]
= [ ] [ ][ ]

t
k K K K

d RC(O)NH
d

Os RCN H O2
c 1 2 3 T 2 (11)

Inspection of eq 11 shows that the rate of hydration is
proportional to the concentrations of the catalyst precursor,
nitrile, and water, in good agreement with the rate law
obtained experimentally (see eq 6), where k = kcK1K2K3.

■ CONCLUDING REMARKS
This study has discovered that the d2 hexahydride 1, which is
easily prepared from OsCl3·xH2O in high yield and bears a
usual commercially available ligand, efficiently catalyzes the
hydration of alkyl nitriles to amides. Furthermore, it displays a
good tolerance to functional groups, including methoxide,
benzoyl, functionalized aryl, and pyridyl groups, while also
being active with substrates of a branched chain as the
challenging trisubstituted pivalonitrile. The main metal species
under the catalytic conditions are the trihydride osmium(IV)
amidate derivatives OsH3{κ

2-N,O-[HNC(O)R]}(PiPr3)2,
which are formed in a stoichiometric process involving three
main steps: heterolytic O−H bond activation of water, nitrile
coordination, and nucleophilic attack of a hydroxo group at the
C(sp) atom of the coordinated nitrile.
Evidence obtained by combining isolation of the main metal

species under the catalytic conditions, kinetic analysis of the
hydration, and DFT calculations strongly supports an
alternative mechanism to those previously reported. Each
reaction has its own catalyst. The trihydride osmium(IV)
amidate complexes OsH3{κ

2-N,O-[HNC(O)R]}(PiPr3)2 re-
lease the carbonyl group of the chelate to afford κ1-N-amidate
derivatives, which are the true catalysts of hydration, one
diffeent for each nitrile. These catalysts coordinate the nitrile
to give the key intermediates of the catalysis, which undergo
the attack of an external water molecule in the rate-
determining step. The water molecule attacks the C atom of
the nitrile and the N atom of the amidate in a concerted
manner, through a six-membered cyclic transition state, which
involves Cnitrile···O−H···Namidate interactions. The attack
liberates the amide and regenerates a new κ1-N-amidate to
continue the hydration. The group κ1-N-amidate is not only an
intermediate in the formation pathway of the amide but also a
noninnocent ligand, which cooperates in the external attack of
the water molecule. Its free carbonyl group fixes the water

Figure 8. Computed energy profile for the catalytic cycle shown in
Scheme 7 (R = Et).

Figure 9. Transition state (TSM−N) between intermediates M and N.
H atoms of the ethyl group and triisopropilphosphine ligands have
been omitted for clarity. Selected bond distances (Å) and angles
(deg): Os−N(1) = 2.363, Os−N(2) = 2.118, H(1)−N(1) = 1.231,
H(1)−O(1) = 1.272, C(1)−O(1) = 1.952, C(1)−N(2) = 1.186;
N(1)−Os−N(2) = 81.6.
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molecule in the vicinity of the C(sp) atom of the nitrile, before
the attack.
The electron density of the metal center of the precursor is

responsible of the formation of these amidate catalysts; direct
participation of the ligands of the precursor does not take
place. Once the amidate complexes are formed, the steps
involved in the catalytic cycle are also mainly governed by the
amidate itself and the electron density of the metal center; the
role of the ligands of the precursor is reduced to that typical in
homogeneous catalysis: to modulate the electron density of the
metal center and the space around it. According to this, it
seems to be clear that the hydration of nitriles with catalyst
precursors bearing only innocent ligands is possible.

■ EXPERIMENTAL SECTION
General details including X-ray analysis, instrumental methods, and
computational information are given in the Supporting Information.
Chemical shifts are expressed in parts per million. Coupling constants
are given in hertz (N = 3JH−P + 5JH−P′ for

1H and 1JC−P + 3JC−P′ for
13C).
Preparation of OsH3{κ

2-N,O-[HNC(O)CH(CH3)2]}(P
iPr3)2 (2a).

2-Methylpropanenitrile (35.9 μL, 0.4 mmol) and water (7.2 μL, 0.4
mmol) were placed in a Schlenk tube with a solution of 1 (100 mg,
0.19 mmol) in THF (2 mL). The Schlenk tube was heated at 100 °C
for 3 h. The solvent was eliminated in vacuo to give a yellow oil. The
oil was washed with several portions of cold pentane (3 × 2 mL at
−78 °C) and dried in vacuo. Yield: 60 mg (50%). HR-MS
(electrospray). Calcd for C22H52NOOsP2 ([M − H]+): m/z
600.3101. Found: m/z 600.3133. 1H NMR (300.13 MHz, C7D8,
298 K): δ 5.30 (br, 1H, NH), 1.99 (m, 7H, CHPiPr3 + CHiPr), 1.22
(dvt, 3JH−H= 6.7, N = 12.6, 36H, CH3P

iPr3), 0.98 (d, 3JH−H= 7.0, 6H,
CH3

iPr), −13.26 (br, 3H, OsH3).
1H NMR (300.13 MHz, C7D8, 183

K): δ 5.30 (br, 1H, NH), 1.91 (br, 7H, CHPiPr3 + CHiPr), 1.23 (br,
36H, CH3P

iPr3), 1.00 (br, 6H, CH3
iPr), −10.28 (br, 1H, OsH),

−13.80 (br, 1H, OsH), −15.14 (br, 1H, OsH). 31P{1H} NMR
(121.50 MHz, C7D8, 298 K): δ 36.5. 13C{1H} APT NMR (75.48
MHz, CDCl3, 298 K): δ 181.2 (NCO), 37.6 (CHiPr), 26.6 (vt, N =
23, CHiPr), 20.3 (CH3P

iPr3), 18.5 (CH3
iPr).

Preparation of OsH3{κ
2-N,O-[HNC(O)C(CH3)3]}(P

iPr3)2 (2b).
Complex 1 (100 mg, 0.19 mmol) in THF (2 mL) was treated with
pivalonitrile (44.2 μL, 0.4 mmol) and water (7.2 μL, 0.4 mmol) for 3
h at 130 °C. The solvent was eliminated under vacuum, obtaining a
yellow oil. The addition of cold pentane (1 mL at −78 °C) caused the
precipitation of a white solid. The solid was washed with further
portions of cold pentane (3 × 2 mL) and dried in vacuo. Yield: 35 mg
(30%). Colorless single crystals suitable for X-ray diffraction analysis
were obtained from a saturated solution of 2b in pentane at −30 °C.
HR-MS (electrospray). Calcd for C23H54NOOsP2 ([M − H]+): m/z
614.3291. Found: m/z 614.3302. Anal. Calcd for C23H55NOOsP2: C,
45.00; H, 9.03; N, 2.28. Found: C, 44.78; H, 8.85; N, 2.46. IR (ATR,
cm−1): ν(NH) 3432 (w), ν(Os−H) 2126 (s). 1H NMR (300.13
MHz, C7D8, 298 K): δ 5.42 (br, 1H, NH), 1.99 (m, 6H, CHPiPr3),
1.20 (dvt, 3JH−H = 5.6, N = 12.5, 36H, CH3P

iPr3), 1.02 (s, 9H,
CH3

tBu), −13.36 (br, 3H, OsH3).
1H NMR (300.13 MHz, C7D8, 193

K): δ 5.45 (br, 1H, NH), 1.89 (br, 6H, CHPiPr3), 1.26 (br, 36H,
CH3P

iPr3), 1.06 (s, 9H, CH3
tBu), −10.33 (br, 1H, OsH), −13.77 (br,

1H, OsH), −14.94 (br, 1H, OsH). 31P{1H} NMR (121.50 MHz,
C7D8, 298 K): δ 37.0. 13C{1H} APT NMR (75.48 MHz, CDCl3, 298
K): δ 182.5 (NCO), 39.9 (Cq

tBu), 26.8 (CH3
tBu), 26.4 (vt, N = 23.1,

CHPiPr), 20.3 (CH3P
iPr3).

Catalytic Hydration of Nitriles. All reactions were performed in
NMR tubes under an argon atmosphere. Nitrile (0.14 mmol),
deoxygenated water (125 μL, 7.0 mmol), and mesitylene (19.5 μL,
0.14 mmol), used as an internal standard, were added to a solution of
1 (3.6 mg, 0.007 mmol, 5 mol %) in THF-d8 (450 μL). The mixture
was heated at 100 °C, and the reaction was monitored by 1H NMR.
The yields were determined by comparing the integration areas of the
characteristic signals of the amides with those of the mesitylene. After

the time indicated on Scheme 4, the solvent and remaining water were
removed under vacuum, yielding a silvery oil or a white solid. The
addition of pentane (1 mL) induced the precipitation of a white solid,
which was washed with further portions of pentane (3 × 1 mL) and
dried under vacuo. The amides were characterized by 1H and
13C{1H} NMR and IR spectroscopy.

Kinetic Experiments. All kinetic experiments were performed in
THF-d8 solutions contained in NMR tubes under an argon
atmosphere. The NMR tubes were charged with 2-methylpropaneni-
trile (0.14 mmol, 0.24 M), water (50.4−125 μL, 2.8−7.0 mmol, 4.9−
12.2 M), complex 1 (7.0 × 10−3−14.0 × 10−3 mmol, 1.2 × 10−2−2.4
× 10−2 M), and mesitylene (0.14 mmol, 0.24 M; internal standard),
and the final volume was brought to 575 μL using THF-d8. Then

1H
NMR spectra were recorded every 5 min for 1 h or until the
conversion was over 90%.
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