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Abstract 

Background:  The large volume of medical literature makes it difficult for healthcare professionals to keep abreast 
of the latest studies that support Evidence-Based Medicine. Natural language processing enhances the access to rel‑
evant information, and gold standard corpora are required to improve systems. To contribute with a new dataset for 
this domain, we collected the Clinical Trials for Evidence-Based Medicine in Spanish (CT-EBM-SP) corpus.

Methods:  We annotated 1200 texts about clinical trials with entities from the Unified Medical Language System 
semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM), pathologies (DISO), and lab 
tests, diagnostic or therapeutic procedures (PROC). We doubly annotated 10% of the corpus and measured inter-
annotator agreement (IAA) using F-measure. As use case, we run medical entity recognition experiments with neural 
network models.

Results:  This resource contains 500 abstracts of journal articles about clinical trials and 700 announcements of trial 
protocols (292 173 tokens). We annotated 46 699 entities (13.98% are nested entities). Regarding IAA agreement, 
we obtained an average F-measure of 85.65% (±4.79, strict match) and 93.94% (±3.31, relaxed match). In the use 
case experiments, we achieved recognition results ranging from 80.28% (±00.99) to 86.74% (±00.19) of average 
F-measure.

Conclusions:  Our results show that this resource is adequate for experiments with state-of-the-art approaches to 
biomedical named entity recognition. It is freely distributed at: http://​www.​lllf.​uam.​es/​ESP/​nlpme​dterm_​en.​html. The 
methods are generalizable to other languages with similar available sources.
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Language Processing
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Background
The paradigm of Evidence-Based Medicine (EBM) [1] 
aims at bringing to the patient the latest research devel-
opments supported by systematic reviews and medical 
practice. Critical sources of evidence come from clinical 
trials. Nevertheless, the large volume of published infor-
mation is one of the burdens for healthcare profession-
als to keep up to date with the latest advances. Only in 
2019, 32 521 trial announcements were published on 
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the ClinicalTrials site [2], and over 4300 in the European 
Union Clinical Trials Register (EudraCT) [3].

Although information retrieval techniques allow 
health professionals to browse the key data, queries tend 
to match strings. To the best of our knowledge, fine-
grained search that considers the term semantics (i.e. 
domain classes such as drug, pathology or procedure) is 
not implemented yet. Search or information extraction 
systems may cluster ambiguous strings regardless of their 
class; e.g. radio may refer to a chemical element, a body 
part or be an abbreviation of a procedure (‘radiother-
apy’). Likewise, medical professionals may have difficul-
ties in finding information about the type of intervention 
they look for (e.g. pharmacological vs. surgical interven-
tions). For example, for treating some cancers, several 
trials tested immunotherapy agents (experimental drugs 
such as nivolumab), and others, surgical or therapeutic 
procedures (e.g. chemohyperthermia). Access to spe-
cific types of interventions could be faster if profession-
als could customize their search and restrict it to chosen 
semantic classes. This could also help to infer relations 
between interventions that are potentially related or that 
achieve the desired outcome, which requires perusing a 
(frequently) large amount of evidence sources. Enrich-
ing these texts with semantics is a potential benefit to 
enhance the access to hidden information.

Moreover, from the patient’s viewpoint, trial announce-
ments are written with medical terms that may not 
be understood. This lack of understandability hinders 
patients’ participation in trials. Semiautomatic text sim-
plification techniques may alleviate this problem. To do 
so, biomedical named entity recognition (NER) can help 
to detect the candidate terms to simplify.

The objective of this work is to present the first anno-
tated collection of texts about clinical studies and trial 
announcements in the Spanish language. This resource 
is aimed at conducting experiments for medical NER and 
developing systems that solve the mentioned issues. We 
have annotated journal abstracts about clinical trials and 
retrospective studies, published in PubMed and the Sci-
ELO repository, and clinical trial announcements from 
EudraCT. The entities belong to four semantic groups 
[4] from the Unified Medical Language System® (UMLS) 
[5] concerning pathologies (DISO), anatomic entities 
(ANAT), biochemical or pharmacological substances 
(CHEM) and diagnostic or therapeutic procedures and 
lab tests (PROC). We focused on those four entity types 
as a proof-of-concept to assess whether the annotation 
and the named entity recognition task on these data 
yielded adequate results. The experiments here reported 
show that the annotation scheme and methodology pro-
vided adequate results. The current resource is freely 
available to the research community. In addition, the 

methods are generalizable to other languages with simi-
lar sources available (e.g. English, French or German).

This article begins with a literature review before 
explaining the methods: text selection and sources, 
annotation process and scheme, analysis of contents, 
inter-annotator agreement assessment, and use case 
experiments. We then report the results: count of texts 
and annotations, therapeutic areas covered, inter-annota-
tor agreement, and experimental results. We discuss our 
outcomes before concluding. A supplementary graphical 
abstract summarizes the contents of this work (see Addi-
tional file 1).

Related work
Influential corpora exist in the biomedical natural lan-
guage processing (BioNLP) community, but most are 
available for the English language: e.g. the i2b2 corpora 
[6, 7], the GENIA [8], BioScope [9], CLEF [10], CRAFT 
[11] or DDI corpora [12]. The scarcity of resources for 
other languages remains a challenge [13]. In this section, 
we will focus on reviewing the corpora related to our 
task: texts on Evidence-Based Medicine (EBM) and Clini-
cal Trials (CT), and BioNLP corpora in Spanish.

EBM and CT corpora
A widely-used framework to formalize clinical trial data 
is the PICO model: a population or group of patients 
(P) with a medical problem undergoes an experimental 
intervention (I) concerning a standard therapy or com-
parator (C), with the expectation that the researched 
intervention will improve outcomes (O). However, cor-
pora aimed at named entity recognition integrate entities 
annotated not only with PICO labels, but also with other 
domain labels (e.g. diseases or drugs).

One of the earliest annotated corpora of evidence-
based texts is NICTA-PIBOSO [14], a collection of 1000 
biomedical abstracts. With a similar approach to the 
work reported in [15], sentences were labeled manually 
with PIBOSO elements (Population, Intervention, Back-
ground, Outcome, Study Design, and Other). The team 
used the dataset for experiments to identify key sen-
tences and test machine learning NER models (namely, 
Conditional Random Fields, CRF).

The work reported in [16] was among the first initia-
tives to annotate Clinical Trial Announcements (CTAs). 
This team annotated both CTAs (only the eligibility cri-
teria) and clinical notes (medical entities and personal 
health information). The purpose was building gold 
standard corpora for information extraction and de-iden-
tification tasks. Texts were pre-annotated and revised 
manually. As far as we know, this resource is not freely 
available.
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A different collection of EBM texts—from the Jour-
nal of Family Practice and excerpts from PubMed—is 
described in [17]. This team did not annotate medical 
entities but rather matched clinical questions to answers 
with evidence from the scientific literature. Their goal 
was creating a resource for automatic text summariza-
tion, evidence appraisal and clustering of answers rel-
evant to medical questions. To create their resource, 
authors combined crowdsourcing, automated informa-
tion extraction, and manual annotation.

The EBM-NLP corpus [18] includes almost 5000 Pub-
Med abstracts about clinical trials. The team have a team 
of crowdsourcers (experts and laymen) annotate texts 
with PICO (Patients/Population, Interventions, Com-
parators and Outcomes) elements. Crowdsourcers also 
marked more detailed information in each category (e.g. 
age or pharmacological entity). This resource was devel-
oped to train machine learning (CRF) and deep learning 
NER models.

The Evidence Inference corpus [19] gathers more than 
10 000 questions (prompts) paired with PubMed articles 
about RCTs. Medical doctors matched the prompts and 
the texts supporting the evidence. They also annotated 
the relationship between Intervention, Comparator and 
Outcomes: results might significantly increase or signifi-
cantly decrease with regard to the comparator or show 
no significant difference. The dataset was used in machine 
learning experiments on evidence inference.

The work presented in [20] focused on identifying the 
similarity between outcomes reported in the scientific lit-
erature. To do so, this team annotated outcomes in a cor-
pus of texts about clinical trials from PubMed Central; 

these data were later used to train deep learning algo-
rithms (BERT-based models, [21]) for automatic similar-
ity assessment.

The Evidence-Based Medicine Scientific Artefacts 
Semantic Similarity (EBMSASS) corpus [22] was col-
lected reusing a subset of the NICTA-PIBOSO corpus 
[23]. The authors built this dataset to test approaches and 
measures of semantic similarity of clinical evidence in 
biomedical texts.

Lastly, the Chia corpus gathers annotations of patient 
eligibility criteria from 1000 clinical trials [24] for het-
erogeneous pathologies. Two medical professionals 
annotated entities and relationships, which can also be 
represented as annotation graphs to construct executable 
queries. Although other teams have also annotated eligi-
bility criteria (e.g. [25, 26]; see more references in [24]), to 
the best of our knowledge, this is the largest freely avail-
able resource. The corpus was created for information 
extraction experiments and electronic phenotyping.

Not all these corpora report inter-annotator agree-
ment values; for corpora where these were measured, 
agreement values ranged from Kappa values over 0.60 
(substantial agreement) to Krippendorf ’s alpha over 0.80 
(almost perfect agreement). Table  1 summarizes the key 
features of the described corpora.

BioNLP corpora in Spanish
The MultiMedica corpus [27] is a multilingual (Japanese, 
Arabic and Spanish) collection of scientific and populari-
zation texts from the health domain. It was prepared to 
conduct corpus and terminology studies and to develop 
a term extractor. Only Part-of-Speech (PoS) information 

Table 1  EBM and CT corpora

Corpus Text type and size Annotations (count)

NICTA-PIBOSO [14] 10 000 sentences from 1000 MEDLINE abstracts Sentences classified in the PIBOSO model: Population 
(812), Intervention (690), Background (2557), Outcome 
(4523), Study design (233) and Other (1564)

Deléger et al. [16] 52 FDA labels (96 675 tokens), 3503 clinical notes (>1M 
tokens) and CTAs (241 annotated with drugs, 51 793 
tokens; 3000 annotated with disorders/symptoms, 
647 246 tokens)

Disease and symptoms (12 388), medications and drug 
attributes (74 507)

EBM corpus [17] Clinical Enquiries section from the Journal of Family Prac-
tice, and excerpts from PubMed

Medical questions (456), bottom-line answers (1396), justi‑
fications (3036); these are matched to 2908 abstracts

EBM-NLP [18] 5000 abstracts about clinical trials from PubMed (>1M 
tokens)

Entities corresponding to PICO elements (counts not 
reported)

Evidence Inference corpus [19] More than 10 137 evidence questions (prompts) matched 
to 2419 PubMed articles about RCTs

Intervention results significantly increase (2428), signifi‑
cantly decrease (4470) or show no significant difference 
(3239)

EBMSASS [22] 1000 pairs of sentences of clinical evidence Elements from the PIBOSO model (200 pairs for each class)

Koroleva et al. [20] Sentences from clinical trial studies in PubMed Central Outcomes: Primary (2000 sentences) and Reported (1940)

Chia [24] 1000 texts from ClinicalTrials.gov (12 409 elibility criteria) 15 entity types (41 487) and 12 different relationships (25 
017)
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was tagged. Because of proprietary rights, this resource is 
not freely available.

The MANTRA corpus [28] is a parallel collection of 
texts in English, French, German, Spanish and Dutch. 
Medline titles, drug labels from the European Medicines 
Agency (EMA) and patent titles were annotated with 
UMLS® Concept Unique Identifiers (CUIs) and semantic 
types. Authors applied pre-annotation methods, revised 
manually and harmonized annotations to create this gold 
standard.

The IxaMedGS corpus [29] gathers 75 electronic health 
records (EHRs) annotated with disease and drug enti-
ties, and adverse drug reactions (ADRs) relations. After a 
lexicon-based pre-annotation, two pharmacology experts 
revised all texts. The corpus was collected for training a 
machine-learning-based system. To date, it is not freely 
accessible due to privacy issues.

The SpanishADR corpus [30] was built out from 
pharmacovigilance research on social media. Authors 
collected a database and a corpus of ADRs from Forum-
Clinic, a patient-oriented site. Two annotators labeled 
drugs, effects and ADR relations in the web posts. This 
resource was then used to train a kernel-based method 
with distant supervision for relation extraction.

The DrugSemantics corpus [31] is a collection of sum-
maries of product characteristics (SPCs). One nurse and 
two nursing students annotated entities of drug names 
and attributes (e.g. unit of measurement, dosage form, 
route or excipient) manually. The aim of this work was 
preparing a gold standard to evaluate a drug named 
entity classification system.

The IULA Spanish Clinical Record Corpus (SCRC) 
[32] gathers 3194 sentences from anonymized hospital 
reports. Three computational linguists annotated clinical 
entities (e.g. findings and procedures) and negation cues 
and scopes. This corpus is useful for developing text-min-
ing and NLP systems.

A corpus from the radiology domain is presented in 
[33]. Two annotators (a medical student and an engineer) 
annotated 513 reports with clinical findings, body parts, 
negation, temporal terms, abbreviations and nine types 
of relations. As far as we know, this resource is not freely 
available.

The Biomedical Text Mining Unit has released several 
corpora ; we only mention those related to our task. For 
the 2nd Biomedical Abbreviation Recognition and Reso-
lution (BARR) challenge [34], texts from PubMed and 
SciELO were annotated with acronyms and their expan-
sion. For the PharmaCoNER task [35], this team prepared 
the Spanish Clinical Case Corpus (SPACCC) with texts 
from SciELO. They annotated proteins and chemical 
entities that can be normalized to SNOMED CT [36]. For 
the CODIESP challenge [37], this dataset was annotated 

with codes from the International Classification of Dis-
eases, 10th edition (ICD-10). This team has also anno-
tated cancer-related clinical cases for the CANTEMIST 
challenge [38].

The eHealth Discovery corpus [39] is a compilation 
of 1173 sentences extracted from MedlinePlus. Three 
experts in semantic analysis and twelve non-expert anno-
tators labeled the sentences manually with a general 
semantic structure (e.g. entities and roles) and relations 
(e.g. is_a, or part_of). This team compiled this cor-
pus for the TASS 2018 evaluation challenge [40].

The NUBes corpus [41] comprises 29 682 sentences 
from anonymized EHRs. Three linguists annotated nega-
tion and speculation and extended the IULA-SCRC 
resource by labeling uncertainty. Authors used NUBes to 
train a neural-network-based model to detect negation 
an uncertainty.

Lastly, the Chilean Waiting List Corpus (CWLC) [42] 
gathers 900 referrals from medical doctors in the Chilean 
healthcare system. Four medical students and doctors 
annotated entities, attributes and the relation Has. This 
is a gold standard for testing word-embedding-based and 
neural-based named entity recognizers.

The inter-annotator agreement values of the mentioned 
corpora range from moderate to almost perfect agree-
ment. However, the subset of texts doubly annotated var-
ies from the full corpus [29] to only a 5% [35]. Table  2 
shows the key features of the described resources.

Methods
Text sources
We downloaded 920 abstracts of clinical trial studies in 
Spanish, published in journals with a Creative Commons 
license. Most were downloaded from the SciELO reposi-
tory [43], but we also resorted to free abstracts in Pub-
Med [44]. We retrieved texts with the following query: 
Clinical Trial[ptyp] AND “loattrfree 
full text”[sb] AND “spanish”[la]. From 
both sources, we selected 500 texts by applying the meth-
ods explained in the section Text Selection.

We also downloaded 6021 announcements of clinical 
trials protocols from February to June 2020. Texts were 
published at the European Union Clinical Trials Regis-
ter (EudraCT) and the Spanish Repository of Clinical 
Trials (REEC) [45]. From those texts, we only used a 
subset of 5272 documents; we discarded texts not avail-
able in Spanish or without the contents considered (e.g. 
some pediatrics texts lack a title). Following previous 
work [46], we were only interested in annotating the 
following sections: Public and Scientific Title, Public 
and Scientific Indication, and Inclusion and Exclusion 
Criteria. We finally chose 700 texts from this source. 
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Of note, we included 52 trial protocols announcements 
related to the COVID-19 pandemics.

The subset of abstracts has the characteristics of 
formal, scientific literature aimed at specialists. Texts 
tend to be longer (average of 282.5±70.2 words) and 
contain fewer but longer sentences (7284, 14.57±4.38 
average sentences per text). Besides, they have medi-
cal terms that are hard to be understood by non-health 
professionals. EudraCT trial announcements tend to 
be shorter (average of 215.61 ±69.38 words). Although 
they gather more sentences (13 788, 19.70±8.23 aver-
age sentences per text), these are shorter (many are 
list items of the eligibility criteria). These texts also 
feature formal, clinical writing aimed at professionals, 
but some sections are also written in a patient-oriented 
style. Namely, sections Public Title and Public Indica-
tion are generally a shorter description of the trial title 
and the pathology under investigation. For laymen to 
understand them, these sections feature simpler words 
and paraphrases of medical terms (e.g. dolor postop-
eratorio, ‘postoperative pain’ ↔ dolor después de la 
operación, ‘pain after surgery’). Compare, for example, 
the following Scientific and Public Indication sections 
(respectively, upper and lower lines below) extracted 
from the CTA no 2014-000305-13:

Prevención del tromboembolismo venoso (TEV) sin-
tomático y la mortalidad por TEV tras el alta hospital-
aria en pacientes con procesos médicos de alto riesgo 
(‘Prevention of symptomatic venous thromboembolism 
(VTE) and VTE-related death posthospital discharge in 
high-risk, medically ill patients.’)

Prevención de la aparición de un coágulo de sangre 
dentro de un vaso sanguíneo que bloquea el flujo de san-
gre a través del sistema circulatorio en pacientes que han 
sido dados de alta del hospital (‘Prevent the occurrence 
of a blood clot inside a blood vessel that blocks the flow 
of blood through the circulatory system in patients who 
have been discharged from the hospital.’)

We found more misspellings, tokenization and mis-
translations in the EudraCT subset. These errors might 
be due to unrevised translations and typos when regis-
tering the data in the trial register system. The editorial 
corrections that are mandatory for article abstracts to be 
published might seldom be made in CTAs.

Text selection
We applied the methodology from [47], which is sum-
marized herein. We distributed documents in sets of 5-6 
texts each. Herein, we refer by text to a journal abstract 
or clinical trial announcement with an unique identifier 
(e.g. a PubMed ID or EudraCT code) and made up of 

Table 2  BioNLP corpora in Spanish

Corpus Text type and size Annotated entities (count)

MultiMedica [27] Technical/popularizing texts; 4204 in Spanish, >4M tokens No entities annotated, only part-of-speech

MANTRA corpus [28] Multilingual; in Spanish, texts from EMA (100; 1961 tokens) & 
Medline (100; 1087 tokens)

UMLS semantic types and CUIs; 5530 total annotations (756 in 
Spanish)

IxaMedGS [29] 75 clinical reports (41 633 tokens) Disease (2766), Drug (1191) and adverse drug reactions relations 
(228)

Spanish ADR [30] 397 texts from ForumClinic               (26 519 tokens) Drugs (187) and adverse drug reactions (636)

Drug Semantics [31] 30 texts from Summaries of Product Characteristics                      
(226 729 tokens)

Disease (724), Drug (657), Measurement (557), Excipient (66), 
Composition (62), Dose Form (45), Route (42), Medicament 
(37), Food (31), Therapeutic Action (20)

IULA-SCRC [32] 3194 sentences from 300 anonymized clinical records Body part (7), Substance (14), Finding (1064), Procedure (93), 
Negation (1207)

Cotik et al. [33] 513 radiology reports Anatomy (4398), Finding (2637), Location (722), Measure (3210), 
Texture (1890), Measure Type (1127), Negation (1207), Uncer‑
tainty (109), Abbreviation (880), Temporal (35), Multiword 
(788); 9 relation types (10 987)

BARR2 [34] 3563 report cases            (1 433 685 tokens) Abbreviations, acronyms and expanded terms (9552 annota‑
tions)

SPACCC [35] 1000 clinical cases published in journals from SciELO (396 988 
tokens)

PharmaCoNER: Proteins (3009), Normalizable to SNOMED CT 
(4398), Not-normalizable (50), Unclear (167). CODIESP: 18 483 
ICD-10 codes

eHealth Discovery 1173 Spanish health-related sentences from MedlinePlus Entities (7188), Roles (3586) and 4 types of relations (2339)

NUBes [41] 29 682 sentences from 7019 anonymized EHRs Negation (7567 sentences) and Speculation (2219 sentences)

CWLC [42] 1912 sentences (36 157 tokens) from 900 referrals 9029 entities (Symptom, Diagnostic, Therapeutic or Laboratory 
Procedure, Family Member, Disease, Body part, Medication, 
Result, Abbreviation), 385 attributes (5 types), 284 relations



Page 6 of 19Campillos‑Llanos et al. BMC Med Inform Decis Mak           (2021) 21:69 

several sentences. The file of each text bears the name of 
the corresponding identifier. First, texts were classed in 
percentiles according to their length: short (1st–25th per-
centile), medium (26th–75th percentile) and long (76th–
100th percentile). Then, we sampled the texts randomly 
and distributed them in sets, each having one short text, 
one long text, and three or four medium-size texts. By 
applying this procedure, we tried to achieve homogene-
ous sets to annotate.

Second, we examined the similarity of the semantic 
contents. We pre-annotated the texts with the UMLS® 
semantic groups considered (the pre-annotation is 
explained in section Pre-annotation of Entities). Next, 
we computed the distribution of semantic groups in 
each file—i.e. how many ANAT, CHEM, DISO or PROC 
entities appeared before the revision—and compared 
the distributions to those of each entire subcorpus. We 
computed distributions with the Kullback-Leibler (KL) 
divergence [48]. This measure describes the dissimilarity 
between two probability distributions, and is computed 
with this formula:

where P and Q are two probability distributions. The 
more the distributions are identical, the KL divergence 
is closer to zero. For each set of 5-6 files, we computed 
the KL value, compared it to those of the entire subcor-
pus (abstracts or EudraCT) and sorted sets in increasing 
order, selecting only the needed sets. With this proce-
dure, we chose the sets with the smallest KL value—i.e. 
the texts with the most similar distribution to each 
subcorpus.

Finally, when we had annotated 1000 texts, we decided 
to enlarge the corpus with 200 documents. We again 
applied the previous methods to choose the last batches 
to annotate, but also the suggestions to select train-
ing data for NER tasks, provided in a very recent work 
we found [49] after having annotated 1000 texts. These 
authors compared several measures, namely the vocabu-
lary shared between texts, the language model perplex-
ity or the word vector variance; overall, these authors 
reported that each measure had a similar predictive 
value. Therefore, we computed the vocabulary shared 
between candidate texts and the 1000 texts already in the 
corpus. We finally selected the texts with the higher simi-
larity values of vocabulary with regard to the 1000 docu-
ments already included in the dataset.

In domains where publicly available data are scarce, 
a text selection method is critical to build a corpus 
with an adequate size and enough generalizable data. If 
enough sources are available, gathering large volumes of 

D(P� Q) =

t∑

i=1

pi log
pi

qi

data might suffice; however, experiments in the medi-
cal domain have already shown that larger datasets do 
not necessarily yield better results [50]. This is the rea-
son why we selected texts according to their similar 
length or semantic content (by applying the KL distance 
on the semantic annotations) and the lexical similarity 
(Dai et al.’s method [49]). For our task, these methods are 
complementary and are more adequate than other alter-
natives such as selecting texts according to the authors’ 
demographics or the publication channel (e.g. forum 
posts vs. scientific/regulatory agencies platforms).

Analysis of corpus contents
We analyzed qualitatively the therapeutic areas covered 
in the trial studies and announcements. We counted the 
texts according to the Medical Subject Heading (MeSH) 
Tree Entry Term that could best describe them. For 
the texts from EudraCT, we took the class in the trial 
announcement (section E.1.1.2). For the abstracts, we 
did not have this information available. We classified 
the texts manually by considering the MeSH descriptors 
that journals had assigned to the abstracts in PubMed 
or SciELO, and the type of journal where they were pub-
lished. Note that this approach is less accurate than the 
classification of texts from EudratCT. However, descrip-
tors from EudraCT do not always describe the texts 
accurately, and some medical conditions can be catego-
rized into several classes: e.g. texts about COVID-19 are 
classed into C2 Virus Diseases, but sometimes are classed 
into C08 Respiratory Tract Diseases. We nevertheless 
followed the classification from EudraCT. Consequently, 
because of the above reasons, this analysis should be 
taken with caution; it is only an overall view of what our 
corpus covers.

Pre‑annotation of entities
We pre-annotated the data to speed up the annotation, 
given that some research teams [46] obtained optimal 
results without annotation biases. We applied a hybrid 
named entity recognition pipeline, implemented in 
Python and spaCy [51]. The NER pipeline is made up of 
a module for dictionary-based matching, normalization, 
tokenization and lemmatization. Post-processing rules 
are used to exclude specific UMLS® semantic groups 
(e.g. CONC, GENE or PHYS groups were not anno-
tated in the current version). Rules of term composition 
widen the coverage of annotated entities (e.g. enfermedad 
de + proper name → DISO; e.g. enfermedad de Crohn, 
‘Crohn’s disease’). We used MedLexSp [52], a Spanish 
lexicon with terms from most medical terminologies and 
knowledge bases: e.g. ICD-10, MeSH, SNOMED CT or 
the Dictionary of Medical Terms [53]. A supplementary 
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video shows the interface of the tool for the preannota-
tion (see Additional file 2).

Annotation scheme
This version of the corpus is aimed at experiments on 
named entity recognition. We annotated four types of 
entities corresponding to UMLS® [5] semantic groups 
(SG) of pathologies (DISO), anatomic entities (ANAT), 
biochemical or pharmacological substances (CHEM) and 
lab tests, diagnostic or therapeutic procedures (PROC). 
For a first version of the corpus, and given the budget and 
time constraints, we focused on the most relevant sub-
set of UMLS groups for the task. Table 3 shows the list of 
annotated SGs, the correspondence to UMLS® semantic 
types, and examples.

Note that we annotated all these types of entities, 
regardless of whether they occurred in negated contexts 
or not. For example, ostomía (‘ostomy’) is annotated in 
sin ostomía (‘without ostomy’). Qualifiers or modifiers 
were only annotated as part of a broader entity (and with 
the same label) provided that the full entity could be nor-
malized to a reference terminology or code. For example, 
crónica (‘chronic’) was not annotated as concept (CONC) 
in enfermedad renal crónica (‘chronic kidney disease’); 
we rather annotated enfermedad renal crónica as DISO, 
because this entity can be normalized to an ICD-10 code 
(N18.9) or UMLS CUI (C1561643). We did not annotate 
discontinuous nor overlapping entity mentions.

To design the annotation scheme, we reviewed the 
guidelines of available corpora [6, 10, 12, 28, 29, 31, 35, 
47]. We also considered annotating PICO elements 
(Patients/Population, Interventions, Comparators, and 
Outcomes) instead of UMLS® groups. We nevertheless 
discarded annotating PICO elements in this version of 
the corpus, given the need for several annotators with 

expert knowledge and medical background to carry out 
this type of annotation. We also chose to annotate UMLS 
groups because we did not want to restrict the utility of 
our corpus to process only clinical trials. Our goal was to 
release a resource that could help to process also other 
broader medical text sources that support Evidence-
Based Medicine and are not formalized with the PICO 
framework (e.g. clinical practice guidelines and, to some 
extent, medical records).

Because we first aimed at building a NER corpus, we 
did not conduct a systematic concept annotation and 
normalization to reference terminologies or ontologies as 
in the CRAFT [11] or MANTRA corpora [28]. Systems 
such as MetaMap [54] provide automatic UMLS concept 
recognition; however, concept normalization requires 
manual revision and considerably deeper disambigua-
tion and time investment. Although our choice limits 
the utility of the corpus, we nonetheless added a small 
fraction of CUIs manually during the annotation pro-
cess for understanding the labeled entities. In addition, 
we thought it beneficial to add at least those CUIs that 
could be mapped automatically to the annotated enti-
ties. We used exact string matching and the MedLexSp 
lexicon [52] to add only those CUIs that matched our 
annotations (changed to lowercase) and corresponded 
to the semantic group we annotated. This was required 
to avoid assigning a wrong CUI to ambiguous strings. 
For example, calcio was matched to C0006675 when 
referring to the chemical element (CHEM); but it was 
matched to C0201925 when referring to the labora-
tory procedure (PROC). In multi-word entities, the full 
entity was matched (not parts of them): e.g. in calcio 
sérico (‘serum calcium measurement’, C0728876), the 
CUI does not refer to calcio nor to sérico. Note that this 
procedure has limitations and not all the annotations 

Table 3  Annotated UMLS® semantic groups (SG) and semantic types, with examples

SG Semantic types Examples

ANAT Anatomical structure; body location or region; body part organ or organ component; 
body space or junction; body substance; body system; cell component; cell; embryonic 
structure; fully formed anatomical structure; tissue

Sangre (‘blood’), músculo (‘muscle’)

CHEM Amino acid, peptide, or protein; antibiotic; biologically active substance; carbohydrates; 
chemical; chemical viewed functionally; chemical viewed structurally; clinical drug; 
element, ion, or isotope; enzyme; hazardous or poisonous substance; hormone; 
immunologic factor; indicator, reagent, or diagnostic aid; inorganic chemical; nucleic 
acid, nucleoside, or nucleotide; organic chemical; pharmacological substance; receptor; 
vitamin

ADN (‘DNA’), antibiótico (‘antibiotic’), penicilina 
(‘penicillin’), tacrolimus, retinol, calcio (‘calcium’)

DISO Acquired abnormality; anatomical abnormality; cell or molecular dysfunction; congenital 
abnormality; disease or syndrome; experimental model of disease; injury or poisoning; 
mental or behavioural dysfunction; pathologic function; neoplastic process; sign or 
symptom

Cancer, diabetes, fiebre (‘fever’), mutación (‘mutation’)

PROC Diagnostic procedure; health care activity; laboratory procedure; molecular biology 
research technique; research activity; therapeutic or preventive procedure

Hemograma (‘hemogram’), diálisis     (‘dialysis’)



Page 8 of 19Campillos‑Llanos et al. BMC Med Inform Decis Mak           (2021) 21:69 

are normalized automatically to CUIs. For example, we 
could not normalize some derived forms (lobar ↔ lóbulo, 
‘lobe’, C0796494), shortened forms (sd de malabsorción 
↔ síndrome de malabsorción, ‘malabsorption syndrome’, 
C0024523), paraphrases (asignados al azar ↔ aleatori-
zados, ‘randomized’, C0034656) or misspellings (*cromo-
sopatía, ‘chromosomopathy’, C0008626). Therefore, the 
normalized annotations are of limited utility for evaluat-
ing how concept recognition systems deal with linguistic 
variability in these texts. On the other hand, the amount 
of CUIs provided, to the best of our knowledge, outnum-
bers the data in other Spanish corpora, and builds the 
foundations for future annotations.

Annotation process
We used the BRAT Rapid Annotation Tool [55] for the 
annotation; Fig.  1 shows a sample. Note that we also 
annotated nested entities [56]; for example, both a disease 
or procedure and the affected body part(s) are marked. 
Figure  2 shows nested entities: e.g. cáncer de mama 
(‘breast cancer’) is annotated as DISO and includes the 
annotation of pecho (‘breast’) as ANAT.

Three researchers (co-authors of this work) were 
involved in the task: a medical practitioner (ACC), a 
medical terminologist (AVM), and a computational lin-
guist (LCL), who coordinated the annotation task and 
normalized all the annotations. The annotation pro-
cess was conducted in three stages. In the first stage, all 
annotators (triple annotation) labeled the same docu-
ments (12 abstracts). The triple annotation was a means 
of training all three annotators using the same texts and 
discussing and modifying the annotation criteria among 
all participants. After meetings to fix the annotation cri-
teria, we set up consensus annotations and computed the 
inter-annotator agreement. Once we saw that the IAA 
value was adequate, we fixed a first version of the annota-
tion guidelines. We then proceeded to the second stage 
(double annotation): since the three annotators could not 
revise the same documents because of time constraints, 
a pair of annotators doubly revised a subset of 49 texts, 
and another pair revised a different sample of 63 texts. 
In total, 112 texts were doubly annotated to compute the 
inter-annotator agreement. We first doubly annotated the 
journal abstracts, then the clinical trial announcements 

Fig. 1  Sample of the annotation

Fig. 2  Sample of nested annotations
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from EudraCT. The three annotators held meetings to 
achieve consensus annotations regularly every one or two 
weeks. During this process, the annotation guidelines 
were fixed and updated on a regular basis. The final anno-
tation guidelines are available at the project web site.1 
The last stage of the annotation (harmonization) was car-
ried out after all texts were annotated. The coordinator 
of the annotation task unified and suppressed incoherent 
annotations across all documents. The full process lasted 
over seven months.

Inter‑annotation agreement (IAA)
To measure the annotation quality, we computed the IAA 
for 124 files (approximately, 10% of the data). Around 
two-thirds of the texts (67%) for measuring the IAA were 
chosen randomly, whereas one-third of texts were chosen 
due to specific difficulties we wanted to solve (in particu-
lar, by the medical doctor). We could not doubly annotate 
more documents owing to time and budget constraints.

We calculated the inter-annotator agreement through 
the F-measure value. We did not use the Kappa value 
because entity spans were also compared, which can be 
problematic since the expected chance agreement of each 
entity type and span can be extremely scarce [57]. None-
theless, in annotation contexts where entities might have 
different spans (e.g. hepatitis or hepatitis grave, ‘severe 
hepatitis’), it is adequate to use the F-measure as a meas-
urement of agreement between one set of annotations 
and the other doubly annotated set (taken as the refer-
ence) [58].

Use case
To determine the validity of the CT-EBM-SP corpus and 
present a real use case, we report experiments using this 
resource in the context of a supervised named entity rec-
ognition (NER) task. Note that the goal is not to com-
pare current NER approaches systematically, nor to test 
the latest neural architectures that are out of reach of 
our computational resources (e.g. GPT3 [59]). We rather 
intend to set a tentative baseline with this corpus and 
show that this first version is adequate for testing models. 
We tested three frameworks based on a language-mode-
ling objective, given that this yields better results for NER 
than the classic embedding approaches [60, 61]. In the 
following, we describe the algorithms, the methodology 
and the evaluation procedure.

SequenceLabeler
We first tested SequenceLabeler [62], a neural-based 
sequence labeling architecture. It is a Bidirectional Long-
Short Term Memory (Bi-LSTM) model with a final layer 
implementing Conditional Random Fields (CRF); this is 
similar to the framework proposed in [63, 64]. Sequence-
Labeler also computes a language model and trains char-
acter embeddings along with token embeddings, applying 
an attention mechanism. Out-of-Vocabulary (OOV) 
words are replaced with the UNK token. This framework 
has achieved competitive results in supervised tasks such 
as learner error detection, named entity recognition or 
PoS-tagging.

We trained our own medical word-embeddings with 
fastText [65] and used the same hyperparameters of the 
article [62]: dimension of tokens = 100, dimension of 
characters = 50, Adadelta optimizer, learning rate = 1, 
dropout = 0.5, batch size = 64, and minimal word fre-
quency = 1. Character tokens were not lowercased. We 
set the training to a maximum of 50 epochs (although we 
did not achieved that maximum); the training stopped if 
the model did not improve after 7 epochs of evaluation 
on the development set.

Contextual string embeddings (Flair)
We also tested a Bi-LSTM-CRF architecture using con-
textual string embeddings provided in the Flair frame-
work [66]. Contextual string embeddings represent 
words as sequences of characters contextualized by 
the surrounded text. For each word, the internal states 
of a bidirectional character-level language model are 
retrieved. Both forward and backward representations 
can be stacked with pre-trained word-level embeddings. 
The stacked embeddings are input to a Bi-LSTM-CRF 
module to predict the labels. Flair features several pre-
trained language models, embeddings and functions to 
stack different language representations.

We stacked the medical fastText embeddings (the same 
employed with SequenceLabeler) and the contextual 
string embeddings provided in Flair; these are general 
embeddings pre-trained using the Spanish Wikipedia. 
We applied almost the same hyperparameters as in [66]: 
stochastic gradient descent optimizer, hidden states per 
layer = 256, dropout = 0.5, and batch size = 32. Like-
wise, the learning rate was initialized to 0.1, and halved 
if training loss did not improved for 5 epochs. The maxi-
mum number of epochs was set to 100 (although our 
experiments stopped training before that limit). We pro-
vide a Python notebook for replicating the experiment.

1  http://​www.​lllf.​uam.​es/​ESP/​nlpda​ta/​wp2/​annot_​guide​line_​nlpme​dterm.​pdf.

http://www.lllf.uam.es/ESP/nlpdata/wp2/annot_guideline_nlpmedterm.pdf
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Bidirectional encoder representations from transformers 
(BERT)
Bidirectional Encoder Representations from Trans-
formers (BERT) [21] is a language representation model 
featuring contextualized embeddings. It is trained with 
self-attention layers of the Transformer encoder [67] 
and a masked language model (MLM), which replaces 
randomly 15% of input tokens with a mask token. The 
training objective is to predict the original replaced 
word; this enables pre-training both the right and left 
context. The BERT framework uses WordPiece embed-
dings and the UNK token replaces Out-of-Vocabulary 
(OOV) words. BERT involves two steps: unsupervised 
pre-training, and fine-tuning the pre-trained repre-
sentations for a supervised task. For the first step, 
the standard English BERT model was trained in 
BooksCorpus (800M words) and Wikipedia (2500M 
words).

We tested a BERT model for Spanish (BETO) [68]. 
BETO was pre-trained on several corpora (3000M 
tokens), including the Spanish versions of Wikipedia, 
EMA, EuroParl or News-Commentary vs 11. We used 
the BERT base model trained on 12 layers, with a hid-
den size of 768 and 12 attention heads. The learning rate 
was 3e-5, using the Adam optimizer, and tokens were 
not lowercased. The batch size was 8, and the sentence 
length was 270 (we padded shorter sentences to fit that 
length). For the fine-tuning step, we plugged a layer for 
named entity recognition (without Conditional Random 
Fields) on top of the Spanish BERT. We implemented it in 
PyTorch with the Transformers library [69]. We trained 
for 4 epochs, as in the BERT paper [21]. We make avail-
able a Python notebook with the code for the replicability 
of results.

Experiment methods
The procedure followed a standard methodology. The 
annotated files in BRAT format were converted to the 
CoNLL tabular format, and entity types were formatted 
with the Begin (B), Inside (I) and Out (O) scheme. In pre-
liminary tests, we also tested the BIOES format (where E 
stands for ‘End’, and S, for ‘single’), since other research-
ers reported higher results [70]. However, we did not use 
it finally because the improvements were not substantial.

We trained all neural frameworks on a corpus subset 
(60%) of 720 texts (175 203 tokens): 300 abstracts and 
420 texts from EudraCT. We validated the model on a 
development set (20% of the corpus) of 240 texts (58 670 
tokens; 100 abstracts and 140 EudraCT announcements). 
Lastly, we tested the best configuration of each model on 
a 20% of the corpus (240 texts, 58 300 tokens), with the 
same distribution as in the development set (see Table 8 

in Results). We used an NVIDIA GeForce RTX 2080 TI 
Turbo 11GC to train the BERT NER and Flair models.

For SequenceLabeler and Flair, we used fastText word-
embeddings [65]. We trained them on Spanish texts 
of the medical domain from the European Medicines 
Agency corpus [71] ( ∼13.9M tokens) and articles from 
the SciELO repository ( ∼25M tokens). The vocabulary 
size is of 61 752 tokens. We applied the following param-
eters: Skip-gram model, window size = 10, dimensions = 
100, minimum frequency = 1, number of negatives sam-
pled = 10, learning rate = 1e-4. The embeddings can be 
downloaded at the project website.

Evaluation procedure
We computed standard precision, recall and F1 measure. 
Precision (P), which is also referred to as positive predic-
tive value, is computed based on the count of true posi-
tives (TP) and false positives (FP):

Recall (R), also called sensitivity, is calculated out from 
the number of true positives (TP) and false negatives 
(FN):

Lastly, the F1 measure is the balanced ratio between P 
and R, and is appropriate when evaluating tasks with sev-
eral unbalanced labels:

We report micro-average F1 scores (strict match). We 
ran 10 experimental rounds with different random seeds 
(for training SequenceLabeler) or different random ini-
tialization of the training set (for BERT NER and Flair). 
We report the average precision, recall and F measures 
with their standard deviation.

Results
Descriptive statistics and count of annotations
We annotated 1200 texts to be distributed for research. 
One subset is made up of 500 summaries of clinical trial 
studies published in journals with a Creative Commons 
license. The other subset includes 700 announcements of 
clinical trials protocols, published at the European Union 
Clinical Trials Register (EudraCT) [3] and the Spanish 
Repository of Clinical Trials (REEC) [45].

Table  4 presents the counts of sentences, tokens and 
annotated entities in each subcorpora. We counted as 

P =
TP

TP + FP

R =
TP

TP + FN

F =
2PR

P + R
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sentence any text segment between sentence-bound-
ary characters (?, !, .) and new lines. We did not anno-
tate some sentences where no entity of the considered 
UMLS groups occurred. For example, some sentences 
only report the CT registration number, which we did 
not annotate: e.g. Registrado en U.S. National Institutes 
of Health, ClinicalTrials.gov con número NCT03239808 
(‘Registered at the U.S. National Institutes of Health, 
ClinicalTrials.gov under the number NCT03239808’). 
Table 5 shows the distribution per entity type; and Fig. 3, 
the distribution in percentage. M stands for ‘mean’, and 
SD, for ‘standard deviation’. PROC and DISO entities 
outnumber the rest of entity types. A total of 13.98% of 
annotations are nested. Regarding the normalization of 
entities, an average of 70.68% were normalized to UMLS 
CUIs, out of which 2088 (4.47% of annotations) were 
added and revised manually. For comparison, Table  6 
shows counts of the pre-annotation (before revision). The 
number of entities decreased in the revised version, but 
the proportion across labels was similar to the pre-anno-
tated data. Although the pre-annotation made it easier 
for annotators to detect the desired entities, it created 
false positives or mismatches that needed subsequent 
revision.

Therapeutic areas covered
Figure  4 shows our analysis. The corpus abounds with 
texts related to the following therapeutic areas: can-
cer, anesthetic procedures, virus diseases (e.g. HIV and 
COVID-19), digestive system diseases (e.g. Crohn’s dis-
ease), nutritional and metabolic diseases (e.g. diabetes) 
and kidney diseases.

Results of the inter‑annotator agreement
The average F-measure is 85.65% with a standard devia-
tion of ±4.79 (strict), and F-measure of 93.94% (±3.31) 
(relaxed). These figures are average values after consen-
sus annotations were achieved between all annotators. 
Following [31], we estimate that our average F-measure 

in the Landis & Koch scale [72] could correspond to 
F ∈ [100-80] (almost perfect agreement). According to 
each stage, the inter-annotator agreement is as shown in 
Table 7.

If we analyze the IAA value according to the text type, 
we see higher IAA values in texts from EudraCT. How-
ever, these figures are not comparable, given that we 
first annotated the abstracts, then annotated the trial 
announcements. The higher values obtained could both 
be due to the fact that the announcements were eas-
ier to annotate, and also because we annotated these 
data in the last annotation stage (when annotators were 
fully trained). Notwithstanding this, we do see a steady 
increase in IAA values from the training stage (average 
F = 77.0% ±4.2, strict; and average F = 86.10% ±3.2, 
relaxed) to the last stage (F = 86.52% ±3.92, average of 
strict IAA for both abstracts and EudraCT; and average F 
= 94.76% ±1.91, relaxed). Annotators progressed stead-
ily as they annotated more data and criteria were auto-
mated or learnt.

Figures  5 and 6 show the IAA values per entity type, 
and Fig.  7, IAA per pair of annotators and with regard 
to the consensus (C). In the strict evaluation, more dis-
agreements between annotators concerned the PROC 
category, followed by the DISO label. Indeed, many dif-
ferences involved the scope of the annotation, namely 
modifiers of multi-word terms.

Results of the experiments
We trained on 60% of the corpus and 20% for develop-
ment and 20% for testing (Table 8). In the 10 experimen-
tal rounds, we trained SequenceLabeler for an average 
of 26.9 epochs (±5.78); and Flair, for an average of 86.20 
epochs (±9.62). We trained the BERT NER model for 
4 epochs, as in the original paper [21]); substantial 
improvements were not achieved at the 4th epoch, but 
the development loss had increased steadily. Tables 9 and 
10 present our results.

Fig. 3  Distribution of annotated entity types (in percentage)
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Error analysis
An error analysis is necessary to understand the output 
of the neural models, which operate as a blackbox. This 
procedure aims at helping to achieve explainable artificial 

intelligence systems that can be considered reliable and 
trustworthy—especially by medical professionals [73]. 
We thus analyzed the system predictions on the test set 
and found several errors due to ambiguous entity types. 

Fig. 4  Therapeutic areas of texts (codes correspond to MeSH tree numbers)
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Some errors come from homonymy or polysemy: e.g. 
miembro may refer to ‘member’ (a person in a group) 
or ‘limb’ (anatomic entity). Besides, ambiguity affects at 
the semantic group. Ambiguity is very frequent among 
chemical entities, which often refer to the laboratory pro-
cedure measuring a substance. For example, calcium was 
annotated chem in the context of suplementos con cal-
cio (‘calcium supplements’); but we labeled it as proc in 
niveles de calcio sérico in contexts where it implies serum 
calcium measurement. All neural models made errors in 
some of these contexts.

Other errors are due to entities with low frequency in 
the corpus, especially those occurring just once. The task 
type has an impact on this distribution of data, where 
some terms have low frequency. Texts from trials report 
experimental drugs, which occasionally do not appear 
in terminological resources—not even in drug databases 
such as DrugBank or PubChem. Similarly, trials con-
ducted on rare or uncommon diseases have vocabulary 
items that can yield recognizing errors. Several acro-
nyms or abbreviations with low frequency in the corpus 
also caused errors. Interestingly, vice versa, some proper 
names (e.g. from institutions or trial titles) caused false 
positives—the algorithm annotated them incorrectly in 
spite of its low frequency.

Table 4  Count of sentences, tokens and annotated entities

Abstracts EudraCT Total

Texts 500 700 1200

Sentences 7160 11 995 19 155

M (SD) 14.32 (±4.24) 17.14 (±5.24) 15.96 (±5.04)

Annotated sen‑
tences

5444 8607 14 051

M (SD) 10.89 (±3.00) 12.29 (±4.63) 11.71 (±4.09)

Tokens 141 245 150 928 292 173

M (SD) 282.49 (±70.21) 215.61 (±69.38) 243.48 (±77.11)

Entities 20 031 26 668 46 699

M (SD) 40.06 (±13.67) 38.10 (±14.39) 38.92 (±14.12)

Nested entities 2613 (13.04%) 3914 (14.68%) 6527 (13.98%)

Normalized 13 627 19 382 33 009

to UMLS CUIs (68.03%) (72.68%) (70.68%)

Table 5  Distribution of annotations per entity type (A: ‘Abstracts’; E: ‘EudraCT’)

A M (SD) E M (SD) Total M (SD)

ANAT 2683 5.37 (±4.90) 4045 5.78 (±4.74) 6728 5.61 (±4.81)

CHEM 4338 8.68 (±7.19) 4886 6.98 (±5.07) 9224 7.69 (±6.10)

DISO 4296 8.59 (±7.20) 8771 12.53 (±6.40) 13 067 10.89 (±6.30)

PROC 8714 17.43 (±7.74) 8966 12.81 (±5.87) 17 680 14.73 (±7.09)

Table 6  Counts of pre-annotated entities

Abstracts EudraCT Total

All 25 265 31 078 56 343

M (SD) 50.53 (±16.49) 44.40 (±16.73) 46.95 (±16.90)

ANAT 3653 4847 8500

M (SD) 7.31 (±5.21) 6.92 (±5.44) 7.08 (±5.34)

CHEM 4956 5132 10 088

M (SD) 9.91 (±7.97) 7.33 (±5.04) 8.41 (±6.55)

DISO 6555 10 732 17 287

M (SD) 13.11 (±6.59) 15.33 (±7.60) 14.41 (±7.27)

PROC 10 101 10 367 20 468

M (SD) 20.20 (±7.73) 14.81 (±6.42) 17.06 (±7.48)

Table 7  InterAnnotator agreement

Texts Mean (Standard deviation)

Strict Relaxed

Triple revision 12 (abstracts) 77.0% (±4.2) 86.10% (±3.2)

Double revision 42 (abstracts) 82.62% (±2.11) 93.06% (±0.97)

70 (EudraCT) 88.48% (±3.05) 95.61% (±1.68)

112 (abst. + 
EudraCT)

86.52% (±3.92) 94.76% (±1.91)

All ( ∼10% of texts) 124 85.65% (±4.79) 93.94% (±3.31)

Fig. 5  IAA per entity type (strict)
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Other errors are related to the annotation scope. 
This is particularly common in adjectives of severity or 
degree (e.g. grave, ‘severe’, or leve, ‘mild’), and modifiers 
of procedures that specify the manner or details about 
the methods applied (e.g. ambulatorio, ‘ambulatory’). 
All neural models made errors in certain contexts (e.g. 
cirugíia ginecológica abierta, ‘open gynecologic sur-
gery’). Annotators indeed hesitated regularly about the 
scope of these terms. The scope of entities to annotate 
may change subject to different tasks such as normaliz-
ing to a reference thesaurus, annotating detailed clini-
cal mentions, or mapping entities to PICO elements.

Concerning this point, many errors arose in mentions 
of the type of study or trial (e.g. estudio fase 3, aleato-
rizado, doble ciego, ‘phase 3, randomized, double-blind 
study’). Besides the variability of the type of essay, many 
mentions include inside its scope some words that we 
did not annotate (e.g. the trial code or its duration).

Table  11 includes samples of the errors found (FNs 
stands for ‘false negatives’; and FPs, for ‘false positives’). 
Table  12 reports the average count (and standard 

deviation) of false positives and false negatives across 
semantic groups for the 10 evaluation rounds. We could 
not report these counts for BERT, because the evalua-
tion library we used to evaluate it (Python seqeval) 
does not give these values.

We analyzed the variation of the annotated terms 
across entity types, to shed light on the errors this 
might cause. Following [74], we examined the aver-
age number of tokens or characters in entities, or the 
presence of coordination, numerals, punctuation char-
acters, uppercase or stop words (Table  13). DISO and 
PROC entities tend to be longer or have more tokens. 
This is due to the use of modifiers (grave, ‘severe’), 
which we observed to cause errors related to the scope 
of terms. Also, regarding the PROC label, many enti-
ties refer to long mentions of trial types. Coordination 
and stop words are also more frequent in these entity 
types: e.g. terapia biológica u hormonal, ‘hormonal and 
biological therapy’; cancer de cabeza y cuello, ‘head and 
neck cancer’). Other superficial characteristics such as 
numerals, uppercase or hyphens occur more often in 
CHEM entities (e.g. PM01183, 5-FC, ABT-530). These 
features cause false positives in the neural models. 
Names of genes or trial studies in uppercase or with 
numbers might be misrecognized also as CHEM enti-
ties; and hyphens might cause errors related to the 
tokenization of entities. Punctuation characters appear 
more in PROC entities; this is because we annotated 
long mentions of trial types with commas or brackets 
(Ensayo clínico fase II, aleatorizado, ‘Phase 3, Rand-
omized, Study’; ensayo clínico terapéutico ( fase III), 
‘therapeutic clinical trial (phase III)’). Punctuation 
characters might cause misrecognition errors related 
to tokenization. The systems seldom annotate commas 
or brackets (they are interpreted as entity boundaries). 
ANAT entities are shorter and do not show a high fre-
quency of any of these features. The large number of 

Fig. 6  IAA per entity type (relaxed)

Fig. 7  IAA values per pair of annotators and with regard to consensus (C) annotations
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errors in this label might rather be due to the fact that 
this entity type is the least common in our data (the 
neural models lack enough samples to learn).

Discussion
As for the use case experiment, the BERT model fine-
tuned in the NER task yielded better results; still, the 
Flair and SequenceLabeler frameworks performed com-
petitively and did not require a heavy pre-training step. 
Flair tended to yield slightly higher recall (sensitivity) val-
ues, whereas BERT and SequenceLabeler showed mod-
erately higher precision (positive predictive value). Our 
intuition is that using specific embeddings trained on 

data from EudraCT could presumably improve our out-
comes. This is a line of work that deserves to be pursued. 
In particular, using data from the domain to train a Span-
ish medical BERT or medical Flair embeddings, similar to 
the BioBERT [75] or HunFlair models [76], respectively. 
Another limitation of our experiments is that we did 
not test other embedding representations such as ELMo 
[77] or pooled contextual string embeddings [78], which 
yielded outstanding results in recent works [79]. The sys-
tematic comparison of approaches to NER with this cor-
pus is out of the scope of this article. Given the current 
fast increase in neural architectures, it would be better 
made in the context of an evaluation challenge. Testing 
hybrid architectures [80], which combine language mod-
eling, lexicon-based annotation and rule-based pattern 
matching, is a line to explore.

The need for more annotated data and the nature of the 
task might also have an impact on the results reported 
here. We observed in our error analysis that recognizing 
entities in clinical trials might pose difficulties related to 
the high variability of contents or the mentions of inves-
tigational drugs, which occur at low frequency even in 
domain data. If labeled data are scarce, purely machine-
learning-based models or neural-based approaches 
might need to be complemented with terminology-based 
or rule-based approaches and pattern matching. This is, 
however, an intuition to test empirically.

The results in our experiments might partially be 
explained by the type of entities considered. We acknowl-
edge that annotating only four UMLS groups is a limita-
tion. Not all UMLS groups were labeled owing to time 
limits and because this first annotated version was a 
proof-of-concept to assess the annotation and the NER 
results: we focused on entity types that seemed more 
adequate for the task. Because the experiments showed 

Table 8  Distribution of tokens (upper rows) and entities (inferior 
rows) per split

TOKENS Train Dev Test

Abstracts 84 855 27 957 28 433

M (SD) 282.85 (±67.66) 279.57 (±56.34) 284.33 (±88.49)

EudraCT 90 348 30 713 29 867

M (SD) 215.11 (±66.93) 219.38 (±68.04) 213.34 (±77.81)

All 175 203 58 670 58 300

M (SD) 243.34 (±75.04) 244.46 (±69.94) 242.92 (±89.41)

ENTITIES Train Dev Test
Abstracts 12 129 4092 3810

M (SD) 40.43 (±13.29) 40.92 (±13.78) 38.10 (±14.63)

EudraCT 15 972 5537 5159

M (SD) 38.03 (±14.10) 39.55 (±14.70) 36.85 (±14.90)

All 28 101 9629 8969

M (SD) 39.03 (±13.81) 40.12 (±14.31) 37.37 (±14.77)

ANAT 4023 1442 1263

M (SD) 5.59 (±4.88) 6.01 (±4.78) 5.26 (±4.61)

CHEM 5577 1840 1807

M (SD) 7.75 (±6.00) 7.67 (±6.01) 7.53 (±6.50)

DISO 7832 2716 2519

M (SD) 10.88 (±6.18) 11.32 (±6.94) 10.50 (±6,01)

PROC 10 669 3631 3380

M (SD) 14.82 (±6.91) 15.13 (±7.41) 14.08 (±7.27)

Table 9  Average (±standard deviation) P, R and F1 in 
development and test

Precision Recall F-measure

SequenceLabeler Dev 81.02 (±1.17) 78.65 (±1.89) 79.80 (±0.82)

Test 80.67 (±1.36) 79.91 (±1.51) 80.28 (±0.99)

Flair Dev 82.65 (±0.35) 83.18 (±0.44) 82.92 (±0.38)

Test 82.35 (±0.28) 83.18 (±0.29) 82.76 (±0.24)

BERT NER Dev 88.03 (±0.27) 86.06 (±0.24) 87.03 (±0.21)

Test 87.93 (±0.22) 85.58 (±0.31) 86.74 (±0.19)

Table 10  Average P, R and F1 (±standard deviation) per entity 
type (test set)

SeqLabeler Precision Recall F-measure

ANAT 62.32 (±6.27) 56.74 (±4.48) 59.06 (±2.27)

CHEM 85.81 (±2.47) 82.94 (±1.84) 84.32 (±1.29)

DISO 82.35 (±1.55) 81.11 (±1.69) 81.70 (±0.91)

PROC 78.94 (±1.98) 79.91 (±1.72) 79.40 (±1.25)

Flair ANAT 71.10 (±2.62) 62.25 (±1.24) 66.36 (±1.63)

CHEM 85.98 (±0.62) 87.30 (±0.34) 86.63 (±0.33)

DISO 84.68 (±0.29) 85.04 (±0.29) 84.86 (±0.13)

PROC 79.90 (±0.36) 81.86 (±0.37) 80.86 (±0.27)

BERT ANAT 63.38 (±2.14) 63.88 (±2.61) 63.56 (±1.08)

CHEM 91.47 (±0.50) 90.74 (±0.51) 91.10 (±0.36)

DISO 90.23 (±0.26) 88.43 (± 0.56) 89.32 (±0.23)

PROC 85.20 (±0.43) 80.87 (±0.54) 82.98 (±0.30)
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that the annotation scheme and methodology provided 
decent results, annotating finer entity types is worth con-
sidering. Widening the annotation to other UMLS groups 
for devices (DEVI), physiological processes (PHYS) 
or genes (GENE) would enrich the corpus. However, 

according to our experience, other UMLS semantic 
groups related to concepts (CONC) might cause noise. 
It would be rather more adequate to distinguish finer-
grained concept categories that are not UMLS groups. 
Namely, for discriminating drug attributes (administra-
tion route, dosage, strength or concentration) and for 
time expressions (date, duration or frequency), as in 
other works [81]. Another limitation is the fact that we 
did not annotate negation cues (e.g. no, ‘not’, or sin, ‘with-
out’). Finally, the corpus would benefit from annotating 
semantic relations between entities (e.g. diso affects 
anat, or chem treats diso).

Overall, the preliminary experiments conducted show 
that the current version of the CT-EBM-SP corpus can be 
applied to test a wide range of approaches to biomedical 
NER. Our resource opens a new research line for Spanish 
NLP in the clinical trials domain. The annotation, carried 
out by medical and terminology professionals, has pro-
duced quality data, as shown by the high inter-annotator 
agreement achieved. Even though this resource lacks a 

Table 11  Examples of errors and predictions of each neural model (B: BERT; F: Flair; SL: SequenceLabeler)

Type Example Model

Ambiguity el nivel de fósforo se redujo (‘phosphorus level decreased’)

Prediction: O B-PROC I-PROC I-PROC O O ✗: B, F, SL

Reference: O O O B-CHEM O O

grupos de 20 miembros (‘20-member groups’)

Prediction:  O O O B-ANAT ✗: SL

Reference:  O O O O ✓: B, F

FNs Lurbinectedin ( PM01183 ) (‘Lurbinectedin (PM01183)’)

Prediction:  O O O O ✗: SL

Reference:  B-CHEM O B-CHEM O ✓: B, F

episodios de NF (‘episodes of FN’ [‘febrile neutropenia’])

Prediction:  O O O ✗: B, SL

Reference:  O O B-DISO ✓: F

FPs gen AVXS-101 (‘AVXS-101 gene’)

Prediction: O B-CHEM ✗: B, SL

Reference: O O ✓: F

estudio BREATH-19 (‘BREATH-19 study’)

Prediction:  O B-DISO ✗: SL

Reference:  O O ✓: B, F

Scope eventos adversos graves (‘severe adverse events’)

Prediction: B-DISO I-DISO I-DISO ✗: B, SL

Reference: B-DISO I-DISO O ✓: F

cirugía ginecológica abierta (‘open gynecologic surgery’)

Prediction: B-PROC I-PROC I-PROC ✗: B, F, SL

Reference: B-PROC I-PROC O

estudios comparativos de la eficacia (‘compared efficacy studies’)

Prediction: B-PROC O O O O ✗: SL

Reference: B-PROC I-PROC I-PROC I-PROC I-PROC ✓: B, F

Table 12  Average FPs and FNs (±standard deviation) per entity 
type (test set)

SequenceLabeler Flair

FPs FNs FPs FNs

ANAT 112.20 
(±34.74)

136.70 
(±14.15)

80.20 (±9.34) 119.30 (±3.92)

CHEM 216.00 
(±48.05)

267.00 
(±28.87)

222.80 
(±11.67)

198.80 (±5.37)

DISO 459.80 
(±91.15)

494.50 
(±122.08)

380.30 
(±9.48)

369.70 (±7.06)

PROC 690.50 
(±138.92)

648.40 
(±34.86)

692.80 
(±15.45)

610.40 (±12.45)
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rich variety of entity types, we have shown that competi-
tive results can be obtained at its current state. Our tests 
come along resources and code to replicate and general-
ize our preliminary outcomes.

Given that this corpus includes texts also available 
in English, if needed, parallel texts may be collected in 
the future. Similar documents or the same translated 
texts are available in PubMed, EudraCT or SciELO [82]. 
Therefore, similar corpora can be collected and anno-
tated in other languages. This paves the way towards 
creating standard resources that enhance the replicabil-
ity of research across languages.

Conclusion
We have described the methods to create the CT-EBM-
SP corpus, a collection of 1200 texts about clinical trials 
studies and announcements in Spanish. This is the first 
resource for medical natural language processing of 
clinical trials in this language. Three experts have anno-
tated it with entities from the Unified Medical Lan-
guage System® semantic groups (ANAT, CHEM, DISO 
and PROC). A 10% of the corpus was doubly annotated 
and a high inter-annotator agreement was achieved 
(average F1 = 85.65% ±4.79, strict match; 93.94% 
±3.31, relaxed match). We presented use case experi-
ments to show that the current version of the CT-EBM-
SP corpus allowed us testing state-of-the-art neural 
biomedical named entity recognizers with competitive 
results. The presented methods are generalizable to 
other languages such as English, French or German, for 
which similar sources are available.

We believe this work contributes to enhancing the 
access to evidence-based information for both health 
professionals and patients. We would also be very satis-
fied if this resource played a beneficial role for devel-
oping systems that help patients to understand trial 
protocols, interventions and procedures better.
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