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Abstract

Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous

lichen species of the genus Cladonia. In the present study we analyze whether the geo-

graphical distance, the host species or the host secondary metabolites determine the

genetic structure of this parasite. To address the question, populations mainly from the

Southern Europe, Southern Finland and the Azores were sampled. The specimens were

collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA,

LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA,

redundance analyses and Bayesian clustering methods. The results indicated that the host

species and the host secondary metabolites are the most influential factors over the genetic

structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii

was compared with that of one of its hosts, Cladonia rangiformis. The population structure

of parasite and host were discordant. The contents in phenolic compounds and fatty acids

of C. rangiformis were quantified in order to test whether it had some influence on the

genetic structure of the species. But no correlation was found with the genetic clusters of

H. bachmannii.

Introduction

The term “lichenicolous fungi” refers to a polyphyletic group of fungi specialized in living on

lichens, whether as parasites, as commensals, or as saprophytes [1–2]. It is widely accepted that

most of the species of lichenicolous fungi are highly specific, restricting themselves to a few

host species that generally belong to a single genus [2–3]. Nevertheless, little is known about

the factors that determine the host specificity and the genetic structure of the lichenicolous

fungi. Very few researches using molecular tools have addressed these questions thus far.

Molina et al. [4] studied the genetic variation of the lichenicolous basidiomyceteous fungus

Marchandiomyces corallinus (Roberge) Diederich & D. Hawksw., that grows on host species of
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different lichen genera; they found that the genetic variation of this species was geographically

structured. Werth et al. [5] studied the populations of Tremella lobariacearum Diederich & M.

S. Christ. in Macaronesia on three host species of the genus Lobaria. In this case the authors

found that the host species was the most important factor in the genetic structure of T. lobaria-
cearum. Millanes et al. [6] investigated the genetic variation of Biatoropsis usnearum Räsänen,

finding that it constitutes a complex of cryptic species, and that the host specificity seems to

have influenced the speciation. Nadler [7] proposed that the host species can be the most

determining factor for the genetic structure of the parasites. However, other possible factors,

like the secondary metabolites of the host, could have a similar relevance in the lichenicolous

fungi. Lichens synthesize a great variety of secondary metabolites, which are chemically vari-

able and exclusive to them. These metabolites belong to aliphatic acids, lactones, quinones,

dibenzofuranes, depsides, depsidones, terpenoids, xanthones, steroids, and carotenoids [8–9].

One of the biological functions attributed to secondary metabolites in the lichen hosts are the

protection against the parasites [2, 10, 11], therefore they could play an important role in the

genetic structure of lichenicolous fungi. It has been suggested that the different species of liche-

nicolus fungi are tolerant to only a limited number of these substances, and would select their

hosts according to the substances they produce [12–13]. A different tolerance degree to several

lichen compounds has been proved in fungi with a lichenicolous life style [14]; therefore, the

secondary metabolites of the host could be a relevant factor of adaptive divergence for these

organisms. To date, however, no research has been carried out in order to test whether any

connection exists between the genetic variation of the lichenicolous fungi and the secondary

metabolites of the host.

The genus Heterocephalacria (Filobasidiales, Basidiomycota) includes four species of gelati-

nous fungi, all of them mycoparasites, two of which are lichenicolous [15–16]. Heterocephala-
cria bachmannii (Diederich & M.S. Christ.) Millanes & Wedin is a widely distributed species,

reported from Europe, Macaronesia, North America, and Asia [17–18]. This fungus induces

the formation of gelatinous, red-brownish, more or less elongated galls that often cause defor-

mations in the host thallus, but never kill it. Little is known of the life cycle of H. bachmannii–
e.g. its mating system (homothallic or heterothallic) or dispersal mechanisms. This species par-

asitizes only species of the genus Cladonia [17] and it has been found so far on 39 species either

on primary thalli or on podetia [18].

Most of the species of the genus Cladonia are terricolous, growing in areas of high light

radiation and humidity [19]. The species that are hosts for H. bachmannii synthesize a great

variety of secondary metabolites. These include aliphatic acids such as rangiformic and bour-

geanic acids; depsides such as barbatic acid, depsidones such as fumarprotocetraric acid, the

dibenzofuran usnic acid and terpenoid such as zeorin. In addition, a great number of species

of Cladonia are chemically very variable [19–20], i.e. different specimens of the same species

can synthesize different secondary metabolites. Though most of Cladonia species can repro-

duce sexually by means of apothecia, the majority of the species frequently lack apothecia,

implying that asexual reproduction is predominant by dispersion of vegetative propagules,

such as soredia, granules, squamules or thallus fragments [19]. Therefore, H. bachmannii
could codisperse along with the host by these fragments carrying fungus galls; in this case we

would expect a high congruence between the genetic structures of the parasite and its host.

The system Cladonia–H. bachmannii is therefore suitable to study which of the agents deter-

mine the genetic structure of the lichenicolous fungi.

The aim of this study was to examine the genetic structure of H. bachmannii and the factors

that determine it, assessing the importance of three potential factors: host species, host second-

ary metabolites, and geographical distribution.

Genetic variation of Heterocephalacria bachmannii
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Material and methods

Sampling and loci selection

The specimens were collected between July 2014 and July 2015 in areas belonging to three dif-

ferent biogeographical regions: the Azores Islands (Macaronesian region), Southern Europe

(Mediterranean region) and Southern Finland (Hemiboreal region). On every locality, one to

five specimens of H. bachmannii per host species were collected. The collected specimens were

spaced at least 5 m from each other. To complete the sampling, specimens deposited in the

herbaria H, LE, and MACB were selected, including eight specimens from America, and two

from Asia. The new collections were deposited in H. In total, DNA sequences from 123 speci-

mens of H. bachmannii were obtained (Table 1). The Cladonia host species were identified

according to Ahti & Stenroos [20], by morphological and chemical study of the specimens.

Three loci were selected for the population–based study of H. bachmannii: ITS rDNA, LSU

rDNA, and mtSSU. Of these, ITS rDNA and LSU rDNA were selected according to the results

of Millanes et al. [6], who recommend the use of these loci as barcodes in Tremellomycetes.

The following loci were tested to determine which of them was the most informative at popula-

tion level: l41 (with the primers L41F/L41R), IGS rDNA (with LR12R/5SRNA), atp6 (with

ATP6-1/ATP6-2), rpb2 (with bRPB2-6F/bRPB2-11R), rpb1 (with RPB1-Af/RPB1-CR), ef1α
(with 983F/1567). So far no sequences of H. bachmannii were obtained for any of these loci.

Either the amplification failed or the obtained sequences corresponded to the lichen myco-

biont. Therefore we decided to use mtSSU, the only additional locus that worked.

In addition, DNA was extracted from one of the host species, Cladonia rangiformis Hoffm., try-

ing to amplify the same loci used for H. bachmannii, such as recomended by Vienne et al. [21].

However, mtSSU was uninformative for C. rangiformis, whereby we amplified IGS rDNA, a

highly variable locus that we had previously tested in several species of the genus Cladonia [22].

DNA extraction, PCRs and sequencing

We cannot discard the coinfection of a single thallus of Cladonia by several strains of H. bach-
mannii. For this reason, we selected a single gall of each sample of H. bachmannii for the DNA

extraction. The total DNA was extracted using E.Z.N.A. forensic DNA kit (Omega Bio-tek,

Georgia, U.S.A.), according to the manufacturer’s instructions. The DNA was eluted in the final

step in 100 μl of elution buffer included in the kit. PCRs were carried out with Ready-to-Go-

PCR Beads (GEHealthcare Life Sciences, UK). The volume of the reaction was 25 μl with 3 μl of

extracted DNA. The primers used were: ITS1F/BasLSU3-3 [23–24] for ITS rDNA, BasLSU3-5/

LR5 [24–25] for LSU rDNA, and MS1/MS2 [26] for mtSSU (primer sequences in S4 Table). The

PCR programs for ITS rDNA and LSU rDNA were the same used by Millanes et al. [24], and for

mtSSU: 95˚C for 5 min; 35 cycles of 95˚C for 30 s, 50˚C for 30 s and 72˚C for 1 min; with a final

extension at 72˚C for 10 min. The primers used to amplify C. rangiformis were: ITS1F/ITS4 [23,

26] for ITS rDNA, LROR/LR5 [25] for LSU rDNA, and IGSf/IGSr [27] for IGS rDNA. The PCR

programs for ITS rDNA and IGS rDNA were described in Pino-Bodas et al. [28], and for LSU

rDNA 95˚C for 5 min; 30 cycles of 95˚C for 30 s, 55˚C for 30 s and 72˚C for 1 min; with a final

extension at 72˚C for 10 min. PCR products were purified with E.Z.N.A. Ultra-Sep Gel Extrac-

tion Kit or ExoSAP-IT (USB Corporation, OH, USA). The sequencing was performed at Macro-

gen Europe service (www.macrogen.com), with the same primers as used for the PCR.

Secondary metabolites of the hosts

All the host specimens were studied by thin layer chromatography (TLC) according to the

standardized procedures [29–30], with the solvent systems A and B. The secondary metabolites

Genetic variation of Heterocephalacria bachmannii
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Table 1. Populations of H. bachmannii collected on several Cladonia host species, with the secondary metabolites detected on the host. The spec-

imens from herbaria are indicated in brackets, N = number of specimens.

Population Coordinates Host Host metabolites N

Spain, Zaragoza, Vera del Mocayo 41˚48’51"N, 1˚

43’23"W

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

3

C. foliacea USN, FUM, PRO 2

Spain, Zaragoza, Tarazona 41˚49’48"N, 1˚

48’58"W

C. rangiformis ATR, RANG, NRANG 2

Spain, Toledo, Torrico 39˚50’35"N, 5˚

12’36"W

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

2

Spain, Toledo, Sevilleja de la Jara 39˚28’42"N, 5˚

00’12"W

C. rangiformis ATR, RANG, NRANG 2

Spain, Toledo, Navaltoril 39˚33’45"N, 4˚

47’56"W

C. glauca SQUAM 3

Spain, Toledo, Las Hunfrı́as 39˚34’45"N, 4˚

47’56"W

C. rangiformis ATR, RANG, NRANG 3

Spain, Toledo, Aldeanueva de Barbarroya 39˚42’2"N, 5˚04’23"W C. rangiformis ATR, RANG, NRANG 3

C. furcata FUM, PRO 1

Spain, Soria, Matalebrera 41˚49’38"N, 2˚4’22"W C. rangiformis ATR, RANG, NRANG, FUM,

PRO

2

Spain, Soria, Muriel Viejo (MACB) 41˚46’45”N, 2˚55’13”W C. uncialis USN, SQUAM 2

C. furcata FUM, PRO 1

Spain, Salamanca, La Alberca (MACB) 40˚27’N, 6˚06’W C. uncialis USN, SQUAM 2

Spain, Cáceres, between Puerto de San Vicente and Alias 39˚30’11"N, 5˚6’40"W C. rangiformis ATR, RANG, NRANG 1

C. foliacea USN, FUM, PRO 1

Spain, Cáceres, Guadalupe (MACB) 39˚26’23”N, 5˚25’15”W C. uncialis subsp.

biuncialis

USN, SQUAM 1

Turkey, Çankırı 41˚02’48"N, 33˚

44’15"E

C. pyxidata FUM, PRO 2

Turkey, Kastamonu, Ilgaz Dağı 41˚04’45"N, 33˚

44’07"E

C. coniocraea FUM, PRO 1

Turkey, Kastamonu, Pınarbaşı 41˚34’47"N, 33˚

12’20"E

C. coniocraea FUM, PRO 2

Turkey, Rize-İkizdere 40˚38’18"N, 40˚

31’59"E

C. furcata FUM, PRO 3

Turkey, Ordu, Çambaşı district, Road of Çambaşı plateau 40˚44’06"N, 37˚

56’19"E

C. furcata FUM, PRO 1

Portugal, Minho, Peneda 41˚58’30" N, 08˚

13’39"W

C. ramulosa FUM, PRO 5

Portugal, Minho, Castro Laboreiro 42˚02’25"N, 08˚

09’50"W

C. ramulosa FUM, PRO 2

Portugal, Beira Baixa, Proença-a-Nova 39˚43’13"N, 7˚

51’23"W

C. uncialis subsp.

uncialis

USN, SQUAM 1

Greece, Macedonia-Tracia, Polygyros 40˚27’27”N, 23˚

19’18”E

C. furcata FUM, PRO 2

Greece, Macedonia-Tracia, Agios Nikolaus 40˚10’45”N, 23˚

49’10”E

C. cercivornis FUM, PRO 2

C. furcata FUM, PRO 4

Greece, East Macedonia and Thrace, Thassos island 40˚42’N, 24˚39’E C. uncialis subsp.

biuncialis

USN, SQUAM 1

Croatia, Lika-senj, Mt. Velebit 44˚30’02’’N, 15˚

17’32’’E

C. furcata FUM, PRO 1

Russia, Caucasus, Krasnodar Territory, Mt. Fisht (LE) 43˚57’46’’N, 39˚

55’36’’E

C. pyxidata FUM, PRO 2

(Continued )
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Table 1. (Continued)

Population Coordinates Host Host metabolites N

Russia, Caucasus, Krasnodar Territory, Mt. Armovka (LE) 43˚52’28’’N, 40˚

39’20’’E

C. coniocraea FUM, PRO 1

Russia, Caucasus, Karachaevo-Cherkesiya Republic, Teberda (LE) 48˚28’10"N, 41˚

42’46"E

C. pyxidata FUM, PRO 1

Sweden, Öland, Böda 57˚15’N, 17˚01’E C. rangiformis ATR, RANG, NRANG 1

Finland, Uusimaa, Espoo, Luukkaa Recreation Area 60˚19’N, 24˚39’E C. furcata FUM, PRO 2

C. phyllophora FUM, PRO 1

Finland, Southwest Finland, Salo 60˚25’12"N, 23˚9’12"E C. gracilis subsp.

gracilis

FUM, PRO 6

C. mitis FUM, PRO, USN 2

Finland, Uusimaa, Kirkkonummi 60˚06’31"N, 24˚

26’38"E

C. gracilis subsp.

gracilis

FUM, PRO 3

Finland, Uusimaa, Espoo, Ramsö 60˚06’34"N, 24˚

42’30"E

C. gracilis subsp.

gracilis

FUM, PRO 2

Finland, Tavastia Proper, Torronsuo 60˚44’N, 23˚43’E C. stygia ATR, FUM, PRO 1

Finland, Kainuu, Sotkamo (H) 64˚07’45"N 28˚

23’28"E

C. coniocraea FUM, PRO 1

Denmark, Faroe Island, Viðoy Island, Viðareiðy (H) 62˚19’38’’N, 6˚

29’36’’W

C. gracilis subsp.

gracilis

FUM, PRO 1

Denmark, Sjælland, Asserbo Plantage (H) 56˚1’N, 11˚59’E C. furcata FUM, PRO 1

C. rangiformis ATR, RANG, NRANG, FUM,

PRO,

1

Portugal, The Azores, Flores, Reserva Florestal Natural das

Caldeiras Funda e Rasa

39˚24’05"N, 31˚

13’24"W

C. rangiformis ATR, RANG, NRANG 3

Portugal, The Azores, Flores, Ponta Delgada 39˚29’16"N, 31˚

11’00"W

C. stereoclada FUM, PRO, BOU 2

Portugal, The Azores, Flores, Reserva Florestal Natural do Morro

Alto e Pico da Se

39˚26’17"N, 31˚

13’21"W

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

3

Portugal, The Azores, Pico, Road EN3 38˚29’50"N, 28˚

25’28"W

C. stereoclada FUM, PRO, BOU 3

Portugal, The Azores, Pico Currais do Morais 38˚28’41"N, 28˚

26’07"W

C. stereoclada FUM, PRO, BOU 2

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

1

Portugal, The Azores, Pico, Cabeço Gordo 38˚29’15"N, 28˚

27’18"W

C. stereoclada FUM, PRO, BOU 1

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

2

Portugal, The Azores, Pico, EN3-EN2 38˚28’50"N, 28˚

18’47"W

C. stereoclada FUM, PRO, BOU 2

Portugal, The Azores, Pico, lakes 38˚27’49"N, 28˚

17’05"W

C. stereoclada FUM, PRO, BOU 2

Portugal, The Azores, Terceira, Road EN5-2A 38˚42’48"N, 27˚

11’12"W

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

2

Portugal, The Azores, Terceira, Fontinhas 38˚43’41"N, 27˚

09’53"W

C. rangiformis ATR, RANG, NRANG, FUM,

PRO

2

ATR, RANG, NRANG 1

Portugal, The Azores, Pico, Cais do Mourato 38˚33’32"N, 28˚

28’20"W

C. squamosa THAM, BAR 1

Portugal, The Azores, Pico, Baia das Canas 38˚27’42"N, 28˚

13’58"W

C. squamosa THAM, BAR 1

Portugal, Madeira island, Levada do Furado 32˚44’12"N, 16˚

53’17”W

C. stereoclada FUM, PRO, BOU 1

(Continued )
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of C. rangiformis were additionally studied by high–performance liquid chromatography

(HPLC) and ultra–performace liquid chromatography–mass spectrometry (UPLC–MS)

according to [9, 31–32]. The fatty acids of C. rangiformis were studied by gas chromatogra-

phy–mass spectrometry (GC–MS). Secondary metabolites extractions, HPLC, GC–MS and

UPLC–MS protocols are included as Supporting Information (S1 File).

Phylogenetic analyses and haplotypes networks

The sequences were assembled in Sequencher 4.1.4 (GeneCodes, Ann Arbor, MI). The align-

ments were implemented in MAFFT [33] and BIOEDIT [34]. BLAST searches were done to

verify the identity of the sequences. A few sequences corresponded to other Tremellomycetes
genera and were deleted.

A phylogenetic analysis based on ITS rDNA and LSU rDNA was carried out to test whether

H. bachmannii is monophyletic. To this end the following species were selected: two species of

Hetereocephalacria, two species of Syzygospora, one species of Piskurozyma, three species of

Filobasidium, three of Goffeauzyma (voucher specimens in Supporting Information, S1 Table).

As outgroup Cystofilobasidium bisporidii, C. capitatum and C. ferigula were selected according

to the results of Millanes et al. [26] and Weiss et al. [35]. The ambiguous regions were removed

using Gblock [36] with the less stringent options. Each region and the combined dataset were

analyzed by maximum likelihood (ML). The ML analyses were implemented using RAxML

7.0.3 [37] assuming the GTRGAMMA model. The node support was estimated with rapid

bootstrap algorithm, using 1000 pseudoreplicates. Congruence between the loci was tested fol-

lowing Lutzoni et al. [38], manually checking the clades with at least 70% bootstrap support.

No incongruity was detected.

Haplotype networks for each locus under statistical parsimony were constructed in TCS

1.21 [39], considering the gaps as a 5th character.

Table 1. (Continued)

Population Coordinates Host Host metabolites N

Canada, Yukon Territory, Alaska Hwy (H) 61˚10’48"N, 135˚

22’52"W

C. cornuta FUM, PRO 1

Canada, Yukon Territory, Klondike Hwy (H) 60˚48’ 13"N, 137˚

26’03"W

C. macroceras FUM, PRO 1

USA, Alaska, Unimak Island, 1.5 Km Airstrip (H) 54˚50’33"N, 163˚

24’16"W

C. crispata var.

cetrariformis

SQUAM 1

USA, Alaska, Unimak Island, 3 Km Airstrip (H) 54˚50’13"N, 163˚

25’01"W

C. crispata var.

cetrariformis

SQUAM 1

USA, Alaska, Unalga Island (H) 53˚57’35"N, 166˚

11’11"W

C. uncialis USN, SQUAM 1

USA, Alaska, Noatak Preserve (H) 68˚28’N, 161˚28’W C. gracilis subsp.

vulnerata

FUM, PRO 1

USA, Tennessee, Cocke Co. (H) 35˚44’12"N, 83˚

14’29"W

C. furcata FUM, PRO 1

Costa Rica, Cartago (H) 09˚52’N, 83˚55’W C. granulosa THAM 1

Russia, Primorye Territory, Zabolochennaya River (LE) 45˚13’43’’N, 136˚

31’05’’E

C. macilenta THAM 1

Russia, Primorye Territory, Golubichnaya River (LE) 44˚54’20’’N, 136˚

31’58’’E

C. cercicornis FUM, PRO 1

ATR = atranorin, BAR = barbatic acid, BOU = bourgeanic acid, FUM = fumarprotocetraric acid, NRANG = nor-rangiformic acid, PRO = protocetraric acid,

RANG = rangiformic acid, SQUAM = squamatic acid, THAM = thamnolic acid, USN = usnic acid

https://doi.org/10.1371/journal.pone.0189603.t001
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Genetic structure analyses

Summary statisticals including haplotype diversity and nucleotide diversity were calculated in

DnaSP v.5 [40]. In order to assess the contribution of the different potential factors (host spe-

cies, geographical origin and host secondary metabolites) to the overall genetic variation of H.

bachmannii, analyses of molecular variance (AMOVA) were conducted in ARLEQUIN V3.5

[41]. In these analyses only the groups containing more than five specimens were considered.

To examine the relative contribution of these three factors, redundancy analyses (RDA) and

partial redundancy analyses (pRDA) were run in R (R Development core Team 2017), using

the Vegan package [42]. For these analyses a binary matrix with the haplotypes of H. bachman-
nii was used as dependent matrix. Other three binary matrices containing data of host species,

host secondary metabolites (classified in chemotypes), and the geographical origin (The

Azores, Southern Europe, Southern Finland, America, Asia) were used as explanatory matri-

ces. The variation explained by each variable group was estimated using adjusted R2 because

the number of variables in each matrix was not the same. The statistical significance was

assessed using a permutation–based ANOVA test with 2000 permutations.

A bayesian clustering algorithm to estimate genetically homogeneous groups was imple-

mented in STRUCTURE 2.3.4 [43]. Although this method was implemented to infer the popu-

lation structure using unlinked markers, several studies have proved that the SNPS from

sequences data as independent loci are also suited [44–45]. The analyses were run assuming an

admixture model, without consideration of locality or host species of the specimens and allele

frequencies independently modelled. The analysis was performed with five runs per K value

(number of clusters), the range of K was from 1 to 20 with 100.000 iterations discarded as

burnin and 2000.000 iterations kept for each replicate. The optimum value of K was calculated

with the Evanno method in STRUCTURE HARVESTER [46–47]. The results of different runs

were combined using CLUMPP 1.1.2 [48] and the barplots were generated with DISTRUCT

1.1 [49]. To assess whether the specimens of H. bachmannii on different species hosts, on dif-

ferent chemotypes or from different geographical regions were randomly distributed across

the clusters, Chi-square tests were performed (http://www.physics.csbsju.edu/stats/). Only the

groups (host species, secondary metabolites and geographical regions) with a frequency� 5

were included.

Host-parasite comparisons

To compare the genetic structure of the parasite and the host, we selected Cladonia rangiformis
as host species for the following reasons: 1) the largest number of specimens of H. bachmannii
was found on this host; 2) it has two different chemotypes, one with atranorin, rangiformic,

and nor-rangiformic acids; another that, in addition to the above compounds, contains fumar-

protocetraric and protocetraric acids, 3) the largest number of haplotypes of H. bachmannii
found growing on this host.

The genetic variation for host and parasite was calculated in DnaSP v.5.

Three approaches were used in order to compare the genetic variation of H. bachmannii
and C. rangiformis. Firstly, we performed partial Mantel test between pairwise [Fst/(1-Fst)]

matrices of H. bachmannii and C. rangiformis correcting with geographic distances with 2000

random permutations using the VEGAN package in R. The pairwise geographical distance

matrix was calculated with euclidean distances from the geographic coordinates using dist()

function. Three different comparisons were tested: ITS–H. bachmannii/ITS–C. rangiformis,
LSU–H. bachmannii/LSU–C. rangiformis and the combined dataset–H. bachmannii/combined

dataset–C. rangiformis. Secondly, an analysis was run in STRUCTURE 2.3.4 with the same

conditions specified above for the specimens of H. bachmannii and C. rangiformis. The
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congruence between the clusters of host and parasite defined by STRUCTURE was assessed by

computing the proportion of individuals assigned together in the same cluster in both analyses.

Contingency table analyses (http://www.physics.csbsju.edu/stats/) were used to test the associ-

ation between the host chemotype and clusters generated by STRUCTURE. Variance analyses

(ANOVA) in STATGRAPHICS 5.1 were carried out to study whether the clusters of H. bach-
mannii differed in the amount of phenolic compounds or fatty acids. Several ANOVAs were

carried out, considering the total amount of substances (total amount of phenolic compounds,

and total amount of fatty acids), the total amount of different subsets of fatty acids (saturated

fatty acids, unsaturated acids and free fatty acids) and the amount of every phenolic substance

separately (atranorin, fumarprotocetraric acid and protocetraric acid) and the amount of most

abundant fatty acids separately (linoleic, oleic, palmitic and stearic acids). Bartlett test was

used to check the variance homogeneity while Kolmogorov test checked the normality of the

variables. All the variables had a homogeneous variance. Three variables were not normal

(phenolic compounds total contents, fumarprotocetraric acid contents and protocetraric acid

contents) and were analyzed by Kruskal-Wallis.

Finally, simple AMOVA analyses were made to study the genetic differentiation of H. bach-
mannii and C. rangiformis among geographic regions and host chemotypes.

Results

The 123 specimens of H. bachmannii were found on 20 host species (Table 1) with ten different

chemotypes (Table 1). The chemotype containing fumarprotocetraric and protocetraric acids

was the most abundant, found on 47 host specimens from ten species. HPLC and UPLC–MS

analyses revealed 14 compounds for C. rangiformis (S1 File). The total contents of phenolic

compounds varied from 19.1 to 61.5 mg/g of dry weight (d.w.). Atranorin was the major com-

pound in all the populations except in one of them, where the contents of fumarprotocetraric

acid exceeded that of atranorin. By means of GC–MS a total of 16 fatty acids methyl esters

(FAME) derived from triglycerides and additionally two free fatty acids (FFA) were identified

from C. rangiformis (S1 File).

In total 304, new sequences of H. bachmannii and 90 of C. rangiformis were generated (S5

Table). In the phylogenetic analysis, all the specimens of H. bachmanii formed one strongly

supported clade (S1 Fig), into which another lichenicolous species, H. physciacearum was

grouped. The haplotype and nucleotide diversity values are shown in Table 2.

For each of the three loci, the haplotypes were connected in a unique network with 95% of

confidence (Fig 1). A total of 28 ITS rDNA haplotypes, 24 of LSU, and six of mtSSU were

found. The distribution of haplotypes among host species revealed that six ITS rDNA haplo-

types, nine LSU rDNA haplotypes, and two mtSSU haplotypes were present on multiple host

species, while 22 ITS rDNA haplotypes, 19 LSU rDNA haplotypes and four mtSSU haplotypes

restricted themselves to a unique host species. Five haplotypes of ITS rDNA, seven of LSU

rDNA, and two of mtSSU were present in several geographical regions. Southern Europe

showed the highest number of haplotypes: 19 in ITS rDNA, 14 in LSU rDNA, and three in

mtSSU (Table 2). In the ITS rDNA haplotype network, the most abundant haplotype repre-

sented 32.1% of all the specimens, and it was found on several host species (Fig 1). A group

of haplotypes restricted to C. rangiformis was separated by four mutational steps (Fig 1A).

Another haplotype found on C. granulosa also separated from the rest by five mutational steps.

In LSU rDNA network, the most abundant three haplotypes represented 44% of all the speci-

mens, and they were found on several host species (Fig 1B). One haplotype restricted only to

C. granulosa and another one only to C. macilenta were the most distant. In mtSSU haplotype
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network, the most abundant haplotype represented 58% of individuals, and it was present on

11 host species (Fig 1C).

Genetic structure of Heterocephalacria bachmannii

The results of AMOVA analyses are shown in Table 3. Most of the varition was found among

the chemotypes (33.3–73.1%) and among host species (29.0–68.5%) while the genetic differen-

tiation among geographical regions explained less percentage of variation (7.0–40.3%).

Fig 2 shows the results of the redundancy analyses. The pRDAs show that the proportion of

the genetic variation explained by the chemotypes, the host species or the geographical origin,

when the other factors are kept under control, was very small. The greatest proportion of

genetic variation was explained by the host species in conjunction with the chemotype (0.13 in

ITS rDNA, 0.13 in LSU rDNA and 0.53 in mtSSU). The geographic origin on its own explained

only a little genetic variation in ITS rDNA and LSU rDNA, while in mtSSU it explained a

greater proportion than each of the other two factors. All the three variables, jointly taken,

explained only a small proportion of the genetic variation in the three loci.

The clustering algorithm implemented in STRUCTURE revealed that the optimal number

of clusters was two (highest values of ΔK were obtained for K = 2). The 90.9% of individuals

were assigned to one cluster with membership coefficients > 0.7. Ten speciemens could not be

assigned to any of the clusters (membership coefficients < 0.7). The inviduals were nonran-

domly distributed in the two genetic clusters (S2 Table). Different association with respect

to the host species (Chi–square = 68.4, d.f. = 7, P–value� 0.001), chemotypes (Chi–square =

78.5, d.f. = 6, P–value� 0.001) and the geographical region (Chi–square = 14.4, d.f. = 4, P–

value� 0.01) was found. One cluster contained specimens on Cladonia rangiformis (n = 26),

C. furcata (n = 1) and C. cervicornis (n = 1). All the specimens of this cluster were collected in

Southern Europe and in the Azores. The other cluster was associated with the others host

species, although five specimes were also associated with C. rangiformis as the host species

(Fig 3). The specimens assembled in this cluster were collected in all geographic regions and

chemotypes.

Table 2. Statistical summary of genetic variation of Heterocephalacria bachmannii.

N H Hd π
ITS rDNA 112 28 0.877 0.00559

America 8 7 0.964 0.00679

The Azores 29 5 0.643 0.00431

Southern Europe 54 15 0.901 0.00713

Southern Finland 20 6 0.579 0.00342

LSU rDNA 121 24 0.913 0.00251

America 8 5 0.893 0.00491

The Azores 29 3 0.599 0.00176

Southern Europe 60 13 0.905 0.00306

Southern Finland 21 8 0.767 0.00145

mtSSU 72 6 0.611 0.00393

America 3 1 0.000 0.00000

The Azores 14 4 0.659 0.00377

Southern Europe 42 3 0.516 0.00347

Southern Finland 13 1 0.000 0.00000

N = number of sequences, H = number of haplotypes, Hd = haplotype diversity, π = nucleotide diversity.

https://doi.org/10.1371/journal.pone.0189603.t002
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Comparison of Heterocephalacria bachmannii with Cladonia rangiformis

Table 4 shows the genetic variation of H. bachmannii (collected on C. rangiformis), as well as

that of the host species itself. The results of partial Mantel test are shown in Table 5. Cladonia
rangiformis and H. bachmannii pairwaise Fst values were not significantly correlated.

The STRUCTURE analysis carried out with H. bachmannii samples collected on C. rangi-
formis showed a ΔK peak at a K = 2, as did the STRUCTURE analysis of C. rangiformis (Fig 3).

In both analyses all the specimens were assigned to one of the two clusters with values> 0.8,

but the cluster composition was different. The clusters defined by STRUCTURE for H. bach-
mannii and C. rangiformis were less congruents, only 43.8% of specimens were assigned to the

same cluster. The contingency table analyses indicated that there is not a significant associa-

tion between the host chemotypes and the H. bachmannii clusters (S3 Table) generated in

STRUCTURE (Chi–square = 0.406, d.f. = 1, P–value = 0.524). ANOVA and Kruskal–Wallis

analyses did not find significant differences in the contents of the host secondary metabolites

between the two clusters of H. bachmannii (Table 6).

The AMOVA analyses are shown in the Table 7. Significant genetic differenciation was

found between H. bachmannii on different host chemotypes and geographical regions.

Fig 1. Haplotype networks of Heterocephalacria bachmannii inferred by TCS for the three loci. Each circle represents

a haplotype, the circle size is proportional to haplotype frecuency. Small circles represent haplotypes not observed in the

data. The colors represent the different host species.

https://doi.org/10.1371/journal.pone.0189603.g001

Table 3. Analyses of molecular variance (AMOVA) with the host species, chemotype of the host and geographical region as grouping factors for

each loci.

d.f. SS Variance components % of variation Fst

ITS rDNA

Among host species 7 62.40 0.654 29.017 0.290***

Within host species 87 140.63 1.601 70.982

Among chemotypes 6 77.5 0.8511 35.779 0.358***

Within chemotypes 101 153.57 1.52769 64.221

Among regions 3 18.272 0.151 6.965 0.069***

Within regions 113 232.79 2.029 93.034

LSU rDNA

Among host species 7 41.30 0.468 33.132 0.331***

Within host species 84 61.57 0.946 66.867

Among chemotypes 6 45.49 0.513 33.278 0.332***

Within chemotypes 98 83.73 1.030 66.721

Among regions 3 15.250 0.169 11.037 0.110***

Within regions 106 125.90 1.362 88.962

mtSSU

Among host species 5 45.73 0.803 68.506 0.685***

Within host species 53 19.57 0.369 31.493

Among chemotypes 3 38.10 0.836 73.120 0.731***

Within chemotypes 64 19.68 0.307 26.879

Among regions 2 19.72 0.479 40.252 0.402***

Within regions 66 47.00 0.712 59.747

d.f. = degrees of freedom, SS = sum of squares.

*** significant results with P–values < 0.001.

https://doi.org/10.1371/journal.pone.0189603.t003

Genetic variation of Heterocephalacria bachmannii

PLOS ONE | https://doi.org/10.1371/journal.pone.0189603 December 18, 2017 11 / 22

https://doi.org/10.1371/journal.pone.0189603.g001
https://doi.org/10.1371/journal.pone.0189603.t003
https://doi.org/10.1371/journal.pone.0189603


Host species Chemotype

Geographical origin

Host species Chemotype

Geographical origin

Host species Chemotype

Geographical origin

ITS rDNA

LSU rDNA

mtSSU

0.125 0.016

0.033

0.131

0.0
0.0

0.019

Unexplained = 0.676

0.082 0.001

0.0

0.135

0.011
0.016 0.005

Unexplained = 0.75

0.0 0.017

0.247

0.537

0.0 0.007
0.043

Unexplained = 0.149
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However, the variance explained by the geographical origin (31.7% in ITS rDNA, 15.9% in LSU

rDNA and 58.40% in mtSSU) was higher than the explained by the chemotypes (16.8% in ITS

rDNA, 13.6 in LSU rDNA and 15.7% in mtSSU). The genetic variance of C. rangiformis from

different geographical origins was only significantly different in LSU rDNA analysis, while no

significant differences were found in any loci between specimens with different chemotypes.

Discussion

Owing to the high number of host specific lichenicolous fungi, it has been assumed that these

fungi and their lichen hosts have coevolved [2]. Coevolution depends on the genetic variation

and on the genetic structure of interacting species [50]. In a coevolution process, the parasite

populations would be expected to have a structure determined by the hosts, and with a low

gene flow among the host species [51]. Thus far, however, the investigations on the relations

between lichenicolous fungi and lichens are still too poor. The genetic variation of H. bach-
mannii has been studied here for the first time in a broad geographic range. The data indicate

that the genetic differentiation of H. bachmannii is related to the host secondary metabolites

and the host species, while this species presents few geographic isolation. This study supports

the presence of two genetic clusters of H. bachmannii specialized to different hosts.

Fig 2. Diagrams show the results of redundancy analyses of Heterocephalacria bachmannii. Fractions

of genetic variance explained by host species, chemotype of the host and geographical origin.

https://doi.org/10.1371/journal.pone.0189603.g002
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Fig 3. Population clusters obtained from multilocus analyses using STRUCTURE. The vertical bars

represent the individuals, the colors indicate the proportion of the genome assignable to each cluster.

Populations are separated by vertical black lines. (A) Resulting clusters of H. bachmannii on all host species.

The numbers represent the different hosts: 1. C. cervicornis, 2. C. crispata, 3. C. gracilis, 4. C. cornuta, 5. C.

macroceras, 6. C. granulosa, 7. C. foliacea, 8. C. glauca, 9. C. ramulosa, 10. C. uncialis, 11. C. phyllophora,

12. C. pyxidata, 13. C. mitis, 14. C. stygia, 15. C. coniocraea, 16. C. furcata, 17. C. stereoclada, 18. C.

squamosa, 19. C. macilenta and 20. C. rangiformis; (B) Resulting clusters of H. bachmannii collected on C.

rangiformis; (C) Resulting clusters of C. rangiformis parasitized by H. bachmannii.

https://doi.org/10.1371/journal.pone.0189603.g003
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Genetic variation and genetic structure of Heterocephalacria bachmannii

The number of haplotypes in ITS rDNA and LSU were greater in southern Europe than in the

other regions, an expected result considering that the sampling and the number of host species

were higher in this region than in the other ones (Table 1). Our results also show mtSSU was

less variable than the nuclear loci, as to the number of haplotypes, haplotype diversity, and

nucleotide diversity. This result is concordant with prior studies [52–56] conducted in other

fungi, the authors considered that the mutational rate in the mitocondrial genome is lower

than in the nuclear genome. Nevertheless, this result could be also attributed to the fact that

the number of mtSSU sequences obtained was smaller than the number of sequences of the

other two loci. To check whether this explanation was plausible, we calculated the number of

haplotypes for the nuclear loci taking into account only the specimens for which a sequence of

mtSSU was obtained (data not shown). However, the number of haplotypes (20 in ITS rDNA

and 15 in LSU rDNA) continued being smaller in mtSSU.

According to our results, the host species and the host secondary metabolites are the most

relevant factors in the genetic structure of H. bachmannii, while the populations of H. bach-
mannii from different geographical regions show slight genetic differentiation. It supports the

Table 4. Statistical summary of genetic variation of H. bachmannii on C. rangiformis and Cladonia rangiformis.

N H Hd π
H. bachmannii

ITS rDNA 31 8 0.770 (0.00233) 0.00734

The Azores 14 4 0.676 (0.00484) 0.00605

Southern Europe 15 5 0.638 (0.00867) 0.00583

LSU rDNA 32 7 0.664 (0.00239) 0.00099

The Azores 14 5 0.725 (0.01082) 0.00137

Southern Europe 16 5 0.513 (0.00675) 0.00059

mtSSU 23 4 0.676 (0.00389) 0.00328

The Azores 10 2 0.509 (0.01015) 0.00314

Southern Europe 12 2 0.167 (0.01804) 0.00068

C. rangiformis

ITS rDNA 31 6 0.579 (0.00903) 0.00870

The Azores 13 4 0.731 (0.00773) 0.01092

Southern Europe 17 5 0.647 (0.01405) 0.00914

LSU rDNA 28 11 0.812 (0.00415) 0.00244

The Azores 14 7 0.782 (0.01093) 0.00146

Southern Europe 14 8 0.901 (0.00331) 0.00539

IGS rDNA 31 10 0.569 (0.01122) 0.00490

The Azores 15 4 0.275 (0.0220) 0.00298

Southern Europe 15 7 0.781 (0.01031) 0.00626

N = number of specimens, H = number of haplotypes, Hd = haplotype diversity and variance in brackets, π = nucleotide diversity.

https://doi.org/10.1371/journal.pone.0189603.t004

Table 5. Results of partial Mantel tests between H. bachmannii and Cladonia rangiformis.

Compared dataset r P-value

ITS rDNA 0.1973 0.15642

LSU rDNA -0.1063 0.47726

Combined datasets 0.1023 0.28086

P-value based on 2000 permutations.

https://doi.org/10.1371/journal.pone.0189603.t005
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presence of gene flow among the populations separate by long distances. Similar results have

been found for other lichenicolous fungi of the genus Tremella [5, 57]; while the opposite

occurs in Marchandiomyces corallinus [4]. According to Werth et al. [5] the generalist licheni-

colous fungi might be geographically structured, while the more specialist species might be

structured by the host species. Therefore, H. bachmannii is expected to be structured by its

hosts, all of which belong to the genus Cladonia. In other basidiomyceteous non-lichenicolous

fungi, populations not geographically structured have been frecuently found [58–62]. It is

assumed that fungal spores have an ability for long distance dispersal. However in some cases,

no correlation has been found between the genetic and geographic distances [59] and other

hypotheses have been proposed. Kretzen et al. [59] proposed two hypotheses to explain the

absence of geographic structure in ectomycorrhizal fungi of the genus Rhizopogon. The first

holds that competence can prevent offspring from establishing close to parents. The second

hypothesis asserts that the mating systems could strongly support the outcrossing, whereby the

spores coming from other populations would have a higher probability of survival success.

Owing to our limited knowledge about the reproductive biology of H. bachmanii, we can not

be sure that either hypothesis explains our results. Therefore, further studies are required to

determine dispersal mechanisms of this species.

The effect of the lichen secondary metabolites on the lichenicolous fungi had been previ-

ously studied. Lawrey [63] found that certain phenolic compounds inhibit the growth of these

fungi. Other lichenicolous fungi can only colonize the host species if another fungus has previ-

ously degraded those compounds [13]. It is also proved that the thalli of parasitized lichens

have a lower concentration of phenolic substances than the non-parasitized ones [64]. How-

ever, ours is the first study in which genetic divergence among the populations of a lichenico-

lous fungus has been proved to be associated with the host secondary metabolites. Werth et al.

[5] demonstrated that the host species was the factor that explained most of the data variance

in T. lobariacearum, suggesting that the host species could create a selective environment that

only certain strains would have the ability to infect. This particular environment might be cre-

ated by the secondary metabolites of the host species [5]. Therefore it was to be highly expected

that the genetic structure of the parasite should be strongly influenced by the secondary

Table 6. Results of ANOVA analyses searching for associations of STRUCTURE clusters of H. bach-

mannii and the concentration of secondary metabolites of the host.

F/Statistic P-value

Phenolic substances

Atranorin 4.00 0.0709

Fumarprotocetraric acida 0.81 0.3662

Protocetraric acida 1.45 0.2283

Total content of phenolic substancesa 2.59 0.1073

Fatty acids

Total content of fatty acids 0.91 0.3622

Total content of saturated fatty acids 0.08 0.7816

Total content of unsaturated fatty acids 1.12 0.3157

Total content of free fatty acids 0.39 0.5465

Linoleic acid 0.48 0.5025

Oleic acid 0.82 0.3873

Palmitic acid 0.12 0.7352

Stearic acid 0.66 0.4356

a Variable analyzed by Kruskal-Wallis

https://doi.org/10.1371/journal.pone.0189603.t006
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metabolites of the host. Even though the AMOVA results indicated that secondary metabolites

explained slightly more genetic variation of H. bachmannii than the host species, in the redun-

dance analyses the conjuntion of both factors explained most of the genetic variation. The lack

of resolution in our analyses may be due to the low intraspecific chemical variation of the

hosts infected by H. bachmannii. Although several chemotypes are known for many of the

host species studied [22], only one parasitized host species had several chemotypes (C. rangi-
formis), what makes difficult to separate both effects, “host species” and “host secondary

metabolites”. We do not know if our sampling was biased towards one chemotype, or if H.

bachmanii in some Cladonia species only parasitizes one chemotype. Despite this parasite is

not a rare species [17–18], there are no data about its distribution on the chemotypes within

the host species and the total range of secondary metabolites it tolerates.

Table 7. Analyses of molecular variance (AMOVA) of H. bachmannii on C. rangiformis host species and C. rangiformis.

d.f. SS Variance components % of variation Fst

H. bachmannii

ITS rDNA

Among chemotypes 1 9.607 0.48300 16.78928 0.16789 ***

Within chemotypes 28 67.027 2.39381 83.21072

Among regions 1 2.800 0.16317 31.65025 0.31650 ***

Within regions 28 9.867 0.35238 68.34975

LSU rDNA

Among chemotypes 1 2.287 0.13454 13.62065 0.13621 **

Within chemotypes 28 18.657 0.85321 86.37935

Among regions 1 2.319 0.14680 15.89882 0.15899 **

Within regions 27 15.714 0.77657 84.10118

mtSSU

Among chemotypes 1 2.285 0.13567 15.71543 0.15715 *

Within chemotypes 21 15.280 0.72763 84.28457

Among regions 1 7.773 0.66364 58.40000 0.58400 ***

Within regions 20 9.455 0.47273 41.60000

C. rangiformis

ITS rDNA

Among chemotypes 1 0.806 -0.17895 -5.56072 -0.05561 ns

Within chemotypes 28 91.281 3.39706 105.56072

Among regions 1 3.582 -0.09555 -1.95272 -0.01953 ns

Within regions 28 135.938 4.98877 101.95272

LSU rDNA

Among chemotypes 1 0.985 -0.06634 -3.87251 -0.03873 ns

Within chemotypes 25 41.329 1.77935 103.87251

Among regions 1 5.382 0.22208 7.83240 0.07832 ***

Within regions 25 62.487 2.61336 92.16760

IGS rDNA

Among chemotypes 1 0.476 0.01787 7.51662 0.07517 ns

Within chemotypes 27 5.938 0.21991 92.48338

Among regions 1 1.017 -0.00228 -0.21762 -0.00218 ns

Within regions 27 28.362 1.05044 100.21762

*** significant results with P–values < 0.001

** significant results with P–values < 0.01

* significant results with P–values < 0.05, ns no significant results with P–values > 0.05.

https://doi.org/10.1371/journal.pone.0189603.t007
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It is also remarkable that the redundacy analyses showed high unexplained genetic variation

in H. bachmannii. Therefore, other envarionmental factors could also be important in the

genetic structure of this lichenicolous fungus.

Discordant genetic structure between Heterocephalacria bachmannii

and Cladonia rangiformis

The results also point out that the genetic structures of the host and the parasite are different.

The populations of H. bachmannii were genetically more variable in the Azores than in South-

ern Europe, while the populations of C. rangiformis were more variable in Southern Europe.

In addition, the differentiation among populations from different geographical regions was

higher for H. bachmannii than for C. rangiformis (Table 7), which reveals a lower gene flow

among the populations of the parasite than among those of the host. The differences between

the genetic structure of the parasite and their hosts are frequent [65–67], which could be due

to differences in evolutionary rates, differences in dispersion rates or movement of H. bach-
mannii among the different potential hosts. Mantel test did not reveal any significant correla-

tion between the genetic distances of the host and the parasite, which indicate the absence

of codispersion. Therefore, the hypothesis that the galls of H. bahchmannii were dispersed

together with thallus fragments of C. rangiformis is not supported by our data. The potential

movement among different host species could explain why the geographical structure of H.

bachmannii is more accentuated when only the specimens on C. rangiformis are considered.

Other plausible explanation would be that the lineage of H. bachmannii (specialized on C. ran-
giformis) colonized once the Azores and subsequently has extended across the potential hosts

in the islands.

The host chemotypes have less influence on the genetic structure of H. bachmannii on C.

rangiformis (Table 7) than expected. These chemotypes differ in the presence or absence of

fumarprotocetraric acid, a compound synthesized by a number of Cladonia species [19–20]

that act as hosts for H. bachmannii. Most likely a large number of genotypes of H. bachmannii
are tolerant to this substance. The genetic structure of the lichenicolous fungi is neither shaped

by the amount of phenolic compounds nor by the concentration of fatty acids (Table 6), indi-

cating that the two genetic clusters tolerate a wide range of these compounds.

No evidence of geographical isolation was found between the populations of the Southern

Europe and those of the Azores in C. rangiformis. Cladonia species present different genetic

structure patterns. While Printzen & Ekman [68] found that populations of C. subcervicornis
separated by a few kilometers were genetically isolated, in other species the populations were

geographically weakly structured [69–71]. The most extreme case was that of C. arbuscula and

C. mitis, two species with a bipolar distribution, the specimens of which appear intermixed in

the northern and the southern hemispheres [72]. It is assumed that the predominant reproduc-

tion in C. rangiformis is asexual by dispersion of thallus fragments, because the apothecia are

rare. The propagule size can directly influence the population structure of the species. Since

several studies show that thallus fragments are dispersed at close range by wind [73–74], one

would expect that the species with this type of reproduction should have a marked geographic

structure in its populations. However, this is not always the case; in species of Lobaria with a

varying propagule size, no correlation has been found between the propagule size and the

geographic structure [75]. In C. rangiformis, gene flow between the populations of the two geo-

graphic regions could have two explanations. First, long distance dispersion of thallus frag-

ments by the wind or other vectors. In fact, some studies have proved that birds can act as

dispersion vectors for lichen fragments [76–77]. Second, that although the sexual reproduction

is less frequent, the ascospores (which easily disperse long distance by the wind) could have a
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higher establishment success than the thallus fragments. The success of the propagules in

developing new thalli is highly depending on the substrate on which they fall, the substrate

formed by bryophytes being the most suitable in C. mitis [78].
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