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Phase transitions in a non-Hermitian Aubry-André-Harper model
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The Aubry-André-Harper model provides a paradigmatic example of aperiodic order in a one-dimensional
lattice displaying a delocalization-localization phase transition at a finite critical value V. of the quasiperiodic
potential amplitude V. In terms of the dynamical behavior of the system, the phase transition is discontinuous
when one measures the quantum diffusion exponent § of wave-packet spreading, with 6 = 1 in the delocalized
phase V < V. (ballistic transport), § >~ 1/2 at the critical point V =V, (diffusive transport), and § = 0 in the
localized phase V > V. (dynamical localization). However, the phase transition turns out to be smooth when one
measures, as a dynamical variable, the speed v(V) of excitation transport in the lattice, which is a continuous
function of potential amplitude V and vanishes as the localized phase is approached. Here we consider a non-
Hermitian extension of the Aubry-André-Harper model, in which hopping along the lattice is asymmetric, and
show that the dynamical localization-delocalization transition is discontinuous, not only in the diffusion exponent
8, but also in the speed v of ballistic transport. This means that even very close to the spectral phase transition
point, rather counterintuitively, ballistic transport with a finite speed is allowed in the lattice. Also, we show that
the ballistic velocity can increase as V is increased above zero, i.e., surprisingly, disorder in the lattice can result

in an enhancement of transport.
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I. INTRODUCTION

One-dimensional lattices with aperiodic order, i.e., display-
ing a long-range periodicity intermediate between ordinary
periodic crystals and disordered systems, provide fascinating
models to study unusual transport phenomena in a wide vari-
ety of classical and quantum systems, ranging from condensed
matter systems to ultracold atoms, photonic, and acoustic sys-
tems [1-7]. Quasiperiodicity gives rise to a range of unusual
behavior, including critical spectra, multifractal eigenstates,
localization transitions at a finite modulation of the on-site
potential, and mobility edges [8—27]. Typical dynamical vari-
ables that characterize single-particle transport are the largest
propagation speed v of excitation in the lattice, which is
bounded (to form a light cone) for short-range hopping ac-
cording to the Lieb-Robinson bound [28], and the quantum
diffusion exponent §, which measures the asymptotic spread-
ing of wave-packet variance o%(¢) in the lattice according
to the power law o(t) ~ t?*. Such dynamical quantities are
highly relevant in experiments, since they can be readily mea-
sured detecting the temporal spreading of an initially localized
wave packet [2,4,6,29] and can thus provide insightful infor-
mation about the underlying properties of the system. While
there is not a one-to-one correspondence between spectral
and dynamical properties of a quantum system [30,31], a
general rule of thumb is that the absolutely continuous spec-
trum and extended states yield ballistic transport (v % 0 and
8 = 1), a pure point spectrum, and exponentially localized
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states usually yield dynamical localization, i.e., suppression
of transport and quantum diffusion (v = 0 and § = 0), while
singular continuous spectrum and critical states yield diffusive
(or anomalous diffusive) behavior (v =0, 0 < < 1). The
localization and transport properties are clearly influenced by
the strength and kind of disorder (either stochastic or incom-
mensurate) of the system. While disorder is likely to contrast
wave spreading, in certain models the opposite can occur,
i.e., disorder can enhance spreading and transport [32—41].
In particular, evidence that weak disorder can enhance prop-
agation has been experimentally demonstrated in photonic
quasicrystals [36,37].

A paradigmatic physical example of a one-dimensional
lattice with aperiodic order is provided by the Aubry-André-
Harper model [42-44], also known as the almost Mathieu
operator on a lattice in the mathematical literature [45,46].
The Hamiltonian displays a Cantor-set energy spectrum with
a phase transition from extended states and absolutely con-
tinuous spectrum to exponentially localized states and pure
point spectrum as the amplitude V' of the on-site quasiperiodic
potential is increased above a critical value V, [45,46]. In
terms of dynamical behavior of a wave packet, measured by
the exponent § = §(V) of wave spreading, the phase tran-
sition is discontinuous since §(V) =1 for V < V, (ballistic
transport), §(V) >~ 1/2 at the critical point V =V, (almost
diffusive transport), and §(V') = 0 in the localized phase V >
V. (dynamical localization) [18,21]; see Fig. 1(a). However,
in terms of the spreading velocity v = v(V'), defined as v ~
o (t)/t, the phase transition turns out to be smooth, with v(V')
a continuous function of potential amplitude V and v(V) = 0
for V >V, [see Fig. 1(a)]. This result corresponds to physical
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FIG. 1. Schematic illustration of the main features associated
to the spectral and dynamical phase transitions in the Aubry-
André-Harper model, as the potential amplitude V is varied, for
(a) symmetric (Hermitian) and (b) asymmetric (non-Hermitian) hop-
ping. The bottom panels show a schematic of the wave spreading
along the lattice, in the delocalized phase, on the space-time plane.
Propagation is bidirectional for symmetric hopping, resulting in a full
light cone pattern, while it is unidirectional for asymmetric hopping,
resulting in a half light cone pattern.

intuition that in terms of dynamical evolution of the system,
the transition from ballistic wave-packet spreading to dynam-
ical localization, as the potential amplitude V is increased
above the critical value V,, is a continuous process.

Recently, fresh and new perspectives on spectral localiza-
tion, transport, and topological phase transitions have been
disclosed in non-Hermitian lattices, where complex on-site
potentials or asymmetric hopping are phenomenologically
introduced to describe system interaction with the surround-
ing environment [29,47-74]. In particular, the interplay of
aperiodic order and non-Hermiticity has been investigated in
several recent works [62—74], revealing that the phase transi-
tion of eigenstates, from exponentially localized to extended
(under periodic boundary conditions), can be often related to
the change of topological (winding) numbers of the energy

spectrum [55,64,72]. However, the dynamical behavior of the
system near the phase transition, probed by the diffusion expo-
nent or propagation speed of excitation, remains so far largely
unexplored.

In this work we consider a non-Hermitian extension of
the Aubry-André-Harper model, where non-Hermiticity is in-
troduced by asymmetric (nonreciprocal) hopping amplitudes
like in the Hatano-Nelson model [47-49,55]. Special focus is
devoted to the limit of unidirectional hopping, where rigor-
ous analytical results can be obtained. The analysis unveils
distinct features of the dynamical phase transition when the
hopping is asymmetric: While in the Hermitian case the dy-
namical localization-delocalization transition is discontinuous
in the diffusion exponent § solely [Fig. 1(a)], in the non-
Hermitian case the phase transition is discontinuous, both
in the exponent § and in the speed v of ballistic transport
[Fig. 1(b)]. This means that, rather counterintuitively, ballistic
transport with a finite speed is allowed in the lattice, even very
close to the critical point. Such a surprising result is related
to the different spectral measure of the absolutely continuous
spectrum near the phase transition point, which vanishes for
symmetric hopping (Hermitian case) but not for asymmetric
hopping (non-Hermitian case). Also, for a sufficiently large
asymmetry in hopping amplitudes, we show that an increase
of the potential V results in an enhancement (rather than
attenuation) of wave spreading in the lattice, thus providing
an example of disorder-enhanced transport.

II. DYNAMICAL PHASE TRANSITION IN THE
AUBRY-ANDRE-HARPER MODEL: GENERAL RESULTS

We consider the non-Hermitian extension of the Aubry-
André-Harper (AAH) model defined by the Hamiltonian

dyr,
dt

where J;, Jg are the left and right hopping amplitudes on
the tight-binding lattice, V is the amplitude of the on-site
incommensurate potential, and « is irrational. Without loss
of generality, we assume 0 < Jg < J, and V > 0. Owing to
the non-Hermitian nature of the Hamiltonian, the dynamics
described by Eq. (1) does not preserve the norm. This typ-
ically occurs when dealing with the dynamics of classical
systems, such as photonic, acoustic, mechanical, or electri-
cal systems, where the nonunitary dynamics simply indicates
that the system exchanges energy with the surrounding en-
vironment. On the other hand, in an open quantum system
we require, after any infinitesimal time step df, normal-
ization of the wave function, i.e., the state vector [/ (?))
of the system evolves according to the two-step process
[V (t 4 dr)) = exp(—iHdD)|Y (1)) and |Y (1 +dt)) = [ (r +
dt))/||¥(t + dt))||. This two-time-step procedure physically
corresponds to the dynamics of postselected quantum trajecto-
ries in open quantum systems under continuous measurements
where quantum jumps are neglected [55,59,75,76].

In this section we provide numerical results and some qual-
itative physical insights that highlight the different behavior
of dynamical phase transitions in the Hermitian (symmetric
hopping J; = Jg) versus non-Hermitian (asymmetric hopping
Ji > Jg) models. The special case Jg = 0, corresponding to

i

= JRYns1 + JL¥n1 + 2V cosQran)y, = H, (1)
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FIG. 2. (a) Numerically computed evolution of occupation amplitudes |, (¢)|, for single-site input excitation ,,(0) = &0, in the symmet-
ric hopping case J, = Jg = J for a few increasing values of potential amplitude V and for o = W5-1) /2. (b) Behavior of the spreading
velocity v(t) = o(t)/t vs potential amplitude V, computed for the largest propagation time t = 150/J. The spreading velocity v is expressed

in units of J.

unidirectional hopping on the lattice, is treated separately in
Sec. III. Figure 1 illustrates the main features of spectral and
dynamical phase transitions in Hermitian (symmetric hop-
ping) and non-Hermitian (asymmetric hopping) AAH models.

A. Symmetric hopping (Hermitian lattice)

The Hermitian limit Jy = J; = J corresponds to the usual
AAH model, and the Hamiltonian H is referred to as the
almost Mathieu operator in the mathematical literature. In
this case the spectral and dynamical properties of H are well
understood [9,11,18,43,45,46]. For irrational «, the energy
spectrum is a Cantor set and, for almost every « (e.g., with
Diophantine properties), one has a purely absolutely continu-
ous spectrum with extended states for V < J, a purely singular
continuous spectrum with critical wave functions for V = J,
and a pure point spectrum with exponentially decaying wave
functions for V > J. In the localized phase, all wave functions
have the same localization length & = 1/L, where L is the
energy-independent Lyapunov exponent given by

Vv
L =log —. 2)
J

The dynamical behavior of the system is captured by the
asymptotic behavior at long times ¢ of the second-order mo-
ment of position operator o%(¢) describing wave spreading,

2 2
o2 = TP )
PMLAGIE

with a typical initial state localized at the site n = 0 in the
lattice, i.e., ¥,,(0) = §,0. The asymptotic spreading of o2(t)is
described by a power law, i.e., 2(t) ~ t**, where § is dubbed
the diffusion exponent. In the delocalized phase V < J, trans-
port in the lattice is ballistic with the exponent §(V) = 1. The
excitation propagates bidirectionally along the lattice with the

nonvanishing speed

o)

v(V) ~ ;

)
which determines a full light cone pattern, as schematically
shown in the bottom panel of Fig. 1(a). On the other hand, in
the localized phase V > J transport is prevented (dynamical
localization), so that 6(V') = v(V') = 0. At the phase transition

point V =V, = J, transport is intermediate between ballistic
and localized; previous works have shown that transport in
the lattice is nearly diffusive with an exponent §(V,) ~ 0.5
[18,21,77]. This means that the phase transition is character-
ized by a discontinuous behavior of diffusion exponent §(V')
near the critical point V =V, [Fig. 1(a)]. However, when one
considers the speed v(V) as an order parameter, the transi-
tion from ballistic to diffusive transport and localization is
a smooth (continuous) process: v(V') decreases almost lin-
early with V and vanishes for V > V,, with a discontinuity
of the first derivative (dv/dV) at V = V.. This behavior is
characteristic for a second-order phase transition [Fig. 1(a)].
Examples of numerically computed wave-spreading dynamics
in the lattice for increasing values of V/J, and correspond-
ing behavior of velocity v(V), are shown in Fig. 2, clearly
suggesting that the phase transition is first order in v. The
numerical results are obtained by solving the time-domain
Schrodinger equation (1) using a variable-step fourth-order
Runge-Kutta method assuming single-site excitation at initial
time; a sufficiently large number of lattice sites (typically 600
sites) has been considered to avoid edge effects up to the
largest integration time.

To physically understand why the ballistic speed v di-
minishes and vanishes as the critical point is approached,
let us consider a rational approximation « ~ ¢g/p of the
irrational o, with p, g prime integers, so that the actual in-
commensurate potential is approximated by a superlattice
with period p [11]. For example, for the inverse of the
golden ratio o = 5 - 1)/2 =0.618033..., the sequence
oy = qn/pn converges to o« in the n — oo limit, where
pn=0,1,1,2,3,5,8,13,21, 34,55, 89, 144, ... are the Fi-
bonacci numbers, and g, = p,_;. The Bloch wave functions
of the superlattice satisfy the periodicity condition ¥4, =
Y, exp(ikp), where —m/p < k < m/p is the Bloch wave
number, and the energy spectrum of H is thus approximated
by a set of p energy bands with dispersion curves E;(k) (I =
1,2,3, ..., p), separated by (p — 1) energy gaps, obtained as
solutions of a determinantal equation (see Appendix A). It
is well known that for large p the sum AW of the widths
AW, of the allowed energy bands, i.e., the Lebesgue measure
AW =), AW, of the energy spectrum, is given by AW =
4|J — V|, vanishing as the critical point is attained [11]. The
corresponding Bloch eigenstates turn out to be delocalized
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over the entire period p of the superlattice for V < J, whereas
they tend to be tightly localized inside the superlattice period
for V > J, with a localization length £ = 1/L = 1/log(V/J).
To estimate the spreading behavior of the wave packet in
the delocalized phase, we expand the initial state at time
t = 0 as a superposition of Bloch eigenstates of various bands
and make the (rather crude) approximation that each band is
equally excited. The various wave packets in different bands
propagate independently of each other, and in the long-time
limit the wave packet displaying the largest spread is the one
belonging to the band [ = [, with the largest bandwidth AW,
which propagates at the largest group velocity v, given by

_ PAW,
—

Such a relation for the group velocity is justified as follows.
The dispersion curve E;(k) of a tiny superlattice band, with k
varying in the range (—m/p, w /p), can be approximated by
the tight-binding curve E; (k) = (AW;/2) cos(kp), where AW,
is the full width of the band. The group velocity v, can be then
estimated from the standard relation v, = [(dE;/dk)y j2pl, Te-
lating the excitation speed and band dispersion curve, i.e.,
v, 2 pAW; /2. Hence, at large times one expects the wave
packet to spread far away from the initial site n = 0 by the dis-
tance o (t) ~ (1/p)v,t, where the factor (1/p) accounts for the
excitation fraction of the /yth band. The wave packet thus un-
dergoes ballistic spreading with a velocity v(V) ~ (vy/p) ~
AW,, /2. Taking into account that AW, < AW =4|J —-V|,
one thus has v(V) <~ 2|J — V|, indicating that the ballistic
speed v(V') should vanish as V approaches the critical value
V. = J. Note that if all bands in the superlattice had the same
bandwidth and were equally excited, they all would contribute
to the asymptotic wave spreading and the above reasoning
would give v(V) ~ AW/2 =2|J — V|, corresponding to a
linear decrease of v with potential amplitude V till to vanish at
V =J, as observed in numerical simulations [see Fig. 2(b)].

Vg

B. Asymmetric hopping (non-Hermitian lattice)

Let us now assume Jg < Jy, with a nonvanishing hopping
Jr > 0. The special case of unidirectional hopping, i.e., Jg =
0, will be considered in more detail in Sec. III. The spectral
properties of the non-Hermitian AAH model with asymmetric
hopping amplitudes have been studied in some recent works
[64,72]. A localization-delocalization transition is found at the

(a)

lattice site n

250 0 250 0
normalized time J;t

critical value V =V, of the on-site potential given by
Ve =J1, 5)

with all eigenstates extended and the complex energy
spectrum under periodic boundary conditions for V < V, (de-
localized phase), and all eigenstates exponentially localized
with a real and pure point spectrum for V > V, (localized
phase). Interestingly, in the localized phase the energy spec-
trum of H is the same as the one of the associated Hermitian
AAH Hamiltonian H;,

Hl ¢n = J(¢n+l + ¢n—l) +2V COS(ZTL’OU’!)(]S,,, (6)

with symmetric hopping amplitude J given by
J = JIrJL, 7
while the eigenfunctions ¥,, of H are obtained from those ¢,

of H; after multiplication by the term ~ exp(hn), i.e., ¥, =
exp(nh)¢,, where we have set

e (2
h= 7 log (JR). (8)

Hence, in the localized phase the localization lengths of the
wave functions ¥,, are asymmetric for the left and right sides,
which is reminiscent of the non-Hermitian skin effect [78—81]
in lattices with asymmetric hopping under open boundary
conditions. A distinctive feature of the spectral phase transi-
tion between the Hermitian and non-Hermitian models is that
in the latter case the Lebesgue measure AW of the energy
spectrum at the critical point V =V, = J; does not vanish and
reads

AW, = 4Jp — VJrJLI. 9

As we are going to discuss below, a nonvanishing spectral
measure at the phase transition point enables ballistic trans-
port in the lattice in the delocalized phase with a velocity
v(V) which does not vanish as V — V. Figures 3 and 4
show a few numerical results of wave-packet spreading in a
non-Hermitian lattice and the numerically computed behavior
of the ballistic velocity v(V') for two values of the ratio Jg/Jy.
Note that as the hopping is asymmetric, transport in the lattice
is unidirectional [82,83], so that in the delocalized phase exci-
tation spreading is described by a half light cone. The behavior
of v(V') versus the amplitude V of on-site incommensurate po-
tential unveils two major distinctive and somehow unexpected
features:

(b)

velocity v

0 A
250 0 05 1 15
potential amplitude V/J;

FIG. 3. Same as Fig. 2, but for asymmetric hopping with Jg/J, = 0.5. In the spreading dynamics, the amplitudes ,(#) have been

normalized at each time step to

>, [ (0)]?. The spreading velocity v is expressed in units of J..
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FIG. 4. Same as Fig. 3 but for Jg/J, = 0.3.

(i) For Jg /Jr, smaller than ~0.5, as V is increased from zero
the ballistic speed v first increases (rather than decreases), i.e.,
wave spreading in the lattice becomes faster at larger disorder
[see Fig. 4(b)]. This result is rather counterintuitive and pro-
vides a noteworthy example of disorder-enhanced propagation
[32—41] in the non-Hermitian realm.

(i) The ballistic speed v is discontinuous at the phase
transition point V =V, i.e., excitation can propagate along
the lattice at a nonvanishing velocity even arbitrarily close to
the critical point.

To explain such a behavior, as in previous section let us
consider the rational approximation « ~ ¢g/p of «, with p,
q irreducible integer numbers, in the large p limit. Let us
indicate by E;(k) the dispersion curve of the /th band of
the superlattice described by the Hermitian Hamiltonian Hj,
defined by Eq. (6). It can be readily shown that the p en-
ergy bands of H, under periodic boundary conditions, are
given by E;(k + ih), i.e., they are obtained from the disper-
sion curves of the associated Hermitian lattice [Eq. (6)] after
the replacement k — k + ih, i.e., after complexification of
the Bloch wave number, with 7 = (1/2) log(J /Jr) (technical
details are given in Appendix A). It should be noted that
in the current literature on the non-Hermitian skin effect,
complexification of the Bloch wave number k, known as the
generalized Brillouin zone, is relevant to determine the energy
spectrum of a given Hamiltonian H under the open boundary
conditions in the thermodynamic limit [78,80]: The energy
spectrum of H under open boundary conditions is obtained
from the Hamiltonian H (k) in Bloch space after complexi-
fication of k, so B = exp(ik) does not describe a unit circle
in the complex plane. However, in our case complexification
of k is not related to the open-boundary-condition case: We
consider two different superlattice models with Hamiltonians
H and H,; in physical space, the former non-Hermitian and
the latter Hermitian, and show that the energy spectra (Bloch
mini bands) under periodic boundary conditions of H are
obtained from those of Hj, under the same periodic bound-
ary conditions, after complexification of k. For a vanishing
potential amplitude V = 0, we can take p = 1, so that the
Hermitian lattice of Eq. (6) displays the single tight-binding
band E; (k) = 2J cos k; correspondingly, the energy spectrum
of the non-Hermitian lattice with asymmetric hopping reads

E\ (k) = 24/JrJL cos(k + ih) = Jgexp(ik) + Jp exp(—ik),
(10)

describing an ellipse in the complex energy plane [see curve 1
in Figs. 5(a) and 5(b)]. The largest velocity at which an excita-
tion propagates along the lattice is given by the group velocity
v, = Re{(dE /dk)y,} at the Bloch wave number k,, where the

0.6

Im(E/J, )

-3 -2 -1

0
Re(E/J,)

FIG. 5. Energy spectrum in complex energy plane for the AAH
Hamiltonian with asymmetric hopping and for a few increasing val-
ues of the on-site amplitude V. Curve 1: V/J, = 0; curve 2: V/J, =
0.3; curve 3: V/J, =0.6; curve 4: V/J, =0.9; curve 5: V/J, =
1 (phase transition point). In (a) Jz/J, = 0.5, in (b) Jg/J. = 0.3,
whereas Jg = 0 in (c) (unidirectional hopping). The energy spectra
in (a) and (b) have been numerically computed as the eigenvalues of
the matrix M defined by Eq. (A5) in Appendix A for the rational
approximation ¢/p = 89/144 of the inverse of the golden ratio.
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imaginary part of E(k) takes its largest value [82,84], i.e.,
ky = —m/2 and v, = Jg +Jp for V =0. As the potential
amplitude V is increased, the energy spectrum in the complex
plane undergoes a smooth deformation from an ellipse, as
shown by curve 2 in Figs. 5(a) and 5(b). The deformation of
the ellipse changes the dispersion relation and, for sufficiently
small Jr/Jp, can result in an increase of the group velocity vy,
above the value (J; + Jg) found at V = 0. Numerical results
indicate that this happens for Jgp/Jp <~ 0.5, i.e., it requires
strong enough asymmetry between left and right hopping
amplitudes. As the potential amplitude V is further increased,
the closed energy loop in the complex energy plane splits into
multiple separated loops; see Figs. 5(a) and 5(b). The number
of split loops increases as the critical point is approached, and
their radius shrinks as the energy spectrum becomes entirely
real, with a fractal structure, at the critical point V. = Jy [curve
5 in Figs. 5(a) and 5(b)]. For V > V,, i.e., in the localized
phase, the energy spectra of non-Hermitian H and associated
Hermitian H; Hamiltonians do coincide. The group velocity
v, that describes propagation of an excitation along the lattice
in the delocalized phase close to the critical point V, = J;, can
be estimated as v, >~ pAW,, /2, where AWj, is the width (real
part of the energy) of the band of the superlattice displaying
the largest value of the imaginary part (thus dominating the
dynamics at long times). A numerical inspection of the band
structure near the critical point indicates that the band with
the largest imaginary part of energy also corresponds to the
wider band in the real part of energy. Clearly, since ), AW; ~
AW, > 0 near the critical point, one has AW;, > AW,/p and
thus vy >~ AW, /2, indicating that the speed of ballistic mo-
tion remains finite as the critical point is approached.

III. DYNAMICAL PHASE TRANSITION IN THE
NON-HERMITIAN AUBRY-ANDRE-HARPER
MODEL WITH UNIDIRECTIONAL HOPPING

In this section we consider the special case corresponding
to the AAH model with unidirectional hopping, i.e., Jp = J >
0 and Jzr = 0. The Hamiltonian reads

Hr, = JYr,_1 + 2V cosQman)y,. (11)

A. Energy spectrum and localization-delocalization transition

The energy spectrum of this model can be determined in an
exact form, as shown in Appendix B (see also [65]). The main
results can be summarized as follows:

(i) For V < V., =J, the energy spectrum E is absolutely
continuous and describes an ellipse in complex energy plane
defined by the dispersion relation

V? . VZy .
E(a)):(J—i—T)cosa)—z(J—T)smw (12)

with —m < w < 7. The corresponding wave functions v, (@)
are extended (generalized eigenfunctions). Note that the el-
lipse shrinks into a segment on the real axis, from £ = —2J
to E = 2J, as V approaches the critical value J [Fig. 5(c)].

(i) For V > J, the energy spectrum E is a real, pure point
and dense in the interval (—2V, 2V), with one-sided wave
functions exponentially localized with energy-independent lo-
calization length given by £ = 1/log(V/J).

Note that compared to the lattice model with asymmetric
but bidirectional hopping discussed in Sec. II B, as the on-site
potential amplitude V 1is increased to approach the critical
value V,, the energy spectrum remains an ellipse and does not
split into a set of loops [compare Figs. 5(a), 5(b), and 5(c)].
Also, in the localized phase the spectrum is pure point but does
not show the typical Cantor-set structure of infinitely many
small bands separated by small gaps [the energy spectrum
is the entire (—2V, 2V) interval]. The reason thereof is that
while in the asymmetric hopping case with Jz > 0 the energy
spectrum of H in the localized phase is the same as that of the
associated Hermitian AAH Hamiltonian H, thus displaying
a fractal structure in the unidirectional hopping limit Jp = 0
such that a correspondence becomes invalid and, as shown in
Appendix B, the pure point energy spectrum is equidistributed
in the full range (—2V, 2V).

B. Dynamical behavior

In this section we study the temporal behavior of a wave
packet in the lattice with unidirectional hopping and derive an
analytical expression of the largest velocity v for propagation
of excitation along the lattice that defines the half light cone
aperture of Fig. 1(b). Clearly, for V > J the energy spectrum
is real, all wave functions are exponentially localized with
the same localization length, so that spectral localization also
implies dynamical localization [85]. Therefore, for V > J one
has v(V) =0 and §(V) = 0. On the other hand, for V < J
(delocalized phase) the spectrum is absolutely continuous, and
transport in the lattice is expected to be ballistic (§ = 1) with
the largest propagation velocity v = v(V), which we wish
to calculate analytically. The most general wave packet at
t = 0 can be decomposed as a superposition of generalized
eigenfunctions v¥,(w) of H by suitable spectral amplitudes
F(w), which depend on the initial state. The solution to the
Schrodinger equation i(d v, /dt) = Hir, at times ¢ > 0 reads

)= [ doF @@ ewl-iE@r.  (13)
v

where the dispersion relation E = E(w) is given by Eq. (12)
and where the form of generalized eigenfunctions v, (w) is
given in Appendix B. To determine the largest propagation
speed v = v(V) of the wave packet along the lattice, we
follow the method outlined in Ref. [84], considering the
asymptotic behavior at long times ¢ of the wave function along
the space-time line n = vt, with some fixed velocity v > 0,
i.e., we consider the asymptotic behavior of

g

dwF (0)Yn=y (w) exp[—iE ()]

(14)
ast — oo. For n > 0, the wave function 1,(w) has the form
[see Eq. (B2) in Appendix B]

n

() = Yumn(t) = /

'l

J
Yn(w) = l—[ E(w) — 2V cosQral)’

=1

(15)

where we assumed, without loss of generality, ¥o(w) = 1. We
can formally write

Yo (w) = explivtS(w)], (16)
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lattice site n

250 0
normalized time Jt
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velocity v
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0
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FIG. 6. Same as Fig. 3, but for Jy = 0, J, = J. The dashed line in (b) shows the behavior of velocity v predicted by the saddle-point

method [Eq. (25)].

where we have set

vt

_ L E(w) — 2V cosRmal)
S(w) = — 121:1og( ) 17)

J

In the large vt limit, the sum on the right-hand side of
Eq. (17) can be approximated by an integral owing to the
Weyl’s equidistribution theorem and the properties of irra-
tional rotations, namely, one has

S(w) = ﬁ /n dklog (M) — iy(w), (18)

where y (w) = —iw is the right Lyapunov exponent associated
to the wave function v, (w) (see Appendix B for technical
details). Hence, in the large ¢ limit we may assume ¥, (@) =~
exp(ivtw) and thus

Y(t) ~ /” dwF (w)explivwt — iE(w)t]. (19)

T

The growth rate A(v) of the wave packet along the space-time
line n = vt, given by

log [{ ()]
I 20

A(v) = lim

—00

can be finally calculated by the saddle-point method [84]. This
yields

A(v) = —vIm(w,) + Im(E(wy)), (21)

where the saddle point w = wj is the root of the equation

dE
- e

in the complex plane. In our model, since E (w) = 2V cos(w +
ip), with p =log(J/V), it readily follows that w; = —ip —
arcsin(v/2V') and

M) = pv v <2V
V)= pv — varccosh(5;) + /v —4V2 v > 2V.
(23)
The largest value A, of the growth rate A(v) is given by
V2
Am:2Vsinhp:J—7, 24)

and it is attained at the speed v = v, given by

VZ
v:ZVcoshp:J—}—T, (25)

with the saddle point w; = —7 /2 on the real axis. The speed
v associated to the largest growth rate provides the aperture of
the half light cone of Fig. 1(b). Equation (25) clearly shows
that such a velocity is an increasing function of potential
amplitude V, varying form v =J at V =0 to v = 2J as the
critical point V = J is approached from below. Clearly, for
V > J one has v =0 (dynamical localization), thus prov-
ing that the behavior of v(V) is discontinuous at the phase
transition point V = J (first-order phase transition). Our ana-
Iytical results have been confirmed by numerical simulations
of wave-packet spreading in the lattice, which are illustrated
in Fig. 6. In particular, the numerically computed behavior of
the velocity v, computed by the relation v = o (¢)/¢, turns out
to be in very good agreement with Eq. (25) predicted by the
saddle-point method.

IV. CONCLUSION

The Aubry-André-Harper model is the simplest and most
studied one-dimensional model of aperiodic order displaying
a delocalization-localization transition as the potential ampli-
tude is increased above a finite threshold value. The abrupt
transition in the energy spectrum (spectral phase transition),
from an absolutely continuous spectrum with extended wave
functions in the delocalized phase to a pure point spectrum
with exponentially localized wave functions in the localized
phase, is associated to a distinct dynamical behavior of wave
spreading in the lattice (dynamical phase transition), with
ballistic transport in the delocalized phase and dynamical
localization (suppression of wave spreading) in the localized
phase. In terms of the velocity v of wave spreading assumed
as an order parameter, the dynamical phase transition is of
second order, i.e., v = v(V) is a continuous function of the
potential amplitude V, vanishes in the localized phase, and its
first derivative is discontinuous at the critical point V =V,.
Similar spectral phase transitions have been recently found in
certain non-Hermitian extensions of the Aubry-André-Harper
model [64,65,69,70,72]; however, the features of associated
dynamical phase transition have been overlooked. In this work
we unveiled distinct physical behavior in wave spreading
and dynamical phase transitions in a non-Hermitian Aubry-
André-Harper model with asymmetric hopping amplitudes,
as compared to the Hermitian limit of symmetric hopping.
Remarkably, we found that for sufficiently strong asymmetry
in the hopping amplitudes, the propagation of an excitation
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along the lattice is enhanced (rather than inhibited) by dis-
order. Also, the dynamical phase transition is of first order
in the velocity v, since v(V) turns out to be discontinuous at
the critical point. Such results provide important advances to
understand the nontrivial interplay between disorder and non-
Hermiticity, which is currently a hot area of research [29,53—
61,64,67,69,71,73,74]. The kind of non-Hermitian Hamilto-
nian with asymmetric hopping amplitudes considered in this
work could be realized in synthetic matter using, for example,
photonic systems [53,64,86,87], topoelectrical circuits [88],
mechanical metamaterials [89], or in continuously measured
ultracold atom systems with reservoir engineering [55,90].
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APPENDIX A: ENERGY SPECTRUM
FOR A COMMENSURATE POTENTIAL

For rational o = ¢q/p, i.e., for a commensurate potential
V, = 2V cos(2mwan), the Hamiltonian H of the lattice,

HWn = JanJrl + ]Lwnfl + Vnw'u

describes a superlattice of period p. Under periodic boundary
conditions, its energy spectrum is thus absolutely continuous
and is formed by a set of p energy bands. According to the
Bloch theorem, the eigenfunctions 1, of H satisfy the Bloch
condition

(AD)

¢n+p =Y, CXp(ikP),

where the Bloch wave number k varies in the range
(—m/p,m/p) and can be assumed as a continuous variable
for an infinitely extended lattice. After setting A; = ¥, Ay, =
Y2, ..., A, = Y, it then readily follows that the eigenvalue
equation

(A2)

JRWn-H + JLwn—l + Vnwn = Ewn (A3)
is satisfied provided that
EA = MA, (A4)
J
Vi J 0
J Vo J
M| =
0 0 0
Jexp(ikp) 0 O
where we have set J = /J.Jr and
Kk =k+ih. (A9)

Equation (A8) clearly indicates that the energies E; of H with
asymmetric hopping J; > Jg, i.e., the eigenvalues of M, are
the same as the energies of the Hermitian Hamiltonian H;

where we have set A = (A1, As, ... ,A,,)T, and M is the p x

p matrix given by

M
Vi Jr O 0 0 Jpexp(—ikp)
Ji Vo Jr 0 0 0
0 0 0 .. Jb Vo Jr
Jrexp(ikp) 0 0 ... 0 Jp V,

(A5)

The energy bands E = E;(k) (I =1,2,3,..., p) are thus the
p eigenvalues of the matrix M, which depend continuously
on the Bloch wave number k. Clearly, for symmetric hopping
Jr = Jp = J the Hamiltonian H is Hermitian and the energies
E,; (k) of various bands are real. In the large p limit, a large set
of narrow bands separated by small gaps is found, which gives
a Cantor set in the p — oo limit. The Lebesgue measure AW
of energy spectrum is defined as the sum of the widths AW, of
various bands, i.e., AW = Zz AW,, which converges toward
4 —V]as p— oo [11].

For asymmetric hopping, the dispersion curves of energy
bands take values in complex plane and describe rather gen-
erally one or more closed loops in the complex energy plane
(see Fig. 5). Interestingly, the dispersion curves E;(k) of the
non-Hermitian lattice can be formally obtained from that of
an associated Hermitian lattice after complexification of the
Bloch wave number k. In fact, let us consider the p x p
diagonal matrix

1 0 o .. 0
A= 0 exp(—h) 0 .. 0 (A6)
0 0 0 exp(—ph + h)

and the matrix M, obtained from M by the similarity trans-
formation

M, = AMA™ (A7)

Clearly, for any Bloch wave number k the matrices M
and M, have the same eigenvalues. If we assume h =
(1/2)log(JL/Jg), from Egs. (AS), (A6), and (A7) it readily
follows that

0 0 J exp(—ik p)
0 0 0
, (A8)
J Ve J
0 J V,

(

with symmetric hopping J = /J.Jg but with the Bloch wave
number complexified according to Eq. (A9).

APPENDIX B: ENERGY SPECTRUM OF THE
UNIDIRECTIONAL AUBRY-ANDRE-HARPER MODEL

The energy spectrum of the unidirectional Aubry-André-
Harper model is the set of complex numbers E such that the
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solutions to the recurrence equation

Ewn :an—l +Vnwnv (Bl)

with V,, = 2V cos(2wan), is not unbounded as n — +o00. To
determine whether a given value E belongs to the spectrum,
we have to study the asymptomatic behavior of ¥, in the large
|| limit. To this aim, let us distinguish two cases.

First case. Let us first consider a complex value of E with
E ¢ (—2V,2V). Since E # V), for any n, for a given value
of the wave function amplitude at site » = 0 from Eq. (B1)

one has
=
Y = <11 m)l/fo (B2)

forn > 0, and

T E-V,
Y = (1_[ %)wo (B3)

I=—1

for n < 0. The right and left Lyapunov exponents y., which
determine the asymptotic behavior of i, as n — 400, are
given by

1 <I/fn)
yy = — lim —log( — |, (B4)
n—oo n 1//0
1 %)
_ =1 -1 — . B5
Y nerwnog<¢0 (BS)

Using Egs. (B2) and (B3), it readily follows that y, = —y_ =
y, with

n

o1 E — 2V cosQRmal)
= lim — lo . B6
y = lim - ; g ( ; ) (B6)
Note that since y— = —y., if the wave function was exponen-

tially localized at n — oo, i.e., Re(yy) > 0, then it would be
exponentially delocalized as n — —oo since Re(y-) < 0, and
vice versa. Hence the wave function cannot be exponentially
localized for any value of E outside the range (—2V, 2V), i.e.,
E does not belong to the point spectrum of the Hamiltonian.
However, provided that the real part of y vanishes, the wave
function is extended but does not secularly grow with |n|,
i.e., E belongs to the continuous spectrum of the Hamilto-
nian whenever Re(y) = 0. For irrational «, the limit on the
right-hand side of Eq. (B6) can be calculated using the Weyl’s
equidistribution theorem [65], yielding

1 T E —2V cosk
y =— dklog| —— ). (B7)
27 J_, J

Since E is not inside the interval (—2V, 2V'), we may set E =
2V cos 6, with 6 a complex angle and Im(6) < 0. The integral
on the right-hand side of Eq. (B7) can be calculated in an exact
form [65], yielding the following final form for the Lyapunov

exponent:
Vv
y =log > +if. (B8)

Note that since Im(6) < 0, one has Re(y) > log(V/J). There-
fore for V > J one has Re(y) > 0, regardless of the value of
energy E, so that E does not belong to the continuous spec-
trum. On the other hand, for V < J the continuous spectrum
is not empty and is composed by the set of complex energies
E such that Re(y) = 0, i.e., y = —iw with w an arbitrary real
parameter. Using Eq. (B8), the condition y = —iw and ansatz
E =2V cos 0 yields

14
E =2Vc0s(ilog7—w>

V2
= Jexp(—iw) + N exp(iw). (B9)

Note that as w varies in the range (—m, ), the continuous
spectrum E describes an ellipse in complex energy plane,
which shrinks toward the segment (—2V,2V) on the real
energy axis as V approaches from below the critical value
V. = J [Fig. 5(c)].

Second case. Let us now assume that E is real and in-
side the range (—2V, 2V). Precisely, let us assume that £ =
2V cos(2mang) for some integer ng. Note that since « is irra-
tional, the set of energies E obtained when ng varies from —oo
to oo is dense and equidistributed in the range (—2V, 2V). In
this case the solution to Eq. (B1) reads explicitly

0 n < ny

Y, =11 n=ny.
I L n>n

[=np+1 E-V, 0

(B10)

The right Lyapunov exponent reads

1 1 [ E —2V cosk
yi = — lim - log Y, = —/ dk log <¢>
27T 0 J

n—»oo n
(B11)
For E € (—2V,2V), the integral on the right-hand side of
Eq. (B11) turns out to be independent of E and equals

log(V/J), i.e.,
\%
v+ = log 7))

For V < J, y; < 0 and thus 1, exponentially grows as n —
o0, i.e., E does not belong to the point spectrum of the Hamil-
tonian. On the other hand, for V > J one has y; > 0 for any
energy E = 2V cos(2mang), dense in the range (—2V,2V):
hence E belongs to the point spectrum of the Hamiltonian.
Since the Lyapunov exponent y; does not depend on energy
E, the wave function is one-sided exponentially localized with
an energy-independent localization length £ given by

11
ve  log(V/J)

Finally, for V =J one has y; =0, indicating that at the
critical point the wave function is one-sided extended.

(B12)

§= (B13)
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