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Abstract
Anatomical and dynamical connectivity are essential to healthy brain function. However, quantifying variations in
connectivity across conditions or between patient populations and appraising their functional significance are highly non-
trivial tasks. Here we show that link ranking differences induce specific geometries in a convenient auxiliary space that
are often easily recognisable at mere eye inspection. Link ranking can also provide fast and reliable criteria for network
reconstruction parameters for which no theoretical guideline has been proposed.

Keywords Functional brain connectivity · Complex networks · Link difference ranking · Alzheimer’s disease ·
Schizophrenia

Introduction

Specific anatomical and dynamical connectivity patterns
are an essential ingredient of healthy brain functioning
(Varela et al. 2001; Braitenberg and Schüz 2013). Con-
versely, dysconnectivity, i.e. both reduced and increased
connectivity, has been suggested to underlie several neuro-
logical and psychiatric conditions (Friston 1998; Hahamy
et al. 2015; Hillary and Grafman 2017; Hohenfeld et al.
2018). Moreover, the topological properties of the net-
works induced by anatomical and dynamical connectivity
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(Bullmore and Sporns 2009) have been shown to be modu-
lated as a function of different stages of development (Cao
et al. 2017) and ageing (Meunier et al. 2009), as well as
in various neurological and psychiatric pathologies (Fornito
et al. 2015).

Quantifying meaningful differences in brain connectivity
between given experimental conditions or populations, and
determining which network property is important in their
identification, are non-trivial tasks, which require either
sophisticated statistical testing or computationally intensive
machine learning techniques (Zanin et al. 2016) and for
which no graphical representation is available. One deep
reason for this difficulty relates to the fact that observable
dynamical patterns of brain activity emerge in a non-
trivial and non-local way from brain connectivity at all
scales (Kozma and Freeman 2016). Likewise, while brain
topography plays an important role in brain function,
topological network properties are essentially statistical
in nature. The network neuroscience literature typically
emphasises the connectivity and topology induced by
strong links. However, weak links have been shown to
have a strong impact on network topology, where their
inclusion can induce transitions from fractal to small-world
universality classes (Gallos et al. 2012), but also on the
dynamics of and processes taking place on the network
(Csermely 2004; Karsai et al. 2014). Taken together, these
considerations suggest that experimental conditions may be
identifiable not just through the structure induced by strong
links, with the possible addition of weak ones, but via their

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-021-09518-7&domain=pdf
http://orcid.org/0000-0002-5839-0393
https://orcid.org/0000-0003-1889-2791
adni.loni.usc.edu
http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto: massimiliano.zanin@gmail.com


Neuroinform

relations across the whole network in a way that is at least
partially independent of topographical localisation.

Here, we propose a computationally feasible method
to quantify differences in connectivity across experimental
conditions based on link weight rankings. The links
of equal-sized all-to-all weighted dynamical networks of
brain activity associated with two different experimental
conditions are ranked according to their weight. The median
and standard deviation of these links are then compared
across conditions. Link ranking differences at all levels
of the rank-weight distribution turn out to induce specific
geometries in a convenient auxiliary space, whose axes
are respectively their between-group difference in median
and standard deviation. Ultimately, the data are represented
in a scatter plot, where each point corresponds to a link
ranking, and its position to the difference in the link
median / standard deviation between groups. This graphical
representation allows to easily depict how connectivity
strengths are modified by a condition, both in terms of
median value and variability; whether such changes are
uniform, or centred on strong / weak links; and how certain
these results are.

Methods

Creating the Representation

The method takes as input a set of weighted adjacency
matrices, each representing the connectivity between
different brain regions of a given subject. Note that no
restrictions are imposed on the way such connectivity is
calculated, provided the result takes the form of a real
number. Two different groups of subjects (e.g. patients and
controls) are compared, with each matrix belonging to one
of them - see Fig. 1a. Note that the values in the adjacency
matrices can be obtained through any connectivity metric
(including, for instance, linear correlation or Granger
causality (Bressler and Seth 2011)), provided the previous
condition is fulfilled, i.e. that the metric yields a real scalar
value for each pair of nodes. Also, note that Fig. 1a presents
a very simple case, with three networks in each group, e.g.
reconstructed from neuroimaging recordings of three trials
of healthy patients and three trials of patients. Link weights
(without self-links) are then extracted from each matrix,
and ranked in decreasing order - Fig. 1b. For each group
and ranking position, two metrics are further extracted: the
median (Fig. 1c) and the standard deviation (Fig. 1d) of link
weights within the same group.

The difference in the two metrics between two groups is
respectively calculated as �M = log2 Mg1/Mg2 (Fig. 1c,
third column) and �Std = log2 Stdg1/Stdg2 (Fig. 1d, third
column), with M representing the median, and g1 and g2

indicating the two groups to be compared. In both cases,
values of � greater (respectively, smaller) than zero indicate
that networks in the second group have larger (smaller)
values than those in the first. Note that the values of �M and
�Std are still dependent on the ranking position. Finally,
all results are represented in a scatter plot, where points,
corresponding to ranking positions, are located in a �Std

- �M plane (Fig. 1e). For the sake of clarity, points are
coloured according to their position in the ranking, from
blue (weakest links) to red (strongest links).

The final picture, as the one in Fig. 1e, can be interpreted
as follows. Points form a continuum ranging from strongest
(red) to weakest (blue) links, and their position indicates
how weights differ between conditions. Positive values
along the Y axis indicate that the second group has stronger
links on average; and positive values along the X axis, that
the second group has a larger variability. As an additional
example, consider the first panel of Fig. 2 (i.e. Model 1).
Here, stronger links (i.e. red points) in the first group have
the same median link strength (as �M ≈ 0) and higher
variability (�Std ≈ 1) than links in the second group. On
the other hand, weak links (i.e. blue points) have both a
lower median strength (�M ≈ −1) and lower variability
(�Std ≈ −2).

For the sake of completeness, an additional feature is
added to the scatter plot. A semi-transparent box is plotted
alongside each point, spanning from the 16th to the 84th
percentile of each metric calculated by taking half of the
available matrices at random. Thus, each box represents the
uncertainty in the position of the corresponding point if only
half of the data were available.

Data Sets Description

The nine data sets considered in this study are described
in what follows - a review of their main characteristics
is reported in Table 1. They have been selected to cover
the main neuroimaging techniques whose outputs are
customarily interpreted as networks, and thus provide a
wide set of use cases. Still, each data set has been analysed
independently of the others. Unless otherwise specified,
no further processing steps (including noise reduction or
artefact elimination) have been performed.

Schizophrenia (EEG)

This data set includes resting state EEG recordings from a
set of schizophrenia patients and matched control subjects,
as described in Ref. Olejarczyk and Jernajczyk (2017) and
available at http://dx.doi.org/10.18150/repod.0107441. The
14 patients (7 males, 27.9±3.3 years, and 7 females, 28.3±
4.1 years) met International Classification of Diseases ICD-
10 criteria for paranoid schizophrenia (category F20.0). The
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Fig. 1 Graphical representation
of the proposed method. a Initial
connectivity matrices, for two
groups composed of three
networks each. b Ranking of each
network’s links. c Median of the
link’s values, for each group and
each ranking position; and
difference of link’s medians,
calculated as the logarithm in
base two of the ratio between the
values of both groups. d Standard
deviation of the link’s values, for
each group and each ranking
position; and difference of link’s
standard deviations. e Final
graphical representation in the
�M−�Std plane, each point
representing a ranking position,
and coloured according to the
ranking position (from red,
highest, to blue, lowest)

a)

b)

c) d)

e)

14 corresponding healthy controls were 7 males, age of
26.8 ± 2.9 years, and 7 females, age of 28.7 ± 3.4. Fifteen
minutes of EEG data were recorded during an eyes-closed
resting state condition. Data were acquired at 250Hz using
the standard 10-20 EEG montage with 19 EEG channels:
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2. The reference electrode was placed at FCz.

Alzheimer’s Disease (EEG)

The EEG data set of Alzheimer’s disease (AD) patients was
recorded at Istanbul Medipol University Hospital in Istanbul
and the Izmir Dokuz Eylul University Multidisciplinary
Brain Dynamics Research Center in Izmir. AD patients were
diagnosed according to the criteria of the “National Institute

of Neurological and Communicative Diseases and Stroke-
Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA)” (McKhann et al. 1984; McKhann
et al. 2011) and the “Diagnostic and Statistical Manual
of Mental Disorders-4th Edition (DSM-IV-TR)” (APA and
et al. 2013). Also, the Clinical Dementia Rating (CDR)
scale (Berg 1988; Gurvit and Baran 2007; Morris 1993;
1997) was used for assessing the severity of AD. A total
of 42 patients (ages: 56 − 86, median of 74; gender: 6
male; edu: 0 − 13, median of 5) and 38 healthy control
subjects (ages: 54 − 70, median of 62.5; gender: 5 male;
edu: 0 − 12, median of 5) have here been analysed. The
Mini-Mental State Examination (MMSE) test (Folstein et al.
1983; Gungen et al. 2002) was used to evaluate the general
cognitive state of all participants. AD-related medicine use

Fig. 2 Analysis of the results
yielded by a set of six synthetic
models. In the first three (i.e. the
static ones, top row) link
weights are directly assigned,
while in the last three (i.e. the
dynamic ones, bottom row) they
are derived from the
corresponding nodes’ time series
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Table 1 Main characteristics of
the considered data sets Type Data set # controls # patients # sensors / ROIs Length

EEG Schizophrenia 14 14 19 ≈ 15m

Alzheimer’s disease 38 42 32 ≈ 8m

Parkinson’s disease 22 74 32 ≈ 8m

Alcoholic 4,024 7,033 64 1s

fMRI Autism 592 521 116 5-16 m

Schizophrenia 33 21 116 6m

Alzheimer’s disease 34 21 116 6m

DTI Autism 43 51 264 n.a.

Gender 114 80 188 n.a.

# controls and # patients respectively refer to the number of control subjects and patients available for this
study, except in the case of the Alcoholic EEG data set, for which they represent the number of trials

was not intervented in the patient group and the patients
with AD were taking cholinergic monotherapy or combined
cholinergic treatment with memantine.

The EEG of all healthy controls and AD patients were
recorded in a dimly isolated room with a Brain Amp
32-channel DC system machine (Brain Product GmbH,
Germany) from 32 different electrodes which were arranged
according to the international 10/20 system. The sampling
rate was 500 Hz with band limits of 0.01 - 250 Hz.
All impedances were kept below 10 Kohm and two
additional linked earlobe electrodes (A1+A2) served as
reference electrodes. Electro-ocologram was recorded with
two electrodes placed in the medial upper and lateral orbital
rim of the left eye.

Parkinson’s Disease (EEG)

The EEG data set of Parkinson’s patients was recorded
at Istanbul Medipol University Hospital in Istanbul. PD
patients were diagnosed according to the criteria of “United
Kingdom Parkinson’s Disease Society Brain Bank” (Daniel
and Lees 1993). The Unified Parkinson’s Disease Rating
Scale (UPDRS) (Lang and Fahn 1989) was used in order to
determine the clinical features of PD; and the Hoehn-Yahr
scale (Hoehn and Yahr 1967) was used to determine the
disease stage. A total of 74 patients (ages 56 − 86, median
of 74) and 22 matched control subjects (ages 54 − 89,
median of 67) have here been analysed. All patients with PD
were evaluated 60 to 90 minutes after their morning dose
of levodopa for the EEG recordings. Recording conditions,
equipment and electrodes location are as in the Alzheimer’s
disease (EEG) data set.

Alcoholic (EEG)

This data set contains EEG recordings from a group of
alcoholic subjects and matched controls (Zhang et al. 1995;

Cao et al. 2014), freely available at https://archive.ics.uci.
edu/ml/datasets/EEG+Database. Each trial corresponds to
an object recognition task, as described in Snodgrass and
Vanderwart (1980); and its corresponding EEG activity has
been recorded during one second, with a 256 Hz (3.9-
ms/epoch) sampling rate from 64 electrodes located at
standard scalp sites. 4,024 trials for controls and 7,033 for
patients are available, for a total of 11,057 instances. Note
that trials are here assumed to be independent from each
other, even when coming from the same subject; therefore,
and for the purpose of this study, the 11,057 instances
are equivalent to recordings coming from 11,057 different
subjects.

Autism (fMRI)

The first fMRI dataset selected for this study is ABIDE
II (Di Martino et al. 2017), available at http://fcon 1000.
projects.nitrc.org/indi/abide/abide II.html, which consists
of a collection of 19 datasets of individuals with
Autism Spectrum Disorder (ASD) and typical controls
(TC). It includes resting state functional magnetic res-
onance imaging (rs-fMRI) data, diffusion tensor imag-
ing (DTI), phenotypic data, in addition to anatomi-
cal data. To create functional connectomes represen-
tations we have taken anatomical and functional data
from all 19 datasets (except longitudinal collections), for
521 ASD patients and 592 TC and a grand total of
1113 subjects. Additional information about these sub-
jects and their corresponding image acquisitions is given at
http://fcon 1000.projects.nitrc.org/indi/abide/abide II.html.

The preproccessing was performed using Statistical Para-
metric Mapping (SPM12) (Neuroimaging 2016) in MATLAB
2018b incorporated into the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon 2012). The preprocessing
steps include a default pipeline with functional realignment
(motion estimation and correction), slice-timing correction,
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coregistration to subjects respective anatomical (T1) images
with normalisation to the standard Montreal Neurological
Institute (MNI) template, outlier detection, and smoothing
with an 8 mm full width at half maximum (FWHM) kernel.
In addition to these steps, segmentation of grey matter, white
matter, and cerebrospinal fluid (CSF) areas was employed
for the removal of temporal confounding factors (white mat-
ter and CSF). Moreover, band-pass filtering was performed
with a frequency window of 0.008-0.09 Hz. For head motion
and artefacts elimination, outlier time points were identified
in the motion parameters and global signal intensity using
ART (Whitfield-Gabrieli et al. 2011) added to the default
pipeline in CONN toolbox. ROI-to-ROI 116x116 functional
connectivity matrices for each subject were calculated using
CONN toolbox with the use of Anatomical Atlas Label-
ing (AAL) template (Tzourio-Mazoyer et al. 2002) for brain
atlas ROI parcellation.

Schizophrenia (fMRI)

The second fMRI dataset included in this study is the open
source COBRE data set (http://fcon 1000.projects.nitrc.
org/indi/retro/cobre.html), consisting of anatomical and
resting state functional magnetic imaging (rs-fMRI) data
for 72 Schizophrenia patients (SZ) and 75 typical controls
(TC). The rs-fMRI data were obtained using single-shot full
k-space echo-planar imaging (EPI) with TR=2 s, TE=29
ms, matrix size=64x64, slice number=32 slices, and voxel
size=3x3x4 mm3. Additional information on the dataset
images acquisitions and phenotypical data is available
at http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html.
The executed preprocessing coincide with the one of the
Autism (fMRI) data set.

Alzheimer’s Disease (fMRI)

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(www.adni-info.org) was launched in 2003 with a primary
goal to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease
(AD).

In this study we used functional magnetic resonance
(fMRI) datasets from the ADNI database (http://adni.
loni.ucla.edu). The 60 recordings used in this study were
from the control (pre-treatment) sessions. The participants
were categorised according to the clinical data in multiple
groups, out of which in this study two groups were used:

cognitively normal subjects’ (CN) group (37 participants),
and Alzheimer’s dementia (AD) group (23 participants).
The CN group comprises 17 males and 20 females of
an average age 73.65 ± 5.74, whereas the AD group
comprises 10 males and 13 females of an average age
73.17 ± 7.62. Each participant was scanned on a 3.0T
Philips MRI Scanner. fMRI axial images were obtained
using echo planar (EPI) sequence with repetition time (TR)
of 3000ms; echo time TE = 30ms; flip angle (FA)=800, and
48 slices with slice thickness of 3.313 mm. Participants were
instructed to relax and keep eyes closed during the scanning
session. A total of 140 volume data were available for each
participant.

The dataset was preprocessed using the Data Preprocess-
ing Assistant for Resting-State fMRI (DPARSF) software
(http://www.rfmri.org/DPARSF) (Chao-Gan and Yu-Feng
2010). The first seven time points were discarded to ensure
the stabilisation of the magnetic field. Preprocessing steps
include: slice timing correction, realignment to eliminate
movement artefacts and spatial normalisation to the stan-
dard EPI template. Images were spatially smoothed with
Gaussian kernel with full width at half-maximum (FWHM)
of 6 mm. Both linear and quadratic trends were removed
and head motion parameters, cerebrospinal fluid and white
matter signals were regressed out from the data. Participants
with significant motion artefacts were excluded from the
study, reducing the set to a total of 34 CN and 21 AD partici-
pants. Finally, BOLD signals were extracted from 116 brain
region according to automated anatomical labelling (AAL)
(Tzourio-Mazoyer et al. 2002) atlas.

Autism (DTI)

The first diffusion tensor imaging (DTI) dataset with
structural connectomes for this study is the UMC
database UCLA Autism collection (Rudie et al. 2013)
taken from the UCLA multimodal connectivity database
(Brown et al. 2012), openly available at http://umcd.
humanconnectomeproject.org/. The collection consists of
pre-constructed structural and functional connectomes for a
total of 175 subjects, out of which 94 are structural connec-
tomes for 51 Autism Spectrum Disorder (ASD) patients and
43 Typically Developing (TD) controls, in addition to 79
functional connectomes for 42 (ASD) patients and 37 TD
controls. In this study, we have selected the structural DTI
fiber connectivity connectomes 264x264 matrices, for the
discovery of differences between ASD and TD. Phenotypi-
cal and demographic dataset information, as well as images
acquisition and structural DTI fibre connectivity matrices
construction details are given in Rudie et al. (2013).

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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Gender (DTI)

The last dataset for this study was also obtained
from the UCLA multimodal connectivity database
(Brown et al. 2012) (openly available at http://umcd.
humanconnectomeproject.org/), and specifically from the
NKI Rockland collection. It consists of 194 structural and
functional connectivity matrices for 194 control subjects
taken from the Nathan Kline Institute (NKI)/Rockland sam-
ple dataset (Nooner et al. 2012). Data information, DTI and
fMRI preprocessing, as well as structural and functional
connectivity matrix derivation are described in more detail
in Brown et al. (2012). For the purpose of discovering
gender differences (male vs. female) we have only used the
structural 188x188 connectomes matrices.

Functional Network Reconstruction

Once a set of time series has been obtained for each subject,
in the case of EEG and fMRI data, these have been divided
in non-overlapping windows of size τ . Unless otherwise
specified, we have here considered τ = 128. Finally,
a weighted adjacency matrix W has been reconstructed
for each window, where each element wi,j represents
the strength of the functional connectivity between nodes
(electrodes or ROIs) i and j . As previously discussed, any
method can be used to estimate such connectivity, provided
the output is a scalar number for each pair of nodes.
To illustrate how different methods can yield different
results, we here consider four metrics commonly used in
neuroscience:

– Linear Pearson’s correlation, corresponding to the
absolute value of the classical linear correlation
between the two time series.

– Granger Causality (GC), a linear causality metric based
on evaluating the improvement in the forecast of the
time series Y when information about a second time
series X is included. If the error in the prediction is
reduced, X is said to Granger-cause Y (Bressler and
Seth 2011). The value of each element wi,j is defined as
the − log10 of the p-value of the Granger test between
time series i and j .

– Mutual Information (MI), a measure of the mutual
dependence between the two variables. It is defined
as the amount of information obtained about one time
series through observing a second one (Kraskov et al.
2004).

– Transfer Entropy (TE), a metric measuring the amount
of directed transfer of information between two time
series. More specifically, it is defined as how much the
uncertainty in future values of a time series Y is reduced

by knowing the past of a second time series X (Vicente
et al. 2011).

Results

Synthetic Models

As a first test case, and in order to better illustrate the
behaviour of the proposed methodology, we here show the
results obtained through six synthetic models. These have
the advantage of being clearly defined, such that the validity,
consistency and meaning of results can easily be checked.

The first three, called static in Fig. 2, are based on
creating a set of networks with pre-defined link weights - as
opposed to be derived from time series. Specifically, each
model comprises two groups of 10,000 networks each, each
one composed of 20 nodes. An increasing index l = 1, 2, . . .

is then associated to each link, and the corresponding weight
is defined as:

Panel (a), Static model 1. The weight of link l is drawn
from a normal distribution N (l, 1) for networks in the first
group, and N (l2, 1) for networks in the second one. This
makes links in the second network stronger, on average,
in a supralinear way - this reflects in high values of �M

for strong links (represented as red points), and in a curve
oriented from bottom to top.

Panel (b), Static model 2. The weight of link l is here
drawn from a normal distribution N (l, 1) for networks in
the first group, and N (l, l) for networks in the second one.
Compared to the previous case, the average link strength is
kept proportional to l, but the corresponding variability is
increased in the second group. As should be expected, this
results in high values of �Std for strong links, and a global
curve evolving from left to right in the plane.

Panel (c), Static model 3. This model combines both
previous models, such that link weights are drawn from a
normal distribution N (l, 1) for networks in the first group,
and N (l2, l) for networks in the second one. Accordingly,
the result is a diagonal curve, going from small to large
values of both �M and �Std .

We then move to the analysis of dynamic models, i.e.
models in which the weight of the link connecting two
nodes is derived from the correlation between the time series
describing the corresponding nodes’ dynamic. This is more
similar to the typical analysis in neuroscience, and further
yields more complex results in the �Std-�M plane. For
that, we again consider the case of two groups of 10,000
networks and 20 nodes, and with a time series of length
τ = 8 associated to each node. Link weights between
pairs of nodes are calculated as the absolute value of the
linear correlation between the corresponding time series.

http://umcd.humanconnectomeproject.org/
http://umcd.humanconnectomeproject.org/
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In the case of the first group, these time series are always
created by mixing a common fixed pattern with a random
component. In the case of the node i, its time series is given
by x

(i)
t = πt + α(i)U(−1, 1). π is a fixed time series of

τ = 8 values, created by drawing random numbers from
an uniform distribution (0, 1), upon which a random signal
is superimposed. The amplitude of such additive signal is
controlled by α(i), a random number drawn from a uniform
distribution U(0, 1). Note that each pair of nodes with small
α will have a similar dynamics, due to the dominance of π ,
and hence a large correlation. Networks of the second group
are constructed according to different generative models,
with time series defined by y

(i)
t = πt + β(i)U(−1, 1).

Panel (d), Dynamic model 1. β(i) is a number drawn
from a uniform distribution U(0, 8). As β is larger than α,
the noisy component is stronger in the second group, and
thus links have a smaller weight - see the negative value
of �M . Globally, weak links tend to have a more negative
�M , as differences are magnified, in relative terms, by the
smaller weight; and a smaller variability, as the larger value
of β reduces the probability of having a strong link at low
ranking positions.

Panel (e), Dynamic model 2. β(i) is a random number
drawn from a uniform distribution U(0, 0.2) for i ≤ 10; and
from an exponential distribution with a scale parameter 1/λ

= 4 otherwise. The first ten nodes are thus characterised

Fig. 3 Graphical representations yielded by the proposed methodology for the nine functional and structural brain data sets here considered. Refer
to Methods for details on data and processing
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by a highly synchronised dynamics and homogeneous
weights, thus leading to a positive �M and negative �Std;
the synchronisation is then lost for the remaining links,
recovering a curve similar to that of Model 1.

Panel (f), Dynamic model 3. In this case, β(i) is a number
drawn from a uniform distribution U(0, 0.3i), and is thus
node-dependent: some nodes (small i) have a necessarily
highly correlated dynamics, while others (i close to 20)
are more heterogeneous. While the global connectivity
strength is mostly constant (i.e. �M ≈ 0), some pairs
of nodes are forced to be synchronised, and hence their
variability is reduced (note the negative �Std for the five
strongest links).

Analysis of Brain Data

We further applied the proposed method to a large collection
of anatomical and functional brain data recorded with
various neuroimaging techniques from people suffering
from a number of neurological and psychiatric pathologies
as well as from matched control subjects - see Fig. 3.

Several points are worth mentioning. First, in most cases,
the transform yields a non-trivial picture of the overall
structure of the differences between a given pathology and
its corresponding control group in terms of differences in
connectivity strength ranking. This result indicates that,
even in the absence of topographic localization information,

Fig. 4 Analysis of the resolution of fMRI data. Panels (a), (b) and
(c) report the graphical ranking representations for respectively the
Schizophrenia, AD and PD EEG data sets, when the corresponding
time series are downsampled by taking one value every 128 - thus sim-
ulating a time resolution similar of that of fMRI. The results are fuzzy
structures, similar to the ones obtained for the fMRI data sets. Panels
(d), (e) and (f) report the ranking representations for the three con-
sidered fMRI data sets, when the values obtained are averaged over

4 consecutive links in the ranking. The obtained graphs suggest that
the unclear structure is not due to the high number of nodes (i.e. to a
too high spatial resolution), but instead to the small time resolution of
fMRI time series. Panel (g) finally represents violin plots of the distri-
bution of the Spearman rank correlation between the link weight of all
control subjects in each data set. In general fMRI rankings (red vio-
lins) are less stable than EEG ones (blue violins), contributing to the
appearance of fuzzy structures
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often deemed necessary in system-level neuroscience,
the transform retains enough information of the network
connectivity pattern to discriminate pathological signals
from healthy control ones.

Second, our results suggest that the relevant discriminant
information is encoded in the hierarchy of brain connectiv-
ity strength but also, importantly, in its variability. While
variability it often paid little attention in network analysis,
our results are consistent with its prominent role in healthy
biological systems and in their pathology (Goldberger et al.
2002; West 2010).

Third, the geometry of the rank-difference transform in
the median-std space presents marked pathology-specificity
which can often be appreciated at a glance. For instance,
schizophrenia is associated with a substantial increase in
both median weight and variability for weak links - note
that a �Std of 3 is equivalent to a eight-fold increase in
variability - while the strongest links do not significantly
differ from those of control subjects (Fig. 3 panel (a)). The
opposite pattern is observed for Alzheimer’s disease (AD)
(panel (b)), in which the increase in variability is limited to
strong links. Somehow in between the two previous patterns
is that of alcoholic patients, with higher variability in the
strongest and weakest links, but not in intermediate ones
(panel (d)).

Panels (h) and (i) show how anatomical (as opposed to
functional) connectivity networks, here obtained through
Diffusion Tensor Imaging (DTI), can also be analysed
through the proposed methodology. Weak links are the ones
showing a major difference in both cases, while strongest
links are mostly stable at �M ≈ 0. Importantly, insofar as
most current network reconstruction studies typically filter
out weak links, typically retaining only a low percentage
of the strongest ones, the results for both functional and
anatomical data indirectly suggest that the detection ability
of these studies may also be pathology-specific.

Finally, the results appear to be consistently more clear-
cut for electroencephalography (EEG) than for functional
magnetic resonance imaging (fMRI) data (compare EEG
to fMRI results, Fig. 3e–g). Given the spatial character
of connectivity and fMRI’s immensely superior spatial
resolution with respect to EEG’s, this may prima facie
seem surprising. This result could in principle stem
from a difficulty in handling the dimensionality of fMRI
connectivity matrices. However, further analysis clearly
points to fMRI’s markedly lower temporal resolution with
respect to EEG’s as the true cause - see Fig. 4. This may
indicate that the information encoded in brain dynamics can
be more important than its spatial aspect in discriminating
between physiological and pathological connectivity, and

Fig. 5 Examples of alternative uses of the proposed methodology. a,
b Analysis of the Schizophrenia (EEG) data set as a function of the
frequency bands and the connectivity metrics considered. c, d Parkinson’s

disease (EEG) and Schizophrenia (EEG) data sets, for different val-
ues of the length τ of the time window used to assess correlations. e, f
Link- and node-based metrics, for the Schizophrenia (EEG) data set
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that fMRI’s relatively poor temporal resolution may lead to
an over-simplified image of brain connectivity and therefore
fail to capture functionally discriminant aspects.

The range of comparisons that the proposed method
can help handling far exceeds those between different

populations. Notably, the method can be used as a fast post
hoc validation method in functional network reconstruction.
Reconstructing connectivity and network properties from
experimental neuroimaging data is a highly non-trivial task,
with various discretionary steps for which no accepted

Correlation GC MI TE

B
ro

ad
ba

nd
A

lp
ha

B
et

a 
1

B
et

a 
2

G
am

m
a

Fig. 6 Analysis of the results obtained by the proposed method for the
Schizophrenia EEG data set, as a function of the connectivity metric
(columns) and of the frequency band (rows). The best differentiation

between control subjects and patients, in terms of �M , is obtained by
the linear correlation for high frequencies; on the other hand, larger
differences in terms of �Std are obtained by the Granger Causality
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theoretical guidelines exist. For instance, there is as yet
no principled criterion to define nodes or to choose the
most appropriate connectivity metric out of the many
available ones, and refining network reconstruction in an
iterative manner is a computationally intensive process
(Zanin et al. 2012). In a somehow comparable vein, the
transform can help understanding what aspects of the
recorded signal, e.g. which part of the frequency spectrum
of a broad-band signal, contain discriminative information.
Figure 5 illustrates some examples of such applications.

Panel (a) reports the graphical representation corresponding
to filtering the time series at various frequency bands for the
Schizophrenia (EEG) data set; panel (b) the use of different
connectivity metrics. As previously shown, high frequencies
and linear correlations yield the best results (Roach and
Mathalon 2008) - see also results for all combinations of
frequencies-metrics in Fig. 6. The opposite is observed
for Alzheimer’s disease (EEG), see Fig. 7: the alpha band
encodes most of the information, as well known in the
literature (Moretti et al. 2004). Panels (c) and (d) of Fig. 5
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Fig. 7 Analysis of the results obtained by the proposed method for
the Alzheimer’s Disease EEG data set, as a function of the connec-
tivity metric (columns) and of the frequency band (rows). The best

differentiation between control subjects and patients is yielded by the
Granger Causality, at lower frequencies in terms of �M , and at higher
frequencies in terms of �Std
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Fig. 8 Analysis of the results obtained for the Schizophrenia EEG data set, when a reduced set of networks, drawn at random, are used as input.
It can be appreciated that reducing the number of networks does not change the shape of the curve, in spite of an increment in the uncertainty

also report the representations for varying lengths τ of
the time window used to assess the correlation between
nodes, respectively for the Parkinson’s disease(EEG) and
the Schizophrenia (EEG) data sets. We further show how
the methodology can also be applied to high-order network
topological metrics, whenever they can be calculated for
either links or nodes. In a way similar to link weights, one
simply needs to rank these link or node metrics, calculate
the between-group �M and �Std , and represent the results
in a scatter plot. Figure 5e reports the results for the edge
betweenness centrality, for the Schizophrenia (EEG) data
set, when link weights are raised to an exponent α; and panel
Fig. 5f results for three node-based metrics, i.e. clustering
coefficient, betweenness centrality and vitality.

As a final point, Fig. 8 analyses the sensitivity of the
method to the number of available networks. Specifically,
the left panel reports the results for all networks extracted
from the Schizophrenia EEG data set (i.e., the same as
Fig. 3a) , while the three additional panels for subsets of
10%, 1% and 0.1% networks drawn at random. Reducing

the number of available instances has a negative effect
on the uncertainty of each point, as represented by the
larger corresponding boxes; on the other hand, the overall
shape of the curve is preserved. The availability of large
data sets is thus not a requirement, at least if the analysed
structural property has a sufficiently high signal-to-noise
ratio; or, in other words, inter-group differences are larger
than intra-group ones.

Application to Other Socio-technical Systems

In order to illustrate the generality of the proposed approach,
we here show how it can be applied to two other time-
varying socio-technical systems, i.e. international trade and
air transport networks.

The left panel of Fig. 9 depicts the results for the inter-
national trade network between 6 world regions, i.e. Africa,
Asia, Australia and New Zealand, Europe, North Amer-
ica, and South and Central America and the Caribbean.
Data have been obtained from the World Trade Organisation

Fig. 9 Examples of the
application of the proposed
methodology to other complex
systems

International trade network Air transport network
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(WTO) website (timeseries.wto.org), and correspond to the
yearly merchandise trade exports for those regions for years
2001 − 2018. The 18 networks have been divided in two
groups, respectively corresponding to years 2001 − 2011
and 2012 − 2018. Results indicate that international trade
has increased between all regions (0 ≤ �M ≤ 1.2); and
that a substantial stabilisation has happened in the strongest
connections (�Std ≈ −3).

The right panel of Fig. 9 corresponds to air transport
networks, and specifically on the quarterly number of
passengers who traveled between the 20 largest cities in
the US. Data have been obtained from the US Department
of Transportation (data.transportation.gov/Aviation), and
cover years 2009 − 2019. The two groups here correspond
to the first and last five years, for a total of 48 networks in
each one of them. A generalised reduction in the number
of passengers can be appreciated, which especially affects
weaker connections (possibly due to spill-over effects to
other transportation modes).

Discussion and Conclusions

In conclusion, we presented a computationally parsimo-
nious graphic method to highlight differences in connectiv-
ity between systems under different conditions. This method
can be used to capture at a glance essential aspects of the
structure and dynamics of biological, technological and eco-
nomic networked systems, and to iteratively refine their
graph representation. From a neuroscientific perspective,
we showed that, in most cases, the transform yields an
easily identifiable condition-specific geometry of the over-
all structure of the differences between a given pathology
and its corresponding control group in terms of differ-
ences in connectivity strength ranking. Our results also
highlighted various rather general properties of brain activ-
ity and its pathologies, providing important methodological
indications: 1) the hierarchy of link strengths in brain con-
nectivity can discriminate between populations, even in the
absence of topographic localisation of network links, gen-
erally thought to play a prominent role in brain function;
2) some pathologies can be characterised in terms of weak
link statistics, and therefore that these links should not be
excluded from network analysis as they typically are; 3)
information on connectivity dynamics is more important
than its spatial definition in discriminating between condi-
tions, indicating that studies using functional magnetic reso-
nance imaging may miss information that may be crucial to
the identification of at least certain pathologies; 4) variabil-
ity has a prominent role in healthy biological systems and in
their pathology and should be used to characterise them.
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see the corresponding descriptions in “Data Sets Description”.
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Gurvit, İ., & Baran, B. (2007). Scales in dementia and cognitive
disorders. Arch Neuropsychiatry, 44, 58–65.

Hahamy, A., Behrmann, M., Malach, R. (2015). The idiosyncratic
brain: distortion of spontaneous connectivity patterns in autism
spectrum disorder. Nature Neuroscience, 18(2), 302.

Hillary, F.G., & Grafman, J.H. (2017). Injured brains and adaptive
networks: the benefits and costs of hyperconnectivity. Trends in
Cognitive Sciences, 21(5), 385–401.

Hoehn, M.M., & Yahr, M.D. (1967). Parkinsonism: onset, progression,
and mortality. Neurology, 17(5), 427–427.

Hohenfeld, C., Werner, C.J., Reetz, K. (2018). Resting-state connec-
tivity in neurodegenerative disorders: is there potential for an
imaging biomarker? NeuroImage: Clinical, 18, 849–870.

Karsai, M., Perra, N., Vespignani, A. (2014). Time varying networks
and the weakness of strong ties. Scientific Reports, 4, 4001.

Kozma, R., & Freeman, W.J. (2016). Cognitive phase transitions in the
cerebral cortex-enhancing the neuron doctrine by modeling neural
fields. Berlin: Springer.
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