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Abstract

Recently, it has been shown that the resolution in cryo-tomography could be improved by 

considering the sample motion in tilt-series alignment and reconstruction, where a set of quadratic 

polynomials were used to model this motion. One requirement of this polynomial method is the 

optimization of a large number of parameters, which may limit its practical applicability. In this 

work, we propose an alternative method for modeling the sample motion. Starting from the 

standard fiducial-based tilt-series alignment, the method uses the alignment residual as local 

estimates of the sample motion at the 3D fiducial positions. Then, a scattered data interpolation 

technique characterized by its smoothness and a closed-form solution is applied to model the 

sample motion. The motion model is then integrated in the tomographic reconstruction. The new 

method improves the tomogram quality similar to the polynomial one, with the important 

advantage that the determination of the motion model is greatly simplified, thereby overcoming 

one of the major limitations of the polynomial model. Therefore, the new method is expected to 

make the beam-induced motion correction methodology more accessible to the cryoET 

community.
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1. Introduction

Beam-induced sample motion is a major resolution limiting factor in cryo-EM (Brilot et al., 

2012). The electron irradiation induces the doming of the sample and causes smoothly-

varying motion across the illuminated area. This motion blurs the images and degrades its 

high-resolution components. The direct electron detectors and motion-correction methods 

have been instrumental for restoring the high-resolution information (Brilot et al., 2012; 

Zheng et al., 2017). In electron cryo-tomography (cryoET), the standard workflow applies 

these motion-correction methods to each image of the tilt-series individually (Wan and 

Briggs, 2016), but the deformation of the sample through the different tilts is often ignored, 

resulting in tomograms with deteriorated quality (Bharat et al., 2015).

Recently, an alignment approach that takes into account the sample deformation through the 

tilt-series was introduced in cryoET (Fernandez et al., 2018). It has shown to improve the 

tilt-series alignment, the tomogram quality and the resolution in subtomogram averaging. 

The method relies on the fiducial markers embedded in the ice, and uses quadratic 

polynomial surfaces to model the sample motion in different directions. The model is then 

applied during reconstruction to yield a motion-compensated tomogram. One requisite for 

the polynomial sample motion model is the optimization of a large number of parameters, 

which imposes minimum requirements on the available fiducials for a reliable resulting 

model. This may limit the practical applicability of the method. To overcome this, here we 

introduce a novel and alternative strategy to model the sample motion that is based on global 
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splines. The main advantage is its simplicity of determination of the parameters of the model 

at no performance cost.

2. Background on motion-aware tilt-series alignment

The standard cryoET tilt-series alignment is based on gold particles as fiducial markers. The 

relationship between the 3D coordinates of the fiducials in the specimen and their 

coordinates in the images is described by the projection model (Mastronarde, 2006):

p j
i = Mir j + di , i = 1 ... N , j = 1 ... Nm (1)

where N and Nm are the number of images in the tilt-series and the number of fiducials, 

respectively, rj = (xj, yj, zj) are the coordinates of the j-th fiducial marker in the specimen, 

Mi is the overall projection matrix for the i-th image that encodes the basic parameters (tilt, 

rotation, magnification) and the projection operator, p j
i = u j

i , v j
i  are the coordinates of the 

projection of the j-th fiducial marker in the i-th image, and di represents the image shifts 

with respect to a reference center, typically the centroid of the fiducials.

To consider the sample motion, the projection model in Eq. 1 was extended by introducing a 

set of quadratic polynomial surfaces that model the 2D motion observed at the projection 

image level (Fernandez et al., 2018):

p j
i = Mi(r j) + Si(r j) + di , i = 1 ... N , j = 1 ... Nm (2)

where Si(x) = Su
i (x), Sv

i (x) , with x = (x, y, z), represents the 2D motion perpendicular to the 

electron beam direction undergone by the sample in the i-th image, observed at the image 

plane (u,v) (Fig. 1). These quadratic polynomials Su
i (X), Sv

i (x)  can be either trivariate (i.e. 

depending on x, y, z; appropriate for thick specimens) or bivariate (i.e. on x, y, thus ignoring 

the variation along Z and being adequate for thin ones). The formers require 10 parameters 

whereas the latters need 6 parameters for the expression of the polynomials (Fernandez et 

al., 2018).

The parameters of the new projection model (Eq. 2) are determined by solving an 

optimization problem aiming to minimize the sum of squared residuals (discrepancy 

between the experimental fiducial positions q j
i  and those expected according to the 

projection model p j
i ): f = ∑i = 1

N ∑ j = 1
Nm q j

i − p j
i 2

. This is carried out in two steps 

(Fernandez et al., 2018). First, a reference tomogram (representing the sample) is set by 

determining the parameters of the standard projection model (Eq. 1) (i.e. 3D coordinates of 

the fiducials, rj, and those associated to the images, Mi, di). The second step then estimates 

the polynomial parameters that describe the motion (Si(x)) undergone by the reference 

tomogram to account for the experimental fiducial positions deviated from the standard 

Fernandez et al. Page 3

J Struct Biol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



projection model. The total number of required polynomial parameters turn out to be large 

since there are 2 polynomials per image (2 × N), with 6 or 10 parameters each.

3. Modeling sample motion based on residual interpolation

Instead of the quadratic polynomials previously used, the newly developed method uses 

global splines to model the sample motion Si(x). The rationale is that the residuals from the 

standard alignment (Eq. 1) can provide estimates of the motion (observed at the image 

plane) with respect to the sample state reflected in the tomogram. Therefore, for each image 

i in the tilt-series, the residuals

q j
i − p j

i = q j
i − (Mir j + di) , i = 1 ... N , j = 1 ... Nm (3)

will provide a discrete set of 2D shifts (perpendicular to the electron beam direction and 

observed at the image plane) estimated at the scattered fiducial coordinates in the 3D space 

(rj) (Fig. 1).

The scattered data interpolation techniques can then be applied to model the sample motion 

for the entire 3D space, Si(x), from the sparse and discrete set of residuals q j
i − p j

i  (Figure 

2). We have chosen thin-plate splines (TPS) (Bookstein, 1989), one of the spline 

interpolation techniques that use radial basis functions (Wolberg, 1990), because of its 

smoothness (minimal integral of the squared second derivative) and its closed-form solution 

(coefficients easily determinable by solving a linear equation system). A TPS interpolant is 

required to model each component of the motion in each image: Si(x) = Su
i (x), Sv

i (x) .

Interpolation with TPS is accomplished with constraints on the curvature, resulting in the 

TPS interpolants being as smooth as possible with respect to the second derivatives 

(Bookstein, 1989). This also ensures a smooth, constrained response in regions far away 

from the control points (i.e. fiducial coordinates) used in the fitting of the interpolants. In 

contrast, the polynomials (higher than the first degree) are characterized by an unconstrained 

behaviour beyond those control points. Thus, TPS interpolation has the potential to produce 

better models of the sample motion under scarcity of fiducials.

Once the sample motion model is determined for all images by the TPS (i.e. with 2 × N TPS 

interpolants), the tomogram can be reconstructed with the same strategy as in the 

polynomial approach (Fernandez et al., 2018). Thus, Weighted Back-Projection (WBP) is 

applied while the sample motion is compensated for.

In summary, the new method for cryoET tilt-series alignment and reconstruction with 

consideration of the sample motion consists of four steps:

1. Apply the standard cryoET alignment (Eq. 1) to determine the basic image 

parameters and, importantly, the 3D coordinates of the fiducials (rj). This step 

defines the reference tomogram and the 3D location of the fiducials within it.
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2. Compute the residuals q j
i − p j

i , i.e. the discrepancy between the experimental 

(q j
i ) and the expected fiducial positions according to the standard projection 

model (p j
i = Mir j + di). These residuals are associated to the scattered 3D 

coordinates of the fiducials (rj) and define their 2D shifts observed at the image 

plane due to the doming effect (Fig. 1).

3. Apply TPS interpolation to determine the model that describes the sample 

motion in the 3D space (Fig. 2B): Si(x) = Su
i (x), Sv

i (x) = TPSu
i (x), TPSv

i (x)

4. Reconstruct the tomogram with WBP by including the sample motion model in 

the projection model: Mi(x) + Si(x) + di

3.1. Determination of the TPS interpolants

Each image requires two TPS interpolants to derive the components of the motion 

Si(x) = Su
i (x), Sv

i (x) = TPSu
i (x), TPSv

i (x)  from the Nm fiducials rj and their residuals q j
i − p j

i . 

These TPS interpolants have the form:

TPS(x) = a0 + axx + ayy + azz + ∑
j = 1

Nm
w j ∥ r j − x ∥ (4)

They are composed of an affine part (with coefficients a), which represents a global 

transformation, and a non-rigid transformation (the sum term with coefficients w) that is 

bounded and asymptotically flat (Bookstein, 1989; Wolberg, 1990).

The (Nm + 4) coefficients of each TPS interpolant can be easily determined by solving a 

linear system of equations established from the interpolation conditions Si r j = q j
i − p j

i  and 

boundary conditions related to their smoothness (Bookstein, 1989; Wolberg, 1990). Let 

δu j
i , δv j

i  denote the components of the residuals q j
i − p j

i . Then, the equation system for the u-

component of the motion (i.e. Su
i (x)) is:

K P
PT O4 × 4

wu
au

=
δu
O4 × 1

(5)

where K is a Nm × Nm matrix with Kij = ||ri − rj||, P is a Nm × 4 matrix whose jth-row is (1, 

xj, yj, zj), T denotes the matrix transpose operator, O4×4 and O4×1 are zero matrices of the 

indicated dimensions, wu and au are the vectors containing the coefficients of the interpolant 

TPSu
i (x) and δu is the vector with the u-components of the residuals (δu j

i , with j = 1 … Nm). 

A similar system is established for the v-component of the motion, Sv
i (x), from δv j

i . The 
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coefficients of the two interpolants TPSu
i (x), TPSv

i (x)  are then obtained by simply inverting 

the leftmost matrix in Eq. 5:

wu wv
au av

=
K P
PT O4 × 4

−1 δu δv
O4 × 1 O4 × 1

(6)

The TPS interpolants could be implemented in a bivariate form using the same procedure 

described above, but removing the coefficient az and substituting the 3D Euclidean distance 

||·|| in Eqs. 4 and 5 by d2 log(d2), with d being the 2D Euclidean distance (Bookstein, 1989; 

Wolberg, 1990). These bivariate TPS may be useful when the distribution of the fiducials in 

Z is limited. Here we used trivariate TPS (Eq. 4), unless otherwise stated.

There exists a regularized form of the TPS interpolant (Wolberg, 1990) that replaces the 

matrix K in Eq. 5 with K + λI, with I being the identity matrix and λ a parameter that 

allows relaxation of the interpolation condition. Here we used the original formulation 

(Bookstein, 1989), thereby enforcing exact interpolation (λ = 0), to avoid the need of tuning 

the parameter.

4. Results

The new method based on residual interpolation with TPS has been tested and compared 

with the standard alignment and the polynomial motion-compensation method (Fernandez et 

al., 2018). Two test datasets from samples of different sizes were used: purified T20S 

proteasomes, ~15 nm in size, which represents a relatively thin sample, and basal bodies 

(BB), ~300 nm in size, as a representative of a thick sample. The datasets consisted of 14 

and 6 tilt-series with a total number of 3928 and 1980 subtomograms (proteasome/BB triplet 

segments), respectively. Standard alignment and motion estimation was conducted using a 

range of 26–55 fiducials (for the proteasome) and 22–43 (for the BB). The pixel size was 

2.56 and 9.64 Å, respectively. The same datasets were used previously in the polynomial 

approach work, where the detailed description on the data processing and on the resolution 

assessment can be found (Fernandez et al., 2018).

4.1. Reduction of alignment residual

Table 1 shows the overall alignment residual, averaged from all tilt-series, from each of the 

two datasets. For the comparison purpose, the previously reported averaged residual values 

for the standard alignment and the polynomial motion-compensation method have been 

included (Fernandez et al., 2018). In the latter case, bivariate and trivariate polynomials were 

used for the proteasome and BB, respectively, based on their sample thickness. As expected, 

the mean residual obtained with the new method is 0.0 since it completely compensates for 

the entire residual found at the fiducial positions.

An unbiased comparison was carried out based on the Leave-One-Out (LOO) cross-

validation test (Kukulski et al., 2011; Fernandez et al., 2018). This is done by leaving one 

fiducial marker out and modeling the motion (either with polynomials or TPS interpolation) 
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with the remaining fiducials. Based on the resulting motion model, the residual for the 

excluded fiducial is calculated. The LOO residual for the tilt-series is obtained by repeating 

this process for all fiducials in the tilt-series and averaging the collected residual values. 

Table 1 shows the results averaged from all tilt-series in both the proteasome and the BB 

datasets. They demonstrate that the new TPS method can achieve similar performance 

compared to the polynomial one, with LOO residual values around 1.0 pixel or 1.50 pixels 

for the proteasome and BB dataset, respectively. These values are lower than the mean 

residual from the standard alignment (1.83 and 1.68 pixels, respectively), indicating both 

approaches produce good models of the sample motion in the entire field of view.

4.2. Improvement in the tomograms and the subtomogram averaging

Tomograms were reconstructed with compensation for the sample motion using the new 

TPS method. By visual inspection, they looked cleaner and sharper than those from the 

standard alignment (Suppl. Figure S1). There were subtle, but noticeable, differences in the 

reconstructed biological features. The improvements in quality with the new TPS method 

were comparable to those obtained with the polynomial one (Fernandez et al., 2018) (Suppl. 

Figure S1), further demonstrating that both motion-compensation methods perform similarly 

well.

Subtomogram averaging was carried out for the two datasets. Figure 3 shows the FSC 

curves. The curves for the proteasome were computed against a high-resolution single 

particle cryoEM map (Grant and Grigorieff, 2015) (EMD-6464) whereas for the BB the 

Gold-Standard FSC curves from the two data halves are shown. These curves clearly show 

that the performance of the new TPS method is comparable to the polynomial one. In the 

proteasome case, the resolution improves from 12.0 (standard alignment) to around 9.0 Å. In 

the BB case, although the improvement (around 30.5 versus 29.0 Å) is not significant due to 

other remaining limiting factors (e.g. no. subtomograms, pixel size, CTF, SNR due to 

thickness), nevertheless, in both cases the FSC curves are above the standard alignment in 

the entire resolution range.

4.3. Influence of the abundance of fiducials on the performance

The number of fiducials is known as one of the factors that may affect the accuracy of the 

motion modeling. Scarcity of fiducials may lead to over-fitting problems, which will 

translate into mis-modeling of the motion in the areas that are not well covered by the 

fiducials (Fernandez et al., 2018). To further analyze the performance of the two motion-

compensation methods and to check their robustness under these situations, we applied them 

to the proteasome dataset using different numbers of fiducials for the modeling.

From the full set, we gradually reduced the number of fiducials used in the modeling. 

Specifically, 12, 9 and 6 fiducials evenly distributed across the field of view were selected. 

These numbers represent a ratio measurements/unknowns in the optimization of the 

polynomial parameters of 2.0, 1.5 and 1.0, respectively. In particular, lower ratios might 

potentially have higher risk of over-fitting problems. Motion modeling was then carried out 

with both methods using only those subsets of fiducials. Since these small subsets implied a 

limited Z-distribution of fiducials, both TPS interpolants and polynomials were tested in 
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bivariate form to ensure a fair comparison. The parameters determined by the standard 

alignment (fiducial coordinates and basic image parameters) using the full set of fiducials 

were kept here. The performance of the methods was then assessed by cross-validation using 

the mean residual from the remaining fiducials, which were excluded from the motion 

modeling (Suppl. Figure S2).

Table 2 shows the averaged results from the 14 tilt-series in the proteasome dataset. With 12 

or 9 fiducials being used, the averaged mean residual of the validation fiducials was reduced 

to around 1 pixel (0.98, 1.02, 1.03, 1.04) regardless of the motion-compensation method. 

These results are comparable to the LOO residual when the full set of fiducials (in the range 

26–55) was employed (Table 1), suggesting that the performance of the methods is not 

impaired when 12 or 9 fiducials were used in the modeling. However, when motion 

modeling was done with as few as 6 fiducials, this residual increased and was especially 

higher in the case of the polynomial method (1.58 versus 1.16 of the new TPS method, see 

Table 2). These results indicate that the modeling is not so good with such a limited number 

of fiducials. Analysis of this validation residual for the individual tilt-series (Suppl. Figure 

S3) showed that the new motion-compensation method is still able to improve it compared to 

the standard alignment for all tilt-series. In contrast, the polynomial approach failed to 

improve it for several tilt-series, where over-fitting problems were detected (i.e. increased 

validation residual compared to the standard alignment and deteriorated quality in certain 

areas of the tomograms by visual inspection). These results suggest that the new motion-

compensation method is more robust than the polynomial one when few fiducials are 

available.

Based on the alignment results, we reconstructed the corresponding tomograms and 

conducted subtomogram averaging. Figure 4 shows the FSC curves obtained from the 

resulting averages against a high-resolution proteasome map (EMD-6464). These results are 

consistent with the validation residuals in Table 2. The FSC curves from both motion-

compensation methods are very similar when relatively abundant fiducials (9 or more) are 

used, with resolutions around 9.0 Å. However, modeling the motion with 6 fiducials resulted 

in the deteriorated resolutions in both methods, particularly in the polynomial (around 10.5 

Å) compared to the new method (around 10.0 Å), as reflected in the FSC curves.

5. Discussion and conclusion

We have developed a new method to model the sample motion in cryoET. It assumes that the 

residuals resulting from the standard alignment can be considered as local estimates of the 

sample motion at the sparse, discrete positions of the fiducials in the 3D space. The sample 

motion throughout the 3D space can be modeled by using scattered data interpolation 

techniques. In this work, we have used Thin-Plate Splines (TPS) because of their 

smoothness and their simplicity of determination of the coefficients, making them very 

convenient for practical applicability. Indeed, motion modeling can be carried out 

transparently from the user’s point of view. The model of sample motion can then be directly 

used in the tomographic reconstruction.

Fernandez et al. Page 8

J Struct Biol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A comparison with the previous polynomial method has shown that the new method 

produces tomograms of similar quality and similar improvements in resolution in 

subtomogram averaging. A major advantage of the new method is that their TPS interpolants 

can be easily constructed by solving a determined linear equation system. This overcomes 

one of the limitations of the polynomial method: the number of parameters involved and the 

need for experimental measurements (i.e. fiducial markers) for their reliable fitting. 

Furthermore, the new method appears to be less susceptible to over-fitting problems when 

the number of fiducials available is limited. Therefore, the new method may be 

complementary to the polynomial modeling, in particular when the latter fails or has limited 

performance. The new method will make this motion-compensation methodology more 

accessible to the general user in cryoET.

The method presented here partially resembles one of the early developments for motion 

correction in single particle cryoEM (Nejadasl et al., 2013). There, non-rigid frame 

alignment (i.e. warping) was carried out from the 2D interpolation of the motion observed at 

the fiducials in the sample. This 2D warping strategy might also be applied to cryoET of 

very thin samples, where the motion along the electron path is expected to vary negligibly. 

Thus, the images could be warped to compensate for the sample motion and produce a 

pseudo-perfectly aligned tilt-series so that the standard tomographic workflow could be 

applied. Based on our experience (Suppl. Figure S4), this strategy might be helpful only for 

very thin samples and the improvement in resolution is still lower than our new method.

The recent evidences indicating that the sample motion is limiting the resolution (Bharat et 

al., 2015) are driving new developments for tilt-series alignment and reconstruction in 

cryoET (Fernandez et al., 2018; Himes and Zhang, 2018; Tegunov and Cramer, 2018). These 

methods apply, adapt or resemble procedures that have been long used to deal with the 

sample deformation in ET of plastic sections, namely the use of polynomial approximations 

for optical aberrations and specimen distortions (Lawrence et al., 2006) or the local 

refinement of the alignment parameters (Mastronarde, 2006; Cantele et al., 2007). These 

procedures typically require a large number of fiducials, which limits their applicability. 

Tracking abundant biological structures, or image patches, as virtual fiducials enable reliable 

local alignment and may provide important improvements in resolution in cryoET (Himes 

and Zhang, 2018; Tegunov and Cramer, 2018). However, these strategies may be less 

feasible for relatively thick samples because the amount of overlapping signal may impede 

successful tracking. Therefore, the new method presented here, based on residual 

interpolation, will complement the potential role of these emerging techniques in cryoET.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Alignment residuals provide local estimates of the sample motion at the 3D 

fiducial positions.

• Scattered data interpolation techniques can be applied to model the sample 

motion for the entire 3D space.

• The motion model is then integrated in the tomographic reconstruction to 

yield motion-compensated tomograms.
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Figure 1. Information about sample motion provided by alignment residuals.
Residuals obtained from the alignment (presented in red color) represent the discrepancy 

between the experimental and the expected fiducial positions at the image plane (u,v). When 

the residuals are associated to the 3D coordinates of their fiducials (black dots in the 

sample), they provide information about the sample motion at scattered positions in the 3D 

space of the sample (x,y,z). Scattered data interpolation can then be applied to obtain a 

model of the sample motion Si(x), as described in the main text. In the figure, the sample 

coordinate system is represented by (x,y,z). The tilt axis runs along the y axis, perpendicular 

to the sheet, and is marked by a crosshair in the middle of the sample. The image coordinate 

system is denoted by (u,v). In this simplified scheme, post-projection rotations are ignored, 

and v is thus parallel to the tilt axis.
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Figure 2. Estimation of the sample motion at the image plane in 3D by residual interpolation.
(A) An illustrative, simplified 2D case of residual interpolation. Left: residuals at scattered, 

discrete fiducial positions in a thin sample are presented with red arrows. The initial point of 

the arrows represents the expected fiducial position according to the standard projection 

model (i.e. p j
i = Mir j + di) whereas the terminal point represents the experimental position 

(i.e. q j
i ). Right: Sample motion (green vectors) estimated by applying scattered data 

interpolation over the residuals in (a) (red vectors). For illustrative purposes, the residuals 

and their interpolated values are shown at the image plane (axes u, v of the image coordinate 

system; see Fig. 1). (B) Residual interpolation in 3D. Residuals at scattered, discrete 3D 

fiducial coordinates (rj) obtained for the untilted image from a thick sample are presented 

with red lines in the 3D sample coordinate system (axes x,y,z, see Fig. 1). These residuals 

q j
i − p j

i  represent shifts perpendicular to the electron beam direction, as observed at the 

image plane (Fig. 1). After scattered data interpolation, the sample motion is estimated for 

every point in the tomogram (green vectors; these discrete vectors are represented in a grid 
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and, for clarity, only three Z-planes of this grid are presented). All vectors shown in the 

figure were scaled 10×.
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Figure 3. FSC curves from subtomogram averaging.
Proteasome (top) and Basal Body (bottom). The FSC curves for the proteasome were 

computed from the subtomogram averages against a high-resolution cryoEM proteasome 

map. For the BB, the FSC curves were computed from random halves of the data using the 

gold standard procedure.
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Figure 4. 
FSC curves from subtomogram averaging using different number of fiducials for motion 

modeling.
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Table 1.

Alignment residual (pixels)

Proteasome Basal Body

Avg. mean residual

standard alignment 1.83 1.68

polynomial method 0.78 0.99

new TPS method 0.00 0.00

LOO residual

polynomial method 0.92 1.50

new TPS method 1.03 1.46
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Table 2.

Cross-validation assessment - averaged mean residual of the validation fiducials (pixels)

12 fiducials 9 fiducials 6 fiducials

standard alignment 1.85 1.88 1.92

polynomial method 0.98 1.03 1.58

new TPS method 1.02 1.04 1.16
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