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Abstract: Lightweight cryptography algorithms are being developed as a response to the ubiquity of1

IoT. These algorithms have to combine the need of secure primitives with the resource constraints2

of all the interconnected devices. An essential part of these primitives are the pseudo-random3

number generators (PRNGs). In fact, the quality of the generators is critical for the security of4

many cryptographic schemes. Nevertheless, finding which sequence generators have the strongest5

characteristics is not a straightforward task. In this work, we will review different algorithms based6

on the binomial decomposition, an innovative technique for linear complexity calculation. They will7

be tested against a family of sequence generators, which is hard to be analyzed by standard methods.8

In this way, we can choose the best algorithm to test the security of different binary sequences.9
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1. Introduction11

Sensorization is not only one of the latest trends that brings a net of communications around12

us as Internet of Things (IoT), but also it is one of the main requirements for the third technological13

revolution. Different critical sectors like smart-grid, e-health or industrial automation will increase14

their dependence on these low-cost devices as well as the growth in dependence will also increase the15

security risks [1][2].16

Ubiquitous devices like IoT are characterized by their constraints on energy consumption,17

processing power, memory and size, which make harder to keep them secure. Combining their18

network dependability with their low security features, they become the perfect target for gaining19

control over the applications and systems behind them [3]. A good example where a vulnerable IoT20

sensor was used to gain control over the whole system can be found in [4].21

Different approaches in research [5], 5G technologies [6] or specific calls such as that of NIST for22

lightweight cryptography primitives [7] are addressing the security of IoT, taking into account the23

limited resources available on such devices. Lightweight cryptography and particularly stream ciphers24

are the keystones on which the different protocols of communication and orchestration are built [8].25

In this work, we will introduce the Linear Feedback Shift Registers (LFSRs), key components26

in stream ciphers, often used as Pseudo Random Number Generators (PRNGs). Among the most27

recent PRNGs based on shift registers, we can list: the Grain-128AEAD [9] a stream cipher supporting28

authenticated encryption with associated data that includes both Linear and Nonlinear Shift Registers29

(LFSR and NFSR, respectively), the TinyJAMBU [9] a family of Lightweight Authenticated Encryption30

Algorithms whose keyed permutation is based on an 128-bit NLFSR or the Espresso [10] a PRNG for 5G31

wireless communication systems including a 256-bit LFSR and a 20-variable nonlinear output function.32
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The two first generators are second-round candidates in the lightweight crypto standardization process33

launched by NIST.34

Next, we will present the generalized shelf shrinking generator, a particular family of ciphers35

with strong cryptographic characteristics which remain strong to the standard Berlekamp-Massey36

algorithm [11]. Then, we will improve an innovative sequence decomposition introduced by Cardell37

et al. in [12] and will show how it can be used to analyze the properties of binary sequences. Finally,38

we will compare the different algorithms based on the sequence decomposition, including two novel39

algorithms based on the symmetry of the binomial sequences and the B-representation of binary40

sequences, respectively.41

The study of the generalized shelf shrinking generator is not a random choice. Indeed, it produces42

not only sequences that are hard to be analyzed by the Berlekamp-Massey algorithm, but also it has43

been implemented in hardware [13] along on RFID devices [14] and programmable logic devices [15],44

as a key stream generator. Studying the robustness of these sequences could avoid vulnerabilities on45

the IoT devices and the services built on them.46

The work purpose is to effectively compare the binomial decomposition-based algorithms,47

showing their strengths and possible use-cases. The first contribution of this work is the experimental48

study of the number of binomial components in a binomial decomposition (parameter r), which49

allows us to study the complexity of the BD algorithm. In addition, we present the half-interval50

search algorithm. Despite it is based on our previous design of the folding algorithm[16], in this work51

we complete the available knowledge on such an algorithm providing a mathematical proof of its52

behaviour and correctness. The matrix binomial decomposition algorithm is another novelty of this53

article, which is based on a recent representation of the generalized self-shrunken sequences [17].54

Finally, after completing the gaps on the algorithm definitions, the last contribution of our work is the55

comparison among all the previous algorithms and the discussion about their different use-cases.56

The paper is organized as follows. Section 2 includes a brief revision of LFSRs and sequence57

generators based on irregular decimation, a well-known kind of generators including the generalized58

self-shrinking generator. Section 3 describes the characteristics and generalities of the binomial59

sequences, binary sequences that constitute the foundations of the algorithms above mentioned.60

Section 4 introduces and analyzes four algorithms to calculate the linear complexity of binary sequences:61

(a) the standard Berlekamp–Massey algorithm, (b) the binomial decomposition BS-algorithm,62

an improved version of the algorithm developed in [12] that analyzes different properties of the63

binary sequences, (c) the half-interval search algorithm, a novel proposal based on the symmetry of64

the binomial sequences and d) the matrix binomial decomposition or m-BD algorithm based on the65

product of matrices. Section 5 includes the discussion and extensively comparison among the four66

previous algorithms, including experiments that test their performance. Finally, conclusions and future67

research lines in Section 6 end the paper.68

2. Shift registers and the concept of linear complexity69

Pseudo-random binary sequences have extensive applications in secure communications, e.g.70

wireless systems, cryptography, error-correcting codes or circuit testing. Commonly used structures for71

the generation of such sequences are the Linear Feedback Shift Registers (LFSRs) [18]. In fact, LFSRs72

are essential components in the design of many sequence generators found in the literature. Good73

reliability, high speed and easy implementation are some of their practical advantages, which justify a74

so wide and generalized use. From a theoretical point of view, LFSRs are mathematical models readily75

analyzable by means of algebraic methods [18].76

According to Figure 1, an LFSR is made up of the following components:77

1. L binary stages, which are interconnected and numbered (0, 1, 2, . . . , L− 1) from left to right.78

Each stage stores a unique bit.79
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Figure 1. A scheme of LFSR with L stages

an+L−1 an+L−2 an+L−3 · · · an+1 an

c1 c2 c3 · · · cL−1 cL

+ + · · · + +

an+L

2. The L-degree feedback or connection polynomial

p(x) = xL + c1xL−1 + c2xL−2 + . . . + cL−1x + cL

with coefficients ci defined in the binary field ci ∈ F2.80

3. A non-zero initial state (stage contents) at the initial instant.81

In brief, LFSRs generate sequences by means of successive linear feedbacks and shifts.82

The output sequence of an LFSR is a binary sequence {an} (n = 0, 1, 2, . . . ) with an ∈ F2. When83

the polynomial p(x) is a primitive polynomial [18], then the output sequence is a PN-sequence (or84

Pseudo-Noise sequence); besides, a PN-sequence has length l = 2L − 1 bits where 2L−1 of them are85

ones and 2L−1 − 1 are zeros.86

The idea of pseudo-randomness in sequences of finite length implies the difficulty of predicting87

the subsequent digits of a sequence from the knowledge of the previous ones. A measure of88

unpredictability is the parameter linear complexity, notated LC. Roughly speaking, LC is related89

with the amount of sequence we need to process in order to recover all the sequence. In terms of90

security, this amount has to be as large as possible; the recommended value is half the length of the91

sequence.92

The concept of linear complexity of a sequence is closely related to LFSRs. The formal definition93

of LC is now introduced: The linear complexity of a binary sequence {sn} (n = 0, 1, 2, . . . ) with94

sn ∈ F2 is the length of the shortest LFSR able to generate such a sequence. By definition, the LC of a95

PN-sequence generated by a LFSR with L stages is LC = L.96

Although LFSRs are in themselves excellent generators of pseudo-random sequence, they are97

essentially linear structures. This is the reason why any kind of non-linearity must be introduced98

in the process of generation. Non-linear filters, clock-controlled generators, combination generators99

or dynamic LFSR-based generators are just some of the habitual examples of sequence generators100

involving non-linearity, see [19,20] and the references cited therein. Particular attention deserves101

the irregular decimation of PN-sequences as an efficient technique to erase the linearity inherent to102

LFSRs [21,22]. Among the different examples of decimation-based generators we can enumerate: 1)103

the shrinking generator [23] with two LFSRs for a mutual decimation, 2) the self-shrinking generator104

[24] with just one LFSR that decimates itself and 3) the generalized self-shrinking generator [25] that105

outputs a family of pseudo-random sequences, the so-called generalized self-shrunken sequences106

(GSS-sequences). Different cryptanalytic attacks against the previous generators can be found in the107

literature [26–30].108

In this work, we focus on binary sequences whose length is a power of 2, characteristic exhibited109

by many of the sequences from the previous generators.110

2.1. An LFSR-based sequence generator111

A characteristic design of LFSR-based sequence generator is the generalized self-shrinking112

generator (GSSG). In fact, it is the most representative element in the class of decimation-based113

generators as well as a practical design with application in low-cost passive RFID tags, see [14].114
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Table 1. Family of generalized sequences for p(x) = x3 + x + 1

p-rotation {bn} sequences GSS-sequences
0 111011111111100 1111
1 000111111100001 0110
2 111111100000010 1100
3 111100000011101 1001
4 111000011100011 1010
5 000011100011111 0101
6 000100011111110 0011

PN-sequence 111011111111100

A GSSG consists of:115

a) A PN-sequences {an} generated by an L-stage LFSR and a shifted version of such a sequence,116

notated {bn}. Both sequences are related by the expression {bn} = {an+p}, p being an117

integer. Thus, {bn} is nothing but the PN-sequence {an} circularly rotated p positions with118

(p = 0, 1, 2 . . . , 2L − 2).119

b) A simple decimation rule defined as:{
If an = 1 then bn is output,

If an = 0 then bn is discarded and no bit is output.

For every p, a new sequence {un}p = {u0, u1, u2, . . .}p is generated. Each sequence {un}p is called120

the generalized self-shrunken sequence associated with the rotation p. When p ranges in the interval121

[0, 1, . . . , 2L − 2], then we obtain all the elements of the family of GSS-sequences (in total 2L − 1122

elements) based on the PN-sequence {an}.123

Some important facts essentially extracted from [25] are enumerated:124

1. All the generalized self-shrunken sequences are balanced apart from the identically 1 sequence125

[25, Theorem 1].126

2. By construction, the family of generalized self-shrunken sequences consists of 2L − 1 sequences127

of 2L−1 bits each of them. Thus, the length of any generalized sequence will be 2L−1 or divisors.128

At any rate, the length of these sequences will always be a power of 2.129

3. The family of generalized sequences plus the identically null sequence has structure of Abelian130

group where the group operation is the bit-wise sum mod 2. The neutral element is the identically131

null sequence and every sequence is its own inverse element [25, Theorem 2].132

4. The sequence produced by the self-shrinking generator is a member of this family for p = 2L−1,133

see [22].134

Moreover, we can add that the LC of every GSS-sequence is upper-bounded by 2L−1 − (L− 2)135

[31, Theorem 2]. A simple example of GSS-sequences is next introduced.136

Example 1. With a LFSR whose primitive polynomial is p(x) = x3 + x + 1 and initial state (1, 0, 1), we can137

generate the GSS-sequences depicted in Table 1. Bits in bold in the sequences {bn} represent the digits of the138

corresponding GSS-sequence associated with the rotation p. The PN-sequence {an} with length l = 23 − 1 and139

ones in bold appears at the bottom of the table.140

3. Binomial sequences141

A new representation of binary sequences in terms of the so-called binomial sequences is now142

introduced. Such a representation applies only to sequences whose length is a power of 2. Next, we143

analyze the representation of the GSS-sequences by means of binomial sequences.144
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3.1. Introduction to binomial sequences145

The binomial number (n
k) (n, k being non-negative integers) is the coefficient of the power xk in146

the expansion of the binomial power (1+ x)n. For n ≥ 0, it is a well-known fact that (n
0) = 1 while147

(n
k) = 0 for all k > n.148

From the binomial coefficients reduced modulo 2, the concept of binomial sequence is defined as
follows: The k-th binomial sequence

{
(n

k)
}
(n = 0, 1, 2, . . .) is a binary sequence whose elements are

binomial coefficients (n
k) reduced modulo 2, that is{(

n
k

)}
n≥0

=

{(
0

k

)
,

(
1

k

)
,

(
2

k

)
, . . .

}
mod 2

,

where k is called the index of the binomial sequence. The k first terms of the binomial sequence are149

zeros while the term (k
k) corresponds to the first 1.150

Table 2. Binomial sequences with their lengths lk and linear complexities LCk

Binom. coeff. Binomial sequences {(n
k)} Length Linear complexity

(n
0) {1, 1, 1, 1, 1, 1, 1, 1, . . .} l0 = 1 LC0 = 1
(n
1) {0, 1, 0, 1, 0, 1, 0, 1, . . .} l1 = 2 LC1 = 2
(n
2) {0, 0, 1, 1, 0, 0, 1, 1, . . .} l2 = 4 LC2 = 3
(n
3) {0, 0, 0, 1, 0, 0, 0, 1, . . .} l3 = 4 LC3 = 4
(n
4) {0, 0, 0, 0, 1, 1, 1, 1, . . .} l4 = 8 LC4 = 5
(n
5) {0, 0, 0, 0, 0, 1, 0, 1, . . .} l5 = 8 LC5 = 6
(n
6) {0, 0, 0, 0, 0, 0, 1, 1, . . .} l6 = 8 LC6 = 7
(n
7) {0, 0, 0, 0, 0, 0, 0, 1, . . .} l7 = 8 LC7 = 8

Table 2 shows the binomial sequences {(n
k)} (k = 0, 1, . . . , 7), with their lengths lk and linear151

complexities LCk, see [? ].152

Different properties of the binomial sequences are next enumerated.153

1. Given the binomial sequence
{
(n

k)
}

with k = 2m + i where m is a non-negative integer and the154

index i takes values in the interval 0 ≤ i < 2m, then we have that [12, Proposition 3]:155

a) The binomial sequence {(n
k)} has length l = 2m+1.156

b) The formation rule of this binomial sequence is:

{(
n

2m + i

)}
0≤n<2m+1

=

{
0 if 0 ≤ n < 2m + i,

(n
i )mod 2 if 2m + i ≤ n < 2m+1.

2. The linear complexity of the binomial sequence
{
( n
2m+i)

}
with m and i defined as above is157

LC = 2m + i + 1, see [12, Theorem 13].158

3. Every binary sequence {sn}n≥0 whose length is a power of 2 can be written as linear combination159

of binomial sequences [12, Theorem 2]. This combination is called the Binomial Decomposition160

of {sn}n≥0. Such a decomposition allows us to analyze fundamental properties of the sequence,161

e.g. length and linear complexity.162

4. Given a sequence {sn}n≥0 with binomial decomposition {sn} = ∑r
i=1

{
(n

ki
)
}

, where 0 ≤ k1 <163

k2 < · · · < kr are integer indices, then its linear complexity is given by LC = kr + 1, see [12,164

Corollary 14].165

5. Given a sequence {sn}n≥0 with binomial decomposition {sn} = ∑r
i=1

{
(n

ki
)
}

, where 0 ≤ k1 <166

k2 < · · · < kr are integer indices, then its length l is that of the binomial sequence
{
( n

kr
)
}

, that is167

the length of the binomial sequence of maximum index in its binomial decomposition, see [? ,168

Theorem 1].169
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All these properties will be used in the algorithms that compute the LC of every binary sequence170

{sn}n≥0.171

In addition, the binomial sequences can be found in the diagonals of the Sierpinski’s triangle172

reduced modulo 2 [12, Section 4] as well as in certain linear cellular automata (e.g. linear automata173

with rules 102 and 60) as it has been studied in [22, Chapter 3]. See the previous references for more174

details.175

3.2. Binomial decomposition of GSS-sequences176

The number of binomial sequences, notated r, in the decomposition of any GSS-sequence has177

not been previously analyzed in the literature. The parameter is decisive in the comparison among178

the algorithms of Section 4, since the BD-algorithm complexity depends on the number of binomial179

sequences. In order to study the asymptotic behavior of this parameter, some experiments were carried180

out.181

The analyzed sequences in such experiments were all the GSS-sequences coming from LFSRs182

with primitive feedback polynomials of degree L with L taking values in the interval [5, 10]. More183

precisely, we have considered the 6 primitive polynomials of degree 5, the 6 primitive polynomials of184

degree 6, the 18 primitive polynomials of degree 7, the 16 primitive polynomials of degree 8, the 48185

primitive polynomials of degree 9 and the 60 primitive polynomials of degree 10. For each one of these186

primitive polynomials, the 2L − 1 GSS-sequences have been generated and decomposed in terms of187

their binomial sequences. On average, we observed a number of binomial sequences given by 2L−2,188

∀L ∈ [5, 10].189

Figure 2. Density of binomial sequences in the GSS-sequence decomposition

(a) L = 5 (b) L = 6

(c) L = 7 (d) L = 8

(e) L = 9 (f) L = 10

The plots corresponding to the number of binomial sequences in the decomposition of all these190

GSS-sequences are depicted in the Figure 2. For each chart, the x-axis represents the number of191

binomial sequences in a specific decomposition (parameter r) while the y-axis counts the number of192

times r occurs. For a given LFSR, each one of the colors represents all the sequences of the GSS-family193
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generated by such an LFSR. In brief, for each value of L the chart represents the distribution of the194

parameter r for all the GSS-sequences generated by primitive polynomials of degree L.195

The distribution of the number of binomial sequences in the GSS-sequences follows closely a196

normal distribution. Nevertheless, a smooth tail can be also noticed on the left of the figures, which197

means that for some GSS-sequences the density of binomial sequences will be lower.198

The results of these experiments will be employed in some of the algorithms to compute the LC199

described in next section.200

4. Different algorithms to compute the linear complexity of a sequence201

In this section, we introduce different algorithms (both novel and already known algorithms) to202

compute the LC of any binary sequence with length l = 2m, m being a non-negative integer. Analysis,203

foundations and characteristics of each algorithm are described in the subsequent sections.204

Throughout next sections, the following notation will be systematically used.205

1. For the sake of readability, in the sequel the binomial coefficient (n
k) just denotes the k-th binomial206

sequence.207

2. The term (n
k)i,j represents the sub-sequence of (n

k) between the i-th and j-th bits.208

3. The term (n
k)j stands for the sub-sequence corresponding to the j first bits of (n

k).209

4.1. Berlekamp-Massey algorithm210

The most general and well-known method of computing the linear complexity of binary sequences211

is the Berlekamp-Massey algorithm [11]. Such an algorithm can be applied to sequences of any length,212

not only to sequences whose length is a power of 2. For a fixed binary sequence, this algorithm213

processes bit-by-bit the successive digits until it finds the shortest LFSR able to generate the whole214

sequence. At each particular step, the Berlekamp-Massey algorithm computes the length and the215

feedback polynomial of the shortest LFSR that produces the sub-sequence analyzed up to that particular216

bit. Both LFSR length and feedback polynomial degree will always be greater than those of the previous217

step.218

In order to get the final value of LC, this algorithm has to process a number of bits equal to twice219

the value of the linear complexity of the sequence under consideration. For sequences whose LC220

is close to their length l, e.g. the GSS-sequences [22], the Berlekamp-Massey algorithm will process221

approximately 2 ∗ l bits of each sequence with a computational complexity of O(l2), see [32].222

4.2. Binomial decomposition algorithm or BD-algorithm223

In order to compute the LC of a given sequence, the BD-algorithm [12] provides one with a simple224

procedure to determine the binomial decomposition of such a sequence. The mathematical results225

enumerated in the sub-section 3.1 constitute the core of this algorithm. More precisely, two properties226

are taken into account:227

• According to Item 3 (in sub-section 3.1), the sequence seq of length l = 2m can be decomposed
into r binomial sequences of the form:

seq =

(
n
k1

)
+ · · ·+

(
n
kr

)
.

• According to Item 4 (in sub-section 3.1), the lineal complexity of seq is that of the binomial
sequence of maximum index ( n

kr
) in its binomial decomposition. Since the indices of the binomial

sequences are written in increasing order, then LC is computed by means of the following
equation:

LC = kr + 1. (1)
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Algorithm 1 : The BD-algorithm

Input: seq: the sequence to be analyzed
binom = [∅], kr = 0

for i = 0; i < length(seq); i++ do

if seqi == 1 then

seq+ = (n
i )

binom.add(i)
kr = i

end if
end for
Output: binom and LC = kr + 1: binomial decomposition and LC of seq.

Table 3. A step-by-step application of the BD-algorithm to seq16

Step Ope. seq Bit position
0 4 8 12

1 seq 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
+ (n

3) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 = seq 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0
+ (n

4) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 = seq 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1
+ (n

6) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

4 = seq 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
+ (n

8) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

5 = seq 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1
+ (n

9) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

6 = seq 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
+ ( n

10) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

7 = seq 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
+ ( n

12) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
end = seq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

seq = (n
3) + (n

4) + (n
6) + (n

8) + (n
9) + ( n

10) + ( n
12)

LC = kr + 1 = 12+ 1 = 13

The result of the previous properties is the Algorithm 1. Indeed, it takes as input the sequence228

seq and checks for the bits that equal 1. If seqi = 1, then it bit-wise sums the sequence seq with the229

binomial sequence (n
i ), so that seq = seq + (n

i ). The procedure stops when all the binomial sequences230

in the decomposition have been determined or, equivalently, when the resulting sequence seq is the231

identically null sequence. The algorithm outputs the binomial decomposition of the sequence under232

consideration as well as the value of its LC, via the equation (1).233

A step-by-step application of Algorithm 1 to the binomial decomposition of seq16 =234

{0001110110001011} with l = 24 is depicted in Table 3. Recall that the BD-algorithm computes235

LC after processing 13 bits of seq16 while the Berlekamp-Massey algorithm needs 2 ∗ 13 = 26 bits. In236

fact, the BD-algorithm performs the bit-wise sum of two sequences of l bits, that is l operations, for each237

binomial sequence that appears in the binomial decomposition. Thus, its computational complexity is238

O(r ∗ l), where r is the number of binomial sequences in the decomposition of the analyzed sequence239

with r � l.240

Next, we show how the BD-algorithm can be improved and its complexity reduced.241

4.2.1. Improvement of the BD-algorithm:242

If we avoid the sum of the sub-sequences identically null, then the performance of this algorithm243

clearly improved. Due to the properties of the binomial coefficients described in sub-section 3.1, we244
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know that (n
k) = 0 for all n < k. At the same time, notice that at the i-th step of the algorithm the ki245

first terms of seq are zeros.246

Therefore, combining these two facts the number of operations is substantially reduced. When the247

first 1 in the i-th position of seq is detected, then the algorithm bit-wise sums both sequences exclusively248

between the i-th and (l − 1)-th bits, that is (seqi,l−1 + (n
i )i,l−1), as the headers of both sequences (until249

the (i− 1)-th bit) are zeros.250

In this way, the number of additions at each step is incrementally reduced:

r

∑
i=1

(l − ki) < r ∗ l.

Moreover, for sequences whose LC is upper bounded the algorithm performance can be even251

improved. In fact, in that case we do not need to check any other bit after the index corresponding to252

this upper bound. For example, every sequence produced by a generalized self-shrinking generator253

with LFSR of length L has a LC upper bounded by LCmax = 2L−1 − (L− 2), see [31]. In that case, the254

maximum index kmax in its binomial decomposition is kmax = l − log l, l = 2L−1 being the sequence255

length. Hence, the final number of operations is again reduced to:256

r

∑
i=1

(kmax − ki) <
r

∑
i=1

(l − ki) < r ∗ l.

The code of Algorithm 1 is just upgraded by converting the bit-wise sum of both sequences into257

the expression seq = seqi,kmax + (n
i )i,kmax

, with kmax defined as before.258

In brief, for this family of sequences the BD-algorithm requires l − log l bits of each sequence to259

compute its LC with a computational complexity less than O(r ∗ l).260

4.3. Half-interval search algorithm261

In this sub-section a novel algorithm to compute the LC, the so-called half-interval search262

algorithm, is described. Such an algorithm takes full advantage of the binomial sequence symmetry. A263

preliminary version of this algorithm by the same authors was introduced in [16,33]. First of all, we264

study the symmetry properties of the binomial sequences.265

4.3.1. Symmetry of the binomial sequences:266

In fact, the symmetry of these sequences gives rise to the following results.267

Theorem 1. Let (n
k)l denote the l first bits of the binomial sequence (n

k) with l = 2m, m being a positive integer.
Such a sub-sequence can be divided into two new sub-sequences of length l

2 :(
n
k

)
l
=

((
n
k

)
0, l

2−1
,

(
n
k

)
l
2 ,l−1

)
, (2)

then, two different configurations may appear:268

1. If k the index of the binomial sequence is k < l
2 , then the two sub-sequences in equation (2) are equal.269

2. If k the index of the binomial sequence is k ≥ l
2 , then the two sub-sequences in equation (2) are written as:(

n
k

)
l
=

(
zeros l

2
,

(
n
i

)
l
2

)
, (3)

where zeros l
2

represents the sub-sequence identically null of length l
2 and i is an integer satisfying270

0 ≤ i < 2m−1.271

Proof. Both cases are proved separately.272
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1. Since k < l
2 , then k can be written as k = 2j + i, where j and i are non-negative integers such273

that j < m− 1 and 0 ≤ i < 2j. According to Item 1(a) in sub-section 3.1, the binomial sequence274

(n
k) = ( n

2j+i) has length l̃ = 2j+1 where the maximum length is l̃max = 2m−1 when j = m− 2 and275

the minimum length l̃min = 20 when j = 0. At any rate, l̃ is a power of 2 as well as l̃ < 2m and,276

therefore, the first and second sub-sequences in equation (2) are equal.277

2. Since k ≥ l
2 = 2m−1, then k can be written as k = 2m−1 + i with 0 ≤ i < 2m−1. According to Item

1(a) in sub-section 3.1, the binomial sequence (n
k) = ( n

2m−1+i) has length l̃ = l = 2m. Moreover,
according to Item 1(b) in sub-section 3.1(

n
k

)
l
2 ,l−1

=

(
n

2m−1 + i

)
l
2 ,l−1

=

(
n
i

)
l
2

.

Thus, the sub-sequence (n
k)l satisfies the equation (3) as well as the l

2 first terms are zeros.278

279

Table 4. Theorem 1 applied to the binomial decomposition of seq16

seq 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
(n
3)l = ((n

3) l
2
, (n

3) l
2
) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(n
4)l = ((n

4) l
2
, (n

4) l
2
) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

(n
6)l = ((n

6) l
2
, (n

6) l
2
) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

(n
8)l = (zeros l

2
, (n

0) l
2
) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(n
9)l = (zeros l

2
, (n

1) l
2
) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

( n
10)l = (zeros l

2
, (n

2) l
2
) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

( n
12)l = (zeros l

2
, (n

4) l
2
) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

seq16 = (n
3) + (n

4) + (n
6) + (n

8) + (n
9) + ( n

10) + ( n
12)

In Table 4, where l
2 = 8, the binomial sequences (n

3), (
n
4) and (n

6) correspond to the condition 1) in280

Theorem 1, where the eight first bits are repeated, while the binomial sequences (n
8), (

n
9), (

n
10) and ( n

12)281

correspond to the condition 2) in the same theorem with k ≥ 8.282

Next result introduces an interesting characteristic of the sub-sequence (n
k) l

2 ,l−1
, which can be283

converted into another binomial sequence.284

Proposition 1. The sub-sequence (n
k) l

2 ,l−1
that is the second sub-sequence of (n

k)l in equation (2) with k ≥ l
2

can be written as: (
n
k

)
l
2 ,l−1

=

(
n

k− l
2

)
l
2

.

Proof. According to the previous properties of the binomial sequences, we write:(
n
k

)
l
2 ,l−1

=

(
n

2m−1 + i

)
l
2 ,l−1

=

(
n
i

)
l
2

=

(
n

k− 2m−1

)
l
2

=

(
n

k− l
2

)
l
2

.

285

This will be the notation used in the sequel.286

The sub-sequences (n
k)l can be classified into two disjoint sets depending on the value of the287

index k, as explained in Algorithm 2. In the first case, only the first half of the sub-sequence must be288

computed (0 ≤ n < l
2 ) as the second half is exactly the same. In the second case, it is precisely the289

second half of the sub-sequence which has to be computed ( l
2 ≤ n < l), since the l

2 first bits are zeros.290
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Algorithm 2 : Classification of the binomial sequences

Given the sub-sequence (n
k)l :

if k < l
2 then

(n
k)l := ((n

k) l
2
, (n

k) l
2
)

else

(n
k)l := (zeros l

2
, ( n

k− l
2
) l
2

)
end if

According to the previous classification, a matrix representation of the binomial decomposition is
now introduced:


( n

k1)
...

( n
kr
)

 =



( n
k1)
...

( n
ki−1

)

(n
ki
)

...
( n

kr
)


ki−1<

l
2≤ki

=



( n
k1) l

2

( n
k1) l

2
...

...
( n

ki−1
) l
2

( n
ki−1

) l
2

zeros l
2

( n
ki− l

2
) l
2

...
...

zeros l
2

( n
kr− l

2
) l
2


=

(
M0 M1

M2 M3

)
. (4)

The different sub-matrices of the matrix representation in (4) are described as follows:291

• M0 and M1 are ((i − 1) × l
2 ) sub-matrices that, according to Theorem 1, satisfy the equality292

M0 = M1.293

• M2 is the ((r− i + 1)× l
2 ) identically null sub-matrix.294

• M3 is the ((r − i + 1)× l
2 ) sub-matrix representing the decomposition of a new sequence of295

length l
2 coming from the bit-wise sum of the two halves of seq. Therefore, from M3 the matrix296

representation can be extended recursively.297

(
M0 M1

M2 M3

)
=

 M0 M1

M2
M3,0 M3,1

M3,2 M3,3

 =


M0 M1

M2

M3,0 M3,1

M3,2
M3,3,0 M3,3,1

M3,3,2 M3,3,3

 = . . . (5)

In fact, take M3 and repeat the same process until the length of the resulting sequence equals 1 and,298

consequently, the sequence cannot be divided anymore.299

Thus, the half-interval search algorithm takes fully advantage of the symmetry properties of the300

binomial sequences and reduces recursively the length of the sequence to be analyzed, see equation (5).301

A numerical example of the matrix representation is next introduced.302

Example 2. For the sequence seq16 = {0001110110001011}, the matrix representation of its binomial
decomposition is: 

(n
3)

(n
4)

(n
6)

(n
8)

(n
9)

( n
10)

( n
12)


=



0001 0001 0001 0001

0000 1111 0000 1111

0000 0011 0000 0011

0000 0000 1111 1111

0000 0000 0101 0101

0000 0000 0011 0011

0000 0000 0000 1111


=

(
M0 M1

M2 M3

)
,
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where

M3 =

(
M3,0 M3,1

M3,2 M3,3

)
=


1111 1111

0101 0101

0011 0011

0000 1111

 ,

and

M3,3 =

(
M3,3,0 M3,3,1

M3,3,2 M3,3,3

)
=

(
11 11

∅ ∅

)
.

When the two halves of seq are bit-wise summed, then the binomial sequences (n
3), (

n
4) and (n

6) with repeated303

sub-sequences are cancelled. Thus, we have a new seq of length l
2 = 8 including the binomial sequences (n

8), (
n
9),304

( n
10) and ( n

12). When the two halves of the resulting seq are bit-wise summed again, then we have a new seq of305

length l
4 = 4 and the binomial sequences (n

8), (
n
9) and ( n

10) with repeated sub-sequences are cancelled. The only306

resulting binomial sequence is ( n
12) what means that LC = 12+ 1.307

4.3.2. Description of the half-interval search algorithm:308

From the symmetry properties of the binomial sequences, the half-interval search algorithm309

locates the binomial sequence of maximum index to compute the LC. At each step, it bit-wise sums310

both halves of the sequence. If the result is different from zero, then it performs the same procedure311

with the resulting sequence. Otherwise, it takes half the sequence obtained in the previous step to312

apply the same procedure. When only one bit is left the algorithm stops.313

The pseudo-code of the algorithm, for a given binary sequence of length l = 2m can be found in314

Algorithm 3.

Algorithm 3 : The half-interval search algorithm

Input: seq: sequence to be analyzed
k = 0

while length(seq) > 1 do

l = length(seq)
sum = seq0, l

2−1
+ seq l

2 ,l−1
if sum 6= 0 l

2
then

seq = sum
k+ = l

2
else

seq = seq0, l
2−1

end if
end while
Output: k: maximum index k and LC of seq.

315

At every step, the algorithm reduces by 2 the length of seq. The total number of steps is log l and316

the total number of operations for a sequence seq with length l = 2m is:317

l
2
+

l
4
+

l
8
+

l
16

+ · · · =
log l

∑
i=1

l
2i ≈ l

Next, an example of how the half-interval algorithm works is introduced.318

Example 3. Taking the sequence of the previous sub-sections we have:319

Input: seq16 = 00011101 10001011320
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• Step 1:
0001 1101

+ 1000 1011

sum = 1001 0110

321

As sum = 1001 0110 6= zeros8, then seq = sum = 1001 0110 and k = 8.322

At this step, the binomial sequences (n
3), (

n
4) and (n

6) are cancelled.323

• Step 2:
10 01

+ 01 10

sum = 11 11

324

As sum = 11 11 6= zeros4, then seq = sum = 11 11 and k = 8+ 4 = 12.325

At this step, the binomial sequences (n
8), (

n
9) and ( n

10) are cancelled.326

• Step 3:
1 1

+ 1 1

sum = 0 0

327

As sum = zeros2, then seq = 1 1.328

At this step, there is no binomial sequence cancellation and the remaining binomial sequence is ( n
12).329

• Step 4:
1

+ 1

sum = 0

330

As sum = 0, then seq = 1.331

At this step, length(seq) = 1 and the algorithm stops.332

• Output: the maximum binomial sequence ( n
12)⇒ LC = k + 1 = 12+ 1 = 13.333

4.4. Matrix binomial decomposition or m-BD algorithm334

This algorithm is based on the B-representation (or Binomial representation) [17] of a binary335

sequence {sn}n≥0 with length l = 2m, m being a non-negative integer. Via the B-representation, the336

parameter LC of such a sequence is analyzed and computed.337

We have seen that every sequence {sn} with length l = 2m can be written in terms of its binomial
decomposition as:

{sn} =
l−1
∑
i=0

ci

(
n
i

)
, (6)

where ci (0 ≤ i < l) are coefficients defined in the binary field F2 and (n
i ) (0 ≤ i < l) the corresponding

binomial sequences. The greatest value of i, notated imax, for which cimax 6= 0 while ci = 0 for
imax < i < l, determines the value of the LC via the equation (1), that is

LC = imax + 1. (7)

Recall that the maximum linear complexity of {sn}n≥0 with length l = 2m will be LCmax = 2m when338

c2m−1 = 1 while the minimum complexity of this kind of sequences will be LCmin = 1 when c0 = 1339

and ci = 0 for ∀i in the interval 0 < i < l.340

The B-representation provides one with a matrix method of computing the binary coefficients ci.341

In fact, it defines a binary matrix, the so-called binomial matrix, constructed in a similar way to the342

construction of a binary Hadamard matrix.343

In fact, consider H0 = [1] the binomial matrix for m = 0, that is, a (20 × 20) matrix with a unique
entry. Next, we construct the binomial matrix for m = 1 as follows:

H1 =

[
H0 H0

0 H0

]
=

[
1 1

0 1

]
,
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where H1 is a binary (21 × 21) matrix. Proceeding in the same way, we obtain the binomial matrix for
m as

Hm =

[
Hm−1 Hm−1
0m−1 Hm−1

]
,

where Hm−1 is the binomial matrix of size (2m−1 × 2m−1) as well as 0m−1 is the identically null344

matrix of the same size. Moreover, the matrix Hm can be written in terms of its columns as Hm =345

(h̃0, h̃1, . . . , h̃2m−1).346

As {sn}n≥0 is a binary sequence of length l = 2m and given the (2m × 2m) binomial matrix Hm,
we compute the vector ccc whose 2m components are the coefficients ci by means of the equation (see
[17, Sub-section 3.2]):

ccc = [s0, s1, . . . , s2m−1] · Hm = [c0, c1, . . . , c2m−1]mod 2, (8)

that is, the sequence {sn} is multiplied by the successive columns h̃i (0 ≤ i < 2m) of the binomial347

matrix and the resulting products reduced mod 2.348

Let us see an illustrative example.349

Example 4. Let seq16 = {0001110110001011} be a sequence of length 24, so we must construct the binomial
matrix for m = 4, that is

H4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

From equation (8), we have that

ccc = [s0, s1, s2, . . . , s15] · H4 = [0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0] .

Therefore, the vector ccc = [c0, . . . , c15] corresponding to the sequence seq16 will have c3 = c4 = c6 = c8 =350

c9 = c10 = c12 = 1 while the remaining components equal zero. The coefficients ci = 1 correspond to the351

binomial sequences (n
i ) that appear in the binomial decomposition of seq16.352

In that case, the value of imax = 12, or equivalently cimax = c12 = 1 and the LC of seq16 is LC = 13 as353

expected.354

By construction, the binomial matrix is an upper triangular matrix closely related with the355

binomial sequences.356
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Remark 1. The columns of the binomial matrix (read from right to left) correspond to the successive binomial357

sequences starting at the first 1. Thus, the binary vector ccc in equation (8) is just the product of the sequence358

{sn}, written as a vector of 2m components [s0, s1, . . . , s2m−1], multiplied by the 2m first binomial sequences359

(n
i ) with 0 ≤ i < 2m and n ≥ i.360

4.4.1. Description of the m-BD algorithm:361

In order to compute the LC of the sequence under consideration, the m-BD algorithm checks the362

successive coefficients ci calculated in (8) starting at c2m−1 and proceeding in decreasing order until363

the first coefficient ci = 1 is found. In that case, imax = i and the LC is easily computed by means of364

the equation (7).365

The final pseudo-code of the algorithm, for a given binary sequence of length l = 2m can be found366

in Algorithm 4.

Algorithm 4 : The m-BD algorithm

Input: seq = [s0, s1, . . . , s2m−1] and the binomial matrix Hm = (h̃0, h̃1, . . . , h̃2m−1)
i = 2m − 1

imax = 0

while i > 0 do

ci = [s0, s1, . . . , s2m−1] · h̃i
if ci == 0 then

i−−
else

imax = i
i = 0

end if
end while
Output: LC = imax + 1: Linear complexity of seq.

367

At the same time, the computation of the coefficients ci in the equation (8) allows us to characterize368

the binary sequences {sn} with maximum and quasi-maximum linear complexity.369

4.4.2. Sequences with maximum LC:370

The characterization of binary sequences {sn}n≥0 with maximum linear complexity is described371

in the next result.372

Theorem 2. Let {sn}n≥0 be a binary sequence with length l = 2m, m being a non-negative integer. Such a373

sequence will have maximum linear complexity LCmax = 2m if and only if the sequence {sn} has an odd number374

of ones.375

Proof. (⇒) Maximum linear complexity implies that cimax = c2m−1 = 1, but c2m−1 is the product mod
2 of the sequence [s0, s1, . . . , s2m−1] by the last column h̃2m−1 of the binomial matrix (the identically 1
column), thus

c2m−1 =
l−1
∑
i=0

si. (9)

Hence, c2m−1 = 1 when the number of summands equal to 1 in equation (9) is an odd number.376

(⇐) If the number of terms si = 1 in the sequence {sn} is an odd number, then by equation (9)377

the coefficient c2m−1 = 1. Consequently, {sn} will exhibit maximum linear complexity of value378

LCmax = 2m.379
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Two corollaries follow directly from the previous theorem.380

Corollary 1. A binary sequence {sn}n≥0 with length l = 2m and an even number of ones will never attain the381

maximum linear complexity LCmax = 2m as c2m−1 = 0.382

Corollary 2. The linear complexity of every balanced binary sequence {sn}n≥0 with length l = 2m is upper383

bounded by LC < 2m.384

Recall that, although balancedness is a suitable property for cryptographic sequences, a balanced385

sequence will never attain the maximum linear complexity.386

4.4.3. Sequences with quasi-maximum LC:387

The characterization of binary sequences {sn}n≥0 with quasi-maximum linear complexity, that is388

LC = LCmax − 1, is described in the next result.389

Theorem 3. Let {sn}n≥0 be a binary sequence with length l = 2m, m being a non-negative integer. Such a390

sequence will have quasi-maximum linear complexity of value LCq−max = 2m − 1 if and only if {sn} satisfies391

the following conditions:392

1. The sequence {sn} has an even number of ones.393

2. It satisfies the equality:
l/2−1
∑
i=0

s2·i = 1.

Proof. (⇒)394

1. {sn} must have an even number of ones, otherwise by Theorem 2 the sequence would have395

maximum linear complexity.396

2. Quasi-maximum linear complexity implies that c2m−2 = 1, but c2m−2 is the product mod 2

of the sequence [s0, s1, . . . , s2m−1] multiplied by the column h̃2m−2 in the binomial matrix (the
1 0 1 0 . . . 1 0 column), thus

c2m−2 =
l/2−1
∑
i=0

s2·i.

Hence, c2m−2 = 1 when the number of terms (s2·i) (terms with even indices) equal to 1 is an odd397

number.398

(⇐)399

1. If the sequence {sn} has an even number of ones, then c2m−1 = 0.400

2. If {sn} satisfies the equality
l/2−1
∑
i=0

s2·i = 1,

then c2m−2 = 1.401

Thus, c2m−1 = 0 and c2m−2 = 1 jointly imply quasi-maximum linear complexity of value LCq−max =402

2m − 1.403

5. Algorithm Comparison404

All the algorithms explained in the previous section can be used to calculate the linear complexity405

of a given sequence with length a power of two. Now, they will be compared in different ways. The406

section is scheduled as follows:407
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First of all, the different computational features of these algorithms are discussed. Next, we408

describe the experiments we carried out to compare the actual performance of such algorithms. Finally,409

we consider diverse scenarios apart from LC calculation where each algorithm might be conveniently410

applied.411

5.1. Algorithm analysis412

In section 4, different algorithms for the computation of the linear complexity were presented413

(Berlekamp-Massey, BD, half-interval search and m-BD algorithms). Now, we will discuss the414

computational complexity and sequence length requirements for each one of them as shown in415

Table 5.416

The length requirements (twice the length of the studied sequence) and complexity O(l2) of417

the Berlekamp-Massey algorithm have been already studied in the literature [11,32]. It is the only418

algorithm, among the considered algorithms, that can be applied to every sequence of any length,419

compared with the binomial decomposition methods that require a sequence of length a power of two.420

Concerning the BD-algorithm, in order to calculate the linear complexity it needs at least l − log l421

bits of the original sequence and it runs with a computational complexity of O(r · l), l being the length of422

the sequence and r the number of binomial components in its decomposition. Although the parameter423

r has not been rigorously analyzed, in Figure 2 an experimental analysis of r was carried out for424

different GSS-sequences. The results show that such a parameter follows a normal distribution as well425

as it increases with the length of the sequence.426

Table 5. Algorithm comparison

Algorithms Length Required Complexity Seq. Restrictions
Berlekamp-Massey algorithm 2 ∗ l O(l2) None

BD-algorithm l − log l O(r · l) Length power of 2
Half-interval search algorithm l − log l O(l) Length power of 2

m-BD algorithm l O(l2) - Ω(l) Length power of 2

On the other hand, the half-interval search algorithm does not depend neither on the parameter r427

nor on the decomposition of the sequence. In fact, this algorithm just requires the same number of bits428

as that of the BD-algorithm, but it works in a binary search fashion. Consequently, its complexity is429

linear in the length of the sequence, which means the best performance among all the algorithms that430

can calculate LC.431

The main difference between BD and half-interval search algorithms is that the latter does not432

depend on the number of binomial sequences in its binomial decomposition. That means that its433

performance will be better than that of the BD-algorithm, in particular when the length of the sequence434

increases and so does the value of the parameter r.435

Finally, the m-BD algorithm computes the successive products between two binary vectors until436

it gets the value of LC. Nevertheless, the worst case would occur whether it needed to check all the437

columns of the binomial matrix. That is the reason why we included in Table 5 both worst and best438

cases of computational complexity.439

Although the Berlekamp-Massey algorithm is able to calculate the linear complexity of any440

sequence, it is not the best choice for particular sequences as the GSS-sequences with O(l2). It is under441

such circumstances when the binomial decomposition algorithms can be really useful.442

5.2. Experimental results443

To support the understanding of these algorithms and test them, we ran all the algorithms444

described in the previous section.445

The setup of the experiments is as follows: we used Jupyter Labs as a running environment in a446

Windows 10 machine with Intel Core i7-1065G7 as CPU. The algorithms were implemented in Python447
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3. They ran to calculate the LC for the same sequences several times in order to get the performance448

metric of such algorithms.449

Figure 4. Comparison between the algorithms in the LC calculation for all the possible GSS-sequences
of a given length (Half-Interval scale)

The results of the experiments can be seen in Figure 4 and Figure 6. Indeed, in Figure 4 where450

all algorithms are compared, we can see how as far as the length of the sequence increases, both the451

half-interval algorithm and the matrix binomial decomposition algorithm improve the performance452

exhibited by the Berlekamp-Massey algorithm. This proves that the binomial decomposition technique453

can be useful and a good alternative in the study of sequences that are particularly hard to be analyzed454

by the Berlekamp-Massey algorithm.455

About the Berlekamp-Massey and the Binomial Decomposition algorithm, there is a bounce in456

their performance depending on the length of the sequences of the experiment. According to the457

study of the BD complexity, it is known that its performance depends on the parameter r, or in other458

words, it depends on the number of binomial sequences in the decomposition for each sequence. After459

the preliminary study on the parameter r, seen in Figure 2, the parameter r is expected to behave in460

a normal distribution fashion. Altogether this means that the BD algorithm can slightly change its461

performance depending on the r value of the sequences it is studying.462

In addition, the theoretical improvement of the half-interval algorithm studied in previous section463

is confirmed. The huge performance gap between Berlekamp-Massey algorithm, BD-algorithm, m-BD464

and the half-interval search algorithm can be seen in Figure 4 and in Figure 5. Recall that this gap465

is particularly remarkable when the length of the sequence studied increases. For that reason we466

included Figure 4, scaled for a better comparison with the half-interval results (the best performant467

algorithm), and Figure 5, for a better comparison with m-BD (a novel contribution of this article).468
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Figure 5. Comparison between the algorithms in the LC calculation for all the possible GSS-sequences
of a given length (m-BD scale)

Furthermore, we wanted to compare the half-interval algorithm with the new m-BD algorithm,469

which has not been previously studied neither its performance is known. In Figure 6, a logarithmic470

scaled graph is depicted. We see how the half-interval search algorithm outperforms the m-BD471

algorithm provided that the length of the sequence studied is increased. This behaviour seems to472

reveal that the increment in the sequence length makes worse the m-BD algorithm performance, since473

m-BD requires more tries to calculate the LC.474

Figure 6. Comparison between half-interval search and m-BS algorithms

Although it is not the purpose of this work, it is worth noticing that the half-interval search475

algorithm can be parallelized in the computation of LC while the BD-algorithm performs the476

computation in a sequential way.477

Another point that was not covered in the experiments is how the m-BD algorithm can take profit478

of some optimizations in the computation of matrix operations, which explain its great speed when the479
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sequences are not too long. In addition, it could be enhanced while running in environments specially480

designed for it such as MATLAB.481

5.3. Different Use-cases482

After the analysis and the experiments to test the performance of the algorithms, it is also worth483

exploring different application scenarios, not only the linear complexity calculation. All the algorithms484

that use the binomial decomposition calculate the LC with the maximum binomial component.485

A different case for these algorithms could be the study in depth of other types of binary sequences.486

In fact, having their full decomposition can help to analyze more parameters related to the security of487

the sequences, e.g. to calculate the density of components in the decomposition or the balancedness488

of such sequences. It is in this case where the BD-algorithm outperforms the others, since the way it489

calculates the LC is by means of the computation of all the binomial components.490

Another interesting use-case for these algorithms is, for instance, processing a large amount of491

sequences in order to discern as fast as possible which ones have better/worse security. In that case,492

the m-BD algorithm is the best one, because it can determine whether the highest binomial component493

is present in the binomial decomposition previously to complete the LC calculation. So the m-BD494

algorithm may not be the fastest algorithm to calculate the LC of a particular sequence but it may be495

used to quickly detect which sequence has a LC lower than the others.496

Finally, the m-BD algorithm could be of great use if the range of the linear complexity is known.497

In that case, this parameter would avoid unnecessary tries of the algorithm, which otherwise will498

profit from the matrix optimizations that modern libraries support.499

6. Conclusions500

In this work, different algorithms to compute the linear complexity of binary sequences have501

been introduced and analyzed. In general, they exhibit better performances than the well-known502

Berlekamp-Massey algorithm when applied to sequences suitable for cryptography.503

Concerning the half-interval search algorithm presented in this article, it shows excellent results504

in both computational complexity and amount of sequence required. It was also tested in comparison505

with other algorithms by applying it to GSS-sequences, showing an improved performance when the506

length of the sequences increases.507

The matrix binomial decomposition algorithm showed a good performance with short sequences.508

Nevertheless, its main characteristic, that is the way in which it identifies the binomial components of509

a sequence, can be useful in other scenarios apart from the LC calculation, e.g. to discern between a510

large amount of sequences which ones have a better complexity than the others.511

Moreover, the binomial decomposition of binary sequences seems to be an innovative technique to512

extract information from a given sequence. In particular, the fractal character of the binomial sequences513

can be employed to calculate diverse parameters of a sequence without knowing the whole sequence.514

In brief, the analysis of these algorithms is quite useful to find weaknesses in this type of binary515

sequences. Indeed, detecting such weaknesses in a cipher with practical applications could compromise516

the corresponding IoT device and, consequently, the services that rely on it.517
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